x86: cpa: fix the self-test
[wrt350n-kernel.git] / arch / x86 / mm / pgtable_32.c
blob3a6c9200058d6dd962c0956792310041e9cab9eb
1 /*
2 * linux/arch/i386/mm/pgtable.c
3 */
5 #include <linux/sched.h>
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/mm.h>
9 #include <linux/nmi.h>
10 #include <linux/swap.h>
11 #include <linux/smp.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
19 #include <asm/system.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/fixmap.h>
23 #include <asm/e820.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
27 void show_mem(void)
29 int total = 0, reserved = 0;
30 int shared = 0, cached = 0;
31 int highmem = 0;
32 struct page *page;
33 pg_data_t *pgdat;
34 unsigned long i;
35 unsigned long flags;
37 printk(KERN_INFO "Mem-info:\n");
38 show_free_areas();
39 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
40 for_each_online_pgdat(pgdat) {
41 pgdat_resize_lock(pgdat, &flags);
42 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
43 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
44 touch_nmi_watchdog();
45 page = pgdat_page_nr(pgdat, i);
46 total++;
47 if (PageHighMem(page))
48 highmem++;
49 if (PageReserved(page))
50 reserved++;
51 else if (PageSwapCache(page))
52 cached++;
53 else if (page_count(page))
54 shared += page_count(page) - 1;
56 pgdat_resize_unlock(pgdat, &flags);
58 printk(KERN_INFO "%d pages of RAM\n", total);
59 printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
60 printk(KERN_INFO "%d reserved pages\n", reserved);
61 printk(KERN_INFO "%d pages shared\n", shared);
62 printk(KERN_INFO "%d pages swap cached\n", cached);
64 printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
65 printk(KERN_INFO "%lu pages writeback\n",
66 global_page_state(NR_WRITEBACK));
67 printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
68 printk(KERN_INFO "%lu pages slab\n",
69 global_page_state(NR_SLAB_RECLAIMABLE) +
70 global_page_state(NR_SLAB_UNRECLAIMABLE));
71 printk(KERN_INFO "%lu pages pagetables\n",
72 global_page_state(NR_PAGETABLE));
76 * Associate a virtual page frame with a given physical page frame
77 * and protection flags for that frame.
78 */
79 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
81 pgd_t *pgd;
82 pud_t *pud;
83 pmd_t *pmd;
84 pte_t *pte;
86 pgd = swapper_pg_dir + pgd_index(vaddr);
87 if (pgd_none(*pgd)) {
88 BUG();
89 return;
91 pud = pud_offset(pgd, vaddr);
92 if (pud_none(*pud)) {
93 BUG();
94 return;
96 pmd = pmd_offset(pud, vaddr);
97 if (pmd_none(*pmd)) {
98 BUG();
99 return;
101 pte = pte_offset_kernel(pmd, vaddr);
102 if (pgprot_val(flags))
103 set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
104 else
105 pte_clear(&init_mm, vaddr, pte);
108 * It's enough to flush this one mapping.
109 * (PGE mappings get flushed as well)
111 __flush_tlb_one(vaddr);
115 * Associate a large virtual page frame with a given physical page frame
116 * and protection flags for that frame. pfn is for the base of the page,
117 * vaddr is what the page gets mapped to - both must be properly aligned.
118 * The pmd must already be instantiated. Assumes PAE mode.
120 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
122 pgd_t *pgd;
123 pud_t *pud;
124 pmd_t *pmd;
126 if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
127 printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
128 return; /* BUG(); */
130 if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
131 printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
132 return; /* BUG(); */
134 pgd = swapper_pg_dir + pgd_index(vaddr);
135 if (pgd_none(*pgd)) {
136 printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
137 return; /* BUG(); */
139 pud = pud_offset(pgd, vaddr);
140 pmd = pmd_offset(pud, vaddr);
141 set_pmd(pmd, pfn_pmd(pfn, flags));
143 * It's enough to flush this one mapping.
144 * (PGE mappings get flushed as well)
146 __flush_tlb_one(vaddr);
149 static int fixmaps;
150 unsigned long __FIXADDR_TOP = 0xfffff000;
151 EXPORT_SYMBOL(__FIXADDR_TOP);
153 void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
155 unsigned long address = __fix_to_virt(idx);
157 if (idx >= __end_of_fixed_addresses) {
158 BUG();
159 return;
161 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
162 fixmaps++;
166 * reserve_top_address - reserves a hole in the top of kernel address space
167 * @reserve - size of hole to reserve
169 * Can be used to relocate the fixmap area and poke a hole in the top
170 * of kernel address space to make room for a hypervisor.
172 void reserve_top_address(unsigned long reserve)
174 BUG_ON(fixmaps > 0);
175 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
176 (int)-reserve);
177 __FIXADDR_TOP = -reserve - PAGE_SIZE;
178 __VMALLOC_RESERVE += reserve;
181 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
183 return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
186 struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
188 struct page *pte;
190 #ifdef CONFIG_HIGHPTE
191 pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
192 #else
193 pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
194 #endif
195 return pte;
198 void pmd_ctor(struct kmem_cache *cache, void *pmd)
200 memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
204 * List of all pgd's needed for non-PAE so it can invalidate entries
205 * in both cached and uncached pgd's; not needed for PAE since the
206 * kernel pmd is shared. If PAE were not to share the pmd a similar
207 * tactic would be needed. This is essentially codepath-based locking
208 * against pageattr.c; it is the unique case in which a valid change
209 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
210 * vmalloc faults work because attached pagetables are never freed.
211 * -- wli
213 DEFINE_SPINLOCK(pgd_lock);
214 struct page *pgd_list;
216 static inline void pgd_list_add(pgd_t *pgd)
218 struct page *page = virt_to_page(pgd);
219 page->index = (unsigned long)pgd_list;
220 if (pgd_list)
221 set_page_private(pgd_list, (unsigned long)&page->index);
222 pgd_list = page;
223 set_page_private(page, (unsigned long)&pgd_list);
226 static inline void pgd_list_del(pgd_t *pgd)
228 struct page *next, **pprev, *page = virt_to_page(pgd);
229 next = (struct page *)page->index;
230 pprev = (struct page **)page_private(page);
231 *pprev = next;
232 if (next)
233 set_page_private(next, (unsigned long)pprev);
238 #if (PTRS_PER_PMD == 1)
239 /* Non-PAE pgd constructor */
240 static void pgd_ctor(void *pgd)
242 unsigned long flags;
244 /* !PAE, no pagetable sharing */
245 memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
247 spin_lock_irqsave(&pgd_lock, flags);
249 /* must happen under lock */
250 clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
251 swapper_pg_dir + USER_PTRS_PER_PGD,
252 KERNEL_PGD_PTRS);
253 paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
254 __pa(swapper_pg_dir) >> PAGE_SHIFT,
255 USER_PTRS_PER_PGD,
256 KERNEL_PGD_PTRS);
257 pgd_list_add(pgd);
258 spin_unlock_irqrestore(&pgd_lock, flags);
260 #else /* PTRS_PER_PMD > 1 */
261 /* PAE pgd constructor */
262 static void pgd_ctor(void *pgd)
264 /* PAE, kernel PMD may be shared */
266 if (SHARED_KERNEL_PMD) {
267 clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
268 swapper_pg_dir + USER_PTRS_PER_PGD,
269 KERNEL_PGD_PTRS);
270 } else {
271 unsigned long flags;
273 memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
274 spin_lock_irqsave(&pgd_lock, flags);
275 pgd_list_add(pgd);
276 spin_unlock_irqrestore(&pgd_lock, flags);
279 #endif /* PTRS_PER_PMD */
281 static void pgd_dtor(void *pgd)
283 unsigned long flags; /* can be called from interrupt context */
285 if (SHARED_KERNEL_PMD)
286 return;
288 paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT);
289 spin_lock_irqsave(&pgd_lock, flags);
290 pgd_list_del(pgd);
291 spin_unlock_irqrestore(&pgd_lock, flags);
294 #define UNSHARED_PTRS_PER_PGD \
295 (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
297 #ifdef CONFIG_X86_PAE
299 * Mop up any pmd pages which may still be attached to the pgd.
300 * Normally they will be freed by munmap/exit_mmap, but any pmd we
301 * preallocate which never got a corresponding vma will need to be
302 * freed manually.
304 static void pgd_mop_up_pmds(pgd_t *pgdp)
306 int i;
308 for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
309 pgd_t pgd = pgdp[i];
311 if (pgd_val(pgd) != 0) {
312 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
314 pgdp[i] = native_make_pgd(0);
316 paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
317 pmd_free(pmd);
323 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
324 * updating the top-level pagetable entries to guarantee the
325 * processor notices the update. Since this is expensive, and
326 * all 4 top-level entries are used almost immediately in a
327 * new process's life, we just pre-populate them here.
329 * Also, if we're in a paravirt environment where the kernel pmd is
330 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
331 * and initialize the kernel pmds here.
333 static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
335 pud_t *pud;
336 unsigned long addr;
337 int i;
339 pud = pud_offset(pgd, 0);
340 for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
341 i++, pud++, addr += PUD_SIZE) {
342 pmd_t *pmd = pmd_alloc_one(mm, addr);
344 if (!pmd) {
345 pgd_mop_up_pmds(pgd);
346 return 0;
349 if (i >= USER_PTRS_PER_PGD)
350 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
351 sizeof(pmd_t) * PTRS_PER_PMD);
353 pud_populate(mm, pud, pmd);
356 return 1;
358 #else /* !CONFIG_X86_PAE */
359 /* No need to prepopulate any pagetable entries in non-PAE modes. */
360 static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
362 return 1;
365 static void pgd_mop_up_pmds(pgd_t *pgd)
368 #endif /* CONFIG_X86_PAE */
370 /* If we allocate a pmd for part of the kernel address space, then
371 make sure its initialized with the appropriate kernel mappings.
372 Otherwise use a cached zeroed pmd. */
373 static pmd_t *pmd_cache_alloc(int idx)
375 pmd_t *pmd;
377 if (idx >= USER_PTRS_PER_PGD) {
378 pmd = (pmd_t *)__get_free_page(GFP_KERNEL);
380 if (pmd)
381 memcpy(pmd,
382 (void *)pgd_page_vaddr(swapper_pg_dir[idx]),
383 sizeof(pmd_t) * PTRS_PER_PMD);
384 } else
385 pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
387 return pmd;
390 static void pmd_cache_free(pmd_t *pmd, int idx)
392 if (idx >= USER_PTRS_PER_PGD)
393 free_page((unsigned long)pmd);
394 else
395 kmem_cache_free(pmd_cache, pmd);
398 pgd_t *pgd_alloc(struct mm_struct *mm)
400 int i;
401 pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
403 if (PTRS_PER_PMD == 1 || !pgd)
404 return pgd;
406 mm->pgd = pgd; /* so that alloc_pd can use it */
408 for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
409 pmd_t *pmd = pmd_cache_alloc(i);
411 if (!pmd)
412 goto out_oom;
414 paravirt_alloc_pd(mm, __pa(pmd) >> PAGE_SHIFT);
415 set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
417 if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
418 quicklist_free(0, pgd_dtor, pgd);
419 pgd = NULL;
422 return pgd;
424 out_oom:
425 for (i--; i >= 0; i--) {
426 pgd_t pgdent = pgd[i];
427 void* pmd = (void *)__va(pgd_val(pgdent)-1);
428 paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
429 pmd_cache_free(pmd, i);
431 quicklist_free(0, pgd_dtor, pgd);
432 return NULL;
435 void pgd_free(pgd_t *pgd)
437 int i;
439 /* in the PAE case user pgd entries are overwritten before usage */
440 if (PTRS_PER_PMD > 1)
441 for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
442 pgd_t pgdent = pgd[i];
443 void* pmd = (void *)__va(pgd_val(pgdent)-1);
444 paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
445 pmd_cache_free(pmd, i);
447 /* in the non-PAE case, free_pgtables() clears user pgd entries */
448 pgd_mop_up_pmds(pgd);
449 quicklist_free(0, pgd_dtor, pgd);
452 void check_pgt_cache(void)
454 quicklist_trim(0, pgd_dtor, 25, 16);