[PARISC] Add __read_mostly section for parisc
[wrt350n-kernel.git] / mm / page_alloc.c
bloba5e6891f7bb6f366025e56dd701f9794d29ce67d
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
103 return ret;
106 static int page_is_consistent(struct zone *zone, struct page *page)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
115 return 1;
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone *zone, struct page *page)
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
127 return 0;
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
133 return 0;
135 #endif
137 static void bad_page(struct page *page)
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 "Trying to fix it up, but a reboot is needed\n"
142 "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
179 static void prep_compound_page(struct page *page, unsigned long order)
181 int i;
182 int nr_pages = 1 << order;
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
189 SetPageCompound(p);
190 set_page_private(p, (unsigned long)page);
194 static void destroy_compound_page(struct page *page, unsigned long order)
196 int i;
197 int nr_pages = 1 << order;
199 if (unlikely(page[1].index != order))
200 bad_page(page);
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
208 ClearPageCompound(p);
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
226 static inline void rmv_page_order(struct page *page)
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
252 unsigned long buddy_idx = page_idx ^ (1 << order);
254 return page + (buddy_idx - page_idx);
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
260 return (page_idx & ~(1 << order));
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
273 static inline int page_is_buddy(struct page *page, int order)
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
288 * Freeing function for a buddy system allocator.
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
308 * -- wli
311 static inline void __free_one_page(struct page *page,
312 struct zone *zone, unsigned int order)
314 unsigned long page_idx;
315 int order_size = 1 << order;
317 if (unlikely(PageCompound(page)))
318 destroy_compound_page(page, order);
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
349 static inline int free_pages_check(struct page *page)
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
372 return PageReserved(page);
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
386 static void free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, int order)
389 spin_lock(&zone->lock);
390 zone->all_unreclaimable = 0;
391 zone->pages_scanned = 0;
392 while (count--) {
393 struct page *page;
395 BUG_ON(list_empty(list));
396 page = list_entry(list->prev, struct page, lru);
397 /* have to delete it as __free_one_page list manipulates */
398 list_del(&page->lru);
399 __free_one_page(page, zone, order);
401 spin_unlock(&zone->lock);
404 static void free_one_page(struct zone *zone, struct page *page, int order)
406 LIST_HEAD(list);
407 list_add(&page->lru, &list);
408 free_pages_bulk(zone, 1, &list, order);
411 static void __free_pages_ok(struct page *page, unsigned int order)
413 unsigned long flags;
414 int i;
415 int reserved = 0;
417 arch_free_page(page, order);
418 if (!PageHighMem(page))
419 mutex_debug_check_no_locks_freed(page_address(page),
420 page_address(page+(1<<order)));
422 #ifndef CONFIG_MMU
423 for (i = 1 ; i < (1 << order) ; ++i)
424 __put_page(page + i);
425 #endif
427 for (i = 0 ; i < (1 << order) ; ++i)
428 reserved += free_pages_check(page + i);
429 if (reserved)
430 return;
432 kernel_map_pages(page, 1 << order, 0);
433 local_irq_save(flags);
434 __mod_page_state(pgfree, 1 << order);
435 free_one_page(page_zone(page), page, order);
436 local_irq_restore(flags);
440 * permit the bootmem allocator to evade page validation on high-order frees
442 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
444 if (order == 0) {
445 __ClearPageReserved(page);
446 set_page_count(page, 0);
448 free_hot_cold_page(page, 0);
449 } else {
450 LIST_HEAD(list);
451 int loop;
453 for (loop = 0; loop < BITS_PER_LONG; loop++) {
454 struct page *p = &page[loop];
456 if (loop + 16 < BITS_PER_LONG)
457 prefetchw(p + 16);
458 __ClearPageReserved(p);
459 set_page_count(p, 0);
462 arch_free_page(page, order);
464 mod_page_state(pgfree, 1 << order);
466 list_add(&page->lru, &list);
467 kernel_map_pages(page, 1 << order, 0);
468 free_pages_bulk(page_zone(page), 1, &list, order);
474 * The order of subdivision here is critical for the IO subsystem.
475 * Please do not alter this order without good reasons and regression
476 * testing. Specifically, as large blocks of memory are subdivided,
477 * the order in which smaller blocks are delivered depends on the order
478 * they're subdivided in this function. This is the primary factor
479 * influencing the order in which pages are delivered to the IO
480 * subsystem according to empirical testing, and this is also justified
481 * by considering the behavior of a buddy system containing a single
482 * large block of memory acted on by a series of small allocations.
483 * This behavior is a critical factor in sglist merging's success.
485 * -- wli
487 static inline void expand(struct zone *zone, struct page *page,
488 int low, int high, struct free_area *area)
490 unsigned long size = 1 << high;
492 while (high > low) {
493 area--;
494 high--;
495 size >>= 1;
496 BUG_ON(bad_range(zone, &page[size]));
497 list_add(&page[size].lru, &area->free_list);
498 area->nr_free++;
499 set_page_order(&page[size], high);
504 * This page is about to be returned from the page allocator
506 static int prep_new_page(struct page *page, int order)
508 if (unlikely(page_mapcount(page) |
509 (page->mapping != NULL) |
510 (page_count(page) != 0) |
511 (page->flags & (
512 1 << PG_lru |
513 1 << PG_private |
514 1 << PG_locked |
515 1 << PG_active |
516 1 << PG_dirty |
517 1 << PG_reclaim |
518 1 << PG_slab |
519 1 << PG_swapcache |
520 1 << PG_writeback |
521 1 << PG_reserved ))))
522 bad_page(page);
525 * For now, we report if PG_reserved was found set, but do not
526 * clear it, and do not allocate the page: as a safety net.
528 if (PageReserved(page))
529 return 1;
531 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
532 1 << PG_referenced | 1 << PG_arch_1 |
533 1 << PG_checked | 1 << PG_mappedtodisk);
534 set_page_private(page, 0);
535 set_page_refs(page, order);
536 kernel_map_pages(page, 1 << order, 1);
537 return 0;
541 * Do the hard work of removing an element from the buddy allocator.
542 * Call me with the zone->lock already held.
544 static struct page *__rmqueue(struct zone *zone, unsigned int order)
546 struct free_area * area;
547 unsigned int current_order;
548 struct page *page;
550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
551 area = zone->free_area + current_order;
552 if (list_empty(&area->free_list))
553 continue;
555 page = list_entry(area->free_list.next, struct page, lru);
556 list_del(&page->lru);
557 rmv_page_order(page);
558 area->nr_free--;
559 zone->free_pages -= 1UL << order;
560 expand(zone, page, order, current_order, area);
561 return page;
564 return NULL;
568 * Obtain a specified number of elements from the buddy allocator, all under
569 * a single hold of the lock, for efficiency. Add them to the supplied list.
570 * Returns the number of new pages which were placed at *list.
572 static int rmqueue_bulk(struct zone *zone, unsigned int order,
573 unsigned long count, struct list_head *list)
575 int i;
577 spin_lock(&zone->lock);
578 for (i = 0; i < count; ++i) {
579 struct page *page = __rmqueue(zone, order);
580 if (unlikely(page == NULL))
581 break;
582 list_add_tail(&page->lru, list);
584 spin_unlock(&zone->lock);
585 return i;
588 #ifdef CONFIG_NUMA
589 /* Called from the slab reaper to drain remote pagesets */
590 void drain_remote_pages(void)
592 struct zone *zone;
593 int i;
594 unsigned long flags;
596 local_irq_save(flags);
597 for_each_zone(zone) {
598 struct per_cpu_pageset *pset;
600 /* Do not drain local pagesets */
601 if (zone->zone_pgdat->node_id == numa_node_id())
602 continue;
604 pset = zone_pcp(zone, smp_processor_id());
605 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
606 struct per_cpu_pages *pcp;
608 pcp = &pset->pcp[i];
609 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
610 pcp->count = 0;
613 local_irq_restore(flags);
615 #endif
617 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
618 static void __drain_pages(unsigned int cpu)
620 unsigned long flags;
621 struct zone *zone;
622 int i;
624 for_each_zone(zone) {
625 struct per_cpu_pageset *pset;
627 pset = zone_pcp(zone, cpu);
628 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
629 struct per_cpu_pages *pcp;
631 pcp = &pset->pcp[i];
632 local_irq_save(flags);
633 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
634 pcp->count = 0;
635 local_irq_restore(flags);
639 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
641 #ifdef CONFIG_PM
643 void mark_free_pages(struct zone *zone)
645 unsigned long zone_pfn, flags;
646 int order;
647 struct list_head *curr;
649 if (!zone->spanned_pages)
650 return;
652 spin_lock_irqsave(&zone->lock, flags);
653 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
654 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
656 for (order = MAX_ORDER - 1; order >= 0; --order)
657 list_for_each(curr, &zone->free_area[order].free_list) {
658 unsigned long start_pfn, i;
660 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
662 for (i=0; i < (1<<order); i++)
663 SetPageNosaveFree(pfn_to_page(start_pfn+i));
665 spin_unlock_irqrestore(&zone->lock, flags);
669 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
671 void drain_local_pages(void)
673 unsigned long flags;
675 local_irq_save(flags);
676 __drain_pages(smp_processor_id());
677 local_irq_restore(flags);
679 #endif /* CONFIG_PM */
681 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
683 #ifdef CONFIG_NUMA
684 pg_data_t *pg = z->zone_pgdat;
685 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
686 struct per_cpu_pageset *p;
688 p = zone_pcp(z, cpu);
689 if (pg == orig) {
690 p->numa_hit++;
691 } else {
692 p->numa_miss++;
693 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
695 if (pg == NODE_DATA(numa_node_id()))
696 p->local_node++;
697 else
698 p->other_node++;
699 #endif
703 * Free a 0-order page
705 static void fastcall free_hot_cold_page(struct page *page, int cold)
707 struct zone *zone = page_zone(page);
708 struct per_cpu_pages *pcp;
709 unsigned long flags;
711 arch_free_page(page, 0);
713 if (PageAnon(page))
714 page->mapping = NULL;
715 if (free_pages_check(page))
716 return;
718 kernel_map_pages(page, 1, 0);
720 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
721 local_irq_save(flags);
722 __inc_page_state(pgfree);
723 list_add(&page->lru, &pcp->list);
724 pcp->count++;
725 if (pcp->count >= pcp->high) {
726 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
727 pcp->count -= pcp->batch;
729 local_irq_restore(flags);
730 put_cpu();
733 void fastcall free_hot_page(struct page *page)
735 free_hot_cold_page(page, 0);
738 void fastcall free_cold_page(struct page *page)
740 free_hot_cold_page(page, 1);
743 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
745 int i;
747 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
748 for(i = 0; i < (1 << order); i++)
749 clear_highpage(page + i);
753 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
754 * we cheat by calling it from here, in the order > 0 path. Saves a branch
755 * or two.
757 static struct page *buffered_rmqueue(struct zonelist *zonelist,
758 struct zone *zone, int order, gfp_t gfp_flags)
760 unsigned long flags;
761 struct page *page;
762 int cold = !!(gfp_flags & __GFP_COLD);
763 int cpu;
765 again:
766 cpu = get_cpu();
767 if (likely(order == 0)) {
768 struct per_cpu_pages *pcp;
770 pcp = &zone_pcp(zone, cpu)->pcp[cold];
771 local_irq_save(flags);
772 if (!pcp->count) {
773 pcp->count += rmqueue_bulk(zone, 0,
774 pcp->batch, &pcp->list);
775 if (unlikely(!pcp->count))
776 goto failed;
778 page = list_entry(pcp->list.next, struct page, lru);
779 list_del(&page->lru);
780 pcp->count--;
781 } else {
782 spin_lock_irqsave(&zone->lock, flags);
783 page = __rmqueue(zone, order);
784 spin_unlock(&zone->lock);
785 if (!page)
786 goto failed;
789 __mod_page_state_zone(zone, pgalloc, 1 << order);
790 zone_statistics(zonelist, zone, cpu);
791 local_irq_restore(flags);
792 put_cpu();
794 BUG_ON(bad_range(zone, page));
795 if (prep_new_page(page, order))
796 goto again;
798 if (gfp_flags & __GFP_ZERO)
799 prep_zero_page(page, order, gfp_flags);
801 if (order && (gfp_flags & __GFP_COMP))
802 prep_compound_page(page, order);
803 return page;
805 failed:
806 local_irq_restore(flags);
807 put_cpu();
808 return NULL;
811 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
812 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
813 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
814 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
815 #define ALLOC_HARDER 0x10 /* try to alloc harder */
816 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
817 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
820 * Return 1 if free pages are above 'mark'. This takes into account the order
821 * of the allocation.
823 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
824 int classzone_idx, int alloc_flags)
826 /* free_pages my go negative - that's OK */
827 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
828 int o;
830 if (alloc_flags & ALLOC_HIGH)
831 min -= min / 2;
832 if (alloc_flags & ALLOC_HARDER)
833 min -= min / 4;
835 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
836 return 0;
837 for (o = 0; o < order; o++) {
838 /* At the next order, this order's pages become unavailable */
839 free_pages -= z->free_area[o].nr_free << o;
841 /* Require fewer higher order pages to be free */
842 min >>= 1;
844 if (free_pages <= min)
845 return 0;
847 return 1;
851 * get_page_from_freeliest goes through the zonelist trying to allocate
852 * a page.
854 static struct page *
855 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
856 struct zonelist *zonelist, int alloc_flags)
858 struct zone **z = zonelist->zones;
859 struct page *page = NULL;
860 int classzone_idx = zone_idx(*z);
863 * Go through the zonelist once, looking for a zone with enough free.
864 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
866 do {
867 if ((alloc_flags & ALLOC_CPUSET) &&
868 !cpuset_zone_allowed(*z, gfp_mask))
869 continue;
871 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
872 unsigned long mark;
873 if (alloc_flags & ALLOC_WMARK_MIN)
874 mark = (*z)->pages_min;
875 else if (alloc_flags & ALLOC_WMARK_LOW)
876 mark = (*z)->pages_low;
877 else
878 mark = (*z)->pages_high;
879 if (!zone_watermark_ok(*z, order, mark,
880 classzone_idx, alloc_flags))
881 continue;
884 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
885 if (page) {
886 break;
888 } while (*(++z) != NULL);
889 return page;
893 * This is the 'heart' of the zoned buddy allocator.
895 struct page * fastcall
896 __alloc_pages(gfp_t gfp_mask, unsigned int order,
897 struct zonelist *zonelist)
899 const gfp_t wait = gfp_mask & __GFP_WAIT;
900 struct zone **z;
901 struct page *page;
902 struct reclaim_state reclaim_state;
903 struct task_struct *p = current;
904 int do_retry;
905 int alloc_flags;
906 int did_some_progress;
908 might_sleep_if(wait);
910 restart:
911 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
913 if (unlikely(*z == NULL)) {
914 /* Should this ever happen?? */
915 return NULL;
918 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
919 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
920 if (page)
921 goto got_pg;
923 do {
924 wakeup_kswapd(*z, order);
925 } while (*(++z));
928 * OK, we're below the kswapd watermark and have kicked background
929 * reclaim. Now things get more complex, so set up alloc_flags according
930 * to how we want to proceed.
932 * The caller may dip into page reserves a bit more if the caller
933 * cannot run direct reclaim, or if the caller has realtime scheduling
934 * policy.
936 alloc_flags = ALLOC_WMARK_MIN;
937 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
938 alloc_flags |= ALLOC_HARDER;
939 if (gfp_mask & __GFP_HIGH)
940 alloc_flags |= ALLOC_HIGH;
941 alloc_flags |= ALLOC_CPUSET;
944 * Go through the zonelist again. Let __GFP_HIGH and allocations
945 * coming from realtime tasks go deeper into reserves.
947 * This is the last chance, in general, before the goto nopage.
948 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
949 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
951 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
952 if (page)
953 goto got_pg;
955 /* This allocation should allow future memory freeing. */
957 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
958 && !in_interrupt()) {
959 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
960 nofail_alloc:
961 /* go through the zonelist yet again, ignoring mins */
962 page = get_page_from_freelist(gfp_mask, order,
963 zonelist, ALLOC_NO_WATERMARKS);
964 if (page)
965 goto got_pg;
966 if (gfp_mask & __GFP_NOFAIL) {
967 blk_congestion_wait(WRITE, HZ/50);
968 goto nofail_alloc;
971 goto nopage;
974 /* Atomic allocations - we can't balance anything */
975 if (!wait)
976 goto nopage;
978 rebalance:
979 cond_resched();
981 /* We now go into synchronous reclaim */
982 cpuset_memory_pressure_bump();
983 p->flags |= PF_MEMALLOC;
984 reclaim_state.reclaimed_slab = 0;
985 p->reclaim_state = &reclaim_state;
987 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
989 p->reclaim_state = NULL;
990 p->flags &= ~PF_MEMALLOC;
992 cond_resched();
994 if (likely(did_some_progress)) {
995 page = get_page_from_freelist(gfp_mask, order,
996 zonelist, alloc_flags);
997 if (page)
998 goto got_pg;
999 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1001 * Go through the zonelist yet one more time, keep
1002 * very high watermark here, this is only to catch
1003 * a parallel oom killing, we must fail if we're still
1004 * under heavy pressure.
1006 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1007 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1008 if (page)
1009 goto got_pg;
1011 out_of_memory(gfp_mask, order);
1012 goto restart;
1016 * Don't let big-order allocations loop unless the caller explicitly
1017 * requests that. Wait for some write requests to complete then retry.
1019 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1020 * <= 3, but that may not be true in other implementations.
1022 do_retry = 0;
1023 if (!(gfp_mask & __GFP_NORETRY)) {
1024 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1025 do_retry = 1;
1026 if (gfp_mask & __GFP_NOFAIL)
1027 do_retry = 1;
1029 if (do_retry) {
1030 blk_congestion_wait(WRITE, HZ/50);
1031 goto rebalance;
1034 nopage:
1035 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1036 printk(KERN_WARNING "%s: page allocation failure."
1037 " order:%d, mode:0x%x\n",
1038 p->comm, order, gfp_mask);
1039 dump_stack();
1040 show_mem();
1042 got_pg:
1043 return page;
1046 EXPORT_SYMBOL(__alloc_pages);
1049 * Common helper functions.
1051 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1053 struct page * page;
1054 page = alloc_pages(gfp_mask, order);
1055 if (!page)
1056 return 0;
1057 return (unsigned long) page_address(page);
1060 EXPORT_SYMBOL(__get_free_pages);
1062 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1064 struct page * page;
1067 * get_zeroed_page() returns a 32-bit address, which cannot represent
1068 * a highmem page
1070 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1072 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1073 if (page)
1074 return (unsigned long) page_address(page);
1075 return 0;
1078 EXPORT_SYMBOL(get_zeroed_page);
1080 void __pagevec_free(struct pagevec *pvec)
1082 int i = pagevec_count(pvec);
1084 while (--i >= 0)
1085 free_hot_cold_page(pvec->pages[i], pvec->cold);
1088 fastcall void __free_pages(struct page *page, unsigned int order)
1090 if (put_page_testzero(page)) {
1091 if (order == 0)
1092 free_hot_page(page);
1093 else
1094 __free_pages_ok(page, order);
1098 EXPORT_SYMBOL(__free_pages);
1100 fastcall void free_pages(unsigned long addr, unsigned int order)
1102 if (addr != 0) {
1103 BUG_ON(!virt_addr_valid((void *)addr));
1104 __free_pages(virt_to_page((void *)addr), order);
1108 EXPORT_SYMBOL(free_pages);
1111 * Total amount of free (allocatable) RAM:
1113 unsigned int nr_free_pages(void)
1115 unsigned int sum = 0;
1116 struct zone *zone;
1118 for_each_zone(zone)
1119 sum += zone->free_pages;
1121 return sum;
1124 EXPORT_SYMBOL(nr_free_pages);
1126 #ifdef CONFIG_NUMA
1127 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1129 unsigned int i, sum = 0;
1131 for (i = 0; i < MAX_NR_ZONES; i++)
1132 sum += pgdat->node_zones[i].free_pages;
1134 return sum;
1136 #endif
1138 static unsigned int nr_free_zone_pages(int offset)
1140 /* Just pick one node, since fallback list is circular */
1141 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1142 unsigned int sum = 0;
1144 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1145 struct zone **zonep = zonelist->zones;
1146 struct zone *zone;
1148 for (zone = *zonep++; zone; zone = *zonep++) {
1149 unsigned long size = zone->present_pages;
1150 unsigned long high = zone->pages_high;
1151 if (size > high)
1152 sum += size - high;
1155 return sum;
1159 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1161 unsigned int nr_free_buffer_pages(void)
1163 return nr_free_zone_pages(gfp_zone(GFP_USER));
1167 * Amount of free RAM allocatable within all zones
1169 unsigned int nr_free_pagecache_pages(void)
1171 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1174 #ifdef CONFIG_HIGHMEM
1175 unsigned int nr_free_highpages (void)
1177 pg_data_t *pgdat;
1178 unsigned int pages = 0;
1180 for_each_pgdat(pgdat)
1181 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1183 return pages;
1185 #endif
1187 #ifdef CONFIG_NUMA
1188 static void show_node(struct zone *zone)
1190 printk("Node %d ", zone->zone_pgdat->node_id);
1192 #else
1193 #define show_node(zone) do { } while (0)
1194 #endif
1197 * Accumulate the page_state information across all CPUs.
1198 * The result is unavoidably approximate - it can change
1199 * during and after execution of this function.
1201 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1203 atomic_t nr_pagecache = ATOMIC_INIT(0);
1204 EXPORT_SYMBOL(nr_pagecache);
1205 #ifdef CONFIG_SMP
1206 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1207 #endif
1209 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1211 int cpu = 0;
1213 memset(ret, 0, sizeof(*ret));
1214 cpus_and(*cpumask, *cpumask, cpu_online_map);
1216 cpu = first_cpu(*cpumask);
1217 while (cpu < NR_CPUS) {
1218 unsigned long *in, *out, off;
1220 in = (unsigned long *)&per_cpu(page_states, cpu);
1222 cpu = next_cpu(cpu, *cpumask);
1224 if (cpu < NR_CPUS)
1225 prefetch(&per_cpu(page_states, cpu));
1227 out = (unsigned long *)ret;
1228 for (off = 0; off < nr; off++)
1229 *out++ += *in++;
1233 void get_page_state_node(struct page_state *ret, int node)
1235 int nr;
1236 cpumask_t mask = node_to_cpumask(node);
1238 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1239 nr /= sizeof(unsigned long);
1241 __get_page_state(ret, nr+1, &mask);
1244 void get_page_state(struct page_state *ret)
1246 int nr;
1247 cpumask_t mask = CPU_MASK_ALL;
1249 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1250 nr /= sizeof(unsigned long);
1252 __get_page_state(ret, nr + 1, &mask);
1255 void get_full_page_state(struct page_state *ret)
1257 cpumask_t mask = CPU_MASK_ALL;
1259 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1262 unsigned long read_page_state_offset(unsigned long offset)
1264 unsigned long ret = 0;
1265 int cpu;
1267 for_each_online_cpu(cpu) {
1268 unsigned long in;
1270 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1271 ret += *((unsigned long *)in);
1273 return ret;
1276 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1278 void *ptr;
1280 ptr = &__get_cpu_var(page_states);
1281 *(unsigned long *)(ptr + offset) += delta;
1283 EXPORT_SYMBOL(__mod_page_state_offset);
1285 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1287 unsigned long flags;
1288 void *ptr;
1290 local_irq_save(flags);
1291 ptr = &__get_cpu_var(page_states);
1292 *(unsigned long *)(ptr + offset) += delta;
1293 local_irq_restore(flags);
1295 EXPORT_SYMBOL(mod_page_state_offset);
1297 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1298 unsigned long *free, struct pglist_data *pgdat)
1300 struct zone *zones = pgdat->node_zones;
1301 int i;
1303 *active = 0;
1304 *inactive = 0;
1305 *free = 0;
1306 for (i = 0; i < MAX_NR_ZONES; i++) {
1307 *active += zones[i].nr_active;
1308 *inactive += zones[i].nr_inactive;
1309 *free += zones[i].free_pages;
1313 void get_zone_counts(unsigned long *active,
1314 unsigned long *inactive, unsigned long *free)
1316 struct pglist_data *pgdat;
1318 *active = 0;
1319 *inactive = 0;
1320 *free = 0;
1321 for_each_pgdat(pgdat) {
1322 unsigned long l, m, n;
1323 __get_zone_counts(&l, &m, &n, pgdat);
1324 *active += l;
1325 *inactive += m;
1326 *free += n;
1330 void si_meminfo(struct sysinfo *val)
1332 val->totalram = totalram_pages;
1333 val->sharedram = 0;
1334 val->freeram = nr_free_pages();
1335 val->bufferram = nr_blockdev_pages();
1336 #ifdef CONFIG_HIGHMEM
1337 val->totalhigh = totalhigh_pages;
1338 val->freehigh = nr_free_highpages();
1339 #else
1340 val->totalhigh = 0;
1341 val->freehigh = 0;
1342 #endif
1343 val->mem_unit = PAGE_SIZE;
1346 EXPORT_SYMBOL(si_meminfo);
1348 #ifdef CONFIG_NUMA
1349 void si_meminfo_node(struct sysinfo *val, int nid)
1351 pg_data_t *pgdat = NODE_DATA(nid);
1353 val->totalram = pgdat->node_present_pages;
1354 val->freeram = nr_free_pages_pgdat(pgdat);
1355 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1356 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1357 val->mem_unit = PAGE_SIZE;
1359 #endif
1361 #define K(x) ((x) << (PAGE_SHIFT-10))
1364 * Show free area list (used inside shift_scroll-lock stuff)
1365 * We also calculate the percentage fragmentation. We do this by counting the
1366 * memory on each free list with the exception of the first item on the list.
1368 void show_free_areas(void)
1370 struct page_state ps;
1371 int cpu, temperature;
1372 unsigned long active;
1373 unsigned long inactive;
1374 unsigned long free;
1375 struct zone *zone;
1377 for_each_zone(zone) {
1378 show_node(zone);
1379 printk("%s per-cpu:", zone->name);
1381 if (!populated_zone(zone)) {
1382 printk(" empty\n");
1383 continue;
1384 } else
1385 printk("\n");
1387 for_each_online_cpu(cpu) {
1388 struct per_cpu_pageset *pageset;
1390 pageset = zone_pcp(zone, cpu);
1392 for (temperature = 0; temperature < 2; temperature++)
1393 printk("cpu %d %s: high %d, batch %d used:%d\n",
1394 cpu,
1395 temperature ? "cold" : "hot",
1396 pageset->pcp[temperature].high,
1397 pageset->pcp[temperature].batch,
1398 pageset->pcp[temperature].count);
1402 get_page_state(&ps);
1403 get_zone_counts(&active, &inactive, &free);
1405 printk("Free pages: %11ukB (%ukB HighMem)\n",
1406 K(nr_free_pages()),
1407 K(nr_free_highpages()));
1409 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1410 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1411 active,
1412 inactive,
1413 ps.nr_dirty,
1414 ps.nr_writeback,
1415 ps.nr_unstable,
1416 nr_free_pages(),
1417 ps.nr_slab,
1418 ps.nr_mapped,
1419 ps.nr_page_table_pages);
1421 for_each_zone(zone) {
1422 int i;
1424 show_node(zone);
1425 printk("%s"
1426 " free:%lukB"
1427 " min:%lukB"
1428 " low:%lukB"
1429 " high:%lukB"
1430 " active:%lukB"
1431 " inactive:%lukB"
1432 " present:%lukB"
1433 " pages_scanned:%lu"
1434 " all_unreclaimable? %s"
1435 "\n",
1436 zone->name,
1437 K(zone->free_pages),
1438 K(zone->pages_min),
1439 K(zone->pages_low),
1440 K(zone->pages_high),
1441 K(zone->nr_active),
1442 K(zone->nr_inactive),
1443 K(zone->present_pages),
1444 zone->pages_scanned,
1445 (zone->all_unreclaimable ? "yes" : "no")
1447 printk("lowmem_reserve[]:");
1448 for (i = 0; i < MAX_NR_ZONES; i++)
1449 printk(" %lu", zone->lowmem_reserve[i]);
1450 printk("\n");
1453 for_each_zone(zone) {
1454 unsigned long nr, flags, order, total = 0;
1456 show_node(zone);
1457 printk("%s: ", zone->name);
1458 if (!populated_zone(zone)) {
1459 printk("empty\n");
1460 continue;
1463 spin_lock_irqsave(&zone->lock, flags);
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 nr = zone->free_area[order].nr_free;
1466 total += nr << order;
1467 printk("%lu*%lukB ", nr, K(1UL) << order);
1469 spin_unlock_irqrestore(&zone->lock, flags);
1470 printk("= %lukB\n", K(total));
1473 show_swap_cache_info();
1477 * Builds allocation fallback zone lists.
1479 * Add all populated zones of a node to the zonelist.
1481 static int __init build_zonelists_node(pg_data_t *pgdat,
1482 struct zonelist *zonelist, int nr_zones, int zone_type)
1484 struct zone *zone;
1486 BUG_ON(zone_type > ZONE_HIGHMEM);
1488 do {
1489 zone = pgdat->node_zones + zone_type;
1490 if (populated_zone(zone)) {
1491 #ifndef CONFIG_HIGHMEM
1492 BUG_ON(zone_type > ZONE_NORMAL);
1493 #endif
1494 zonelist->zones[nr_zones++] = zone;
1495 check_highest_zone(zone_type);
1497 zone_type--;
1499 } while (zone_type >= 0);
1500 return nr_zones;
1503 static inline int highest_zone(int zone_bits)
1505 int res = ZONE_NORMAL;
1506 if (zone_bits & (__force int)__GFP_HIGHMEM)
1507 res = ZONE_HIGHMEM;
1508 if (zone_bits & (__force int)__GFP_DMA32)
1509 res = ZONE_DMA32;
1510 if (zone_bits & (__force int)__GFP_DMA)
1511 res = ZONE_DMA;
1512 return res;
1515 #ifdef CONFIG_NUMA
1516 #define MAX_NODE_LOAD (num_online_nodes())
1517 static int __initdata node_load[MAX_NUMNODES];
1519 * find_next_best_node - find the next node that should appear in a given node's fallback list
1520 * @node: node whose fallback list we're appending
1521 * @used_node_mask: nodemask_t of already used nodes
1523 * We use a number of factors to determine which is the next node that should
1524 * appear on a given node's fallback list. The node should not have appeared
1525 * already in @node's fallback list, and it should be the next closest node
1526 * according to the distance array (which contains arbitrary distance values
1527 * from each node to each node in the system), and should also prefer nodes
1528 * with no CPUs, since presumably they'll have very little allocation pressure
1529 * on them otherwise.
1530 * It returns -1 if no node is found.
1532 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1534 int i, n, val;
1535 int min_val = INT_MAX;
1536 int best_node = -1;
1538 for_each_online_node(i) {
1539 cpumask_t tmp;
1541 /* Start from local node */
1542 n = (node+i) % num_online_nodes();
1544 /* Don't want a node to appear more than once */
1545 if (node_isset(n, *used_node_mask))
1546 continue;
1548 /* Use the local node if we haven't already */
1549 if (!node_isset(node, *used_node_mask)) {
1550 best_node = node;
1551 break;
1554 /* Use the distance array to find the distance */
1555 val = node_distance(node, n);
1557 /* Give preference to headless and unused nodes */
1558 tmp = node_to_cpumask(n);
1559 if (!cpus_empty(tmp))
1560 val += PENALTY_FOR_NODE_WITH_CPUS;
1562 /* Slight preference for less loaded node */
1563 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1564 val += node_load[n];
1566 if (val < min_val) {
1567 min_val = val;
1568 best_node = n;
1572 if (best_node >= 0)
1573 node_set(best_node, *used_node_mask);
1575 return best_node;
1578 static void __init build_zonelists(pg_data_t *pgdat)
1580 int i, j, k, node, local_node;
1581 int prev_node, load;
1582 struct zonelist *zonelist;
1583 nodemask_t used_mask;
1585 /* initialize zonelists */
1586 for (i = 0; i < GFP_ZONETYPES; i++) {
1587 zonelist = pgdat->node_zonelists + i;
1588 zonelist->zones[0] = NULL;
1591 /* NUMA-aware ordering of nodes */
1592 local_node = pgdat->node_id;
1593 load = num_online_nodes();
1594 prev_node = local_node;
1595 nodes_clear(used_mask);
1596 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1598 * We don't want to pressure a particular node.
1599 * So adding penalty to the first node in same
1600 * distance group to make it round-robin.
1602 if (node_distance(local_node, node) !=
1603 node_distance(local_node, prev_node))
1604 node_load[node] += load;
1605 prev_node = node;
1606 load--;
1607 for (i = 0; i < GFP_ZONETYPES; i++) {
1608 zonelist = pgdat->node_zonelists + i;
1609 for (j = 0; zonelist->zones[j] != NULL; j++);
1611 k = highest_zone(i);
1613 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1614 zonelist->zones[j] = NULL;
1619 #else /* CONFIG_NUMA */
1621 static void __init build_zonelists(pg_data_t *pgdat)
1623 int i, j, k, node, local_node;
1625 local_node = pgdat->node_id;
1626 for (i = 0; i < GFP_ZONETYPES; i++) {
1627 struct zonelist *zonelist;
1629 zonelist = pgdat->node_zonelists + i;
1631 j = 0;
1632 k = highest_zone(i);
1633 j = build_zonelists_node(pgdat, zonelist, j, k);
1635 * Now we build the zonelist so that it contains the zones
1636 * of all the other nodes.
1637 * We don't want to pressure a particular node, so when
1638 * building the zones for node N, we make sure that the
1639 * zones coming right after the local ones are those from
1640 * node N+1 (modulo N)
1642 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1643 if (!node_online(node))
1644 continue;
1645 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1647 for (node = 0; node < local_node; node++) {
1648 if (!node_online(node))
1649 continue;
1650 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1653 zonelist->zones[j] = NULL;
1657 #endif /* CONFIG_NUMA */
1659 void __init build_all_zonelists(void)
1661 int i;
1663 for_each_online_node(i)
1664 build_zonelists(NODE_DATA(i));
1665 printk("Built %i zonelists\n", num_online_nodes());
1666 cpuset_init_current_mems_allowed();
1670 * Helper functions to size the waitqueue hash table.
1671 * Essentially these want to choose hash table sizes sufficiently
1672 * large so that collisions trying to wait on pages are rare.
1673 * But in fact, the number of active page waitqueues on typical
1674 * systems is ridiculously low, less than 200. So this is even
1675 * conservative, even though it seems large.
1677 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1678 * waitqueues, i.e. the size of the waitq table given the number of pages.
1680 #define PAGES_PER_WAITQUEUE 256
1682 static inline unsigned long wait_table_size(unsigned long pages)
1684 unsigned long size = 1;
1686 pages /= PAGES_PER_WAITQUEUE;
1688 while (size < pages)
1689 size <<= 1;
1692 * Once we have dozens or even hundreds of threads sleeping
1693 * on IO we've got bigger problems than wait queue collision.
1694 * Limit the size of the wait table to a reasonable size.
1696 size = min(size, 4096UL);
1698 return max(size, 4UL);
1702 * This is an integer logarithm so that shifts can be used later
1703 * to extract the more random high bits from the multiplicative
1704 * hash function before the remainder is taken.
1706 static inline unsigned long wait_table_bits(unsigned long size)
1708 return ffz(~size);
1711 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1713 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1714 unsigned long *zones_size, unsigned long *zholes_size)
1716 unsigned long realtotalpages, totalpages = 0;
1717 int i;
1719 for (i = 0; i < MAX_NR_ZONES; i++)
1720 totalpages += zones_size[i];
1721 pgdat->node_spanned_pages = totalpages;
1723 realtotalpages = totalpages;
1724 if (zholes_size)
1725 for (i = 0; i < MAX_NR_ZONES; i++)
1726 realtotalpages -= zholes_size[i];
1727 pgdat->node_present_pages = realtotalpages;
1728 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1733 * Initially all pages are reserved - free ones are freed
1734 * up by free_all_bootmem() once the early boot process is
1735 * done. Non-atomic initialization, single-pass.
1737 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1738 unsigned long start_pfn)
1740 struct page *page;
1741 unsigned long end_pfn = start_pfn + size;
1742 unsigned long pfn;
1744 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1745 if (!early_pfn_valid(pfn))
1746 continue;
1747 page = pfn_to_page(pfn);
1748 set_page_links(page, zone, nid, pfn);
1749 set_page_count(page, 1);
1750 reset_page_mapcount(page);
1751 SetPageReserved(page);
1752 INIT_LIST_HEAD(&page->lru);
1753 #ifdef WANT_PAGE_VIRTUAL
1754 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1755 if (!is_highmem_idx(zone))
1756 set_page_address(page, __va(pfn << PAGE_SHIFT));
1757 #endif
1761 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1762 unsigned long size)
1764 int order;
1765 for (order = 0; order < MAX_ORDER ; order++) {
1766 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1767 zone->free_area[order].nr_free = 0;
1771 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1772 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1773 unsigned long size)
1775 unsigned long snum = pfn_to_section_nr(pfn);
1776 unsigned long end = pfn_to_section_nr(pfn + size);
1778 if (FLAGS_HAS_NODE)
1779 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1780 else
1781 for (; snum <= end; snum++)
1782 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1785 #ifndef __HAVE_ARCH_MEMMAP_INIT
1786 #define memmap_init(size, nid, zone, start_pfn) \
1787 memmap_init_zone((size), (nid), (zone), (start_pfn))
1788 #endif
1790 static int __devinit zone_batchsize(struct zone *zone)
1792 int batch;
1795 * The per-cpu-pages pools are set to around 1000th of the
1796 * size of the zone. But no more than 1/2 of a meg.
1798 * OK, so we don't know how big the cache is. So guess.
1800 batch = zone->present_pages / 1024;
1801 if (batch * PAGE_SIZE > 512 * 1024)
1802 batch = (512 * 1024) / PAGE_SIZE;
1803 batch /= 4; /* We effectively *= 4 below */
1804 if (batch < 1)
1805 batch = 1;
1808 * Clamp the batch to a 2^n - 1 value. Having a power
1809 * of 2 value was found to be more likely to have
1810 * suboptimal cache aliasing properties in some cases.
1812 * For example if 2 tasks are alternately allocating
1813 * batches of pages, one task can end up with a lot
1814 * of pages of one half of the possible page colors
1815 * and the other with pages of the other colors.
1817 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1819 return batch;
1822 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1824 struct per_cpu_pages *pcp;
1826 memset(p, 0, sizeof(*p));
1828 pcp = &p->pcp[0]; /* hot */
1829 pcp->count = 0;
1830 pcp->high = 6 * batch;
1831 pcp->batch = max(1UL, 1 * batch);
1832 INIT_LIST_HEAD(&pcp->list);
1834 pcp = &p->pcp[1]; /* cold*/
1835 pcp->count = 0;
1836 pcp->high = 2 * batch;
1837 pcp->batch = max(1UL, batch/2);
1838 INIT_LIST_HEAD(&pcp->list);
1842 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1843 * to the value high for the pageset p.
1846 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1847 unsigned long high)
1849 struct per_cpu_pages *pcp;
1851 pcp = &p->pcp[0]; /* hot list */
1852 pcp->high = high;
1853 pcp->batch = max(1UL, high/4);
1854 if ((high/4) > (PAGE_SHIFT * 8))
1855 pcp->batch = PAGE_SHIFT * 8;
1859 #ifdef CONFIG_NUMA
1861 * Boot pageset table. One per cpu which is going to be used for all
1862 * zones and all nodes. The parameters will be set in such a way
1863 * that an item put on a list will immediately be handed over to
1864 * the buddy list. This is safe since pageset manipulation is done
1865 * with interrupts disabled.
1867 * Some NUMA counter updates may also be caught by the boot pagesets.
1869 * The boot_pagesets must be kept even after bootup is complete for
1870 * unused processors and/or zones. They do play a role for bootstrapping
1871 * hotplugged processors.
1873 * zoneinfo_show() and maybe other functions do
1874 * not check if the processor is online before following the pageset pointer.
1875 * Other parts of the kernel may not check if the zone is available.
1877 static struct per_cpu_pageset
1878 boot_pageset[NR_CPUS];
1881 * Dynamically allocate memory for the
1882 * per cpu pageset array in struct zone.
1884 static int __devinit process_zones(int cpu)
1886 struct zone *zone, *dzone;
1888 for_each_zone(zone) {
1890 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1891 GFP_KERNEL, cpu_to_node(cpu));
1892 if (!zone_pcp(zone, cpu))
1893 goto bad;
1895 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1897 if (percpu_pagelist_fraction)
1898 setup_pagelist_highmark(zone_pcp(zone, cpu),
1899 (zone->present_pages / percpu_pagelist_fraction));
1902 return 0;
1903 bad:
1904 for_each_zone(dzone) {
1905 if (dzone == zone)
1906 break;
1907 kfree(zone_pcp(dzone, cpu));
1908 zone_pcp(dzone, cpu) = NULL;
1910 return -ENOMEM;
1913 static inline void free_zone_pagesets(int cpu)
1915 struct zone *zone;
1917 for_each_zone(zone) {
1918 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1920 zone_pcp(zone, cpu) = NULL;
1921 kfree(pset);
1925 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1926 unsigned long action,
1927 void *hcpu)
1929 int cpu = (long)hcpu;
1930 int ret = NOTIFY_OK;
1932 switch (action) {
1933 case CPU_UP_PREPARE:
1934 if (process_zones(cpu))
1935 ret = NOTIFY_BAD;
1936 break;
1937 case CPU_UP_CANCELED:
1938 case CPU_DEAD:
1939 free_zone_pagesets(cpu);
1940 break;
1941 default:
1942 break;
1944 return ret;
1947 static struct notifier_block pageset_notifier =
1948 { &pageset_cpuup_callback, NULL, 0 };
1950 void __init setup_per_cpu_pageset(void)
1952 int err;
1954 /* Initialize per_cpu_pageset for cpu 0.
1955 * A cpuup callback will do this for every cpu
1956 * as it comes online
1958 err = process_zones(smp_processor_id());
1959 BUG_ON(err);
1960 register_cpu_notifier(&pageset_notifier);
1963 #endif
1965 static __devinit
1966 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1968 int i;
1969 struct pglist_data *pgdat = zone->zone_pgdat;
1972 * The per-page waitqueue mechanism uses hashed waitqueues
1973 * per zone.
1975 zone->wait_table_size = wait_table_size(zone_size_pages);
1976 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1977 zone->wait_table = (wait_queue_head_t *)
1978 alloc_bootmem_node(pgdat, zone->wait_table_size
1979 * sizeof(wait_queue_head_t));
1981 for(i = 0; i < zone->wait_table_size; ++i)
1982 init_waitqueue_head(zone->wait_table + i);
1985 static __devinit void zone_pcp_init(struct zone *zone)
1987 int cpu;
1988 unsigned long batch = zone_batchsize(zone);
1990 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1991 #ifdef CONFIG_NUMA
1992 /* Early boot. Slab allocator not functional yet */
1993 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1994 setup_pageset(&boot_pageset[cpu],0);
1995 #else
1996 setup_pageset(zone_pcp(zone,cpu), batch);
1997 #endif
1999 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2000 zone->name, zone->present_pages, batch);
2003 static __devinit void init_currently_empty_zone(struct zone *zone,
2004 unsigned long zone_start_pfn, unsigned long size)
2006 struct pglist_data *pgdat = zone->zone_pgdat;
2008 zone_wait_table_init(zone, size);
2009 pgdat->nr_zones = zone_idx(zone) + 1;
2011 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2012 zone->zone_start_pfn = zone_start_pfn;
2014 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2016 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2020 * Set up the zone data structures:
2021 * - mark all pages reserved
2022 * - mark all memory queues empty
2023 * - clear the memory bitmaps
2025 static void __init free_area_init_core(struct pglist_data *pgdat,
2026 unsigned long *zones_size, unsigned long *zholes_size)
2028 unsigned long j;
2029 int nid = pgdat->node_id;
2030 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2032 pgdat_resize_init(pgdat);
2033 pgdat->nr_zones = 0;
2034 init_waitqueue_head(&pgdat->kswapd_wait);
2035 pgdat->kswapd_max_order = 0;
2037 for (j = 0; j < MAX_NR_ZONES; j++) {
2038 struct zone *zone = pgdat->node_zones + j;
2039 unsigned long size, realsize;
2041 realsize = size = zones_size[j];
2042 if (zholes_size)
2043 realsize -= zholes_size[j];
2045 if (j < ZONE_HIGHMEM)
2046 nr_kernel_pages += realsize;
2047 nr_all_pages += realsize;
2049 zone->spanned_pages = size;
2050 zone->present_pages = realsize;
2051 zone->name = zone_names[j];
2052 spin_lock_init(&zone->lock);
2053 spin_lock_init(&zone->lru_lock);
2054 zone_seqlock_init(zone);
2055 zone->zone_pgdat = pgdat;
2056 zone->free_pages = 0;
2058 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2060 zone_pcp_init(zone);
2061 INIT_LIST_HEAD(&zone->active_list);
2062 INIT_LIST_HEAD(&zone->inactive_list);
2063 zone->nr_scan_active = 0;
2064 zone->nr_scan_inactive = 0;
2065 zone->nr_active = 0;
2066 zone->nr_inactive = 0;
2067 atomic_set(&zone->reclaim_in_progress, 0);
2068 if (!size)
2069 continue;
2071 zonetable_add(zone, nid, j, zone_start_pfn, size);
2072 init_currently_empty_zone(zone, zone_start_pfn, size);
2073 zone_start_pfn += size;
2077 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2079 /* Skip empty nodes */
2080 if (!pgdat->node_spanned_pages)
2081 return;
2083 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2084 /* ia64 gets its own node_mem_map, before this, without bootmem */
2085 if (!pgdat->node_mem_map) {
2086 unsigned long size;
2087 struct page *map;
2089 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2090 map = alloc_remap(pgdat->node_id, size);
2091 if (!map)
2092 map = alloc_bootmem_node(pgdat, size);
2093 pgdat->node_mem_map = map;
2095 #ifdef CONFIG_FLATMEM
2097 * With no DISCONTIG, the global mem_map is just set as node 0's
2099 if (pgdat == NODE_DATA(0))
2100 mem_map = NODE_DATA(0)->node_mem_map;
2101 #endif
2102 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2105 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2106 unsigned long *zones_size, unsigned long node_start_pfn,
2107 unsigned long *zholes_size)
2109 pgdat->node_id = nid;
2110 pgdat->node_start_pfn = node_start_pfn;
2111 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2113 alloc_node_mem_map(pgdat);
2115 free_area_init_core(pgdat, zones_size, zholes_size);
2118 #ifndef CONFIG_NEED_MULTIPLE_NODES
2119 static bootmem_data_t contig_bootmem_data;
2120 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2122 EXPORT_SYMBOL(contig_page_data);
2123 #endif
2125 void __init free_area_init(unsigned long *zones_size)
2127 free_area_init_node(0, NODE_DATA(0), zones_size,
2128 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2131 #ifdef CONFIG_PROC_FS
2133 #include <linux/seq_file.h>
2135 static void *frag_start(struct seq_file *m, loff_t *pos)
2137 pg_data_t *pgdat;
2138 loff_t node = *pos;
2140 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2141 --node;
2143 return pgdat;
2146 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2148 pg_data_t *pgdat = (pg_data_t *)arg;
2150 (*pos)++;
2151 return pgdat->pgdat_next;
2154 static void frag_stop(struct seq_file *m, void *arg)
2159 * This walks the free areas for each zone.
2161 static int frag_show(struct seq_file *m, void *arg)
2163 pg_data_t *pgdat = (pg_data_t *)arg;
2164 struct zone *zone;
2165 struct zone *node_zones = pgdat->node_zones;
2166 unsigned long flags;
2167 int order;
2169 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2170 if (!populated_zone(zone))
2171 continue;
2173 spin_lock_irqsave(&zone->lock, flags);
2174 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2175 for (order = 0; order < MAX_ORDER; ++order)
2176 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2177 spin_unlock_irqrestore(&zone->lock, flags);
2178 seq_putc(m, '\n');
2180 return 0;
2183 struct seq_operations fragmentation_op = {
2184 .start = frag_start,
2185 .next = frag_next,
2186 .stop = frag_stop,
2187 .show = frag_show,
2191 * Output information about zones in @pgdat.
2193 static int zoneinfo_show(struct seq_file *m, void *arg)
2195 pg_data_t *pgdat = arg;
2196 struct zone *zone;
2197 struct zone *node_zones = pgdat->node_zones;
2198 unsigned long flags;
2200 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2201 int i;
2203 if (!populated_zone(zone))
2204 continue;
2206 spin_lock_irqsave(&zone->lock, flags);
2207 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2208 seq_printf(m,
2209 "\n pages free %lu"
2210 "\n min %lu"
2211 "\n low %lu"
2212 "\n high %lu"
2213 "\n active %lu"
2214 "\n inactive %lu"
2215 "\n scanned %lu (a: %lu i: %lu)"
2216 "\n spanned %lu"
2217 "\n present %lu",
2218 zone->free_pages,
2219 zone->pages_min,
2220 zone->pages_low,
2221 zone->pages_high,
2222 zone->nr_active,
2223 zone->nr_inactive,
2224 zone->pages_scanned,
2225 zone->nr_scan_active, zone->nr_scan_inactive,
2226 zone->spanned_pages,
2227 zone->present_pages);
2228 seq_printf(m,
2229 "\n protection: (%lu",
2230 zone->lowmem_reserve[0]);
2231 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2232 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2233 seq_printf(m,
2235 "\n pagesets");
2236 for_each_online_cpu(i) {
2237 struct per_cpu_pageset *pageset;
2238 int j;
2240 pageset = zone_pcp(zone, i);
2241 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2242 if (pageset->pcp[j].count)
2243 break;
2245 if (j == ARRAY_SIZE(pageset->pcp))
2246 continue;
2247 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2248 seq_printf(m,
2249 "\n cpu: %i pcp: %i"
2250 "\n count: %i"
2251 "\n high: %i"
2252 "\n batch: %i",
2253 i, j,
2254 pageset->pcp[j].count,
2255 pageset->pcp[j].high,
2256 pageset->pcp[j].batch);
2258 #ifdef CONFIG_NUMA
2259 seq_printf(m,
2260 "\n numa_hit: %lu"
2261 "\n numa_miss: %lu"
2262 "\n numa_foreign: %lu"
2263 "\n interleave_hit: %lu"
2264 "\n local_node: %lu"
2265 "\n other_node: %lu",
2266 pageset->numa_hit,
2267 pageset->numa_miss,
2268 pageset->numa_foreign,
2269 pageset->interleave_hit,
2270 pageset->local_node,
2271 pageset->other_node);
2272 #endif
2274 seq_printf(m,
2275 "\n all_unreclaimable: %u"
2276 "\n prev_priority: %i"
2277 "\n temp_priority: %i"
2278 "\n start_pfn: %lu",
2279 zone->all_unreclaimable,
2280 zone->prev_priority,
2281 zone->temp_priority,
2282 zone->zone_start_pfn);
2283 spin_unlock_irqrestore(&zone->lock, flags);
2284 seq_putc(m, '\n');
2286 return 0;
2289 struct seq_operations zoneinfo_op = {
2290 .start = frag_start, /* iterate over all zones. The same as in
2291 * fragmentation. */
2292 .next = frag_next,
2293 .stop = frag_stop,
2294 .show = zoneinfo_show,
2297 static char *vmstat_text[] = {
2298 "nr_dirty",
2299 "nr_writeback",
2300 "nr_unstable",
2301 "nr_page_table_pages",
2302 "nr_mapped",
2303 "nr_slab",
2305 "pgpgin",
2306 "pgpgout",
2307 "pswpin",
2308 "pswpout",
2310 "pgalloc_high",
2311 "pgalloc_normal",
2312 "pgalloc_dma32",
2313 "pgalloc_dma",
2315 "pgfree",
2316 "pgactivate",
2317 "pgdeactivate",
2319 "pgfault",
2320 "pgmajfault",
2322 "pgrefill_high",
2323 "pgrefill_normal",
2324 "pgrefill_dma32",
2325 "pgrefill_dma",
2327 "pgsteal_high",
2328 "pgsteal_normal",
2329 "pgsteal_dma32",
2330 "pgsteal_dma",
2332 "pgscan_kswapd_high",
2333 "pgscan_kswapd_normal",
2334 "pgscan_kswapd_dma32",
2335 "pgscan_kswapd_dma",
2337 "pgscan_direct_high",
2338 "pgscan_direct_normal",
2339 "pgscan_direct_dma32",
2340 "pgscan_direct_dma",
2342 "pginodesteal",
2343 "slabs_scanned",
2344 "kswapd_steal",
2345 "kswapd_inodesteal",
2346 "pageoutrun",
2347 "allocstall",
2349 "pgrotated",
2350 "nr_bounce",
2353 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2355 struct page_state *ps;
2357 if (*pos >= ARRAY_SIZE(vmstat_text))
2358 return NULL;
2360 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2361 m->private = ps;
2362 if (!ps)
2363 return ERR_PTR(-ENOMEM);
2364 get_full_page_state(ps);
2365 ps->pgpgin /= 2; /* sectors -> kbytes */
2366 ps->pgpgout /= 2;
2367 return (unsigned long *)ps + *pos;
2370 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2372 (*pos)++;
2373 if (*pos >= ARRAY_SIZE(vmstat_text))
2374 return NULL;
2375 return (unsigned long *)m->private + *pos;
2378 static int vmstat_show(struct seq_file *m, void *arg)
2380 unsigned long *l = arg;
2381 unsigned long off = l - (unsigned long *)m->private;
2383 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2384 return 0;
2387 static void vmstat_stop(struct seq_file *m, void *arg)
2389 kfree(m->private);
2390 m->private = NULL;
2393 struct seq_operations vmstat_op = {
2394 .start = vmstat_start,
2395 .next = vmstat_next,
2396 .stop = vmstat_stop,
2397 .show = vmstat_show,
2400 #endif /* CONFIG_PROC_FS */
2402 #ifdef CONFIG_HOTPLUG_CPU
2403 static int page_alloc_cpu_notify(struct notifier_block *self,
2404 unsigned long action, void *hcpu)
2406 int cpu = (unsigned long)hcpu;
2407 long *count;
2408 unsigned long *src, *dest;
2410 if (action == CPU_DEAD) {
2411 int i;
2413 /* Drain local pagecache count. */
2414 count = &per_cpu(nr_pagecache_local, cpu);
2415 atomic_add(*count, &nr_pagecache);
2416 *count = 0;
2417 local_irq_disable();
2418 __drain_pages(cpu);
2420 /* Add dead cpu's page_states to our own. */
2421 dest = (unsigned long *)&__get_cpu_var(page_states);
2422 src = (unsigned long *)&per_cpu(page_states, cpu);
2424 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2425 i++) {
2426 dest[i] += src[i];
2427 src[i] = 0;
2430 local_irq_enable();
2432 return NOTIFY_OK;
2434 #endif /* CONFIG_HOTPLUG_CPU */
2436 void __init page_alloc_init(void)
2438 hotcpu_notifier(page_alloc_cpu_notify, 0);
2442 * setup_per_zone_lowmem_reserve - called whenever
2443 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2444 * has a correct pages reserved value, so an adequate number of
2445 * pages are left in the zone after a successful __alloc_pages().
2447 static void setup_per_zone_lowmem_reserve(void)
2449 struct pglist_data *pgdat;
2450 int j, idx;
2452 for_each_pgdat(pgdat) {
2453 for (j = 0; j < MAX_NR_ZONES; j++) {
2454 struct zone *zone = pgdat->node_zones + j;
2455 unsigned long present_pages = zone->present_pages;
2457 zone->lowmem_reserve[j] = 0;
2459 for (idx = j-1; idx >= 0; idx--) {
2460 struct zone *lower_zone;
2462 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2463 sysctl_lowmem_reserve_ratio[idx] = 1;
2465 lower_zone = pgdat->node_zones + idx;
2466 lower_zone->lowmem_reserve[j] = present_pages /
2467 sysctl_lowmem_reserve_ratio[idx];
2468 present_pages += lower_zone->present_pages;
2475 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2476 * that the pages_{min,low,high} values for each zone are set correctly
2477 * with respect to min_free_kbytes.
2479 void setup_per_zone_pages_min(void)
2481 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2482 unsigned long lowmem_pages = 0;
2483 struct zone *zone;
2484 unsigned long flags;
2486 /* Calculate total number of !ZONE_HIGHMEM pages */
2487 for_each_zone(zone) {
2488 if (!is_highmem(zone))
2489 lowmem_pages += zone->present_pages;
2492 for_each_zone(zone) {
2493 unsigned long tmp;
2494 spin_lock_irqsave(&zone->lru_lock, flags);
2495 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2496 if (is_highmem(zone)) {
2498 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2499 * need highmem pages, so cap pages_min to a small
2500 * value here.
2502 * The (pages_high-pages_low) and (pages_low-pages_min)
2503 * deltas controls asynch page reclaim, and so should
2504 * not be capped for highmem.
2506 int min_pages;
2508 min_pages = zone->present_pages / 1024;
2509 if (min_pages < SWAP_CLUSTER_MAX)
2510 min_pages = SWAP_CLUSTER_MAX;
2511 if (min_pages > 128)
2512 min_pages = 128;
2513 zone->pages_min = min_pages;
2514 } else {
2516 * If it's a lowmem zone, reserve a number of pages
2517 * proportionate to the zone's size.
2519 zone->pages_min = tmp;
2522 zone->pages_low = zone->pages_min + tmp / 4;
2523 zone->pages_high = zone->pages_min + tmp / 2;
2524 spin_unlock_irqrestore(&zone->lru_lock, flags);
2529 * Initialise min_free_kbytes.
2531 * For small machines we want it small (128k min). For large machines
2532 * we want it large (64MB max). But it is not linear, because network
2533 * bandwidth does not increase linearly with machine size. We use
2535 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2536 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2538 * which yields
2540 * 16MB: 512k
2541 * 32MB: 724k
2542 * 64MB: 1024k
2543 * 128MB: 1448k
2544 * 256MB: 2048k
2545 * 512MB: 2896k
2546 * 1024MB: 4096k
2547 * 2048MB: 5792k
2548 * 4096MB: 8192k
2549 * 8192MB: 11584k
2550 * 16384MB: 16384k
2552 static int __init init_per_zone_pages_min(void)
2554 unsigned long lowmem_kbytes;
2556 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2558 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2559 if (min_free_kbytes < 128)
2560 min_free_kbytes = 128;
2561 if (min_free_kbytes > 65536)
2562 min_free_kbytes = 65536;
2563 setup_per_zone_pages_min();
2564 setup_per_zone_lowmem_reserve();
2565 return 0;
2567 module_init(init_per_zone_pages_min)
2570 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2571 * that we can call two helper functions whenever min_free_kbytes
2572 * changes.
2574 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2575 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2577 proc_dointvec(table, write, file, buffer, length, ppos);
2578 setup_per_zone_pages_min();
2579 return 0;
2583 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2584 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2585 * whenever sysctl_lowmem_reserve_ratio changes.
2587 * The reserve ratio obviously has absolutely no relation with the
2588 * pages_min watermarks. The lowmem reserve ratio can only make sense
2589 * if in function of the boot time zone sizes.
2591 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2592 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2594 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2595 setup_per_zone_lowmem_reserve();
2596 return 0;
2600 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2601 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2602 * can have before it gets flushed back to buddy allocator.
2605 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2606 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2608 struct zone *zone;
2609 unsigned int cpu;
2610 int ret;
2612 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2613 if (!write || (ret == -EINVAL))
2614 return ret;
2615 for_each_zone(zone) {
2616 for_each_online_cpu(cpu) {
2617 unsigned long high;
2618 high = zone->present_pages / percpu_pagelist_fraction;
2619 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2622 return 0;
2625 __initdata int hashdist = HASHDIST_DEFAULT;
2627 #ifdef CONFIG_NUMA
2628 static int __init set_hashdist(char *str)
2630 if (!str)
2631 return 0;
2632 hashdist = simple_strtoul(str, &str, 0);
2633 return 1;
2635 __setup("hashdist=", set_hashdist);
2636 #endif
2639 * allocate a large system hash table from bootmem
2640 * - it is assumed that the hash table must contain an exact power-of-2
2641 * quantity of entries
2642 * - limit is the number of hash buckets, not the total allocation size
2644 void *__init alloc_large_system_hash(const char *tablename,
2645 unsigned long bucketsize,
2646 unsigned long numentries,
2647 int scale,
2648 int flags,
2649 unsigned int *_hash_shift,
2650 unsigned int *_hash_mask,
2651 unsigned long limit)
2653 unsigned long long max = limit;
2654 unsigned long log2qty, size;
2655 void *table = NULL;
2657 /* allow the kernel cmdline to have a say */
2658 if (!numentries) {
2659 /* round applicable memory size up to nearest megabyte */
2660 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2661 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2662 numentries >>= 20 - PAGE_SHIFT;
2663 numentries <<= 20 - PAGE_SHIFT;
2665 /* limit to 1 bucket per 2^scale bytes of low memory */
2666 if (scale > PAGE_SHIFT)
2667 numentries >>= (scale - PAGE_SHIFT);
2668 else
2669 numentries <<= (PAGE_SHIFT - scale);
2671 /* rounded up to nearest power of 2 in size */
2672 numentries = 1UL << (long_log2(numentries) + 1);
2674 /* limit allocation size to 1/16 total memory by default */
2675 if (max == 0) {
2676 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2677 do_div(max, bucketsize);
2680 if (numentries > max)
2681 numentries = max;
2683 log2qty = long_log2(numentries);
2685 do {
2686 size = bucketsize << log2qty;
2687 if (flags & HASH_EARLY)
2688 table = alloc_bootmem(size);
2689 else if (hashdist)
2690 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2691 else {
2692 unsigned long order;
2693 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2695 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2697 } while (!table && size > PAGE_SIZE && --log2qty);
2699 if (!table)
2700 panic("Failed to allocate %s hash table\n", tablename);
2702 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2703 tablename,
2704 (1U << log2qty),
2705 long_log2(size) - PAGE_SHIFT,
2706 size);
2708 if (_hash_shift)
2709 *_hash_shift = log2qty;
2710 if (_hash_mask)
2711 *_hash_mask = (1 << log2qty) - 1;
2713 return table;