1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table
[] =
40 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
42 static const u16 e1000_igp_2_cable_length_table
[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 ARRAY_SIZE(e1000_igp_2_cable_length_table)
55 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
56 * @hw: pointer to the HW structure
58 * Read the PHY management control register and check whether a PHY reset
59 * is blocked. If a reset is not blocked return 0, otherwise
60 * return E1000_BLK_PHY_RESET (12).
62 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
68 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
69 E1000_BLK_PHY_RESET
: 0;
73 * e1000e_get_phy_id - Retrieve the PHY ID and revision
74 * @hw: pointer to the HW structure
76 * Reads the PHY registers and stores the PHY ID and possibly the PHY
77 * revision in the hardware structure.
79 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
81 struct e1000_phy_info
*phy
= &hw
->phy
;
85 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
89 phy
->id
= (u32
)(phy_id
<< 16);
91 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
95 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
96 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
102 * e1000e_phy_reset_dsp - Reset PHY DSP
103 * @hw: pointer to the HW structure
105 * Reset the digital signal processor.
107 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
111 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
115 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
119 * e1000_read_phy_reg_mdic - Read MDI control register
120 * @hw: pointer to the HW structure
121 * @offset: register offset to be read
122 * @data: pointer to the read data
124 * Reads the MDI control regsiter in the PHY at offset and stores the
125 * information read to data.
127 static s32
e1000_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
129 struct e1000_phy_info
*phy
= &hw
->phy
;
132 if (offset
> MAX_PHY_REG_ADDRESS
) {
133 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
134 return -E1000_ERR_PARAM
;
137 /* Set up Op-code, Phy Address, and register offset in the MDI
138 * Control register. The MAC will take care of interfacing with the
139 * PHY to retrieve the desired data.
141 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
142 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
143 (E1000_MDIC_OP_READ
));
147 /* Poll the ready bit to see if the MDI read completed */
148 for (i
= 0; i
< 64; i
++) {
151 if (mdic
& E1000_MDIC_READY
)
154 if (!(mdic
& E1000_MDIC_READY
)) {
155 hw_dbg(hw
, "MDI Read did not complete\n");
156 return -E1000_ERR_PHY
;
158 if (mdic
& E1000_MDIC_ERROR
) {
159 hw_dbg(hw
, "MDI Error\n");
160 return -E1000_ERR_PHY
;
168 * e1000_write_phy_reg_mdic - Write MDI control register
169 * @hw: pointer to the HW structure
170 * @offset: register offset to write to
171 * @data: data to write to register at offset
173 * Writes data to MDI control register in the PHY at offset.
175 static s32
e1000_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
177 struct e1000_phy_info
*phy
= &hw
->phy
;
180 if (offset
> MAX_PHY_REG_ADDRESS
) {
181 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
182 return -E1000_ERR_PARAM
;
185 /* Set up Op-code, Phy Address, and register offset in the MDI
186 * Control register. The MAC will take care of interfacing with the
187 * PHY to retrieve the desired data.
189 mdic
= (((u32
)data
) |
190 (offset
<< E1000_MDIC_REG_SHIFT
) |
191 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
192 (E1000_MDIC_OP_WRITE
));
196 /* Poll the ready bit to see if the MDI read completed */
197 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
200 if (mdic
& E1000_MDIC_READY
)
203 if (!(mdic
& E1000_MDIC_READY
)) {
204 hw_dbg(hw
, "MDI Write did not complete\n");
205 return -E1000_ERR_PHY
;
212 * e1000e_read_phy_reg_m88 - Read m88 PHY register
213 * @hw: pointer to the HW structure
214 * @offset: register offset to be read
215 * @data: pointer to the read data
217 * Acquires semaphore, if necessary, then reads the PHY register at offset
218 * and storing the retrieved information in data. Release any acquired
219 * semaphores before exiting.
221 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
225 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
229 ret_val
= e1000_read_phy_reg_mdic(hw
,
230 MAX_PHY_REG_ADDRESS
& offset
,
233 hw
->phy
.ops
.release_phy(hw
);
239 * e1000e_write_phy_reg_m88 - Write m88 PHY register
240 * @hw: pointer to the HW structure
241 * @offset: register offset to write to
242 * @data: data to write at register offset
244 * Acquires semaphore, if necessary, then writes the data to PHY register
245 * at the offset. Release any acquired semaphores before exiting.
247 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
251 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
255 ret_val
= e1000_write_phy_reg_mdic(hw
,
256 MAX_PHY_REG_ADDRESS
& offset
,
259 hw
->phy
.ops
.release_phy(hw
);
265 * e1000e_read_phy_reg_igp - Read igp PHY register
266 * @hw: pointer to the HW structure
267 * @offset: register offset to be read
268 * @data: pointer to the read data
270 * Acquires semaphore, if necessary, then reads the PHY register at offset
271 * and storing the retrieved information in data. Release any acquired
272 * semaphores before exiting.
274 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
278 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
282 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
283 ret_val
= e1000_write_phy_reg_mdic(hw
,
284 IGP01E1000_PHY_PAGE_SELECT
,
287 hw
->phy
.ops
.release_phy(hw
);
292 ret_val
= e1000_read_phy_reg_mdic(hw
,
293 MAX_PHY_REG_ADDRESS
& offset
,
296 hw
->phy
.ops
.release_phy(hw
);
302 * e1000e_write_phy_reg_igp - Write igp PHY register
303 * @hw: pointer to the HW structure
304 * @offset: register offset to write to
305 * @data: data to write at register offset
307 * Acquires semaphore, if necessary, then writes the data to PHY register
308 * at the offset. Release any acquired semaphores before exiting.
310 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
314 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
318 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
319 ret_val
= e1000_write_phy_reg_mdic(hw
,
320 IGP01E1000_PHY_PAGE_SELECT
,
323 hw
->phy
.ops
.release_phy(hw
);
328 ret_val
= e1000_write_phy_reg_mdic(hw
,
329 MAX_PHY_REG_ADDRESS
& offset
,
332 hw
->phy
.ops
.release_phy(hw
);
338 * e1000e_read_kmrn_reg - Read kumeran register
339 * @hw: pointer to the HW structure
340 * @offset: register offset to be read
341 * @data: pointer to the read data
343 * Acquires semaphore, if necessary. Then reads the PHY register at offset
344 * using the kumeran interface. The information retrieved is stored in data.
345 * Release any acquired semaphores before exiting.
347 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
352 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
356 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
357 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
358 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
362 kmrnctrlsta
= er32(KMRNCTRLSTA
);
363 *data
= (u16
)kmrnctrlsta
;
365 hw
->phy
.ops
.release_phy(hw
);
371 * e1000e_write_kmrn_reg - Write kumeran register
372 * @hw: pointer to the HW structure
373 * @offset: register offset to write to
374 * @data: data to write at register offset
376 * Acquires semaphore, if necessary. Then write the data to PHY register
377 * at the offset using the kumeran interface. Release any acquired semaphores
380 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
385 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
389 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
390 E1000_KMRNCTRLSTA_OFFSET
) | data
;
391 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
394 hw
->phy
.ops
.release_phy(hw
);
400 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
401 * @hw: pointer to the HW structure
403 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
404 * and downshift values are set also.
406 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
408 struct e1000_phy_info
*phy
= &hw
->phy
;
412 /* Enable CRS on TX. This must be set for half-duplex operation. */
413 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
417 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
420 * MDI/MDI-X = 0 (default)
421 * 0 - Auto for all speeds
424 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
426 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
430 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
433 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
436 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
440 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
445 * disable_polarity_correction = 0 (default)
446 * Automatic Correction for Reversed Cable Polarity
450 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
451 if (phy
->disable_polarity_correction
== 1)
452 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
454 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
458 if (phy
->revision
< 4) {
459 /* Force TX_CLK in the Extended PHY Specific Control Register
462 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
466 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
468 if ((phy
->revision
== 2) &&
469 (phy
->id
== M88E1111_I_PHY_ID
)) {
470 /* 82573L PHY - set the downshift counter to 5x. */
471 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
472 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
474 /* Configure Master and Slave downshift values */
475 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
476 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
477 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
478 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
480 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
485 /* Commit the changes. */
486 ret_val
= e1000e_commit_phy(hw
);
488 hw_dbg(hw
, "Error committing the PHY changes\n");
494 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
495 * @hw: pointer to the HW structure
497 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
500 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
502 struct e1000_phy_info
*phy
= &hw
->phy
;
506 ret_val
= e1000_phy_hw_reset(hw
);
508 hw_dbg(hw
, "Error resetting the PHY.\n");
512 /* Wait 15ms for MAC to configure PHY from NVM settings. */
515 /* disable lplu d0 during driver init */
516 ret_val
= e1000_set_d0_lplu_state(hw
, 0);
518 hw_dbg(hw
, "Error Disabling LPLU D0\n");
521 /* Configure mdi-mdix settings */
522 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
526 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
530 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
533 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
537 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
540 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
544 /* set auto-master slave resolution settings */
545 if (hw
->mac
.autoneg
) {
546 /* when autonegotiation advertisement is only 1000Mbps then we
547 * should disable SmartSpeed and enable Auto MasterSlave
548 * resolution as hardware default. */
549 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
550 /* Disable SmartSpeed */
551 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
556 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
557 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
562 /* Set auto Master/Slave resolution process */
563 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
567 data
&= ~CR_1000T_MS_ENABLE
;
568 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
573 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
577 /* load defaults for future use */
578 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
579 ((data
& CR_1000T_MS_VALUE
) ?
580 e1000_ms_force_master
:
581 e1000_ms_force_slave
) :
584 switch (phy
->ms_type
) {
585 case e1000_ms_force_master
:
586 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
588 case e1000_ms_force_slave
:
589 data
|= CR_1000T_MS_ENABLE
;
590 data
&= ~(CR_1000T_MS_VALUE
);
593 data
&= ~CR_1000T_MS_ENABLE
;
597 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
604 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
605 * @hw: pointer to the HW structure
607 * Reads the MII auto-neg advertisement register and/or the 1000T control
608 * register and if the PHY is already setup for auto-negotiation, then
609 * return successful. Otherwise, setup advertisement and flow control to
610 * the appropriate values for the wanted auto-negotiation.
612 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
614 struct e1000_phy_info
*phy
= &hw
->phy
;
616 u16 mii_autoneg_adv_reg
;
617 u16 mii_1000t_ctrl_reg
= 0;
619 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
621 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
622 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
626 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
627 /* Read the MII 1000Base-T Control Register (Address 9). */
628 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
633 /* Need to parse both autoneg_advertised and fc and set up
634 * the appropriate PHY registers. First we will parse for
635 * autoneg_advertised software override. Since we can advertise
636 * a plethora of combinations, we need to check each bit
640 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
641 * Advertisement Register (Address 4) and the 1000 mb speed bits in
642 * the 1000Base-T Control Register (Address 9).
644 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
645 NWAY_AR_100TX_HD_CAPS
|
646 NWAY_AR_10T_FD_CAPS
|
647 NWAY_AR_10T_HD_CAPS
);
648 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
650 hw_dbg(hw
, "autoneg_advertised %x\n", phy
->autoneg_advertised
);
652 /* Do we want to advertise 10 Mb Half Duplex? */
653 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
654 hw_dbg(hw
, "Advertise 10mb Half duplex\n");
655 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
658 /* Do we want to advertise 10 Mb Full Duplex? */
659 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
660 hw_dbg(hw
, "Advertise 10mb Full duplex\n");
661 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
664 /* Do we want to advertise 100 Mb Half Duplex? */
665 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
666 hw_dbg(hw
, "Advertise 100mb Half duplex\n");
667 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
670 /* Do we want to advertise 100 Mb Full Duplex? */
671 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
672 hw_dbg(hw
, "Advertise 100mb Full duplex\n");
673 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
676 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
677 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
678 hw_dbg(hw
, "Advertise 1000mb Half duplex request denied!\n");
680 /* Do we want to advertise 1000 Mb Full Duplex? */
681 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
682 hw_dbg(hw
, "Advertise 1000mb Full duplex\n");
683 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
686 /* Check for a software override of the flow control settings, and
687 * setup the PHY advertisement registers accordingly. If
688 * auto-negotiation is enabled, then software will have to set the
689 * "PAUSE" bits to the correct value in the Auto-Negotiation
690 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
693 * The possible values of the "fc" parameter are:
694 * 0: Flow control is completely disabled
695 * 1: Rx flow control is enabled (we can receive pause frames
696 * but not send pause frames).
697 * 2: Tx flow control is enabled (we can send pause frames
698 * but we do not support receiving pause frames).
699 * 3: Both Rx and TX flow control (symmetric) are enabled.
700 * other: No software override. The flow control configuration
701 * in the EEPROM is used.
703 switch (hw
->mac
.fc
) {
705 /* Flow control (RX & TX) is completely disabled by a
706 * software over-ride.
708 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
710 case e1000_fc_rx_pause
:
711 /* RX Flow control is enabled, and TX Flow control is
712 * disabled, by a software over-ride.
714 /* Since there really isn't a way to advertise that we are
715 * capable of RX Pause ONLY, we will advertise that we
716 * support both symmetric and asymmetric RX PAUSE. Later
717 * (in e1000e_config_fc_after_link_up) we will disable the
718 * hw's ability to send PAUSE frames.
720 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
722 case e1000_fc_tx_pause
:
723 /* TX Flow control is enabled, and RX Flow control is
724 * disabled, by a software over-ride.
726 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
727 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
730 /* Flow control (both RX and TX) is enabled by a software
733 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
736 hw_dbg(hw
, "Flow control param set incorrectly\n");
737 ret_val
= -E1000_ERR_CONFIG
;
741 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
745 hw_dbg(hw
, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
747 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
748 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
755 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
756 * @hw: pointer to the HW structure
758 * Performs initial bounds checking on autoneg advertisement parameter, then
759 * configure to advertise the full capability. Setup the PHY to autoneg
760 * and restart the negotiation process between the link partner. If
761 * wait_for_link, then wait for autoneg to complete before exiting.
763 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
765 struct e1000_phy_info
*phy
= &hw
->phy
;
769 /* Perform some bounds checking on the autoneg advertisement
772 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
774 /* If autoneg_advertised is zero, we assume it was not defaulted
775 * by the calling code so we set to advertise full capability.
777 if (phy
->autoneg_advertised
== 0)
778 phy
->autoneg_advertised
= phy
->autoneg_mask
;
780 hw_dbg(hw
, "Reconfiguring auto-neg advertisement params\n");
781 ret_val
= e1000_phy_setup_autoneg(hw
);
783 hw_dbg(hw
, "Error Setting up Auto-Negotiation\n");
786 hw_dbg(hw
, "Restarting Auto-Neg\n");
788 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
789 * the Auto Neg Restart bit in the PHY control register.
791 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
795 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
796 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
800 /* Does the user want to wait for Auto-Neg to complete here, or
801 * check at a later time (for example, callback routine).
803 if (phy
->wait_for_link
) {
804 ret_val
= e1000_wait_autoneg(hw
);
806 hw_dbg(hw
, "Error while waiting for "
807 "autoneg to complete\n");
812 hw
->mac
.get_link_status
= 1;
818 * e1000e_setup_copper_link - Configure copper link settings
819 * @hw: pointer to the HW structure
821 * Calls the appropriate function to configure the link for auto-neg or forced
822 * speed and duplex. Then we check for link, once link is established calls
823 * to configure collision distance and flow control are called. If link is
824 * not established, we return -E1000_ERR_PHY (-2).
826 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
831 if (hw
->mac
.autoneg
) {
832 /* Setup autoneg and flow control advertisement and perform
833 * autonegotiation. */
834 ret_val
= e1000_copper_link_autoneg(hw
);
838 /* PHY will be set to 10H, 10F, 100H or 100F
839 * depending on user settings. */
840 hw_dbg(hw
, "Forcing Speed and Duplex\n");
841 ret_val
= e1000_phy_force_speed_duplex(hw
);
843 hw_dbg(hw
, "Error Forcing Speed and Duplex\n");
848 /* Check link status. Wait up to 100 microseconds for link to become
851 ret_val
= e1000e_phy_has_link_generic(hw
,
852 COPPER_LINK_UP_LIMIT
,
859 hw_dbg(hw
, "Valid link established!!!\n");
860 e1000e_config_collision_dist(hw
);
861 ret_val
= e1000e_config_fc_after_link_up(hw
);
863 hw_dbg(hw
, "Unable to establish link!!!\n");
870 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
871 * @hw: pointer to the HW structure
873 * Calls the PHY setup function to force speed and duplex. Clears the
874 * auto-crossover to force MDI manually. Waits for link and returns
875 * successful if link up is successful, else -E1000_ERR_PHY (-2).
877 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
879 struct e1000_phy_info
*phy
= &hw
->phy
;
884 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
888 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
890 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
894 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
895 * forced whenever speed and duplex are forced.
897 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
901 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
902 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
904 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
908 hw_dbg(hw
, "IGP PSCR: %X\n", phy_data
);
912 if (phy
->wait_for_link
) {
913 hw_dbg(hw
, "Waiting for forced speed/duplex link on IGP phy.\n");
915 ret_val
= e1000e_phy_has_link_generic(hw
,
923 hw_dbg(hw
, "Link taking longer than expected.\n");
926 ret_val
= e1000e_phy_has_link_generic(hw
,
938 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
939 * @hw: pointer to the HW structure
941 * Calls the PHY setup function to force speed and duplex. Clears the
942 * auto-crossover to force MDI manually. Resets the PHY to commit the
943 * changes. If time expires while waiting for link up, we reset the DSP.
944 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
945 * successful completion, else return corresponding error code.
947 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
949 struct e1000_phy_info
*phy
= &hw
->phy
;
954 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
955 * forced whenever speed and duplex are forced.
957 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
961 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
962 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
966 hw_dbg(hw
, "M88E1000 PSCR: %X\n", phy_data
);
968 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
972 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
974 /* Reset the phy to commit changes. */
975 phy_data
|= MII_CR_RESET
;
977 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
983 if (phy
->wait_for_link
) {
984 hw_dbg(hw
, "Waiting for forced speed/duplex link on M88 phy.\n");
986 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
992 /* We didn't get link.
993 * Reset the DSP and cross our fingers.
995 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
, 0x001d);
998 ret_val
= e1000e_phy_reset_dsp(hw
);
1004 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1010 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1014 /* Resetting the phy means we need to re-force TX_CLK in the
1015 * Extended PHY Specific Control Register to 25MHz clock from
1016 * the reset value of 2.5MHz.
1018 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1019 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1023 /* In addition, we must re-enable CRS on Tx for both half and full
1026 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1030 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1031 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1037 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1038 * @hw: pointer to the HW structure
1039 * @phy_ctrl: pointer to current value of PHY_CONTROL
1041 * Forces speed and duplex on the PHY by doing the following: disable flow
1042 * control, force speed/duplex on the MAC, disable auto speed detection,
1043 * disable auto-negotiation, configure duplex, configure speed, configure
1044 * the collision distance, write configuration to CTRL register. The
1045 * caller must write to the PHY_CONTROL register for these settings to
1048 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1050 struct e1000_mac_info
*mac
= &hw
->mac
;
1053 /* Turn off flow control when forcing speed/duplex */
1054 mac
->fc
= e1000_fc_none
;
1056 /* Force speed/duplex on the mac */
1058 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1059 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1061 /* Disable Auto Speed Detection */
1062 ctrl
&= ~E1000_CTRL_ASDE
;
1064 /* Disable autoneg on the phy */
1065 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1067 /* Forcing Full or Half Duplex? */
1068 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1069 ctrl
&= ~E1000_CTRL_FD
;
1070 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1071 hw_dbg(hw
, "Half Duplex\n");
1073 ctrl
|= E1000_CTRL_FD
;
1074 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1075 hw_dbg(hw
, "Full Duplex\n");
1078 /* Forcing 10mb or 100mb? */
1079 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1080 ctrl
|= E1000_CTRL_SPD_100
;
1081 *phy_ctrl
|= MII_CR_SPEED_100
;
1082 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1083 hw_dbg(hw
, "Forcing 100mb\n");
1085 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1086 *phy_ctrl
|= MII_CR_SPEED_10
;
1087 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1088 hw_dbg(hw
, "Forcing 10mb\n");
1091 e1000e_config_collision_dist(hw
);
1097 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1098 * @hw: pointer to the HW structure
1099 * @active: boolean used to enable/disable lplu
1101 * Success returns 0, Failure returns 1
1103 * The low power link up (lplu) state is set to the power management level D3
1104 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1105 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1106 * is used during Dx states where the power conservation is most important.
1107 * During driver activity, SmartSpeed should be enabled so performance is
1110 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1112 struct e1000_phy_info
*phy
= &hw
->phy
;
1116 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1121 data
&= ~IGP02E1000_PM_D3_LPLU
;
1122 ret_val
= e1e_wphy(hw
,
1123 IGP02E1000_PHY_POWER_MGMT
,
1127 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1128 * during Dx states where the power conservation is most
1129 * important. During driver activity we should enable
1130 * SmartSpeed, so performance is maintained. */
1131 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1132 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1137 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1138 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1142 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1143 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1148 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1149 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1154 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1155 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1156 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1157 data
|= IGP02E1000_PM_D3_LPLU
;
1158 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1162 /* When LPLU is enabled, we should disable SmartSpeed */
1163 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1167 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1168 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1175 * e1000e_check_downshift - Checks whether a downshift in speed occured
1176 * @hw: pointer to the HW structure
1178 * Success returns 0, Failure returns 1
1180 * A downshift is detected by querying the PHY link health.
1182 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1184 struct e1000_phy_info
*phy
= &hw
->phy
;
1186 u16 phy_data
, offset
, mask
;
1188 switch (phy
->type
) {
1190 case e1000_phy_gg82563
:
1191 offset
= M88E1000_PHY_SPEC_STATUS
;
1192 mask
= M88E1000_PSSR_DOWNSHIFT
;
1194 case e1000_phy_igp_2
:
1195 case e1000_phy_igp_3
:
1196 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1197 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1200 /* speed downshift not supported */
1201 phy
->speed_downgraded
= 0;
1205 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1208 phy
->speed_downgraded
= (phy_data
& mask
);
1214 * e1000_check_polarity_m88 - Checks the polarity.
1215 * @hw: pointer to the HW structure
1217 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1219 * Polarity is determined based on the PHY specific status register.
1221 static s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1223 struct e1000_phy_info
*phy
= &hw
->phy
;
1227 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1230 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1231 ? e1000_rev_polarity_reversed
1232 : e1000_rev_polarity_normal
;
1238 * e1000_check_polarity_igp - Checks the polarity.
1239 * @hw: pointer to the HW structure
1241 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1243 * Polarity is determined based on the PHY port status register, and the
1244 * current speed (since there is no polarity at 100Mbps).
1246 static s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1248 struct e1000_phy_info
*phy
= &hw
->phy
;
1250 u16 data
, offset
, mask
;
1252 /* Polarity is determined based on the speed of
1253 * our connection. */
1254 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1258 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1259 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1260 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1261 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1263 /* This really only applies to 10Mbps since
1264 * there is no polarity for 100Mbps (always 0).
1266 offset
= IGP01E1000_PHY_PORT_STATUS
;
1267 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1270 ret_val
= e1e_rphy(hw
, offset
, &data
);
1273 phy
->cable_polarity
= (data
& mask
)
1274 ? e1000_rev_polarity_reversed
1275 : e1000_rev_polarity_normal
;
1281 * e1000_wait_autoneg - Wait for auto-neg compeletion
1282 * @hw: pointer to the HW structure
1284 * Waits for auto-negotiation to complete or for the auto-negotiation time
1285 * limit to expire, which ever happens first.
1287 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1292 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1293 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1294 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1297 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1300 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1305 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1312 * e1000e_phy_has_link_generic - Polls PHY for link
1313 * @hw: pointer to the HW structure
1314 * @iterations: number of times to poll for link
1315 * @usec_interval: delay between polling attempts
1316 * @success: pointer to whether polling was successful or not
1318 * Polls the PHY status register for link, 'iterations' number of times.
1320 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1321 u32 usec_interval
, bool *success
)
1326 for (i
= 0; i
< iterations
; i
++) {
1327 /* Some PHYs require the PHY_STATUS register to be read
1328 * twice due to the link bit being sticky. No harm doing
1329 * it across the board.
1331 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1334 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1337 if (phy_status
& MII_SR_LINK_STATUS
)
1339 if (usec_interval
>= 1000)
1340 mdelay(usec_interval
/1000);
1342 udelay(usec_interval
);
1345 *success
= (i
< iterations
);
1351 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1352 * @hw: pointer to the HW structure
1354 * Reads the PHY specific status register to retrieve the cable length
1355 * information. The cable length is determined by averaging the minimum and
1356 * maximum values to get the "average" cable length. The m88 PHY has four
1357 * possible cable length values, which are:
1358 * Register Value Cable Length
1362 * 3 110 - 140 meters
1365 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1367 struct e1000_phy_info
*phy
= &hw
->phy
;
1369 u16 phy_data
, index
;
1371 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1375 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1376 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1377 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1378 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+1];
1380 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1386 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1387 * @hw: pointer to the HW structure
1389 * The automatic gain control (agc) normalizes the amplitude of the
1390 * received signal, adjusting for the attenuation produced by the
1391 * cable. By reading the AGC registers, which reperesent the
1392 * cobination of course and fine gain value, the value can be put
1393 * into a lookup table to obtain the approximate cable length
1396 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1398 struct e1000_phy_info
*phy
= &hw
->phy
;
1400 u16 phy_data
, i
, agc_value
= 0;
1401 u16 cur_agc_index
, max_agc_index
= 0;
1402 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1403 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1404 {IGP02E1000_PHY_AGC_A
,
1405 IGP02E1000_PHY_AGC_B
,
1406 IGP02E1000_PHY_AGC_C
,
1407 IGP02E1000_PHY_AGC_D
};
1409 /* Read the AGC registers for all channels */
1410 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1411 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1415 /* Getting bits 15:9, which represent the combination of
1416 * course and fine gain values. The result is a number
1417 * that can be put into the lookup table to obtain the
1418 * approximate cable length. */
1419 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1420 IGP02E1000_AGC_LENGTH_MASK
;
1422 /* Array index bound check. */
1423 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1424 (cur_agc_index
== 0))
1425 return -E1000_ERR_PHY
;
1427 /* Remove min & max AGC values from calculation. */
1428 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1429 e1000_igp_2_cable_length_table
[cur_agc_index
])
1430 min_agc_index
= cur_agc_index
;
1431 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1432 e1000_igp_2_cable_length_table
[cur_agc_index
])
1433 max_agc_index
= cur_agc_index
;
1435 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1438 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1439 e1000_igp_2_cable_length_table
[max_agc_index
]);
1440 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1442 /* Calculate cable length with the error range of +/- 10 meters. */
1443 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1444 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1445 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1447 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1453 * e1000e_get_phy_info_m88 - Retrieve PHY information
1454 * @hw: pointer to the HW structure
1456 * Valid for only copper links. Read the PHY status register (sticky read)
1457 * to verify that link is up. Read the PHY special control register to
1458 * determine the polarity and 10base-T extended distance. Read the PHY
1459 * special status register to determine MDI/MDIx and current speed. If
1460 * speed is 1000, then determine cable length, local and remote receiver.
1462 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1464 struct e1000_phy_info
*phy
= &hw
->phy
;
1469 if (hw
->media_type
!= e1000_media_type_copper
) {
1470 hw_dbg(hw
, "Phy info is only valid for copper media\n");
1471 return -E1000_ERR_CONFIG
;
1474 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1479 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1480 return -E1000_ERR_CONFIG
;
1483 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1487 phy
->polarity_correction
= (phy_data
&
1488 M88E1000_PSCR_POLARITY_REVERSAL
);
1490 ret_val
= e1000_check_polarity_m88(hw
);
1494 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1498 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1500 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1501 ret_val
= e1000_get_cable_length(hw
);
1505 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1509 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1510 ? e1000_1000t_rx_status_ok
1511 : e1000_1000t_rx_status_not_ok
;
1513 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1514 ? e1000_1000t_rx_status_ok
1515 : e1000_1000t_rx_status_not_ok
;
1517 /* Set values to "undefined" */
1518 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1519 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1520 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1527 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1528 * @hw: pointer to the HW structure
1530 * Read PHY status to determine if link is up. If link is up, then
1531 * set/determine 10base-T extended distance and polarity correction. Read
1532 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1533 * determine on the cable length, local and remote receiver.
1535 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1537 struct e1000_phy_info
*phy
= &hw
->phy
;
1542 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1547 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1548 return -E1000_ERR_CONFIG
;
1551 phy
->polarity_correction
= 1;
1553 ret_val
= e1000_check_polarity_igp(hw
);
1557 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1561 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
1563 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1564 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1565 ret_val
= e1000_get_cable_length(hw
);
1569 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
1573 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1574 ? e1000_1000t_rx_status_ok
1575 : e1000_1000t_rx_status_not_ok
;
1577 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1578 ? e1000_1000t_rx_status_ok
1579 : e1000_1000t_rx_status_not_ok
;
1581 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1582 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1583 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1590 * e1000e_phy_sw_reset - PHY software reset
1591 * @hw: pointer to the HW structure
1593 * Does a software reset of the PHY by reading the PHY control register and
1594 * setting/write the control register reset bit to the PHY.
1596 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
1601 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1605 phy_ctrl
|= MII_CR_RESET
;
1606 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1616 * e1000e_phy_hw_reset_generic - PHY hardware reset
1617 * @hw: pointer to the HW structure
1619 * Verify the reset block is not blocking us from resetting. Acquire
1620 * semaphore (if necessary) and read/set/write the device control reset
1621 * bit in the PHY. Wait the appropriate delay time for the device to
1622 * reset and relase the semaphore (if necessary).
1624 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
1626 struct e1000_phy_info
*phy
= &hw
->phy
;
1630 ret_val
= e1000_check_reset_block(hw
);
1634 ret_val
= phy
->ops
.acquire_phy(hw
);
1639 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
1642 udelay(phy
->reset_delay_us
);
1649 phy
->ops
.release_phy(hw
);
1651 return e1000_get_phy_cfg_done(hw
);
1655 * e1000e_get_cfg_done - Generic configuration done
1656 * @hw: pointer to the HW structure
1658 * Generic function to wait 10 milli-seconds for configuration to complete
1659 * and return success.
1661 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
1667 /* Internal function pointers */
1670 * e1000_get_phy_cfg_done - Generic PHY configuration done
1671 * @hw: pointer to the HW structure
1673 * Return success if silicon family did not implement a family specific
1674 * get_cfg_done function.
1676 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
1678 if (hw
->phy
.ops
.get_cfg_done
)
1679 return hw
->phy
.ops
.get_cfg_done(hw
);
1685 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1686 * @hw: pointer to the HW structure
1688 * When the silicon family has not implemented a forced speed/duplex
1689 * function for the PHY, simply return 0.
1691 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
1693 if (hw
->phy
.ops
.force_speed_duplex
)
1694 return hw
->phy
.ops
.force_speed_duplex(hw
);
1700 * e1000e_get_phy_type_from_id - Get PHY type from id
1701 * @phy_id: phy_id read from the phy
1703 * Returns the phy type from the id.
1705 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
1707 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
1710 case M88E1000_I_PHY_ID
:
1711 case M88E1000_E_PHY_ID
:
1712 case M88E1111_I_PHY_ID
:
1713 case M88E1011_I_PHY_ID
:
1714 phy_type
= e1000_phy_m88
;
1716 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
1717 phy_type
= e1000_phy_igp_2
;
1719 case GG82563_E_PHY_ID
:
1720 phy_type
= e1000_phy_gg82563
;
1722 case IGP03E1000_E_PHY_ID
:
1723 phy_type
= e1000_phy_igp_3
;
1726 case IFE_PLUS_E_PHY_ID
:
1727 case IFE_C_E_PHY_ID
:
1728 phy_type
= e1000_phy_ife
;
1731 phy_type
= e1000_phy_unknown
;
1738 * e1000e_commit_phy - Soft PHY reset
1739 * @hw: pointer to the HW structure
1741 * Performs a soft PHY reset on those that apply. This is a function pointer
1742 * entry point called by drivers.
1744 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
1746 if (hw
->phy
.ops
.commit_phy
)
1747 return hw
->phy
.ops
.commit_phy(hw
);
1753 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1754 * @hw: pointer to the HW structure
1755 * @active: boolean used to enable/disable lplu
1757 * Success returns 0, Failure returns 1
1759 * The low power link up (lplu) state is set to the power management level D0
1760 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1761 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1762 * is used during Dx states where the power conservation is most important.
1763 * During driver activity, SmartSpeed should be enabled so performance is
1764 * maintained. This is a function pointer entry point called by drivers.
1766 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
1768 if (hw
->phy
.ops
.set_d0_lplu_state
)
1769 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);