2 * Copyright (C) 1995 Linus Torvalds
6 * This file handles the architecture-dependent parts of initialization
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/screen_info.h>
19 #include <linux/ioport.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/highmem.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <asm/processor.h>
27 #include <linux/console.h>
28 #include <linux/seq_file.h>
29 #include <linux/crash_dump.h>
30 #include <linux/root_dev.h>
31 #include <linux/pci.h>
32 #include <linux/efi.h>
33 #include <linux/acpi.h>
34 #include <linux/kallsyms.h>
35 #include <linux/edd.h>
36 #include <linux/mmzone.h>
37 #include <linux/kexec.h>
38 #include <linux/cpufreq.h>
39 #include <linux/dmi.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ctype.h>
42 #include <linux/uaccess.h>
43 #include <linux/init_ohci1394_dma.h>
46 #include <asm/uaccess.h>
47 #include <asm/system.h>
48 #include <asm/vsyscall.h>
53 #include <video/edid.h>
57 #include <asm/mpspec.h>
58 #include <asm/mmu_context.h>
59 #include <asm/proto.h>
60 #include <asm/setup.h>
61 #include <asm/mach_apic.h>
63 #include <asm/sections.h>
65 #include <asm/cacheflush.h>
68 #include <asm/topology.h>
70 #ifdef CONFIG_PARAVIRT
71 #include <asm/paravirt.h>
80 struct cpuinfo_x86 boot_cpu_data __read_mostly
;
81 EXPORT_SYMBOL(boot_cpu_data
);
83 __u32 cleared_cpu_caps
[NCAPINTS
] __cpuinitdata
;
85 unsigned long mmu_cr4_features
;
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
90 unsigned long saved_video_mode
;
92 int force_mwait __cpuinitdata
;
98 char dmi_alloc_data
[DMI_MAX_DATA
];
103 struct screen_info screen_info
;
104 EXPORT_SYMBOL(screen_info
);
105 struct sys_desc_table_struct
{
106 unsigned short length
;
107 unsigned char table
[0];
110 struct edid_info edid_info
;
111 EXPORT_SYMBOL_GPL(edid_info
);
113 extern int root_mountflags
;
115 char __initdata command_line
[COMMAND_LINE_SIZE
];
117 struct resource standard_io_resources
[] = {
118 { .name
= "dma1", .start
= 0x00, .end
= 0x1f,
119 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
120 { .name
= "pic1", .start
= 0x20, .end
= 0x21,
121 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
122 { .name
= "timer0", .start
= 0x40, .end
= 0x43,
123 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
124 { .name
= "timer1", .start
= 0x50, .end
= 0x53,
125 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
126 { .name
= "keyboard", .start
= 0x60, .end
= 0x6f,
127 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
128 { .name
= "dma page reg", .start
= 0x80, .end
= 0x8f,
129 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
130 { .name
= "pic2", .start
= 0xa0, .end
= 0xa1,
131 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
132 { .name
= "dma2", .start
= 0xc0, .end
= 0xdf,
133 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
134 { .name
= "fpu", .start
= 0xf0, .end
= 0xff,
135 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
}
138 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
140 static struct resource data_resource
= {
141 .name
= "Kernel data",
144 .flags
= IORESOURCE_RAM
,
146 static struct resource code_resource
= {
147 .name
= "Kernel code",
150 .flags
= IORESOURCE_RAM
,
152 static struct resource bss_resource
= {
153 .name
= "Kernel bss",
156 .flags
= IORESOURCE_RAM
,
159 static void __cpuinit
early_identify_cpu(struct cpuinfo_x86
*c
);
161 #ifdef CONFIG_PROC_VMCORE
162 /* elfcorehdr= specifies the location of elf core header
163 * stored by the crashed kernel. This option will be passed
164 * by kexec loader to the capture kernel.
166 static int __init
setup_elfcorehdr(char *arg
)
171 elfcorehdr_addr
= memparse(arg
, &end
);
172 return end
> arg
? 0 : -EINVAL
;
174 early_param("elfcorehdr", setup_elfcorehdr
);
179 contig_initmem_init(unsigned long start_pfn
, unsigned long end_pfn
)
181 unsigned long bootmap_size
, bootmap
;
183 bootmap_size
= bootmem_bootmap_pages(end_pfn
)<<PAGE_SHIFT
;
184 bootmap
= find_e820_area(0, end_pfn
<<PAGE_SHIFT
, bootmap_size
,
187 panic("Cannot find bootmem map of size %ld\n", bootmap_size
);
188 bootmap_size
= init_bootmem(bootmap
>> PAGE_SHIFT
, end_pfn
);
189 e820_register_active_regions(0, start_pfn
, end_pfn
);
190 free_bootmem_with_active_regions(0, end_pfn
);
191 reserve_bootmem(bootmap
, bootmap_size
, BOOTMEM_DEFAULT
);
195 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
197 #ifdef CONFIG_EDD_MODULE
201 * copy_edd() - Copy the BIOS EDD information
202 * from boot_params into a safe place.
205 static inline void copy_edd(void)
207 memcpy(edd
.mbr_signature
, boot_params
.edd_mbr_sig_buffer
,
208 sizeof(edd
.mbr_signature
));
209 memcpy(edd
.edd_info
, boot_params
.eddbuf
, sizeof(edd
.edd_info
));
210 edd
.mbr_signature_nr
= boot_params
.edd_mbr_sig_buf_entries
;
211 edd
.edd_info_nr
= boot_params
.eddbuf_entries
;
214 static inline void copy_edd(void)
220 static void __init
reserve_crashkernel(void)
222 unsigned long long total_mem
;
223 unsigned long long crash_size
, crash_base
;
226 total_mem
= ((unsigned long long)max_low_pfn
- min_low_pfn
) << PAGE_SHIFT
;
228 ret
= parse_crashkernel(boot_command_line
, total_mem
,
229 &crash_size
, &crash_base
);
230 if (ret
== 0 && crash_size
) {
231 if (crash_base
<= 0) {
232 printk(KERN_INFO
"crashkernel reservation failed - "
233 "you have to specify a base address\n");
237 if (reserve_bootmem(crash_base
, crash_size
,
238 BOOTMEM_EXCLUSIVE
) < 0) {
239 printk(KERN_INFO
"crashkernel reservation failed - "
240 "memory is in use\n");
244 printk(KERN_INFO
"Reserving %ldMB of memory at %ldMB "
245 "for crashkernel (System RAM: %ldMB)\n",
246 (unsigned long)(crash_size
>> 20),
247 (unsigned long)(crash_base
>> 20),
248 (unsigned long)(total_mem
>> 20));
249 crashk_res
.start
= crash_base
;
250 crashk_res
.end
= crash_base
+ crash_size
- 1;
254 static inline void __init
reserve_crashkernel(void)
258 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
259 void __attribute__((weak
)) __init
memory_setup(void)
261 machine_specific_memory_setup();
265 * setup_arch - architecture-specific boot-time initializations
267 * Note: On x86_64, fixmaps are ready for use even before this is called.
269 void __init
setup_arch(char **cmdline_p
)
273 printk(KERN_INFO
"Command line: %s\n", boot_command_line
);
275 ROOT_DEV
= old_decode_dev(boot_params
.hdr
.root_dev
);
276 screen_info
= boot_params
.screen_info
;
277 edid_info
= boot_params
.edid_info
;
278 saved_video_mode
= boot_params
.hdr
.vid_mode
;
279 bootloader_type
= boot_params
.hdr
.type_of_loader
;
281 #ifdef CONFIG_BLK_DEV_RAM
282 rd_image_start
= boot_params
.hdr
.ram_size
& RAMDISK_IMAGE_START_MASK
;
283 rd_prompt
= ((boot_params
.hdr
.ram_size
& RAMDISK_PROMPT_FLAG
) != 0);
284 rd_doload
= ((boot_params
.hdr
.ram_size
& RAMDISK_LOAD_FLAG
) != 0);
287 if (!strncmp((char *)&boot_params
.efi_info
.efi_loader_signature
,
297 if (!boot_params
.hdr
.root_flags
)
298 root_mountflags
&= ~MS_RDONLY
;
299 init_mm
.start_code
= (unsigned long) &_text
;
300 init_mm
.end_code
= (unsigned long) &_etext
;
301 init_mm
.end_data
= (unsigned long) &_edata
;
302 init_mm
.brk
= (unsigned long) &_end
;
304 code_resource
.start
= virt_to_phys(&_text
);
305 code_resource
.end
= virt_to_phys(&_etext
)-1;
306 data_resource
.start
= virt_to_phys(&_etext
);
307 data_resource
.end
= virt_to_phys(&_edata
)-1;
308 bss_resource
.start
= virt_to_phys(&__bss_start
);
309 bss_resource
.end
= virt_to_phys(&__bss_stop
)-1;
311 early_identify_cpu(&boot_cpu_data
);
313 strlcpy(command_line
, boot_command_line
, COMMAND_LINE_SIZE
);
314 *cmdline_p
= command_line
;
318 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
319 if (init_ohci1394_dma_early
)
320 init_ohci1394_dma_on_all_controllers();
323 finish_e820_parsing();
325 early_gart_iommu_check();
327 e820_register_active_regions(0, 0, -1UL);
329 * partially used pages are not usable - thus
330 * we are rounding upwards:
332 end_pfn
= e820_end_of_ram();
333 /* update e820 for memory not covered by WB MTRRs */
335 if (mtrr_trim_uncached_memory(end_pfn
)) {
336 e820_register_active_regions(0, 0, -1UL);
337 end_pfn
= e820_end_of_ram();
340 num_physpages
= end_pfn
;
344 init_memory_mapping(0, (end_pfn_map
<< PAGE_SHIFT
));
353 /* setup to use the early static init tables during kernel startup */
354 x86_cpu_to_apicid_early_ptr
= (void *)x86_cpu_to_apicid_init
;
355 x86_bios_cpu_apicid_early_ptr
= (void *)x86_bios_cpu_apicid_init
;
357 x86_cpu_to_node_map_early_ptr
= (void *)x86_cpu_to_node_map_init
;
363 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
364 * Call this early for SRAT node setup.
366 acpi_boot_table_init();
369 /* How many end-of-memory variables you have, grandma! */
370 max_low_pfn
= end_pfn
;
372 high_memory
= (void *)__va(end_pfn
* PAGE_SIZE
- 1) + 1;
374 /* Remove active ranges so rediscovery with NUMA-awareness happens */
375 remove_all_active_ranges();
377 #ifdef CONFIG_ACPI_NUMA
379 * Parse SRAT to discover nodes.
385 numa_initmem_init(0, end_pfn
);
387 contig_initmem_init(0, end_pfn
);
390 early_res_to_bootmem();
392 #ifdef CONFIG_ACPI_SLEEP
394 * Reserve low memory region for sleep support.
396 acpi_reserve_bootmem();
400 efi_reserve_bootmem();
403 * Find and reserve possible boot-time SMP configuration:
406 #ifdef CONFIG_BLK_DEV_INITRD
407 if (boot_params
.hdr
.type_of_loader
&& boot_params
.hdr
.ramdisk_image
) {
408 unsigned long ramdisk_image
= boot_params
.hdr
.ramdisk_image
;
409 unsigned long ramdisk_size
= boot_params
.hdr
.ramdisk_size
;
410 unsigned long ramdisk_end
= ramdisk_image
+ ramdisk_size
;
411 unsigned long end_of_mem
= end_pfn
<< PAGE_SHIFT
;
413 if (ramdisk_end
<= end_of_mem
) {
414 reserve_bootmem_generic(ramdisk_image
, ramdisk_size
);
415 initrd_start
= ramdisk_image
+ PAGE_OFFSET
;
416 initrd_end
= initrd_start
+ramdisk_size
;
418 /* Assumes everything on node 0 */
419 free_bootmem(ramdisk_image
, ramdisk_size
);
420 printk(KERN_ERR
"initrd extends beyond end of memory "
421 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
422 ramdisk_end
, end_of_mem
);
427 reserve_crashkernel();
435 * Read APIC and some other early information from ACPI tables.
443 * get boot-time SMP configuration:
445 if (smp_found_config
)
447 init_apic_mappings();
448 ioapic_init_mappings();
451 * We trust e820 completely. No explicit ROM probing in memory.
453 e820_reserve_resources(&code_resource
, &data_resource
, &bss_resource
);
454 e820_mark_nosave_regions();
456 /* request I/O space for devices used on all i[345]86 PCs */
457 for (i
= 0; i
< ARRAY_SIZE(standard_io_resources
); i
++)
458 request_resource(&ioport_resource
, &standard_io_resources
[i
]);
463 #if defined(CONFIG_VGA_CONSOLE)
464 if (!efi_enabled
|| (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY
))
465 conswitchp
= &vga_con
;
466 #elif defined(CONFIG_DUMMY_CONSOLE)
467 conswitchp
= &dummy_con
;
472 static int __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
476 if (c
->extended_cpuid_level
< 0x80000004)
479 v
= (unsigned int *) c
->x86_model_id
;
480 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
481 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
482 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
483 c
->x86_model_id
[48] = 0;
488 static void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
490 unsigned int n
, dummy
, eax
, ebx
, ecx
, edx
;
492 n
= c
->extended_cpuid_level
;
494 if (n
>= 0x80000005) {
495 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
496 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), "
497 "D cache %dK (%d bytes/line)\n",
498 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
499 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
500 /* On K8 L1 TLB is inclusive, so don't count it */
504 if (n
>= 0x80000006) {
505 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
506 ecx
= cpuid_ecx(0x80000006);
507 c
->x86_cache_size
= ecx
>> 16;
508 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
510 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
511 c
->x86_cache_size
, ecx
& 0xFF);
513 if (n
>= 0x80000008) {
514 cpuid(0x80000008, &eax
, &dummy
, &dummy
, &dummy
);
515 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
516 c
->x86_phys_bits
= eax
& 0xff;
521 static int nearby_node(int apicid
)
525 for (i
= apicid
- 1; i
>= 0; i
--) {
526 node
= apicid_to_node
[i
];
527 if (node
!= NUMA_NO_NODE
&& node_online(node
))
530 for (i
= apicid
+ 1; i
< MAX_LOCAL_APIC
; i
++) {
531 node
= apicid_to_node
[i
];
532 if (node
!= NUMA_NO_NODE
&& node_online(node
))
535 return first_node(node_online_map
); /* Shouldn't happen */
540 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
541 * Assumes number of cores is a power of two.
543 static void __cpuinit
amd_detect_cmp(struct cpuinfo_x86
*c
)
548 int cpu
= smp_processor_id();
550 unsigned apicid
= hard_smp_processor_id();
552 bits
= c
->x86_coreid_bits
;
554 /* Low order bits define the core id (index of core in socket) */
555 c
->cpu_core_id
= c
->phys_proc_id
& ((1 << bits
)-1);
556 /* Convert the APIC ID into the socket ID */
557 c
->phys_proc_id
= phys_pkg_id(bits
);
560 node
= c
->phys_proc_id
;
561 if (apicid_to_node
[apicid
] != NUMA_NO_NODE
)
562 node
= apicid_to_node
[apicid
];
563 if (!node_online(node
)) {
564 /* Two possibilities here:
565 - The CPU is missing memory and no node was created.
566 In that case try picking one from a nearby CPU
567 - The APIC IDs differ from the HyperTransport node IDs
568 which the K8 northbridge parsing fills in.
569 Assume they are all increased by a constant offset,
570 but in the same order as the HT nodeids.
571 If that doesn't result in a usable node fall back to the
572 path for the previous case. */
574 int ht_nodeid
= apicid
- (cpu_data(0).phys_proc_id
<< bits
);
576 if (ht_nodeid
>= 0 &&
577 apicid_to_node
[ht_nodeid
] != NUMA_NO_NODE
)
578 node
= apicid_to_node
[ht_nodeid
];
579 /* Pick a nearby node */
580 if (!node_online(node
))
581 node
= nearby_node(apicid
);
583 numa_set_node(cpu
, node
);
585 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
590 static void __cpuinit
early_init_amd_mc(struct cpuinfo_x86
*c
)
595 /* Multi core CPU? */
596 if (c
->extended_cpuid_level
< 0x80000008)
599 ecx
= cpuid_ecx(0x80000008);
601 c
->x86_max_cores
= (ecx
& 0xff) + 1;
603 /* CPU telling us the core id bits shift? */
604 bits
= (ecx
>> 12) & 0xF;
606 /* Otherwise recompute */
608 while ((1 << bits
) < c
->x86_max_cores
)
612 c
->x86_coreid_bits
= bits
;
617 #define ENABLE_C1E_MASK 0x18000000
618 #define CPUID_PROCESSOR_SIGNATURE 1
619 #define CPUID_XFAM 0x0ff00000
620 #define CPUID_XFAM_K8 0x00000000
621 #define CPUID_XFAM_10H 0x00100000
622 #define CPUID_XFAM_11H 0x00200000
623 #define CPUID_XMOD 0x000f0000
624 #define CPUID_XMOD_REV_F 0x00040000
626 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
627 static __cpuinit
int amd_apic_timer_broken(void)
629 u32 lo
, hi
, eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
631 switch (eax
& CPUID_XFAM
) {
633 if ((eax
& CPUID_XMOD
) < CPUID_XMOD_REV_F
)
637 rdmsr(MSR_K8_ENABLE_C1E
, lo
, hi
);
638 if (lo
& ENABLE_C1E_MASK
)
642 /* err on the side of caution */
648 static void __cpuinit
early_init_amd(struct cpuinfo_x86
*c
)
650 early_init_amd_mc(c
);
652 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
653 if (c
->x86_power
& (1<<8))
654 set_cpu_cap(c
, X86_FEATURE_CONSTANT_TSC
);
657 static void __cpuinit
init_amd(struct cpuinfo_x86
*c
)
665 * Disable TLB flush filter by setting HWCR.FFDIS on K8
666 * bit 6 of msr C001_0015
668 * Errata 63 for SH-B3 steppings
669 * Errata 122 for all steppings (F+ have it disabled by default)
672 rdmsrl(MSR_K8_HWCR
, value
);
674 wrmsrl(MSR_K8_HWCR
, value
);
678 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
679 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
680 clear_bit(0*32+31, (unsigned long *)&c
->x86_capability
);
682 /* On C+ stepping K8 rep microcode works well for copy/memset */
683 level
= cpuid_eax(1);
684 if (c
->x86
== 15 && ((level
>= 0x0f48 && level
< 0x0f50) ||
686 set_cpu_cap(c
, X86_FEATURE_REP_GOOD
);
687 if (c
->x86
== 0x10 || c
->x86
== 0x11)
688 set_cpu_cap(c
, X86_FEATURE_REP_GOOD
);
690 /* Enable workaround for FXSAVE leak */
692 set_cpu_cap(c
, X86_FEATURE_FXSAVE_LEAK
);
694 level
= get_model_name(c
);
698 /* Should distinguish Models here, but this is only
699 a fallback anyways. */
700 strcpy(c
->x86_model_id
, "Hammer");
704 display_cacheinfo(c
);
706 /* Multi core CPU? */
707 if (c
->extended_cpuid_level
>= 0x80000008)
710 if (c
->extended_cpuid_level
>= 0x80000006 &&
711 (cpuid_edx(0x80000006) & 0xf000))
712 num_cache_leaves
= 4;
714 num_cache_leaves
= 3;
716 if (c
->x86
== 0xf || c
->x86
== 0x10 || c
->x86
== 0x11)
717 set_cpu_cap(c
, X86_FEATURE_K8
);
719 /* MFENCE stops RDTSC speculation */
720 set_cpu_cap(c
, X86_FEATURE_MFENCE_RDTSC
);
722 if (amd_apic_timer_broken())
723 disable_apic_timer
= 1;
726 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
729 u32 eax
, ebx
, ecx
, edx
;
730 int index_msb
, core_bits
;
732 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
735 if (!cpu_has(c
, X86_FEATURE_HT
))
737 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
740 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
742 if (smp_num_siblings
== 1) {
743 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
744 } else if (smp_num_siblings
> 1) {
746 if (smp_num_siblings
> NR_CPUS
) {
747 printk(KERN_WARNING
"CPU: Unsupported number of "
748 "siblings %d", smp_num_siblings
);
749 smp_num_siblings
= 1;
753 index_msb
= get_count_order(smp_num_siblings
);
754 c
->phys_proc_id
= phys_pkg_id(index_msb
);
756 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
758 index_msb
= get_count_order(smp_num_siblings
);
760 core_bits
= get_count_order(c
->x86_max_cores
);
762 c
->cpu_core_id
= phys_pkg_id(index_msb
) &
763 ((1 << core_bits
) - 1);
766 if ((c
->x86_max_cores
* smp_num_siblings
) > 1) {
767 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
769 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
777 * find out the number of processor cores on the die
779 static int __cpuinit
intel_num_cpu_cores(struct cpuinfo_x86
*c
)
783 if (c
->cpuid_level
< 4)
786 cpuid_count(4, 0, &eax
, &t
, &t
, &t
);
789 return ((eax
>> 26) + 1);
794 static void srat_detect_node(void)
798 int cpu
= smp_processor_id();
799 int apicid
= hard_smp_processor_id();
801 /* Don't do the funky fallback heuristics the AMD version employs
803 node
= apicid_to_node
[apicid
];
804 if (node
== NUMA_NO_NODE
)
805 node
= first_node(node_online_map
);
806 numa_set_node(cpu
, node
);
808 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
812 static void __cpuinit
early_init_intel(struct cpuinfo_x86
*c
)
814 if ((c
->x86
== 0xf && c
->x86_model
>= 0x03) ||
815 (c
->x86
== 0x6 && c
->x86_model
>= 0x0e))
816 set_bit(X86_FEATURE_CONSTANT_TSC
, &c
->x86_capability
);
819 static void __cpuinit
init_intel(struct cpuinfo_x86
*c
)
824 init_intel_cacheinfo(c
);
825 if (c
->cpuid_level
> 9) {
826 unsigned eax
= cpuid_eax(10);
827 /* Check for version and the number of counters */
828 if ((eax
& 0xff) && (((eax
>>8) & 0xff) > 1))
829 set_cpu_cap(c
, X86_FEATURE_ARCH_PERFMON
);
834 rdmsr(MSR_IA32_MISC_ENABLE
, l1
, l2
);
836 set_cpu_cap(c
, X86_FEATURE_BTS
);
838 set_cpu_cap(c
, X86_FEATURE_PEBS
);
845 n
= c
->extended_cpuid_level
;
846 if (n
>= 0x80000008) {
847 unsigned eax
= cpuid_eax(0x80000008);
848 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
849 c
->x86_phys_bits
= eax
& 0xff;
850 /* CPUID workaround for Intel 0F34 CPU */
851 if (c
->x86_vendor
== X86_VENDOR_INTEL
&&
852 c
->x86
== 0xF && c
->x86_model
== 0x3 &&
854 c
->x86_phys_bits
= 36;
858 c
->x86_cache_alignment
= c
->x86_clflush_size
* 2;
859 if ((c
->x86
== 0xf && c
->x86_model
>= 0x03) ||
860 (c
->x86
== 0x6 && c
->x86_model
>= 0x0e))
861 set_cpu_cap(c
, X86_FEATURE_CONSTANT_TSC
);
863 set_cpu_cap(c
, X86_FEATURE_REP_GOOD
);
864 set_cpu_cap(c
, X86_FEATURE_LFENCE_RDTSC
);
865 c
->x86_max_cores
= intel_num_cpu_cores(c
);
870 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
872 char *v
= c
->x86_vendor_id
;
874 if (!strcmp(v
, "AuthenticAMD"))
875 c
->x86_vendor
= X86_VENDOR_AMD
;
876 else if (!strcmp(v
, "GenuineIntel"))
877 c
->x86_vendor
= X86_VENDOR_INTEL
;
879 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
882 /* Do some early cpuid on the boot CPU to get some parameter that are
883 needed before check_bugs. Everything advanced is in identify_cpu
885 static void __cpuinit
early_identify_cpu(struct cpuinfo_x86
*c
)
889 c
->loops_per_jiffy
= loops_per_jiffy
;
890 c
->x86_cache_size
= -1;
891 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
892 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
893 c
->x86_vendor_id
[0] = '\0'; /* Unset */
894 c
->x86_model_id
[0] = '\0'; /* Unset */
895 c
->x86_clflush_size
= 64;
896 c
->x86_cache_alignment
= c
->x86_clflush_size
;
897 c
->x86_max_cores
= 1;
898 c
->x86_coreid_bits
= 0;
899 c
->extended_cpuid_level
= 0;
900 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
902 /* Get vendor name */
903 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
904 (unsigned int *)&c
->x86_vendor_id
[0],
905 (unsigned int *)&c
->x86_vendor_id
[8],
906 (unsigned int *)&c
->x86_vendor_id
[4]);
910 /* Initialize the standard set of capabilities */
911 /* Note that the vendor-specific code below might override */
913 /* Intel-defined flags: level 0x00000001 */
914 if (c
->cpuid_level
>= 0x00000001) {
916 cpuid(0x00000001, &tfms
, &misc
, &c
->x86_capability
[4],
917 &c
->x86_capability
[0]);
918 c
->x86
= (tfms
>> 8) & 0xf;
919 c
->x86_model
= (tfms
>> 4) & 0xf;
920 c
->x86_mask
= tfms
& 0xf;
922 c
->x86
+= (tfms
>> 20) & 0xff;
924 c
->x86_model
+= ((tfms
>> 16) & 0xF) << 4;
925 if (c
->x86_capability
[0] & (1<<19))
926 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
928 /* Have CPUID level 0 only - unheard of */
933 c
->phys_proc_id
= (cpuid_ebx(1) >> 24) & 0xff;
935 /* AMD-defined flags: level 0x80000001 */
936 xlvl
= cpuid_eax(0x80000000);
937 c
->extended_cpuid_level
= xlvl
;
938 if ((xlvl
& 0xffff0000) == 0x80000000) {
939 if (xlvl
>= 0x80000001) {
940 c
->x86_capability
[1] = cpuid_edx(0x80000001);
941 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
943 if (xlvl
>= 0x80000004)
944 get_model_name(c
); /* Default name */
947 /* Transmeta-defined flags: level 0x80860001 */
948 xlvl
= cpuid_eax(0x80860000);
949 if ((xlvl
& 0xffff0000) == 0x80860000) {
950 /* Don't set x86_cpuid_level here for now to not confuse. */
951 if (xlvl
>= 0x80860001)
952 c
->x86_capability
[2] = cpuid_edx(0x80860001);
955 c
->extended_cpuid_level
= cpuid_eax(0x80000000);
956 if (c
->extended_cpuid_level
>= 0x80000007)
957 c
->x86_power
= cpuid_edx(0x80000007);
959 switch (c
->x86_vendor
) {
963 case X86_VENDOR_INTEL
:
971 * This does the hard work of actually picking apart the CPU stuff...
973 void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
977 early_identify_cpu(c
);
979 init_scattered_cpuid_features(c
);
981 c
->apicid
= phys_pkg_id(0);
984 * Vendor-specific initialization. In this section we
985 * canonicalize the feature flags, meaning if there are
986 * features a certain CPU supports which CPUID doesn't
987 * tell us, CPUID claiming incorrect flags, or other bugs,
988 * we handle them here.
990 * At the end of this section, c->x86_capability better
991 * indicate the features this CPU genuinely supports!
993 switch (c
->x86_vendor
) {
998 case X86_VENDOR_INTEL
:
1002 case X86_VENDOR_UNKNOWN
:
1004 display_cacheinfo(c
);
1011 * On SMP, boot_cpu_data holds the common feature set between
1012 * all CPUs; so make sure that we indicate which features are
1013 * common between the CPUs. The first time this routine gets
1014 * executed, c == &boot_cpu_data.
1016 if (c
!= &boot_cpu_data
) {
1017 /* AND the already accumulated flags with these */
1018 for (i
= 0; i
< NCAPINTS
; i
++)
1019 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
1022 /* Clear all flags overriden by options */
1023 for (i
= 0; i
< NCAPINTS
; i
++)
1024 c
->x86_capability
[i
] ^= cleared_cpu_caps
[i
];
1026 #ifdef CONFIG_X86_MCE
1029 select_idle_routine(c
);
1031 if (c
!= &boot_cpu_data
)
1034 numa_add_cpu(smp_processor_id());
1039 static __init
int setup_noclflush(char *arg
)
1041 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
1044 __setup("noclflush", setup_noclflush
);
1046 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
1048 if (c
->x86_model_id
[0])
1049 printk(KERN_INFO
"%s", c
->x86_model_id
);
1051 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1052 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
1054 printk(KERN_CONT
"\n");
1057 static __init
int setup_disablecpuid(char *arg
)
1060 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
1061 setup_clear_cpu_cap(bit
);
1066 __setup("clearcpuid=", setup_disablecpuid
);
1069 * Get CPU information for use by the procfs.
1072 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1074 struct cpuinfo_x86
*c
= v
;
1081 seq_printf(m
, "processor\t: %u\n"
1083 "cpu family\t: %d\n"
1085 "model name\t: %s\n",
1087 c
->x86_vendor_id
[0] ? c
->x86_vendor_id
: "unknown",
1090 c
->x86_model_id
[0] ? c
->x86_model_id
: "unknown");
1092 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1093 seq_printf(m
, "stepping\t: %d\n", c
->x86_mask
);
1095 seq_printf(m
, "stepping\t: unknown\n");
1097 if (cpu_has(c
, X86_FEATURE_TSC
)) {
1098 unsigned int freq
= cpufreq_quick_get((unsigned)cpu
);
1102 seq_printf(m
, "cpu MHz\t\t: %u.%03u\n",
1103 freq
/ 1000, (freq
% 1000));
1107 if (c
->x86_cache_size
>= 0)
1108 seq_printf(m
, "cache size\t: %d KB\n", c
->x86_cache_size
);
1111 if (smp_num_siblings
* c
->x86_max_cores
> 1) {
1112 seq_printf(m
, "physical id\t: %d\n", c
->phys_proc_id
);
1113 seq_printf(m
, "siblings\t: %d\n",
1114 cpus_weight(per_cpu(cpu_core_map
, cpu
)));
1115 seq_printf(m
, "core id\t\t: %d\n", c
->cpu_core_id
);
1116 seq_printf(m
, "cpu cores\t: %d\n", c
->booted_cores
);
1122 "fpu_exception\t: yes\n"
1123 "cpuid level\t: %d\n"
1128 for (i
= 0; i
< 32*NCAPINTS
; i
++)
1129 if (cpu_has(c
, i
) && x86_cap_flags
[i
] != NULL
)
1130 seq_printf(m
, " %s", x86_cap_flags
[i
]);
1132 seq_printf(m
, "\nbogomips\t: %lu.%02lu\n",
1133 c
->loops_per_jiffy
/(500000/HZ
),
1134 (c
->loops_per_jiffy
/(5000/HZ
)) % 100);
1136 if (c
->x86_tlbsize
> 0)
1137 seq_printf(m
, "TLB size\t: %d 4K pages\n", c
->x86_tlbsize
);
1138 seq_printf(m
, "clflush size\t: %d\n", c
->x86_clflush_size
);
1139 seq_printf(m
, "cache_alignment\t: %d\n", c
->x86_cache_alignment
);
1141 seq_printf(m
, "address sizes\t: %u bits physical, %u bits virtual\n",
1142 c
->x86_phys_bits
, c
->x86_virt_bits
);
1144 seq_printf(m
, "power management:");
1145 for (i
= 0; i
< 32; i
++) {
1146 if (c
->x86_power
& (1 << i
)) {
1147 if (i
< ARRAY_SIZE(x86_power_flags
) &&
1149 seq_printf(m
, "%s%s",
1150 x86_power_flags
[i
][0]?" ":"",
1151 x86_power_flags
[i
]);
1153 seq_printf(m
, " [%d]", i
);
1157 seq_printf(m
, "\n\n");
1162 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1164 if (*pos
== 0) /* just in case, cpu 0 is not the first */
1165 *pos
= first_cpu(cpu_online_map
);
1166 if ((*pos
) < NR_CPUS
&& cpu_online(*pos
))
1167 return &cpu_data(*pos
);
1171 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1173 *pos
= next_cpu(*pos
, cpu_online_map
);
1174 return c_start(m
, pos
);
1177 static void c_stop(struct seq_file
*m
, void *v
)
1181 const struct seq_operations cpuinfo_op
= {
1185 .show
= show_cpuinfo
,