2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
32 #define MAX_IO_MSRS 256
33 #define CR0_RESERVED_BITS \
34 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
35 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
36 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
37 #define CR4_RESERVED_BITS \
38 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
39 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
40 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
41 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
44 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
46 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
47 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
49 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
50 struct kvm_cpuid_entry2 __user
*entries
);
52 struct kvm_x86_ops
*kvm_x86_ops
;
54 struct kvm_stats_debugfs_item debugfs_entries
[] = {
55 { "pf_fixed", VCPU_STAT(pf_fixed
) },
56 { "pf_guest", VCPU_STAT(pf_guest
) },
57 { "tlb_flush", VCPU_STAT(tlb_flush
) },
58 { "invlpg", VCPU_STAT(invlpg
) },
59 { "exits", VCPU_STAT(exits
) },
60 { "io_exits", VCPU_STAT(io_exits
) },
61 { "mmio_exits", VCPU_STAT(mmio_exits
) },
62 { "signal_exits", VCPU_STAT(signal_exits
) },
63 { "irq_window", VCPU_STAT(irq_window_exits
) },
64 { "halt_exits", VCPU_STAT(halt_exits
) },
65 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
66 { "request_irq", VCPU_STAT(request_irq_exits
) },
67 { "irq_exits", VCPU_STAT(irq_exits
) },
68 { "host_state_reload", VCPU_STAT(host_state_reload
) },
69 { "efer_reload", VCPU_STAT(efer_reload
) },
70 { "fpu_reload", VCPU_STAT(fpu_reload
) },
71 { "insn_emulation", VCPU_STAT(insn_emulation
) },
72 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
73 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
74 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
75 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
76 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
77 { "mmu_flooded", VM_STAT(mmu_flooded
) },
78 { "mmu_recycled", VM_STAT(mmu_recycled
) },
79 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
80 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
85 unsigned long segment_base(u16 selector
)
87 struct descriptor_table gdt
;
88 struct segment_descriptor
*d
;
89 unsigned long table_base
;
95 asm("sgdt %0" : "=m"(gdt
));
96 table_base
= gdt
.base
;
98 if (selector
& 4) { /* from ldt */
101 asm("sldt %0" : "=g"(ldt_selector
));
102 table_base
= segment_base(ldt_selector
);
104 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
105 v
= d
->base_low
| ((unsigned long)d
->base_mid
<< 16) |
106 ((unsigned long)d
->base_high
<< 24);
108 if (d
->system
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
109 v
|= ((unsigned long) \
110 ((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
114 EXPORT_SYMBOL_GPL(segment_base
);
116 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
118 if (irqchip_in_kernel(vcpu
->kvm
))
119 return vcpu
->arch
.apic_base
;
121 return vcpu
->arch
.apic_base
;
123 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
125 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
127 /* TODO: reserve bits check */
128 if (irqchip_in_kernel(vcpu
->kvm
))
129 kvm_lapic_set_base(vcpu
, data
);
131 vcpu
->arch
.apic_base
= data
;
133 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
135 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
137 WARN_ON(vcpu
->arch
.exception
.pending
);
138 vcpu
->arch
.exception
.pending
= true;
139 vcpu
->arch
.exception
.has_error_code
= false;
140 vcpu
->arch
.exception
.nr
= nr
;
142 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
144 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
147 ++vcpu
->stat
.pf_guest
;
148 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
149 printk(KERN_DEBUG
"kvm: inject_page_fault:"
150 " double fault 0x%lx\n", addr
);
151 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
152 vcpu
->arch
.exception
.error_code
= 0;
155 vcpu
->arch
.cr2
= addr
;
156 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
159 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
161 WARN_ON(vcpu
->arch
.exception
.pending
);
162 vcpu
->arch
.exception
.pending
= true;
163 vcpu
->arch
.exception
.has_error_code
= true;
164 vcpu
->arch
.exception
.nr
= nr
;
165 vcpu
->arch
.exception
.error_code
= error_code
;
167 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
169 static void __queue_exception(struct kvm_vcpu
*vcpu
)
171 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
172 vcpu
->arch
.exception
.has_error_code
,
173 vcpu
->arch
.exception
.error_code
);
177 * Load the pae pdptrs. Return true is they are all valid.
179 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
181 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
182 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
185 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
187 down_read(&vcpu
->kvm
->slots_lock
);
188 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
189 offset
* sizeof(u64
), sizeof(pdpte
));
194 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
195 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
202 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
204 up_read(&vcpu
->kvm
->slots_lock
);
209 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
211 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
215 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
218 down_read(&vcpu
->kvm
->slots_lock
);
219 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
222 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
224 up_read(&vcpu
->kvm
->slots_lock
);
229 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
231 if (cr0
& CR0_RESERVED_BITS
) {
232 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
233 cr0
, vcpu
->arch
.cr0
);
234 kvm_inject_gp(vcpu
, 0);
238 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
239 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
240 kvm_inject_gp(vcpu
, 0);
244 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
245 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
246 "and a clear PE flag\n");
247 kvm_inject_gp(vcpu
, 0);
251 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
253 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
257 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
258 "in long mode while PAE is disabled\n");
259 kvm_inject_gp(vcpu
, 0);
262 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
264 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
265 "in long mode while CS.L == 1\n");
266 kvm_inject_gp(vcpu
, 0);
272 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
273 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
275 kvm_inject_gp(vcpu
, 0);
281 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
282 vcpu
->arch
.cr0
= cr0
;
284 kvm_mmu_reset_context(vcpu
);
287 EXPORT_SYMBOL_GPL(set_cr0
);
289 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
291 set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
293 EXPORT_SYMBOL_GPL(lmsw
);
295 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
297 if (cr4
& CR4_RESERVED_BITS
) {
298 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
299 kvm_inject_gp(vcpu
, 0);
303 if (is_long_mode(vcpu
)) {
304 if (!(cr4
& X86_CR4_PAE
)) {
305 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
307 kvm_inject_gp(vcpu
, 0);
310 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
311 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
312 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
313 kvm_inject_gp(vcpu
, 0);
317 if (cr4
& X86_CR4_VMXE
) {
318 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
319 kvm_inject_gp(vcpu
, 0);
322 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
323 vcpu
->arch
.cr4
= cr4
;
324 kvm_mmu_reset_context(vcpu
);
326 EXPORT_SYMBOL_GPL(set_cr4
);
328 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
330 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
331 kvm_mmu_flush_tlb(vcpu
);
335 if (is_long_mode(vcpu
)) {
336 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
337 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
338 kvm_inject_gp(vcpu
, 0);
343 if (cr3
& CR3_PAE_RESERVED_BITS
) {
345 "set_cr3: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu
, 0);
349 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
350 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
352 kvm_inject_gp(vcpu
, 0);
357 * We don't check reserved bits in nonpae mode, because
358 * this isn't enforced, and VMware depends on this.
362 down_read(&vcpu
->kvm
->slots_lock
);
364 * Does the new cr3 value map to physical memory? (Note, we
365 * catch an invalid cr3 even in real-mode, because it would
366 * cause trouble later on when we turn on paging anyway.)
368 * A real CPU would silently accept an invalid cr3 and would
369 * attempt to use it - with largely undefined (and often hard
370 * to debug) behavior on the guest side.
372 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
373 kvm_inject_gp(vcpu
, 0);
375 vcpu
->arch
.cr3
= cr3
;
376 vcpu
->arch
.mmu
.new_cr3(vcpu
);
378 up_read(&vcpu
->kvm
->slots_lock
);
380 EXPORT_SYMBOL_GPL(set_cr3
);
382 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
384 if (cr8
& CR8_RESERVED_BITS
) {
385 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
386 kvm_inject_gp(vcpu
, 0);
389 if (irqchip_in_kernel(vcpu
->kvm
))
390 kvm_lapic_set_tpr(vcpu
, cr8
);
392 vcpu
->arch
.cr8
= cr8
;
394 EXPORT_SYMBOL_GPL(set_cr8
);
396 unsigned long get_cr8(struct kvm_vcpu
*vcpu
)
398 if (irqchip_in_kernel(vcpu
->kvm
))
399 return kvm_lapic_get_cr8(vcpu
);
401 return vcpu
->arch
.cr8
;
403 EXPORT_SYMBOL_GPL(get_cr8
);
406 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
407 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
409 * This list is modified at module load time to reflect the
410 * capabilities of the host cpu.
412 static u32 msrs_to_save
[] = {
413 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
416 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
418 MSR_IA32_TIME_STAMP_COUNTER
,
421 static unsigned num_msrs_to_save
;
423 static u32 emulated_msrs
[] = {
424 MSR_IA32_MISC_ENABLE
,
429 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
431 if (efer
& EFER_RESERVED_BITS
) {
432 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
434 kvm_inject_gp(vcpu
, 0);
439 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
440 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
441 kvm_inject_gp(vcpu
, 0);
445 kvm_x86_ops
->set_efer(vcpu
, efer
);
448 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
450 vcpu
->arch
.shadow_efer
= efer
;
456 * Writes msr value into into the appropriate "register".
457 * Returns 0 on success, non-0 otherwise.
458 * Assumes vcpu_load() was already called.
460 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
462 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
466 * Adapt set_msr() to msr_io()'s calling convention
468 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
470 return kvm_set_msr(vcpu
, index
, *data
);
474 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
479 set_efer(vcpu
, data
);
482 case MSR_IA32_MC0_STATUS
:
483 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
486 case MSR_IA32_MCG_STATUS
:
487 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
490 case MSR_IA32_MCG_CTL
:
491 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
494 case MSR_IA32_UCODE_REV
:
495 case MSR_IA32_UCODE_WRITE
:
496 case 0x200 ... 0x2ff: /* MTRRs */
498 case MSR_IA32_APICBASE
:
499 kvm_set_apic_base(vcpu
, data
);
501 case MSR_IA32_MISC_ENABLE
:
502 vcpu
->arch
.ia32_misc_enable_msr
= data
;
505 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
510 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
514 * Reads an msr value (of 'msr_index') into 'pdata'.
515 * Returns 0 on success, non-0 otherwise.
516 * Assumes vcpu_load() was already called.
518 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
520 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
523 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
528 case 0xc0010010: /* SYSCFG */
529 case 0xc0010015: /* HWCR */
530 case MSR_IA32_PLATFORM_ID
:
531 case MSR_IA32_P5_MC_ADDR
:
532 case MSR_IA32_P5_MC_TYPE
:
533 case MSR_IA32_MC0_CTL
:
534 case MSR_IA32_MCG_STATUS
:
535 case MSR_IA32_MCG_CAP
:
536 case MSR_IA32_MCG_CTL
:
537 case MSR_IA32_MC0_MISC
:
538 case MSR_IA32_MC0_MISC
+4:
539 case MSR_IA32_MC0_MISC
+8:
540 case MSR_IA32_MC0_MISC
+12:
541 case MSR_IA32_MC0_MISC
+16:
542 case MSR_IA32_UCODE_REV
:
543 case MSR_IA32_PERF_STATUS
:
544 case MSR_IA32_EBL_CR_POWERON
:
547 case 0x200 ... 0x2ff:
550 case 0xcd: /* fsb frequency */
553 case MSR_IA32_APICBASE
:
554 data
= kvm_get_apic_base(vcpu
);
556 case MSR_IA32_MISC_ENABLE
:
557 data
= vcpu
->arch
.ia32_misc_enable_msr
;
561 data
= vcpu
->arch
.shadow_efer
;
565 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
571 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
574 * Read or write a bunch of msrs. All parameters are kernel addresses.
576 * @return number of msrs set successfully.
578 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
579 struct kvm_msr_entry
*entries
,
580 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
581 unsigned index
, u64
*data
))
587 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
588 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
597 * Read or write a bunch of msrs. Parameters are user addresses.
599 * @return number of msrs set successfully.
601 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
602 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
603 unsigned index
, u64
*data
),
606 struct kvm_msrs msrs
;
607 struct kvm_msr_entry
*entries
;
612 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
616 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
620 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
621 entries
= vmalloc(size
);
626 if (copy_from_user(entries
, user_msrs
->entries
, size
))
629 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
634 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
646 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
649 void decache_vcpus_on_cpu(int cpu
)
652 struct kvm_vcpu
*vcpu
;
655 spin_lock(&kvm_lock
);
656 list_for_each_entry(vm
, &vm_list
, vm_list
)
657 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
662 * If the vcpu is locked, then it is running on some
663 * other cpu and therefore it is not cached on the
666 * If it's not locked, check the last cpu it executed
669 if (mutex_trylock(&vcpu
->mutex
)) {
670 if (vcpu
->cpu
== cpu
) {
671 kvm_x86_ops
->vcpu_decache(vcpu
);
674 mutex_unlock(&vcpu
->mutex
);
677 spin_unlock(&kvm_lock
);
680 int kvm_dev_ioctl_check_extension(long ext
)
685 case KVM_CAP_IRQCHIP
:
687 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
688 case KVM_CAP_USER_MEMORY
:
689 case KVM_CAP_SET_TSS_ADDR
:
690 case KVM_CAP_EXT_CPUID
:
694 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
704 long kvm_arch_dev_ioctl(struct file
*filp
,
705 unsigned int ioctl
, unsigned long arg
)
707 void __user
*argp
= (void __user
*)arg
;
711 case KVM_GET_MSR_INDEX_LIST
: {
712 struct kvm_msr_list __user
*user_msr_list
= argp
;
713 struct kvm_msr_list msr_list
;
717 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
720 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
721 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
724 if (n
< num_msrs_to_save
)
727 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
728 num_msrs_to_save
* sizeof(u32
)))
730 if (copy_to_user(user_msr_list
->indices
731 + num_msrs_to_save
* sizeof(u32
),
733 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
738 case KVM_GET_SUPPORTED_CPUID
: {
739 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
740 struct kvm_cpuid2 cpuid
;
743 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
745 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
751 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
763 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
765 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
768 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
770 kvm_x86_ops
->vcpu_put(vcpu
);
771 kvm_put_guest_fpu(vcpu
);
774 static int is_efer_nx(void)
778 rdmsrl(MSR_EFER
, efer
);
779 return efer
& EFER_NX
;
782 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
785 struct kvm_cpuid_entry2
*e
, *entry
;
788 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
789 e
= &vcpu
->arch
.cpuid_entries
[i
];
790 if (e
->function
== 0x80000001) {
795 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
796 entry
->edx
&= ~(1 << 20);
797 printk(KERN_INFO
"kvm: guest NX capability removed\n");
801 /* when an old userspace process fills a new kernel module */
802 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
803 struct kvm_cpuid
*cpuid
,
804 struct kvm_cpuid_entry __user
*entries
)
807 struct kvm_cpuid_entry
*cpuid_entries
;
810 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
813 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
817 if (copy_from_user(cpuid_entries
, entries
,
818 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
820 for (i
= 0; i
< cpuid
->nent
; i
++) {
821 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
822 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
823 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
824 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
825 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
826 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
827 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
828 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
829 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
830 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
832 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
833 cpuid_fix_nx_cap(vcpu
);
837 vfree(cpuid_entries
);
842 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
843 struct kvm_cpuid2
*cpuid
,
844 struct kvm_cpuid_entry2 __user
*entries
)
849 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
852 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
853 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
855 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
862 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
863 struct kvm_cpuid2
*cpuid
,
864 struct kvm_cpuid_entry2 __user
*entries
)
869 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
872 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
873 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
878 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
882 static inline u32
bit(int bitno
)
884 return 1 << (bitno
& 31);
887 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
890 entry
->function
= function
;
891 entry
->index
= index
;
892 cpuid_count(entry
->function
, entry
->index
,
893 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
897 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
898 u32 index
, int *nent
, int maxnent
)
900 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
901 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
902 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
903 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
904 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
905 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
906 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
907 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
908 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
909 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
910 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
911 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
912 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
913 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
914 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
915 bit(X86_FEATURE_PGE
) |
916 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
917 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
918 bit(X86_FEATURE_SYSCALL
) |
919 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
921 bit(X86_FEATURE_LM
) |
923 bit(X86_FEATURE_MMXEXT
) |
924 bit(X86_FEATURE_3DNOWEXT
) |
925 bit(X86_FEATURE_3DNOW
);
926 const u32 kvm_supported_word3_x86_features
=
927 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
928 const u32 kvm_supported_word6_x86_features
=
929 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
);
931 /* all func 2 cpuid_count() should be called on the same cpu */
933 do_cpuid_1_ent(entry
, function
, index
);
938 entry
->eax
= min(entry
->eax
, (u32
)0xb);
941 entry
->edx
&= kvm_supported_word0_x86_features
;
942 entry
->ecx
&= kvm_supported_word3_x86_features
;
944 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
945 * may return different values. This forces us to get_cpu() before
946 * issuing the first command, and also to emulate this annoying behavior
947 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
949 int t
, times
= entry
->eax
& 0xff;
951 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
952 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
953 do_cpuid_1_ent(&entry
[t
], function
, 0);
954 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
959 /* function 4 and 0xb have additional index. */
961 int index
, cache_type
;
963 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
964 /* read more entries until cache_type is zero */
965 for (index
= 1; *nent
< maxnent
; ++index
) {
966 cache_type
= entry
[index
- 1].eax
& 0x1f;
969 do_cpuid_1_ent(&entry
[index
], function
, index
);
970 entry
[index
].flags
|=
971 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
977 int index
, level_type
;
979 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
980 /* read more entries until level_type is zero */
981 for (index
= 1; *nent
< maxnent
; ++index
) {
982 level_type
= entry
[index
- 1].ecx
& 0xff;
985 do_cpuid_1_ent(&entry
[index
], function
, index
);
986 entry
[index
].flags
|=
987 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
993 entry
->eax
= min(entry
->eax
, 0x8000001a);
996 entry
->edx
&= kvm_supported_word1_x86_features
;
997 entry
->ecx
&= kvm_supported_word6_x86_features
;
1003 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1004 struct kvm_cpuid_entry2 __user
*entries
)
1006 struct kvm_cpuid_entry2
*cpuid_entries
;
1007 int limit
, nent
= 0, r
= -E2BIG
;
1010 if (cpuid
->nent
< 1)
1013 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1017 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1018 limit
= cpuid_entries
[0].eax
;
1019 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1020 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1021 &nent
, cpuid
->nent
);
1023 if (nent
>= cpuid
->nent
)
1026 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1027 limit
= cpuid_entries
[nent
- 1].eax
;
1028 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1029 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1030 &nent
, cpuid
->nent
);
1032 if (copy_to_user(entries
, cpuid_entries
,
1033 nent
* sizeof(struct kvm_cpuid_entry2
)))
1039 vfree(cpuid_entries
);
1044 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1045 struct kvm_lapic_state
*s
)
1048 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1054 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1055 struct kvm_lapic_state
*s
)
1058 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1059 kvm_apic_post_state_restore(vcpu
);
1065 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1066 struct kvm_interrupt
*irq
)
1068 if (irq
->irq
< 0 || irq
->irq
>= 256)
1070 if (irqchip_in_kernel(vcpu
->kvm
))
1074 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1075 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1082 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1083 struct kvm_tpr_access_ctl
*tac
)
1087 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1091 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1092 unsigned int ioctl
, unsigned long arg
)
1094 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1095 void __user
*argp
= (void __user
*)arg
;
1099 case KVM_GET_LAPIC
: {
1100 struct kvm_lapic_state lapic
;
1102 memset(&lapic
, 0, sizeof lapic
);
1103 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
1107 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
1112 case KVM_SET_LAPIC
: {
1113 struct kvm_lapic_state lapic
;
1116 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
1118 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
1124 case KVM_INTERRUPT
: {
1125 struct kvm_interrupt irq
;
1128 if (copy_from_user(&irq
, argp
, sizeof irq
))
1130 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1136 case KVM_SET_CPUID
: {
1137 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1138 struct kvm_cpuid cpuid
;
1141 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1143 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1148 case KVM_SET_CPUID2
: {
1149 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1150 struct kvm_cpuid2 cpuid
;
1153 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1155 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1156 cpuid_arg
->entries
);
1161 case KVM_GET_CPUID2
: {
1162 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1163 struct kvm_cpuid2 cpuid
;
1166 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1168 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1169 cpuid_arg
->entries
);
1173 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1179 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1182 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1184 case KVM_TPR_ACCESS_REPORTING
: {
1185 struct kvm_tpr_access_ctl tac
;
1188 if (copy_from_user(&tac
, argp
, sizeof tac
))
1190 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1194 if (copy_to_user(argp
, &tac
, sizeof tac
))
1199 case KVM_SET_VAPIC_ADDR
: {
1200 struct kvm_vapic_addr va
;
1203 if (!irqchip_in_kernel(vcpu
->kvm
))
1206 if (copy_from_user(&va
, argp
, sizeof va
))
1209 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1219 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1223 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1225 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1229 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1230 u32 kvm_nr_mmu_pages
)
1232 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1235 down_write(&kvm
->slots_lock
);
1237 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1238 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1240 up_write(&kvm
->slots_lock
);
1244 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1246 return kvm
->arch
.n_alloc_mmu_pages
;
1249 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1252 struct kvm_mem_alias
*alias
;
1254 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1255 alias
= &kvm
->arch
.aliases
[i
];
1256 if (gfn
>= alias
->base_gfn
1257 && gfn
< alias
->base_gfn
+ alias
->npages
)
1258 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1264 * Set a new alias region. Aliases map a portion of physical memory into
1265 * another portion. This is useful for memory windows, for example the PC
1268 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1269 struct kvm_memory_alias
*alias
)
1272 struct kvm_mem_alias
*p
;
1275 /* General sanity checks */
1276 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1278 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1280 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1282 if (alias
->guest_phys_addr
+ alias
->memory_size
1283 < alias
->guest_phys_addr
)
1285 if (alias
->target_phys_addr
+ alias
->memory_size
1286 < alias
->target_phys_addr
)
1289 down_write(&kvm
->slots_lock
);
1291 p
= &kvm
->arch
.aliases
[alias
->slot
];
1292 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1293 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1294 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1296 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1297 if (kvm
->arch
.aliases
[n
- 1].npages
)
1299 kvm
->arch
.naliases
= n
;
1301 kvm_mmu_zap_all(kvm
);
1303 up_write(&kvm
->slots_lock
);
1311 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1316 switch (chip
->chip_id
) {
1317 case KVM_IRQCHIP_PIC_MASTER
:
1318 memcpy(&chip
->chip
.pic
,
1319 &pic_irqchip(kvm
)->pics
[0],
1320 sizeof(struct kvm_pic_state
));
1322 case KVM_IRQCHIP_PIC_SLAVE
:
1323 memcpy(&chip
->chip
.pic
,
1324 &pic_irqchip(kvm
)->pics
[1],
1325 sizeof(struct kvm_pic_state
));
1327 case KVM_IRQCHIP_IOAPIC
:
1328 memcpy(&chip
->chip
.ioapic
,
1329 ioapic_irqchip(kvm
),
1330 sizeof(struct kvm_ioapic_state
));
1339 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1344 switch (chip
->chip_id
) {
1345 case KVM_IRQCHIP_PIC_MASTER
:
1346 memcpy(&pic_irqchip(kvm
)->pics
[0],
1348 sizeof(struct kvm_pic_state
));
1350 case KVM_IRQCHIP_PIC_SLAVE
:
1351 memcpy(&pic_irqchip(kvm
)->pics
[1],
1353 sizeof(struct kvm_pic_state
));
1355 case KVM_IRQCHIP_IOAPIC
:
1356 memcpy(ioapic_irqchip(kvm
),
1358 sizeof(struct kvm_ioapic_state
));
1364 kvm_pic_update_irq(pic_irqchip(kvm
));
1369 * Get (and clear) the dirty memory log for a memory slot.
1371 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1372 struct kvm_dirty_log
*log
)
1376 struct kvm_memory_slot
*memslot
;
1379 down_write(&kvm
->slots_lock
);
1381 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1385 /* If nothing is dirty, don't bother messing with page tables. */
1387 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1388 kvm_flush_remote_tlbs(kvm
);
1389 memslot
= &kvm
->memslots
[log
->slot
];
1390 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1391 memset(memslot
->dirty_bitmap
, 0, n
);
1395 up_write(&kvm
->slots_lock
);
1399 long kvm_arch_vm_ioctl(struct file
*filp
,
1400 unsigned int ioctl
, unsigned long arg
)
1402 struct kvm
*kvm
= filp
->private_data
;
1403 void __user
*argp
= (void __user
*)arg
;
1407 case KVM_SET_TSS_ADDR
:
1408 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1412 case KVM_SET_MEMORY_REGION
: {
1413 struct kvm_memory_region kvm_mem
;
1414 struct kvm_userspace_memory_region kvm_userspace_mem
;
1417 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1419 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1420 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1421 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1422 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1423 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1428 case KVM_SET_NR_MMU_PAGES
:
1429 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1433 case KVM_GET_NR_MMU_PAGES
:
1434 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1436 case KVM_SET_MEMORY_ALIAS
: {
1437 struct kvm_memory_alias alias
;
1440 if (copy_from_user(&alias
, argp
, sizeof alias
))
1442 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
1447 case KVM_CREATE_IRQCHIP
:
1449 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1450 if (kvm
->arch
.vpic
) {
1451 r
= kvm_ioapic_init(kvm
);
1453 kfree(kvm
->arch
.vpic
);
1454 kvm
->arch
.vpic
= NULL
;
1460 case KVM_IRQ_LINE
: {
1461 struct kvm_irq_level irq_event
;
1464 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1466 if (irqchip_in_kernel(kvm
)) {
1467 mutex_lock(&kvm
->lock
);
1468 if (irq_event
.irq
< 16)
1469 kvm_pic_set_irq(pic_irqchip(kvm
),
1472 kvm_ioapic_set_irq(kvm
->arch
.vioapic
,
1475 mutex_unlock(&kvm
->lock
);
1480 case KVM_GET_IRQCHIP
: {
1481 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1482 struct kvm_irqchip chip
;
1485 if (copy_from_user(&chip
, argp
, sizeof chip
))
1488 if (!irqchip_in_kernel(kvm
))
1490 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
1494 if (copy_to_user(argp
, &chip
, sizeof chip
))
1499 case KVM_SET_IRQCHIP
: {
1500 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1501 struct kvm_irqchip chip
;
1504 if (copy_from_user(&chip
, argp
, sizeof chip
))
1507 if (!irqchip_in_kernel(kvm
))
1509 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
1522 static void kvm_init_msr_list(void)
1527 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1528 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1531 msrs_to_save
[j
] = msrs_to_save
[i
];
1534 num_msrs_to_save
= j
;
1538 * Only apic need an MMIO device hook, so shortcut now..
1540 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1543 struct kvm_io_device
*dev
;
1545 if (vcpu
->arch
.apic
) {
1546 dev
= &vcpu
->arch
.apic
->dev
;
1547 if (dev
->in_range(dev
, addr
))
1554 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1557 struct kvm_io_device
*dev
;
1559 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
);
1561 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1565 int emulator_read_std(unsigned long addr
,
1568 struct kvm_vcpu
*vcpu
)
1571 int r
= X86EMUL_CONTINUE
;
1573 down_read(&vcpu
->kvm
->slots_lock
);
1575 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1576 unsigned offset
= addr
& (PAGE_SIZE
-1);
1577 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1580 if (gpa
== UNMAPPED_GVA
) {
1581 r
= X86EMUL_PROPAGATE_FAULT
;
1584 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, tocopy
);
1586 r
= X86EMUL_UNHANDLEABLE
;
1595 up_read(&vcpu
->kvm
->slots_lock
);
1598 EXPORT_SYMBOL_GPL(emulator_read_std
);
1600 static int emulator_read_emulated(unsigned long addr
,
1603 struct kvm_vcpu
*vcpu
)
1605 struct kvm_io_device
*mmio_dev
;
1608 if (vcpu
->mmio_read_completed
) {
1609 memcpy(val
, vcpu
->mmio_data
, bytes
);
1610 vcpu
->mmio_read_completed
= 0;
1611 return X86EMUL_CONTINUE
;
1614 down_read(&vcpu
->kvm
->slots_lock
);
1615 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1616 up_read(&vcpu
->kvm
->slots_lock
);
1618 /* For APIC access vmexit */
1619 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1622 if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1623 == X86EMUL_CONTINUE
)
1624 return X86EMUL_CONTINUE
;
1625 if (gpa
== UNMAPPED_GVA
)
1626 return X86EMUL_PROPAGATE_FAULT
;
1630 * Is this MMIO handled locally?
1632 mutex_lock(&vcpu
->kvm
->lock
);
1633 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1635 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1636 mutex_unlock(&vcpu
->kvm
->lock
);
1637 return X86EMUL_CONTINUE
;
1639 mutex_unlock(&vcpu
->kvm
->lock
);
1641 vcpu
->mmio_needed
= 1;
1642 vcpu
->mmio_phys_addr
= gpa
;
1643 vcpu
->mmio_size
= bytes
;
1644 vcpu
->mmio_is_write
= 0;
1646 return X86EMUL_UNHANDLEABLE
;
1649 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1650 const void *val
, int bytes
)
1654 down_read(&vcpu
->kvm
->slots_lock
);
1655 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
1657 up_read(&vcpu
->kvm
->slots_lock
);
1660 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1661 up_read(&vcpu
->kvm
->slots_lock
);
1665 static int emulator_write_emulated_onepage(unsigned long addr
,
1668 struct kvm_vcpu
*vcpu
)
1670 struct kvm_io_device
*mmio_dev
;
1673 down_read(&vcpu
->kvm
->slots_lock
);
1674 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1675 up_read(&vcpu
->kvm
->slots_lock
);
1677 if (gpa
== UNMAPPED_GVA
) {
1678 kvm_inject_page_fault(vcpu
, addr
, 2);
1679 return X86EMUL_PROPAGATE_FAULT
;
1682 /* For APIC access vmexit */
1683 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1686 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1687 return X86EMUL_CONTINUE
;
1691 * Is this MMIO handled locally?
1693 mutex_lock(&vcpu
->kvm
->lock
);
1694 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1696 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1697 mutex_unlock(&vcpu
->kvm
->lock
);
1698 return X86EMUL_CONTINUE
;
1700 mutex_unlock(&vcpu
->kvm
->lock
);
1702 vcpu
->mmio_needed
= 1;
1703 vcpu
->mmio_phys_addr
= gpa
;
1704 vcpu
->mmio_size
= bytes
;
1705 vcpu
->mmio_is_write
= 1;
1706 memcpy(vcpu
->mmio_data
, val
, bytes
);
1708 return X86EMUL_CONTINUE
;
1711 int emulator_write_emulated(unsigned long addr
,
1714 struct kvm_vcpu
*vcpu
)
1716 /* Crossing a page boundary? */
1717 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1720 now
= -addr
& ~PAGE_MASK
;
1721 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1722 if (rc
!= X86EMUL_CONTINUE
)
1728 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1730 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1732 static int emulator_cmpxchg_emulated(unsigned long addr
,
1736 struct kvm_vcpu
*vcpu
)
1738 static int reported
;
1742 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1744 #ifndef CONFIG_X86_64
1745 /* guests cmpxchg8b have to be emulated atomically */
1752 down_read(&vcpu
->kvm
->slots_lock
);
1753 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1755 if (gpa
== UNMAPPED_GVA
||
1756 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1759 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
1764 down_read(¤t
->mm
->mmap_sem
);
1765 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1766 up_read(¤t
->mm
->mmap_sem
);
1768 kaddr
= kmap_atomic(page
, KM_USER0
);
1769 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
1770 kunmap_atomic(kaddr
, KM_USER0
);
1771 kvm_release_page_dirty(page
);
1773 up_read(&vcpu
->kvm
->slots_lock
);
1777 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
1780 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1782 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
1785 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1787 return X86EMUL_CONTINUE
;
1790 int emulate_clts(struct kvm_vcpu
*vcpu
)
1792 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
1793 return X86EMUL_CONTINUE
;
1796 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
1798 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1802 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
1803 return X86EMUL_CONTINUE
;
1805 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __FUNCTION__
, dr
);
1806 return X86EMUL_UNHANDLEABLE
;
1810 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1812 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1815 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1817 /* FIXME: better handling */
1818 return X86EMUL_UNHANDLEABLE
;
1820 return X86EMUL_CONTINUE
;
1823 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
1825 static int reported
;
1827 unsigned long rip
= vcpu
->arch
.rip
;
1828 unsigned long rip_linear
;
1830 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
1835 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
1837 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1838 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1841 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
1843 struct x86_emulate_ops emulate_ops
= {
1844 .read_std
= emulator_read_std
,
1845 .read_emulated
= emulator_read_emulated
,
1846 .write_emulated
= emulator_write_emulated
,
1847 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1850 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1851 struct kvm_run
*run
,
1857 struct decode_cache
*c
;
1859 vcpu
->arch
.mmio_fault_cr2
= cr2
;
1860 kvm_x86_ops
->cache_regs(vcpu
);
1862 vcpu
->mmio_is_write
= 0;
1863 vcpu
->arch
.pio
.string
= 0;
1865 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
1867 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1869 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
1870 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
1871 vcpu
->arch
.emulate_ctxt
.mode
=
1872 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1873 ? X86EMUL_MODE_REAL
: cs_l
1874 ? X86EMUL_MODE_PROT64
: cs_db
1875 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1877 if (vcpu
->arch
.emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1878 vcpu
->arch
.emulate_ctxt
.cs_base
= 0;
1879 vcpu
->arch
.emulate_ctxt
.ds_base
= 0;
1880 vcpu
->arch
.emulate_ctxt
.es_base
= 0;
1881 vcpu
->arch
.emulate_ctxt
.ss_base
= 0;
1883 vcpu
->arch
.emulate_ctxt
.cs_base
=
1884 get_segment_base(vcpu
, VCPU_SREG_CS
);
1885 vcpu
->arch
.emulate_ctxt
.ds_base
=
1886 get_segment_base(vcpu
, VCPU_SREG_DS
);
1887 vcpu
->arch
.emulate_ctxt
.es_base
=
1888 get_segment_base(vcpu
, VCPU_SREG_ES
);
1889 vcpu
->arch
.emulate_ctxt
.ss_base
=
1890 get_segment_base(vcpu
, VCPU_SREG_SS
);
1893 vcpu
->arch
.emulate_ctxt
.gs_base
=
1894 get_segment_base(vcpu
, VCPU_SREG_GS
);
1895 vcpu
->arch
.emulate_ctxt
.fs_base
=
1896 get_segment_base(vcpu
, VCPU_SREG_FS
);
1898 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
1900 /* Reject the instructions other than VMCALL/VMMCALL when
1901 * try to emulate invalid opcode */
1902 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
1903 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
1904 (!(c
->twobyte
&& c
->b
== 0x01 &&
1905 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
1906 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
1907 return EMULATE_FAIL
;
1909 ++vcpu
->stat
.insn_emulation
;
1911 ++vcpu
->stat
.insn_emulation_fail
;
1912 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1913 return EMULATE_DONE
;
1914 return EMULATE_FAIL
;
1918 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
1920 if (vcpu
->arch
.pio
.string
)
1921 return EMULATE_DO_MMIO
;
1923 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1924 run
->exit_reason
= KVM_EXIT_MMIO
;
1925 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1926 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1927 run
->mmio
.len
= vcpu
->mmio_size
;
1928 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1932 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1933 return EMULATE_DONE
;
1934 if (!vcpu
->mmio_needed
) {
1935 kvm_report_emulation_failure(vcpu
, "mmio");
1936 return EMULATE_FAIL
;
1938 return EMULATE_DO_MMIO
;
1941 kvm_x86_ops
->decache_regs(vcpu
);
1942 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
1944 if (vcpu
->mmio_is_write
) {
1945 vcpu
->mmio_needed
= 0;
1946 return EMULATE_DO_MMIO
;
1949 return EMULATE_DONE
;
1951 EXPORT_SYMBOL_GPL(emulate_instruction
);
1953 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
1957 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.pio
.guest_pages
); ++i
)
1958 if (vcpu
->arch
.pio
.guest_pages
[i
]) {
1959 kvm_release_page_dirty(vcpu
->arch
.pio
.guest_pages
[i
]);
1960 vcpu
->arch
.pio
.guest_pages
[i
] = NULL
;
1964 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1966 void *p
= vcpu
->arch
.pio_data
;
1969 int nr_pages
= vcpu
->arch
.pio
.guest_pages
[1] ? 2 : 1;
1971 q
= vmap(vcpu
->arch
.pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1974 free_pio_guest_pages(vcpu
);
1977 q
+= vcpu
->arch
.pio
.guest_page_offset
;
1978 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
1979 if (vcpu
->arch
.pio
.in
)
1980 memcpy(q
, p
, bytes
);
1982 memcpy(p
, q
, bytes
);
1983 q
-= vcpu
->arch
.pio
.guest_page_offset
;
1985 free_pio_guest_pages(vcpu
);
1989 int complete_pio(struct kvm_vcpu
*vcpu
)
1991 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
1995 kvm_x86_ops
->cache_regs(vcpu
);
1999 memcpy(&vcpu
->arch
.regs
[VCPU_REGS_RAX
], vcpu
->arch
.pio_data
,
2003 r
= pio_copy_data(vcpu
);
2005 kvm_x86_ops
->cache_regs(vcpu
);
2012 delta
*= io
->cur_count
;
2014 * The size of the register should really depend on
2015 * current address size.
2017 vcpu
->arch
.regs
[VCPU_REGS_RCX
] -= delta
;
2023 vcpu
->arch
.regs
[VCPU_REGS_RDI
] += delta
;
2025 vcpu
->arch
.regs
[VCPU_REGS_RSI
] += delta
;
2028 kvm_x86_ops
->decache_regs(vcpu
);
2030 io
->count
-= io
->cur_count
;
2036 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2037 struct kvm_vcpu
*vcpu
,
2040 /* TODO: String I/O for in kernel device */
2042 mutex_lock(&vcpu
->kvm
->lock
);
2043 if (vcpu
->arch
.pio
.in
)
2044 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2045 vcpu
->arch
.pio
.size
,
2048 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2049 vcpu
->arch
.pio
.size
,
2051 mutex_unlock(&vcpu
->kvm
->lock
);
2054 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2055 struct kvm_vcpu
*vcpu
)
2057 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2058 void *pd
= vcpu
->arch
.pio_data
;
2061 mutex_lock(&vcpu
->kvm
->lock
);
2062 for (i
= 0; i
< io
->cur_count
; i
++) {
2063 kvm_iodevice_write(pio_dev
, io
->port
,
2068 mutex_unlock(&vcpu
->kvm
->lock
);
2071 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2074 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
2077 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2078 int size
, unsigned port
)
2080 struct kvm_io_device
*pio_dev
;
2082 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2083 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2084 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2085 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2086 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2087 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2088 vcpu
->arch
.pio
.in
= in
;
2089 vcpu
->arch
.pio
.string
= 0;
2090 vcpu
->arch
.pio
.down
= 0;
2091 vcpu
->arch
.pio
.guest_page_offset
= 0;
2092 vcpu
->arch
.pio
.rep
= 0;
2094 kvm_x86_ops
->cache_regs(vcpu
);
2095 memcpy(vcpu
->arch
.pio_data
, &vcpu
->arch
.regs
[VCPU_REGS_RAX
], 4);
2096 kvm_x86_ops
->decache_regs(vcpu
);
2098 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2100 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2102 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2108 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2110 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2111 int size
, unsigned long count
, int down
,
2112 gva_t address
, int rep
, unsigned port
)
2114 unsigned now
, in_page
;
2118 struct kvm_io_device
*pio_dev
;
2120 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2121 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2122 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2123 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2124 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2125 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2126 vcpu
->arch
.pio
.in
= in
;
2127 vcpu
->arch
.pio
.string
= 1;
2128 vcpu
->arch
.pio
.down
= down
;
2129 vcpu
->arch
.pio
.guest_page_offset
= offset_in_page(address
);
2130 vcpu
->arch
.pio
.rep
= rep
;
2133 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2138 in_page
= PAGE_SIZE
- offset_in_page(address
);
2140 in_page
= offset_in_page(address
) + size
;
2141 now
= min(count
, (unsigned long)in_page
/ size
);
2144 * String I/O straddles page boundary. Pin two guest pages
2145 * so that we satisfy atomicity constraints. Do just one
2146 * transaction to avoid complexity.
2153 * String I/O in reverse. Yuck. Kill the guest, fix later.
2155 pr_unimpl(vcpu
, "guest string pio down\n");
2156 kvm_inject_gp(vcpu
, 0);
2159 vcpu
->run
->io
.count
= now
;
2160 vcpu
->arch
.pio
.cur_count
= now
;
2162 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2163 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2165 for (i
= 0; i
< nr_pages
; ++i
) {
2166 down_read(&vcpu
->kvm
->slots_lock
);
2167 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
2168 vcpu
->arch
.pio
.guest_pages
[i
] = page
;
2169 up_read(&vcpu
->kvm
->slots_lock
);
2171 kvm_inject_gp(vcpu
, 0);
2172 free_pio_guest_pages(vcpu
);
2177 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2178 if (!vcpu
->arch
.pio
.in
) {
2179 /* string PIO write */
2180 ret
= pio_copy_data(vcpu
);
2181 if (ret
>= 0 && pio_dev
) {
2182 pio_string_write(pio_dev
, vcpu
);
2184 if (vcpu
->arch
.pio
.count
== 0)
2188 pr_unimpl(vcpu
, "no string pio read support yet, "
2189 "port %x size %d count %ld\n",
2194 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2196 int kvm_arch_init(void *opaque
)
2199 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2202 printk(KERN_ERR
"kvm: already loaded the other module\n");
2207 if (!ops
->cpu_has_kvm_support()) {
2208 printk(KERN_ERR
"kvm: no hardware support\n");
2212 if (ops
->disabled_by_bios()) {
2213 printk(KERN_ERR
"kvm: disabled by bios\n");
2218 r
= kvm_mmu_module_init();
2222 kvm_init_msr_list();
2225 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2232 void kvm_arch_exit(void)
2235 kvm_mmu_module_exit();
2238 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2240 ++vcpu
->stat
.halt_exits
;
2241 if (irqchip_in_kernel(vcpu
->kvm
)) {
2242 vcpu
->arch
.mp_state
= VCPU_MP_STATE_HALTED
;
2243 kvm_vcpu_block(vcpu
);
2244 if (vcpu
->arch
.mp_state
!= VCPU_MP_STATE_RUNNABLE
)
2248 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2252 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2254 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2256 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2258 kvm_x86_ops
->cache_regs(vcpu
);
2260 nr
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2261 a0
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2262 a1
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2263 a2
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2264 a3
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2266 if (!is_long_mode(vcpu
)) {
2275 case KVM_HC_VAPIC_POLL_IRQ
:
2282 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = ret
;
2283 kvm_x86_ops
->decache_regs(vcpu
);
2286 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2288 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2290 char instruction
[3];
2295 * Blow out the MMU to ensure that no other VCPU has an active mapping
2296 * to ensure that the updated hypercall appears atomically across all
2299 kvm_mmu_zap_all(vcpu
->kvm
);
2301 kvm_x86_ops
->cache_regs(vcpu
);
2302 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2303 if (emulator_write_emulated(vcpu
->arch
.rip
, instruction
, 3, vcpu
)
2304 != X86EMUL_CONTINUE
)
2310 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2312 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2315 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2317 struct descriptor_table dt
= { limit
, base
};
2319 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2322 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2324 struct descriptor_table dt
= { limit
, base
};
2326 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2329 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2330 unsigned long *rflags
)
2333 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2336 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2338 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2341 return vcpu
->arch
.cr0
;
2343 return vcpu
->arch
.cr2
;
2345 return vcpu
->arch
.cr3
;
2347 return vcpu
->arch
.cr4
;
2349 return get_cr8(vcpu
);
2351 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
2356 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2357 unsigned long *rflags
)
2361 set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2362 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2365 vcpu
->arch
.cr2
= val
;
2371 set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2374 set_cr8(vcpu
, val
& 0xfUL
);
2377 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
2381 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2383 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2384 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2386 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2387 /* when no next entry is found, the current entry[i] is reselected */
2388 for (j
= i
+ 1; j
== i
; j
= (j
+ 1) % nent
) {
2389 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2390 if (ej
->function
== e
->function
) {
2391 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2395 return 0; /* silence gcc, even though control never reaches here */
2398 /* find an entry with matching function, matching index (if needed), and that
2399 * should be read next (if it's stateful) */
2400 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2401 u32 function
, u32 index
)
2403 if (e
->function
!= function
)
2405 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2407 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2408 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2413 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2416 u32 function
, index
;
2417 struct kvm_cpuid_entry2
*e
, *best
;
2419 kvm_x86_ops
->cache_regs(vcpu
);
2420 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2421 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2422 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = 0;
2423 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = 0;
2424 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = 0;
2425 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = 0;
2427 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2428 e
= &vcpu
->arch
.cpuid_entries
[i
];
2429 if (is_matching_cpuid_entry(e
, function
, index
)) {
2430 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2431 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2436 * Both basic or both extended?
2438 if (((e
->function
^ function
) & 0x80000000) == 0)
2439 if (!best
|| e
->function
> best
->function
)
2443 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = best
->eax
;
2444 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = best
->ebx
;
2445 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = best
->ecx
;
2446 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = best
->edx
;
2448 kvm_x86_ops
->decache_regs(vcpu
);
2449 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2451 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2454 * Check if userspace requested an interrupt window, and that the
2455 * interrupt window is open.
2457 * No need to exit to userspace if we already have an interrupt queued.
2459 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2460 struct kvm_run
*kvm_run
)
2462 return (!vcpu
->arch
.irq_summary
&&
2463 kvm_run
->request_interrupt_window
&&
2464 vcpu
->arch
.interrupt_window_open
&&
2465 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2468 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2469 struct kvm_run
*kvm_run
)
2471 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2472 kvm_run
->cr8
= get_cr8(vcpu
);
2473 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2474 if (irqchip_in_kernel(vcpu
->kvm
))
2475 kvm_run
->ready_for_interrupt_injection
= 1;
2477 kvm_run
->ready_for_interrupt_injection
=
2478 (vcpu
->arch
.interrupt_window_open
&&
2479 vcpu
->arch
.irq_summary
== 0);
2482 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2484 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2487 if (!apic
|| !apic
->vapic_addr
)
2490 down_read(¤t
->mm
->mmap_sem
);
2491 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2492 up_read(¤t
->mm
->mmap_sem
);
2494 vcpu
->arch
.apic
->vapic_page
= page
;
2497 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2499 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2501 if (!apic
|| !apic
->vapic_addr
)
2504 kvm_release_page_dirty(apic
->vapic_page
);
2505 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2508 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2512 if (unlikely(vcpu
->arch
.mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
)) {
2513 pr_debug("vcpu %d received sipi with vector # %x\n",
2514 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
2515 kvm_lapic_reset(vcpu
);
2516 r
= kvm_x86_ops
->vcpu_reset(vcpu
);
2519 vcpu
->arch
.mp_state
= VCPU_MP_STATE_RUNNABLE
;
2525 if (vcpu
->guest_debug
.enabled
)
2526 kvm_x86_ops
->guest_debug_pre(vcpu
);
2529 r
= kvm_mmu_reload(vcpu
);
2533 if (vcpu
->requests
) {
2534 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2535 __kvm_migrate_apic_timer(vcpu
);
2536 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
2538 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
2544 kvm_inject_pending_timer_irqs(vcpu
);
2548 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2549 kvm_load_guest_fpu(vcpu
);
2551 local_irq_disable();
2553 if (need_resched()) {
2560 if (signal_pending(current
)) {
2564 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2565 ++vcpu
->stat
.signal_exits
;
2569 if (vcpu
->arch
.exception
.pending
)
2570 __queue_exception(vcpu
);
2571 else if (irqchip_in_kernel(vcpu
->kvm
))
2572 kvm_x86_ops
->inject_pending_irq(vcpu
);
2574 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2576 kvm_lapic_sync_to_vapic(vcpu
);
2578 vcpu
->guest_mode
= 1;
2582 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2583 kvm_x86_ops
->tlb_flush(vcpu
);
2585 kvm_x86_ops
->run(vcpu
, kvm_run
);
2587 vcpu
->guest_mode
= 0;
2593 * We must have an instruction between local_irq_enable() and
2594 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2595 * the interrupt shadow. The stat.exits increment will do nicely.
2596 * But we need to prevent reordering, hence this barrier():
2605 * Profile KVM exit RIPs:
2607 if (unlikely(prof_on
== KVM_PROFILING
)) {
2608 kvm_x86_ops
->cache_regs(vcpu
);
2609 profile_hit(KVM_PROFILING
, (void *)vcpu
->arch
.rip
);
2612 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
2613 vcpu
->arch
.exception
.pending
= false;
2615 kvm_lapic_sync_from_vapic(vcpu
);
2617 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2620 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2622 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2623 ++vcpu
->stat
.request_irq_exits
;
2626 if (!need_resched())
2636 post_kvm_run_save(vcpu
, kvm_run
);
2643 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2650 if (unlikely(vcpu
->arch
.mp_state
== VCPU_MP_STATE_UNINITIALIZED
)) {
2651 kvm_vcpu_block(vcpu
);
2656 if (vcpu
->sigset_active
)
2657 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2659 /* re-sync apic's tpr */
2660 if (!irqchip_in_kernel(vcpu
->kvm
))
2661 set_cr8(vcpu
, kvm_run
->cr8
);
2663 if (vcpu
->arch
.pio
.cur_count
) {
2664 r
= complete_pio(vcpu
);
2668 #if CONFIG_HAS_IOMEM
2669 if (vcpu
->mmio_needed
) {
2670 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2671 vcpu
->mmio_read_completed
= 1;
2672 vcpu
->mmio_needed
= 0;
2673 r
= emulate_instruction(vcpu
, kvm_run
,
2674 vcpu
->arch
.mmio_fault_cr2
, 0,
2675 EMULTYPE_NO_DECODE
);
2676 if (r
== EMULATE_DO_MMIO
) {
2678 * Read-modify-write. Back to userspace.
2685 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
2686 kvm_x86_ops
->cache_regs(vcpu
);
2687 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
2688 kvm_x86_ops
->decache_regs(vcpu
);
2691 r
= __vcpu_run(vcpu
, kvm_run
);
2694 if (vcpu
->sigset_active
)
2695 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2701 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2705 kvm_x86_ops
->cache_regs(vcpu
);
2707 regs
->rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2708 regs
->rbx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2709 regs
->rcx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2710 regs
->rdx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2711 regs
->rsi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2712 regs
->rdi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
2713 regs
->rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2714 regs
->rbp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
2715 #ifdef CONFIG_X86_64
2716 regs
->r8
= vcpu
->arch
.regs
[VCPU_REGS_R8
];
2717 regs
->r9
= vcpu
->arch
.regs
[VCPU_REGS_R9
];
2718 regs
->r10
= vcpu
->arch
.regs
[VCPU_REGS_R10
];
2719 regs
->r11
= vcpu
->arch
.regs
[VCPU_REGS_R11
];
2720 regs
->r12
= vcpu
->arch
.regs
[VCPU_REGS_R12
];
2721 regs
->r13
= vcpu
->arch
.regs
[VCPU_REGS_R13
];
2722 regs
->r14
= vcpu
->arch
.regs
[VCPU_REGS_R14
];
2723 regs
->r15
= vcpu
->arch
.regs
[VCPU_REGS_R15
];
2726 regs
->rip
= vcpu
->arch
.rip
;
2727 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2730 * Don't leak debug flags in case they were set for guest debugging
2732 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
2733 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2740 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2744 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = regs
->rax
;
2745 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = regs
->rbx
;
2746 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = regs
->rcx
;
2747 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = regs
->rdx
;
2748 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = regs
->rsi
;
2749 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = regs
->rdi
;
2750 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = regs
->rsp
;
2751 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = regs
->rbp
;
2752 #ifdef CONFIG_X86_64
2753 vcpu
->arch
.regs
[VCPU_REGS_R8
] = regs
->r8
;
2754 vcpu
->arch
.regs
[VCPU_REGS_R9
] = regs
->r9
;
2755 vcpu
->arch
.regs
[VCPU_REGS_R10
] = regs
->r10
;
2756 vcpu
->arch
.regs
[VCPU_REGS_R11
] = regs
->r11
;
2757 vcpu
->arch
.regs
[VCPU_REGS_R12
] = regs
->r12
;
2758 vcpu
->arch
.regs
[VCPU_REGS_R13
] = regs
->r13
;
2759 vcpu
->arch
.regs
[VCPU_REGS_R14
] = regs
->r14
;
2760 vcpu
->arch
.regs
[VCPU_REGS_R15
] = regs
->r15
;
2763 vcpu
->arch
.rip
= regs
->rip
;
2764 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
2766 kvm_x86_ops
->decache_regs(vcpu
);
2773 static void get_segment(struct kvm_vcpu
*vcpu
,
2774 struct kvm_segment
*var
, int seg
)
2776 return kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
2779 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2781 struct kvm_segment cs
;
2783 get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2787 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
2789 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
2790 struct kvm_sregs
*sregs
)
2792 struct descriptor_table dt
;
2797 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2798 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2799 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2800 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2801 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2802 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2804 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2805 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2807 kvm_x86_ops
->get_idt(vcpu
, &dt
);
2808 sregs
->idt
.limit
= dt
.limit
;
2809 sregs
->idt
.base
= dt
.base
;
2810 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
2811 sregs
->gdt
.limit
= dt
.limit
;
2812 sregs
->gdt
.base
= dt
.base
;
2814 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2815 sregs
->cr0
= vcpu
->arch
.cr0
;
2816 sregs
->cr2
= vcpu
->arch
.cr2
;
2817 sregs
->cr3
= vcpu
->arch
.cr3
;
2818 sregs
->cr4
= vcpu
->arch
.cr4
;
2819 sregs
->cr8
= get_cr8(vcpu
);
2820 sregs
->efer
= vcpu
->arch
.shadow_efer
;
2821 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
2823 if (irqchip_in_kernel(vcpu
->kvm
)) {
2824 memset(sregs
->interrupt_bitmap
, 0,
2825 sizeof sregs
->interrupt_bitmap
);
2826 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
2827 if (pending_vec
>= 0)
2828 set_bit(pending_vec
,
2829 (unsigned long *)sregs
->interrupt_bitmap
);
2831 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
2832 sizeof sregs
->interrupt_bitmap
);
2839 static void set_segment(struct kvm_vcpu
*vcpu
,
2840 struct kvm_segment
*var
, int seg
)
2842 return kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
2845 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
2846 struct kvm_sregs
*sregs
)
2848 int mmu_reset_needed
= 0;
2849 int i
, pending_vec
, max_bits
;
2850 struct descriptor_table dt
;
2854 dt
.limit
= sregs
->idt
.limit
;
2855 dt
.base
= sregs
->idt
.base
;
2856 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2857 dt
.limit
= sregs
->gdt
.limit
;
2858 dt
.base
= sregs
->gdt
.base
;
2859 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2861 vcpu
->arch
.cr2
= sregs
->cr2
;
2862 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
2863 vcpu
->arch
.cr3
= sregs
->cr3
;
2865 set_cr8(vcpu
, sregs
->cr8
);
2867 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
2868 #ifdef CONFIG_X86_64
2869 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
2871 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
2873 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2875 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
2876 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
2877 vcpu
->arch
.cr0
= sregs
->cr0
;
2879 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
2880 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
2881 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2882 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
2884 if (mmu_reset_needed
)
2885 kvm_mmu_reset_context(vcpu
);
2887 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2888 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
2889 sizeof vcpu
->arch
.irq_pending
);
2890 vcpu
->arch
.irq_summary
= 0;
2891 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
2892 if (vcpu
->arch
.irq_pending
[i
])
2893 __set_bit(i
, &vcpu
->arch
.irq_summary
);
2895 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
2896 pending_vec
= find_first_bit(
2897 (const unsigned long *)sregs
->interrupt_bitmap
,
2899 /* Only pending external irq is handled here */
2900 if (pending_vec
< max_bits
) {
2901 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
2902 pr_debug("Set back pending irq %d\n",
2907 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2908 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2909 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2910 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2911 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2912 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2914 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2915 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2922 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2923 struct kvm_debug_guest
*dbg
)
2929 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
2937 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2938 * we have asm/x86/processor.h
2949 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2950 #ifdef CONFIG_X86_64
2951 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2953 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2958 * Translate a guest virtual address to a guest physical address.
2960 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2961 struct kvm_translation
*tr
)
2963 unsigned long vaddr
= tr
->linear_address
;
2967 down_read(&vcpu
->kvm
->slots_lock
);
2968 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
2969 up_read(&vcpu
->kvm
->slots_lock
);
2970 tr
->physical_address
= gpa
;
2971 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2979 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2981 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
2985 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2986 fpu
->fcw
= fxsave
->cwd
;
2987 fpu
->fsw
= fxsave
->swd
;
2988 fpu
->ftwx
= fxsave
->twd
;
2989 fpu
->last_opcode
= fxsave
->fop
;
2990 fpu
->last_ip
= fxsave
->rip
;
2991 fpu
->last_dp
= fxsave
->rdp
;
2992 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2999 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3001 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3005 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
3006 fxsave
->cwd
= fpu
->fcw
;
3007 fxsave
->swd
= fpu
->fsw
;
3008 fxsave
->twd
= fpu
->ftwx
;
3009 fxsave
->fop
= fpu
->last_opcode
;
3010 fxsave
->rip
= fpu
->last_ip
;
3011 fxsave
->rdp
= fpu
->last_dp
;
3012 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3019 void fx_init(struct kvm_vcpu
*vcpu
)
3021 unsigned after_mxcsr_mask
;
3023 /* Initialize guest FPU by resetting ours and saving into guest's */
3025 fx_save(&vcpu
->arch
.host_fx_image
);
3027 fx_save(&vcpu
->arch
.guest_fx_image
);
3028 fx_restore(&vcpu
->arch
.host_fx_image
);
3031 vcpu
->arch
.cr0
|= X86_CR0_ET
;
3032 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
3033 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
3034 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
3035 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
3037 EXPORT_SYMBOL_GPL(fx_init
);
3039 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
3041 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
3044 vcpu
->guest_fpu_loaded
= 1;
3045 fx_save(&vcpu
->arch
.host_fx_image
);
3046 fx_restore(&vcpu
->arch
.guest_fx_image
);
3048 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
3050 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
3052 if (!vcpu
->guest_fpu_loaded
)
3055 vcpu
->guest_fpu_loaded
= 0;
3056 fx_save(&vcpu
->arch
.guest_fx_image
);
3057 fx_restore(&vcpu
->arch
.host_fx_image
);
3058 ++vcpu
->stat
.fpu_reload
;
3060 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
3062 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
3064 kvm_x86_ops
->vcpu_free(vcpu
);
3067 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
3070 return kvm_x86_ops
->vcpu_create(kvm
, id
);
3073 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
3077 /* We do fxsave: this must be aligned. */
3078 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
3081 r
= kvm_arch_vcpu_reset(vcpu
);
3083 r
= kvm_mmu_setup(vcpu
);
3090 kvm_x86_ops
->vcpu_free(vcpu
);
3094 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
3097 kvm_mmu_unload(vcpu
);
3100 kvm_x86_ops
->vcpu_free(vcpu
);
3103 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
3105 return kvm_x86_ops
->vcpu_reset(vcpu
);
3108 void kvm_arch_hardware_enable(void *garbage
)
3110 kvm_x86_ops
->hardware_enable(garbage
);
3113 void kvm_arch_hardware_disable(void *garbage
)
3115 kvm_x86_ops
->hardware_disable(garbage
);
3118 int kvm_arch_hardware_setup(void)
3120 return kvm_x86_ops
->hardware_setup();
3123 void kvm_arch_hardware_unsetup(void)
3125 kvm_x86_ops
->hardware_unsetup();
3128 void kvm_arch_check_processor_compat(void *rtn
)
3130 kvm_x86_ops
->check_processor_compatibility(rtn
);
3133 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
3139 BUG_ON(vcpu
->kvm
== NULL
);
3142 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3143 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
3144 vcpu
->arch
.mp_state
= VCPU_MP_STATE_RUNNABLE
;
3146 vcpu
->arch
.mp_state
= VCPU_MP_STATE_UNINITIALIZED
;
3148 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3153 vcpu
->arch
.pio_data
= page_address(page
);
3155 r
= kvm_mmu_create(vcpu
);
3157 goto fail_free_pio_data
;
3159 if (irqchip_in_kernel(kvm
)) {
3160 r
= kvm_create_lapic(vcpu
);
3162 goto fail_mmu_destroy
;
3168 kvm_mmu_destroy(vcpu
);
3170 free_page((unsigned long)vcpu
->arch
.pio_data
);
3175 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
3177 kvm_free_lapic(vcpu
);
3178 kvm_mmu_destroy(vcpu
);
3179 free_page((unsigned long)vcpu
->arch
.pio_data
);
3182 struct kvm
*kvm_arch_create_vm(void)
3184 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
3187 return ERR_PTR(-ENOMEM
);
3189 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
3194 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
3197 kvm_mmu_unload(vcpu
);
3201 static void kvm_free_vcpus(struct kvm
*kvm
)
3206 * Unpin any mmu pages first.
3208 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
3210 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
3211 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3212 if (kvm
->vcpus
[i
]) {
3213 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
3214 kvm
->vcpus
[i
] = NULL
;
3220 void kvm_arch_destroy_vm(struct kvm
*kvm
)
3222 kfree(kvm
->arch
.vpic
);
3223 kfree(kvm
->arch
.vioapic
);
3224 kvm_free_vcpus(kvm
);
3225 kvm_free_physmem(kvm
);
3229 int kvm_arch_set_memory_region(struct kvm
*kvm
,
3230 struct kvm_userspace_memory_region
*mem
,
3231 struct kvm_memory_slot old
,
3234 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
3235 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
3237 /*To keep backward compatibility with older userspace,
3238 *x86 needs to hanlde !user_alloc case.
3241 if (npages
&& !old
.rmap
) {
3242 down_write(¤t
->mm
->mmap_sem
);
3243 memslot
->userspace_addr
= do_mmap(NULL
, 0,
3245 PROT_READ
| PROT_WRITE
,
3246 MAP_SHARED
| MAP_ANONYMOUS
,
3248 up_write(¤t
->mm
->mmap_sem
);
3250 if (IS_ERR((void *)memslot
->userspace_addr
))
3251 return PTR_ERR((void *)memslot
->userspace_addr
);
3253 if (!old
.user_alloc
&& old
.rmap
) {
3256 down_write(¤t
->mm
->mmap_sem
);
3257 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
3258 old
.npages
* PAGE_SIZE
);
3259 up_write(¤t
->mm
->mmap_sem
);
3262 "kvm_vm_ioctl_set_memory_region: "
3263 "failed to munmap memory\n");
3268 if (!kvm
->arch
.n_requested_mmu_pages
) {
3269 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
3270 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
3273 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
3274 kvm_flush_remote_tlbs(kvm
);
3279 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
3281 return vcpu
->arch
.mp_state
== VCPU_MP_STATE_RUNNABLE
3282 || vcpu
->arch
.mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
;
3285 static void vcpu_kick_intr(void *info
)
3288 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
3289 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
3293 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
3295 int ipi_pcpu
= vcpu
->cpu
;
3297 if (waitqueue_active(&vcpu
->wq
)) {
3298 wake_up_interruptible(&vcpu
->wq
);
3299 ++vcpu
->stat
.halt_wakeup
;
3301 if (vcpu
->guest_mode
)
3302 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0, 0);