4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio
)
145 if (static_prio
== NICE_TO_PRIO(19))
148 if (static_prio
< NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
151 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
154 static inline int rt_policy(int policy
)
156 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
161 static inline int task_has_rt_policy(struct task_struct
*p
)
163 return rt_policy(p
->policy
);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array
{
170 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
171 struct list_head queue
[MAX_RT_PRIO
];
174 #ifdef CONFIG_FAIR_GROUP_SCHED
178 /* task group related information */
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity
**se
;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq
**cfs_rq
;
184 unsigned long shares
;
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
192 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
193 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
198 struct task_grp init_task_grp
= {
199 .se
= init_sched_entity_p
,
200 .cfs_rq
= init_cfs_rq_p
,
203 #ifdef CONFIG_FAIR_USER_SCHED
204 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
206 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
209 static int init_task_grp_load
= INIT_TASK_GRP_LOAD
;
211 /* return group to which a task belongs */
212 static inline struct task_grp
*task_grp(struct task_struct
*p
)
216 #ifdef CONFIG_FAIR_USER_SCHED
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct
*p
)
228 p
->se
.cfs_rq
= task_grp(p
)->cfs_rq
[task_cpu(p
)];
229 p
->se
.parent
= task_grp(p
)->se
[task_cpu(p
)];
234 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
238 /* CFS-related fields in a runqueue */
240 struct load_weight load
;
241 unsigned long nr_running
;
246 struct rb_root tasks_timeline
;
247 struct rb_node
*rb_leftmost
;
248 struct rb_node
*rb_load_balance_curr
;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
252 struct sched_entity
*curr
;
254 unsigned long nr_spread_over
;
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
266 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
267 struct task_grp
*tg
; /* group that "owns" this runqueue */
272 /* Real-Time classes' related field in a runqueue: */
274 struct rt_prio_array active
;
275 int rt_load_balance_idx
;
276 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
280 * This is the main, per-CPU runqueue data structure.
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
287 spinlock_t lock
; /* runqueue lock */
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
293 unsigned long nr_running
;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
296 unsigned char idle_at_tick
;
298 unsigned char in_nohz_recently
;
300 struct load_weight load
; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates
;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
316 unsigned long nr_uninterruptible
;
318 struct task_struct
*curr
, *idle
;
319 unsigned long next_balance
;
320 struct mm_struct
*prev_mm
;
322 u64 clock
, prev_clock_raw
;
325 unsigned int clock_warps
, clock_overflows
;
327 unsigned int clock_deep_idle_events
;
333 struct sched_domain
*sd
;
335 /* For active balancing */
338 int cpu
; /* cpu of this runqueue */
340 struct task_struct
*migration_thread
;
341 struct list_head migration_queue
;
344 #ifdef CONFIG_SCHEDSTATS
346 struct sched_info rq_sched_info
;
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty
;
350 unsigned long yld_act_empty
;
351 unsigned long yld_both_empty
;
352 unsigned long yld_count
;
354 /* schedule() stats */
355 unsigned long sched_switch
;
356 unsigned long sched_count
;
357 unsigned long sched_goidle
;
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_count
;
361 unsigned long ttwu_local
;
364 unsigned long bkl_count
;
366 struct lock_class_key rq_lock_key
;
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
370 static DEFINE_MUTEX(sched_hotcpu_mutex
);
372 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
374 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
377 static inline int cpu_of(struct rq
*rq
)
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
390 static void __update_rq_clock(struct rq
*rq
)
392 u64 prev_raw
= rq
->prev_clock_raw
;
393 u64 now
= sched_clock();
394 s64 delta
= now
- prev_raw
;
395 u64 clock
= rq
->clock
;
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
401 * Protect against sched_clock() occasionally going backwards:
403 if (unlikely(delta
< 0)) {
408 * Catch too large forward jumps too:
410 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
411 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
412 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
415 rq
->clock_overflows
++;
417 if (unlikely(delta
> rq
->clock_max_delta
))
418 rq
->clock_max_delta
= delta
;
423 rq
->prev_clock_raw
= now
;
427 static void update_rq_clock(struct rq
*rq
)
429 if (likely(smp_processor_id() == cpu_of(rq
)))
430 __update_rq_clock(rq
);
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
454 # define const_debug static const
458 * Debugging: various feature bits
461 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
462 SCHED_FEAT_START_DEBIT
= 2,
463 SCHED_FEAT_USE_TREE_AVG
= 4,
464 SCHED_FEAT_APPROX_AVG
= 8,
467 const_debug
unsigned int sysctl_sched_features
=
468 SCHED_FEAT_NEW_FAIR_SLEEPERS
*1 |
469 SCHED_FEAT_START_DEBIT
*1 |
470 SCHED_FEAT_USE_TREE_AVG
*0 |
471 SCHED_FEAT_APPROX_AVG
*0;
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
479 unsigned long long cpu_clock(int cpu
)
481 unsigned long long now
;
485 local_irq_save(flags
);
489 local_irq_restore(flags
);
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
504 return rq
->curr
== p
;
507 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
511 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq
->lock
.owner
= current
;
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
522 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
524 spin_unlock_irq(&rq
->lock
);
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
533 return rq
->curr
== p
;
537 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq
->lock
);
550 spin_unlock(&rq
->lock
);
554 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
575 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
582 spin_lock(&rq
->lock
);
583 if (unlikely(rq
!= task_rq(p
))) {
584 spin_unlock(&rq
->lock
);
585 goto repeat_lock_task
;
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
595 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
601 local_irq_save(*flags
);
603 spin_lock(&rq
->lock
);
604 if (unlikely(rq
!= task_rq(p
))) {
605 spin_unlock_irqrestore(&rq
->lock
, *flags
);
606 goto repeat_lock_task
;
611 static void __task_rq_unlock(struct rq
*rq
)
614 spin_unlock(&rq
->lock
);
617 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
620 spin_unlock_irqrestore(&rq
->lock
, *flags
);
624 * this_rq_lock - lock this runqueue and disable interrupts.
626 static struct rq
*this_rq_lock(void)
633 spin_lock(&rq
->lock
);
639 * We are going deep-idle (irqs are disabled):
641 void sched_clock_idle_sleep_event(void)
643 struct rq
*rq
= cpu_rq(smp_processor_id());
645 spin_lock(&rq
->lock
);
646 __update_rq_clock(rq
);
647 spin_unlock(&rq
->lock
);
648 rq
->clock_deep_idle_events
++;
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
653 * We just idled delta nanoseconds (called with irqs disabled):
655 void sched_clock_idle_wakeup_event(u64 delta_ns
)
657 struct rq
*rq
= cpu_rq(smp_processor_id());
658 u64 now
= sched_clock();
660 rq
->idle_clock
+= delta_ns
;
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
667 spin_lock(&rq
->lock
);
668 rq
->prev_clock_raw
= now
;
669 rq
->clock
+= delta_ns
;
670 spin_unlock(&rq
->lock
);
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
675 * resched_task - mark a task 'to be rescheduled now'.
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
687 static void resched_task(struct task_struct
*p
)
691 assert_spin_locked(&task_rq(p
)->lock
);
693 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
696 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
699 if (cpu
== smp_processor_id())
702 /* NEED_RESCHED must be visible before we test polling */
704 if (!tsk_is_polling(p
))
705 smp_send_reschedule(cpu
);
708 static void resched_cpu(int cpu
)
710 struct rq
*rq
= cpu_rq(cpu
);
713 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
715 resched_task(cpu_curr(cpu
));
716 spin_unlock_irqrestore(&rq
->lock
, flags
);
719 static inline void resched_task(struct task_struct
*p
)
721 assert_spin_locked(&task_rq(p
)->lock
);
722 set_tsk_need_resched(p
);
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
729 # define WMULT_CONST (1UL << 32)
732 #define WMULT_SHIFT 32
735 * Shift right and round:
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
740 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
741 struct load_weight
*lw
)
745 if (unlikely(!lw
->inv_weight
))
746 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
748 tmp
= (u64
)delta_exec
* weight
;
750 * Check whether we'd overflow the 64-bit multiplication:
752 if (unlikely(tmp
> WMULT_CONST
))
753 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
756 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
758 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
764 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
767 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
772 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
801 static const int prio_to_weight
[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
819 static const u32 prio_to_wmult
[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
839 struct task_struct
*(*start
)(void *);
840 struct task_struct
*(*next
)(void *);
843 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
844 unsigned long max_nr_move
, unsigned long max_load_move
,
845 struct sched_domain
*sd
, enum cpu_idle_type idle
,
846 int *all_pinned
, unsigned long *load_moved
,
847 int *this_best_prio
, struct rq_iterator
*iterator
);
849 #include "sched_stats.h"
850 #include "sched_idletask.c"
851 #include "sched_fair.c"
852 #include "sched_rt.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
857 #define sched_class_highest (&rt_sched_class)
860 * Update delta_exec, delta_fair fields for rq.
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
874 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
876 update_load_add(&rq
->load
, p
->se
.load
.weight
);
879 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
881 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
884 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
890 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
896 static void set_load_weight(struct task_struct
*p
)
898 if (task_has_rt_policy(p
)) {
899 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
900 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
905 * SCHED_IDLE tasks get minimal weight:
907 if (p
->policy
== SCHED_IDLE
) {
908 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
909 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
913 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
914 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
917 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
919 sched_info_queued(p
);
920 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
924 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
926 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
931 * __normal_prio - return the priority that is based on the static prio
933 static inline int __normal_prio(struct task_struct
*p
)
935 return p
->static_prio
;
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
945 static inline int normal_prio(struct task_struct
*p
)
949 if (task_has_rt_policy(p
))
950 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
952 prio
= __normal_prio(p
);
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
963 static int effective_prio(struct task_struct
*p
)
965 p
->normal_prio
= normal_prio(p
);
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
971 if (!rt_prio(p
->prio
))
972 return p
->normal_prio
;
977 * activate_task - move a task to the runqueue.
979 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
981 if (p
->state
== TASK_UNINTERRUPTIBLE
)
982 rq
->nr_uninterruptible
--;
984 enqueue_task(rq
, p
, wakeup
);
985 inc_nr_running(p
, rq
);
989 * deactivate_task - remove a task from the runqueue.
991 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
993 if (p
->state
== TASK_UNINTERRUPTIBLE
)
994 rq
->nr_uninterruptible
++;
996 dequeue_task(rq
, p
, sleep
);
997 dec_nr_running(p
, rq
);
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1004 inline int task_curr(const struct task_struct
*p
)
1006 return cpu_curr(task_cpu(p
)) == p
;
1009 /* Used instead of source_load when we know the type == 0 */
1010 unsigned long weighted_cpuload(const int cpu
)
1012 return cpu_rq(cpu
)->load
.weight
;
1015 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1018 task_thread_info(p
)->cpu
= cpu
;
1025 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1027 int old_cpu
= task_cpu(p
);
1028 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1029 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1030 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1033 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1035 #ifdef CONFIG_SCHEDSTATS
1036 if (p
->se
.wait_start
)
1037 p
->se
.wait_start
-= clock_offset
;
1038 if (p
->se
.sleep_start
)
1039 p
->se
.sleep_start
-= clock_offset
;
1040 if (p
->se
.block_start
)
1041 p
->se
.block_start
-= clock_offset
;
1043 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1044 new_cfsrq
->min_vruntime
;
1046 __set_task_cpu(p
, new_cpu
);
1049 struct migration_req
{
1050 struct list_head list
;
1052 struct task_struct
*task
;
1055 struct completion done
;
1059 * The task's runqueue lock must be held.
1060 * Returns true if you have to wait for migration thread.
1063 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1065 struct rq
*rq
= task_rq(p
);
1068 * If the task is not on a runqueue (and not running), then
1069 * it is sufficient to simply update the task's cpu field.
1071 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1072 set_task_cpu(p
, dest_cpu
);
1076 init_completion(&req
->done
);
1078 req
->dest_cpu
= dest_cpu
;
1079 list_add(&req
->list
, &rq
->migration_queue
);
1085 * wait_task_inactive - wait for a thread to unschedule.
1087 * The caller must ensure that the task *will* unschedule sometime soon,
1088 * else this function might spin for a *long* time. This function can't
1089 * be called with interrupts off, or it may introduce deadlock with
1090 * smp_call_function() if an IPI is sent by the same process we are
1091 * waiting to become inactive.
1093 void wait_task_inactive(struct task_struct
*p
)
1095 unsigned long flags
;
1101 * We do the initial early heuristics without holding
1102 * any task-queue locks at all. We'll only try to get
1103 * the runqueue lock when things look like they will
1109 * If the task is actively running on another CPU
1110 * still, just relax and busy-wait without holding
1113 * NOTE! Since we don't hold any locks, it's not
1114 * even sure that "rq" stays as the right runqueue!
1115 * But we don't care, since "task_running()" will
1116 * return false if the runqueue has changed and p
1117 * is actually now running somewhere else!
1119 while (task_running(rq
, p
))
1123 * Ok, time to look more closely! We need the rq
1124 * lock now, to be *sure*. If we're wrong, we'll
1125 * just go back and repeat.
1127 rq
= task_rq_lock(p
, &flags
);
1128 running
= task_running(rq
, p
);
1129 on_rq
= p
->se
.on_rq
;
1130 task_rq_unlock(rq
, &flags
);
1133 * Was it really running after all now that we
1134 * checked with the proper locks actually held?
1136 * Oops. Go back and try again..
1138 if (unlikely(running
)) {
1144 * It's not enough that it's not actively running,
1145 * it must be off the runqueue _entirely_, and not
1148 * So if it wa still runnable (but just not actively
1149 * running right now), it's preempted, and we should
1150 * yield - it could be a while.
1152 if (unlikely(on_rq
)) {
1158 * Ahh, all good. It wasn't running, and it wasn't
1159 * runnable, which means that it will never become
1160 * running in the future either. We're all done!
1165 * kick_process - kick a running thread to enter/exit the kernel
1166 * @p: the to-be-kicked thread
1168 * Cause a process which is running on another CPU to enter
1169 * kernel-mode, without any delay. (to get signals handled.)
1171 * NOTE: this function doesnt have to take the runqueue lock,
1172 * because all it wants to ensure is that the remote task enters
1173 * the kernel. If the IPI races and the task has been migrated
1174 * to another CPU then no harm is done and the purpose has been
1177 void kick_process(struct task_struct
*p
)
1183 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1184 smp_send_reschedule(cpu
);
1189 * Return a low guess at the load of a migration-source cpu weighted
1190 * according to the scheduling class and "nice" value.
1192 * We want to under-estimate the load of migration sources, to
1193 * balance conservatively.
1195 static unsigned long source_load(int cpu
, int type
)
1197 struct rq
*rq
= cpu_rq(cpu
);
1198 unsigned long total
= weighted_cpuload(cpu
);
1203 return min(rq
->cpu_load
[type
-1], total
);
1207 * Return a high guess at the load of a migration-target cpu weighted
1208 * according to the scheduling class and "nice" value.
1210 static unsigned long target_load(int cpu
, int type
)
1212 struct rq
*rq
= cpu_rq(cpu
);
1213 unsigned long total
= weighted_cpuload(cpu
);
1218 return max(rq
->cpu_load
[type
-1], total
);
1222 * Return the average load per task on the cpu's run queue
1224 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1226 struct rq
*rq
= cpu_rq(cpu
);
1227 unsigned long total
= weighted_cpuload(cpu
);
1228 unsigned long n
= rq
->nr_running
;
1230 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1234 * find_idlest_group finds and returns the least busy CPU group within the
1237 static struct sched_group
*
1238 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1240 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1241 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1242 int load_idx
= sd
->forkexec_idx
;
1243 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1246 unsigned long load
, avg_load
;
1250 /* Skip over this group if it has no CPUs allowed */
1251 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1254 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1256 /* Tally up the load of all CPUs in the group */
1259 for_each_cpu_mask(i
, group
->cpumask
) {
1260 /* Bias balancing toward cpus of our domain */
1262 load
= source_load(i
, load_idx
);
1264 load
= target_load(i
, load_idx
);
1269 /* Adjust by relative CPU power of the group */
1270 avg_load
= sg_div_cpu_power(group
,
1271 avg_load
* SCHED_LOAD_SCALE
);
1274 this_load
= avg_load
;
1276 } else if (avg_load
< min_load
) {
1277 min_load
= avg_load
;
1281 group
= group
->next
;
1282 } while (group
!= sd
->groups
);
1284 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1290 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1293 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1296 unsigned long load
, min_load
= ULONG_MAX
;
1300 /* Traverse only the allowed CPUs */
1301 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1303 for_each_cpu_mask(i
, tmp
) {
1304 load
= weighted_cpuload(i
);
1306 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1316 * sched_balance_self: balance the current task (running on cpu) in domains
1317 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1320 * Balance, ie. select the least loaded group.
1322 * Returns the target CPU number, or the same CPU if no balancing is needed.
1324 * preempt must be disabled.
1326 static int sched_balance_self(int cpu
, int flag
)
1328 struct task_struct
*t
= current
;
1329 struct sched_domain
*tmp
, *sd
= NULL
;
1331 for_each_domain(cpu
, tmp
) {
1333 * If power savings logic is enabled for a domain, stop there.
1335 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1337 if (tmp
->flags
& flag
)
1343 struct sched_group
*group
;
1344 int new_cpu
, weight
;
1346 if (!(sd
->flags
& flag
)) {
1352 group
= find_idlest_group(sd
, t
, cpu
);
1358 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1359 if (new_cpu
== -1 || new_cpu
== cpu
) {
1360 /* Now try balancing at a lower domain level of cpu */
1365 /* Now try balancing at a lower domain level of new_cpu */
1368 weight
= cpus_weight(span
);
1369 for_each_domain(cpu
, tmp
) {
1370 if (weight
<= cpus_weight(tmp
->span
))
1372 if (tmp
->flags
& flag
)
1375 /* while loop will break here if sd == NULL */
1381 #endif /* CONFIG_SMP */
1384 * wake_idle() will wake a task on an idle cpu if task->cpu is
1385 * not idle and an idle cpu is available. The span of cpus to
1386 * search starts with cpus closest then further out as needed,
1387 * so we always favor a closer, idle cpu.
1389 * Returns the CPU we should wake onto.
1391 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1392 static int wake_idle(int cpu
, struct task_struct
*p
)
1395 struct sched_domain
*sd
;
1399 * If it is idle, then it is the best cpu to run this task.
1401 * This cpu is also the best, if it has more than one task already.
1402 * Siblings must be also busy(in most cases) as they didn't already
1403 * pickup the extra load from this cpu and hence we need not check
1404 * sibling runqueue info. This will avoid the checks and cache miss
1405 * penalities associated with that.
1407 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1410 for_each_domain(cpu
, sd
) {
1411 if (sd
->flags
& SD_WAKE_IDLE
) {
1412 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1413 for_each_cpu_mask(i
, tmp
) {
1424 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1431 * try_to_wake_up - wake up a thread
1432 * @p: the to-be-woken-up thread
1433 * @state: the mask of task states that can be woken
1434 * @sync: do a synchronous wakeup?
1436 * Put it on the run-queue if it's not already there. The "current"
1437 * thread is always on the run-queue (except when the actual
1438 * re-schedule is in progress), and as such you're allowed to do
1439 * the simpler "current->state = TASK_RUNNING" to mark yourself
1440 * runnable without the overhead of this.
1442 * returns failure only if the task is already active.
1444 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1446 int cpu
, this_cpu
, success
= 0;
1447 unsigned long flags
;
1451 struct sched_domain
*sd
, *this_sd
= NULL
;
1452 unsigned long load
, this_load
;
1456 rq
= task_rq_lock(p
, &flags
);
1457 old_state
= p
->state
;
1458 if (!(old_state
& state
))
1465 this_cpu
= smp_processor_id();
1468 if (unlikely(task_running(rq
, p
)))
1473 schedstat_inc(rq
, ttwu_count
);
1474 if (cpu
== this_cpu
) {
1475 schedstat_inc(rq
, ttwu_local
);
1479 for_each_domain(this_cpu
, sd
) {
1480 if (cpu_isset(cpu
, sd
->span
)) {
1481 schedstat_inc(sd
, ttwu_wake_remote
);
1487 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1491 * Check for affine wakeup and passive balancing possibilities.
1494 int idx
= this_sd
->wake_idx
;
1495 unsigned int imbalance
;
1497 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1499 load
= source_load(cpu
, idx
);
1500 this_load
= target_load(this_cpu
, idx
);
1502 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1504 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1505 unsigned long tl
= this_load
;
1506 unsigned long tl_per_task
;
1508 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1511 * If sync wakeup then subtract the (maximum possible)
1512 * effect of the currently running task from the load
1513 * of the current CPU:
1516 tl
-= current
->se
.load
.weight
;
1519 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1520 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1522 * This domain has SD_WAKE_AFFINE and
1523 * p is cache cold in this domain, and
1524 * there is no bad imbalance.
1526 schedstat_inc(this_sd
, ttwu_move_affine
);
1532 * Start passive balancing when half the imbalance_pct
1535 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1536 if (imbalance
*this_load
<= 100*load
) {
1537 schedstat_inc(this_sd
, ttwu_move_balance
);
1543 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1545 new_cpu
= wake_idle(new_cpu
, p
);
1546 if (new_cpu
!= cpu
) {
1547 set_task_cpu(p
, new_cpu
);
1548 task_rq_unlock(rq
, &flags
);
1549 /* might preempt at this point */
1550 rq
= task_rq_lock(p
, &flags
);
1551 old_state
= p
->state
;
1552 if (!(old_state
& state
))
1557 this_cpu
= smp_processor_id();
1562 #endif /* CONFIG_SMP */
1563 update_rq_clock(rq
);
1564 activate_task(rq
, p
, 1);
1566 * Sync wakeups (i.e. those types of wakeups where the waker
1567 * has indicated that it will leave the CPU in short order)
1568 * don't trigger a preemption, if the woken up task will run on
1569 * this cpu. (in this case the 'I will reschedule' promise of
1570 * the waker guarantees that the freshly woken up task is going
1571 * to be considered on this CPU.)
1573 if (!sync
|| cpu
!= this_cpu
)
1574 check_preempt_curr(rq
, p
);
1578 p
->state
= TASK_RUNNING
;
1580 task_rq_unlock(rq
, &flags
);
1585 int fastcall
wake_up_process(struct task_struct
*p
)
1587 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1588 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1590 EXPORT_SYMBOL(wake_up_process
);
1592 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1594 return try_to_wake_up(p
, state
, 0);
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
1601 * __sched_fork() is basic setup used by init_idle() too:
1603 static void __sched_fork(struct task_struct
*p
)
1605 p
->se
.exec_start
= 0;
1606 p
->se
.sum_exec_runtime
= 0;
1607 p
->se
.prev_sum_exec_runtime
= 0;
1609 #ifdef CONFIG_SCHEDSTATS
1610 p
->se
.wait_start
= 0;
1611 p
->se
.sum_sleep_runtime
= 0;
1612 p
->se
.sleep_start
= 0;
1613 p
->se
.block_start
= 0;
1614 p
->se
.sleep_max
= 0;
1615 p
->se
.block_max
= 0;
1617 p
->se
.slice_max
= 0;
1621 INIT_LIST_HEAD(&p
->run_list
);
1624 #ifdef CONFIG_PREEMPT_NOTIFIERS
1625 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1629 * We mark the process as running here, but have not actually
1630 * inserted it onto the runqueue yet. This guarantees that
1631 * nobody will actually run it, and a signal or other external
1632 * event cannot wake it up and insert it on the runqueue either.
1634 p
->state
= TASK_RUNNING
;
1638 * fork()/clone()-time setup:
1640 void sched_fork(struct task_struct
*p
, int clone_flags
)
1642 int cpu
= get_cpu();
1647 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1649 set_task_cpu(p
, cpu
);
1652 * Make sure we do not leak PI boosting priority to the child:
1654 p
->prio
= current
->normal_prio
;
1655 if (!rt_prio(p
->prio
))
1656 p
->sched_class
= &fair_sched_class
;
1658 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1659 if (likely(sched_info_on()))
1660 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1662 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1665 #ifdef CONFIG_PREEMPT
1666 /* Want to start with kernel preemption disabled. */
1667 task_thread_info(p
)->preempt_count
= 1;
1673 * wake_up_new_task - wake up a newly created task for the first time.
1675 * This function will do some initial scheduler statistics housekeeping
1676 * that must be done for every newly created context, then puts the task
1677 * on the runqueue and wakes it.
1679 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1681 unsigned long flags
;
1685 rq
= task_rq_lock(p
, &flags
);
1686 BUG_ON(p
->state
!= TASK_RUNNING
);
1687 this_cpu
= smp_processor_id(); /* parent's CPU */
1688 update_rq_clock(rq
);
1690 p
->prio
= effective_prio(p
);
1692 if (task_cpu(p
) != this_cpu
|| !p
->sched_class
->task_new
||
1693 !current
->se
.on_rq
) {
1694 activate_task(rq
, p
, 0);
1697 * Let the scheduling class do new task startup
1698 * management (if any):
1700 p
->sched_class
->task_new(rq
, p
);
1701 inc_nr_running(p
, rq
);
1703 check_preempt_curr(rq
, p
);
1704 task_rq_unlock(rq
, &flags
);
1707 #ifdef CONFIG_PREEMPT_NOTIFIERS
1710 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1711 * @notifier: notifier struct to register
1713 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1715 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1717 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1720 * preempt_notifier_unregister - no longer interested in preemption notifications
1721 * @notifier: notifier struct to unregister
1723 * This is safe to call from within a preemption notifier.
1725 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1727 hlist_del(¬ifier
->link
);
1729 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1731 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1733 struct preempt_notifier
*notifier
;
1734 struct hlist_node
*node
;
1736 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1737 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1741 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1742 struct task_struct
*next
)
1744 struct preempt_notifier
*notifier
;
1745 struct hlist_node
*node
;
1747 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1748 notifier
->ops
->sched_out(notifier
, next
);
1753 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1758 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1759 struct task_struct
*next
)
1766 * prepare_task_switch - prepare to switch tasks
1767 * @rq: the runqueue preparing to switch
1768 * @prev: the current task that is being switched out
1769 * @next: the task we are going to switch to.
1771 * This is called with the rq lock held and interrupts off. It must
1772 * be paired with a subsequent finish_task_switch after the context
1775 * prepare_task_switch sets up locking and calls architecture specific
1779 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1780 struct task_struct
*next
)
1782 fire_sched_out_preempt_notifiers(prev
, next
);
1783 prepare_lock_switch(rq
, next
);
1784 prepare_arch_switch(next
);
1788 * finish_task_switch - clean up after a task-switch
1789 * @rq: runqueue associated with task-switch
1790 * @prev: the thread we just switched away from.
1792 * finish_task_switch must be called after the context switch, paired
1793 * with a prepare_task_switch call before the context switch.
1794 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1795 * and do any other architecture-specific cleanup actions.
1797 * Note that we may have delayed dropping an mm in context_switch(). If
1798 * so, we finish that here outside of the runqueue lock. (Doing it
1799 * with the lock held can cause deadlocks; see schedule() for
1802 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1803 __releases(rq
->lock
)
1805 struct mm_struct
*mm
= rq
->prev_mm
;
1811 * A task struct has one reference for the use as "current".
1812 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1813 * schedule one last time. The schedule call will never return, and
1814 * the scheduled task must drop that reference.
1815 * The test for TASK_DEAD must occur while the runqueue locks are
1816 * still held, otherwise prev could be scheduled on another cpu, die
1817 * there before we look at prev->state, and then the reference would
1819 * Manfred Spraul <manfred@colorfullife.com>
1821 prev_state
= prev
->state
;
1822 finish_arch_switch(prev
);
1823 finish_lock_switch(rq
, prev
);
1824 fire_sched_in_preempt_notifiers(current
);
1827 if (unlikely(prev_state
== TASK_DEAD
)) {
1829 * Remove function-return probe instances associated with this
1830 * task and put them back on the free list.
1832 kprobe_flush_task(prev
);
1833 put_task_struct(prev
);
1838 * schedule_tail - first thing a freshly forked thread must call.
1839 * @prev: the thread we just switched away from.
1841 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1842 __releases(rq
->lock
)
1844 struct rq
*rq
= this_rq();
1846 finish_task_switch(rq
, prev
);
1847 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1848 /* In this case, finish_task_switch does not reenable preemption */
1851 if (current
->set_child_tid
)
1852 put_user(current
->pid
, current
->set_child_tid
);
1856 * context_switch - switch to the new MM and the new
1857 * thread's register state.
1860 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1861 struct task_struct
*next
)
1863 struct mm_struct
*mm
, *oldmm
;
1865 prepare_task_switch(rq
, prev
, next
);
1867 oldmm
= prev
->active_mm
;
1869 * For paravirt, this is coupled with an exit in switch_to to
1870 * combine the page table reload and the switch backend into
1873 arch_enter_lazy_cpu_mode();
1875 if (unlikely(!mm
)) {
1876 next
->active_mm
= oldmm
;
1877 atomic_inc(&oldmm
->mm_count
);
1878 enter_lazy_tlb(oldmm
, next
);
1880 switch_mm(oldmm
, mm
, next
);
1882 if (unlikely(!prev
->mm
)) {
1883 prev
->active_mm
= NULL
;
1884 rq
->prev_mm
= oldmm
;
1887 * Since the runqueue lock will be released by the next
1888 * task (which is an invalid locking op but in the case
1889 * of the scheduler it's an obvious special-case), so we
1890 * do an early lockdep release here:
1892 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1893 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1896 /* Here we just switch the register state and the stack. */
1897 switch_to(prev
, next
, prev
);
1901 * this_rq must be evaluated again because prev may have moved
1902 * CPUs since it called schedule(), thus the 'rq' on its stack
1903 * frame will be invalid.
1905 finish_task_switch(this_rq(), prev
);
1909 * nr_running, nr_uninterruptible and nr_context_switches:
1911 * externally visible scheduler statistics: current number of runnable
1912 * threads, current number of uninterruptible-sleeping threads, total
1913 * number of context switches performed since bootup.
1915 unsigned long nr_running(void)
1917 unsigned long i
, sum
= 0;
1919 for_each_online_cpu(i
)
1920 sum
+= cpu_rq(i
)->nr_running
;
1925 unsigned long nr_uninterruptible(void)
1927 unsigned long i
, sum
= 0;
1929 for_each_possible_cpu(i
)
1930 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1933 * Since we read the counters lockless, it might be slightly
1934 * inaccurate. Do not allow it to go below zero though:
1936 if (unlikely((long)sum
< 0))
1942 unsigned long long nr_context_switches(void)
1945 unsigned long long sum
= 0;
1947 for_each_possible_cpu(i
)
1948 sum
+= cpu_rq(i
)->nr_switches
;
1953 unsigned long nr_iowait(void)
1955 unsigned long i
, sum
= 0;
1957 for_each_possible_cpu(i
)
1958 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1963 unsigned long nr_active(void)
1965 unsigned long i
, running
= 0, uninterruptible
= 0;
1967 for_each_online_cpu(i
) {
1968 running
+= cpu_rq(i
)->nr_running
;
1969 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1972 if (unlikely((long)uninterruptible
< 0))
1973 uninterruptible
= 0;
1975 return running
+ uninterruptible
;
1979 * Update rq->cpu_load[] statistics. This function is usually called every
1980 * scheduler tick (TICK_NSEC).
1982 static void update_cpu_load(struct rq
*this_rq
)
1984 unsigned long this_load
= this_rq
->load
.weight
;
1987 this_rq
->nr_load_updates
++;
1989 /* Update our load: */
1990 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1991 unsigned long old_load
, new_load
;
1993 /* scale is effectively 1 << i now, and >> i divides by scale */
1995 old_load
= this_rq
->cpu_load
[i
];
1996 new_load
= this_load
;
1998 * Round up the averaging division if load is increasing. This
1999 * prevents us from getting stuck on 9 if the load is 10, for
2002 if (new_load
> old_load
)
2003 new_load
+= scale
-1;
2004 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2011 * double_rq_lock - safely lock two runqueues
2013 * Note this does not disable interrupts like task_rq_lock,
2014 * you need to do so manually before calling.
2016 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2017 __acquires(rq1
->lock
)
2018 __acquires(rq2
->lock
)
2020 BUG_ON(!irqs_disabled());
2022 spin_lock(&rq1
->lock
);
2023 __acquire(rq2
->lock
); /* Fake it out ;) */
2026 spin_lock(&rq1
->lock
);
2027 spin_lock(&rq2
->lock
);
2029 spin_lock(&rq2
->lock
);
2030 spin_lock(&rq1
->lock
);
2033 update_rq_clock(rq1
);
2034 update_rq_clock(rq2
);
2038 * double_rq_unlock - safely unlock two runqueues
2040 * Note this does not restore interrupts like task_rq_unlock,
2041 * you need to do so manually after calling.
2043 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2044 __releases(rq1
->lock
)
2045 __releases(rq2
->lock
)
2047 spin_unlock(&rq1
->lock
);
2049 spin_unlock(&rq2
->lock
);
2051 __release(rq2
->lock
);
2055 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2057 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2058 __releases(this_rq
->lock
)
2059 __acquires(busiest
->lock
)
2060 __acquires(this_rq
->lock
)
2062 if (unlikely(!irqs_disabled())) {
2063 /* printk() doesn't work good under rq->lock */
2064 spin_unlock(&this_rq
->lock
);
2067 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2068 if (busiest
< this_rq
) {
2069 spin_unlock(&this_rq
->lock
);
2070 spin_lock(&busiest
->lock
);
2071 spin_lock(&this_rq
->lock
);
2073 spin_lock(&busiest
->lock
);
2078 * If dest_cpu is allowed for this process, migrate the task to it.
2079 * This is accomplished by forcing the cpu_allowed mask to only
2080 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2081 * the cpu_allowed mask is restored.
2083 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2085 struct migration_req req
;
2086 unsigned long flags
;
2089 rq
= task_rq_lock(p
, &flags
);
2090 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2091 || unlikely(cpu_is_offline(dest_cpu
)))
2094 /* force the process onto the specified CPU */
2095 if (migrate_task(p
, dest_cpu
, &req
)) {
2096 /* Need to wait for migration thread (might exit: take ref). */
2097 struct task_struct
*mt
= rq
->migration_thread
;
2099 get_task_struct(mt
);
2100 task_rq_unlock(rq
, &flags
);
2101 wake_up_process(mt
);
2102 put_task_struct(mt
);
2103 wait_for_completion(&req
.done
);
2108 task_rq_unlock(rq
, &flags
);
2112 * sched_exec - execve() is a valuable balancing opportunity, because at
2113 * this point the task has the smallest effective memory and cache footprint.
2115 void sched_exec(void)
2117 int new_cpu
, this_cpu
= get_cpu();
2118 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2120 if (new_cpu
!= this_cpu
)
2121 sched_migrate_task(current
, new_cpu
);
2125 * pull_task - move a task from a remote runqueue to the local runqueue.
2126 * Both runqueues must be locked.
2128 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2129 struct rq
*this_rq
, int this_cpu
)
2131 deactivate_task(src_rq
, p
, 0);
2132 set_task_cpu(p
, this_cpu
);
2133 activate_task(this_rq
, p
, 0);
2135 * Note that idle threads have a prio of MAX_PRIO, for this test
2136 * to be always true for them.
2138 check_preempt_curr(this_rq
, p
);
2142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2145 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2146 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2150 * We do not migrate tasks that are:
2151 * 1) running (obviously), or
2152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2153 * 3) are cache-hot on their current CPU.
2155 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2159 if (task_running(rq
, p
))
2165 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2166 unsigned long max_nr_move
, unsigned long max_load_move
,
2167 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2168 int *all_pinned
, unsigned long *load_moved
,
2169 int *this_best_prio
, struct rq_iterator
*iterator
)
2171 int pulled
= 0, pinned
= 0, skip_for_load
;
2172 struct task_struct
*p
;
2173 long rem_load_move
= max_load_move
;
2175 if (max_nr_move
== 0 || max_load_move
== 0)
2181 * Start the load-balancing iterator:
2183 p
= iterator
->start(iterator
->arg
);
2188 * To help distribute high priority tasks accross CPUs we don't
2189 * skip a task if it will be the highest priority task (i.e. smallest
2190 * prio value) on its new queue regardless of its load weight
2192 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2193 SCHED_LOAD_SCALE_FUZZ
;
2194 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2195 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2196 p
= iterator
->next(iterator
->arg
);
2200 pull_task(busiest
, p
, this_rq
, this_cpu
);
2202 rem_load_move
-= p
->se
.load
.weight
;
2205 * We only want to steal up to the prescribed number of tasks
2206 * and the prescribed amount of weighted load.
2208 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2209 if (p
->prio
< *this_best_prio
)
2210 *this_best_prio
= p
->prio
;
2211 p
= iterator
->next(iterator
->arg
);
2216 * Right now, this is the only place pull_task() is called,
2217 * so we can safely collect pull_task() stats here rather than
2218 * inside pull_task().
2220 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2223 *all_pinned
= pinned
;
2224 *load_moved
= max_load_move
- rem_load_move
;
2229 * move_tasks tries to move up to max_load_move weighted load from busiest to
2230 * this_rq, as part of a balancing operation within domain "sd".
2231 * Returns 1 if successful and 0 otherwise.
2233 * Called with both runqueues locked.
2235 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2236 unsigned long max_load_move
,
2237 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2240 const struct sched_class
*class = sched_class_highest
;
2241 unsigned long total_load_moved
= 0;
2242 int this_best_prio
= this_rq
->curr
->prio
;
2246 class->load_balance(this_rq
, this_cpu
, busiest
,
2247 ULONG_MAX
, max_load_move
- total_load_moved
,
2248 sd
, idle
, all_pinned
, &this_best_prio
);
2249 class = class->next
;
2250 } while (class && max_load_move
> total_load_moved
);
2252 return total_load_moved
> 0;
2256 * move_one_task tries to move exactly one task from busiest to this_rq, as
2257 * part of active balancing operations within "domain".
2258 * Returns 1 if successful and 0 otherwise.
2260 * Called with both runqueues locked.
2262 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2263 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2265 const struct sched_class
*class;
2266 int this_best_prio
= MAX_PRIO
;
2268 for (class = sched_class_highest
; class; class = class->next
)
2269 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2270 1, ULONG_MAX
, sd
, idle
, NULL
,
2278 * find_busiest_group finds and returns the busiest CPU group within the
2279 * domain. It calculates and returns the amount of weighted load which
2280 * should be moved to restore balance via the imbalance parameter.
2282 static struct sched_group
*
2283 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2284 unsigned long *imbalance
, enum cpu_idle_type idle
,
2285 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2287 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2288 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2289 unsigned long max_pull
;
2290 unsigned long busiest_load_per_task
, busiest_nr_running
;
2291 unsigned long this_load_per_task
, this_nr_running
;
2293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2294 int power_savings_balance
= 1;
2295 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2296 unsigned long min_nr_running
= ULONG_MAX
;
2297 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2300 max_load
= this_load
= total_load
= total_pwr
= 0;
2301 busiest_load_per_task
= busiest_nr_running
= 0;
2302 this_load_per_task
= this_nr_running
= 0;
2303 if (idle
== CPU_NOT_IDLE
)
2304 load_idx
= sd
->busy_idx
;
2305 else if (idle
== CPU_NEWLY_IDLE
)
2306 load_idx
= sd
->newidle_idx
;
2308 load_idx
= sd
->idle_idx
;
2311 unsigned long load
, group_capacity
;
2314 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2315 unsigned long sum_nr_running
, sum_weighted_load
;
2317 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2320 balance_cpu
= first_cpu(group
->cpumask
);
2322 /* Tally up the load of all CPUs in the group */
2323 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2325 for_each_cpu_mask(i
, group
->cpumask
) {
2328 if (!cpu_isset(i
, *cpus
))
2333 if (*sd_idle
&& rq
->nr_running
)
2336 /* Bias balancing toward cpus of our domain */
2338 if (idle_cpu(i
) && !first_idle_cpu
) {
2343 load
= target_load(i
, load_idx
);
2345 load
= source_load(i
, load_idx
);
2348 sum_nr_running
+= rq
->nr_running
;
2349 sum_weighted_load
+= weighted_cpuload(i
);
2353 * First idle cpu or the first cpu(busiest) in this sched group
2354 * is eligible for doing load balancing at this and above
2355 * domains. In the newly idle case, we will allow all the cpu's
2356 * to do the newly idle load balance.
2358 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2359 balance_cpu
!= this_cpu
&& balance
) {
2364 total_load
+= avg_load
;
2365 total_pwr
+= group
->__cpu_power
;
2367 /* Adjust by relative CPU power of the group */
2368 avg_load
= sg_div_cpu_power(group
,
2369 avg_load
* SCHED_LOAD_SCALE
);
2371 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2374 this_load
= avg_load
;
2376 this_nr_running
= sum_nr_running
;
2377 this_load_per_task
= sum_weighted_load
;
2378 } else if (avg_load
> max_load
&&
2379 sum_nr_running
> group_capacity
) {
2380 max_load
= avg_load
;
2382 busiest_nr_running
= sum_nr_running
;
2383 busiest_load_per_task
= sum_weighted_load
;
2386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2388 * Busy processors will not participate in power savings
2391 if (idle
== CPU_NOT_IDLE
||
2392 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2396 * If the local group is idle or completely loaded
2397 * no need to do power savings balance at this domain
2399 if (local_group
&& (this_nr_running
>= group_capacity
||
2401 power_savings_balance
= 0;
2404 * If a group is already running at full capacity or idle,
2405 * don't include that group in power savings calculations
2407 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2412 * Calculate the group which has the least non-idle load.
2413 * This is the group from where we need to pick up the load
2416 if ((sum_nr_running
< min_nr_running
) ||
2417 (sum_nr_running
== min_nr_running
&&
2418 first_cpu(group
->cpumask
) <
2419 first_cpu(group_min
->cpumask
))) {
2421 min_nr_running
= sum_nr_running
;
2422 min_load_per_task
= sum_weighted_load
/
2427 * Calculate the group which is almost near its
2428 * capacity but still has some space to pick up some load
2429 * from other group and save more power
2431 if (sum_nr_running
<= group_capacity
- 1) {
2432 if (sum_nr_running
> leader_nr_running
||
2433 (sum_nr_running
== leader_nr_running
&&
2434 first_cpu(group
->cpumask
) >
2435 first_cpu(group_leader
->cpumask
))) {
2436 group_leader
= group
;
2437 leader_nr_running
= sum_nr_running
;
2442 group
= group
->next
;
2443 } while (group
!= sd
->groups
);
2445 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2448 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2450 if (this_load
>= avg_load
||
2451 100*max_load
<= sd
->imbalance_pct
*this_load
)
2454 busiest_load_per_task
/= busiest_nr_running
;
2456 * We're trying to get all the cpus to the average_load, so we don't
2457 * want to push ourselves above the average load, nor do we wish to
2458 * reduce the max loaded cpu below the average load, as either of these
2459 * actions would just result in more rebalancing later, and ping-pong
2460 * tasks around. Thus we look for the minimum possible imbalance.
2461 * Negative imbalances (*we* are more loaded than anyone else) will
2462 * be counted as no imbalance for these purposes -- we can't fix that
2463 * by pulling tasks to us. Be careful of negative numbers as they'll
2464 * appear as very large values with unsigned longs.
2466 if (max_load
<= busiest_load_per_task
)
2470 * In the presence of smp nice balancing, certain scenarios can have
2471 * max load less than avg load(as we skip the groups at or below
2472 * its cpu_power, while calculating max_load..)
2474 if (max_load
< avg_load
) {
2476 goto small_imbalance
;
2479 /* Don't want to pull so many tasks that a group would go idle */
2480 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2482 /* How much load to actually move to equalise the imbalance */
2483 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2484 (avg_load
- this_load
) * this->__cpu_power
)
2488 * if *imbalance is less than the average load per runnable task
2489 * there is no gaurantee that any tasks will be moved so we'll have
2490 * a think about bumping its value to force at least one task to be
2493 if (*imbalance
< busiest_load_per_task
) {
2494 unsigned long tmp
, pwr_now
, pwr_move
;
2498 pwr_move
= pwr_now
= 0;
2500 if (this_nr_running
) {
2501 this_load_per_task
/= this_nr_running
;
2502 if (busiest_load_per_task
> this_load_per_task
)
2505 this_load_per_task
= SCHED_LOAD_SCALE
;
2507 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2508 busiest_load_per_task
* imbn
) {
2509 *imbalance
= busiest_load_per_task
;
2514 * OK, we don't have enough imbalance to justify moving tasks,
2515 * however we may be able to increase total CPU power used by
2519 pwr_now
+= busiest
->__cpu_power
*
2520 min(busiest_load_per_task
, max_load
);
2521 pwr_now
+= this->__cpu_power
*
2522 min(this_load_per_task
, this_load
);
2523 pwr_now
/= SCHED_LOAD_SCALE
;
2525 /* Amount of load we'd subtract */
2526 tmp
= sg_div_cpu_power(busiest
,
2527 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2529 pwr_move
+= busiest
->__cpu_power
*
2530 min(busiest_load_per_task
, max_load
- tmp
);
2532 /* Amount of load we'd add */
2533 if (max_load
* busiest
->__cpu_power
<
2534 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2535 tmp
= sg_div_cpu_power(this,
2536 max_load
* busiest
->__cpu_power
);
2538 tmp
= sg_div_cpu_power(this,
2539 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2540 pwr_move
+= this->__cpu_power
*
2541 min(this_load_per_task
, this_load
+ tmp
);
2542 pwr_move
/= SCHED_LOAD_SCALE
;
2544 /* Move if we gain throughput */
2545 if (pwr_move
> pwr_now
)
2546 *imbalance
= busiest_load_per_task
;
2552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2553 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2556 if (this == group_leader
&& group_leader
!= group_min
) {
2557 *imbalance
= min_load_per_task
;
2567 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2570 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2571 unsigned long imbalance
, cpumask_t
*cpus
)
2573 struct rq
*busiest
= NULL
, *rq
;
2574 unsigned long max_load
= 0;
2577 for_each_cpu_mask(i
, group
->cpumask
) {
2580 if (!cpu_isset(i
, *cpus
))
2584 wl
= weighted_cpuload(i
);
2586 if (rq
->nr_running
== 1 && wl
> imbalance
)
2589 if (wl
> max_load
) {
2599 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2600 * so long as it is large enough.
2602 #define MAX_PINNED_INTERVAL 512
2605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2606 * tasks if there is an imbalance.
2608 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2609 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2612 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2613 struct sched_group
*group
;
2614 unsigned long imbalance
;
2616 cpumask_t cpus
= CPU_MASK_ALL
;
2617 unsigned long flags
;
2620 * When power savings policy is enabled for the parent domain, idle
2621 * sibling can pick up load irrespective of busy siblings. In this case,
2622 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2623 * portraying it as CPU_NOT_IDLE.
2625 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2626 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2629 schedstat_inc(sd
, lb_count
[idle
]);
2632 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2639 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2643 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2645 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2649 BUG_ON(busiest
== this_rq
);
2651 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2654 if (busiest
->nr_running
> 1) {
2656 * Attempt to move tasks. If find_busiest_group has found
2657 * an imbalance but busiest->nr_running <= 1, the group is
2658 * still unbalanced. ld_moved simply stays zero, so it is
2659 * correctly treated as an imbalance.
2661 local_irq_save(flags
);
2662 double_rq_lock(this_rq
, busiest
);
2663 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2664 imbalance
, sd
, idle
, &all_pinned
);
2665 double_rq_unlock(this_rq
, busiest
);
2666 local_irq_restore(flags
);
2669 * some other cpu did the load balance for us.
2671 if (ld_moved
&& this_cpu
!= smp_processor_id())
2672 resched_cpu(this_cpu
);
2674 /* All tasks on this runqueue were pinned by CPU affinity */
2675 if (unlikely(all_pinned
)) {
2676 cpu_clear(cpu_of(busiest
), cpus
);
2677 if (!cpus_empty(cpus
))
2684 schedstat_inc(sd
, lb_failed
[idle
]);
2685 sd
->nr_balance_failed
++;
2687 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2689 spin_lock_irqsave(&busiest
->lock
, flags
);
2691 /* don't kick the migration_thread, if the curr
2692 * task on busiest cpu can't be moved to this_cpu
2694 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2695 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2697 goto out_one_pinned
;
2700 if (!busiest
->active_balance
) {
2701 busiest
->active_balance
= 1;
2702 busiest
->push_cpu
= this_cpu
;
2705 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2707 wake_up_process(busiest
->migration_thread
);
2710 * We've kicked active balancing, reset the failure
2713 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2716 sd
->nr_balance_failed
= 0;
2718 if (likely(!active_balance
)) {
2719 /* We were unbalanced, so reset the balancing interval */
2720 sd
->balance_interval
= sd
->min_interval
;
2723 * If we've begun active balancing, start to back off. This
2724 * case may not be covered by the all_pinned logic if there
2725 * is only 1 task on the busy runqueue (because we don't call
2728 if (sd
->balance_interval
< sd
->max_interval
)
2729 sd
->balance_interval
*= 2;
2732 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2733 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2738 schedstat_inc(sd
, lb_balanced
[idle
]);
2740 sd
->nr_balance_failed
= 0;
2743 /* tune up the balancing interval */
2744 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2745 (sd
->balance_interval
< sd
->max_interval
))
2746 sd
->balance_interval
*= 2;
2748 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2749 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2755 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2756 * tasks if there is an imbalance.
2758 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2759 * this_rq is locked.
2762 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2764 struct sched_group
*group
;
2765 struct rq
*busiest
= NULL
;
2766 unsigned long imbalance
;
2770 cpumask_t cpus
= CPU_MASK_ALL
;
2773 * When power savings policy is enabled for the parent domain, idle
2774 * sibling can pick up load irrespective of busy siblings. In this case,
2775 * let the state of idle sibling percolate up as IDLE, instead of
2776 * portraying it as CPU_NOT_IDLE.
2778 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2779 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2782 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2784 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2785 &sd_idle
, &cpus
, NULL
);
2787 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2791 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2794 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2798 BUG_ON(busiest
== this_rq
);
2800 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2803 if (busiest
->nr_running
> 1) {
2804 /* Attempt to move tasks */
2805 double_lock_balance(this_rq
, busiest
);
2806 /* this_rq->clock is already updated */
2807 update_rq_clock(busiest
);
2808 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2809 imbalance
, sd
, CPU_NEWLY_IDLE
,
2811 spin_unlock(&busiest
->lock
);
2813 if (unlikely(all_pinned
)) {
2814 cpu_clear(cpu_of(busiest
), cpus
);
2815 if (!cpus_empty(cpus
))
2821 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2822 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2823 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2826 sd
->nr_balance_failed
= 0;
2831 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2832 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2833 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2835 sd
->nr_balance_failed
= 0;
2841 * idle_balance is called by schedule() if this_cpu is about to become
2842 * idle. Attempts to pull tasks from other CPUs.
2844 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2846 struct sched_domain
*sd
;
2847 int pulled_task
= -1;
2848 unsigned long next_balance
= jiffies
+ HZ
;
2850 for_each_domain(this_cpu
, sd
) {
2851 unsigned long interval
;
2853 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2856 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2857 /* If we've pulled tasks over stop searching: */
2858 pulled_task
= load_balance_newidle(this_cpu
,
2861 interval
= msecs_to_jiffies(sd
->balance_interval
);
2862 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2863 next_balance
= sd
->last_balance
+ interval
;
2867 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2869 * We are going idle. next_balance may be set based on
2870 * a busy processor. So reset next_balance.
2872 this_rq
->next_balance
= next_balance
;
2877 * active_load_balance is run by migration threads. It pushes running tasks
2878 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2879 * running on each physical CPU where possible, and avoids physical /
2880 * logical imbalances.
2882 * Called with busiest_rq locked.
2884 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2886 int target_cpu
= busiest_rq
->push_cpu
;
2887 struct sched_domain
*sd
;
2888 struct rq
*target_rq
;
2890 /* Is there any task to move? */
2891 if (busiest_rq
->nr_running
<= 1)
2894 target_rq
= cpu_rq(target_cpu
);
2897 * This condition is "impossible", if it occurs
2898 * we need to fix it. Originally reported by
2899 * Bjorn Helgaas on a 128-cpu setup.
2901 BUG_ON(busiest_rq
== target_rq
);
2903 /* move a task from busiest_rq to target_rq */
2904 double_lock_balance(busiest_rq
, target_rq
);
2905 update_rq_clock(busiest_rq
);
2906 update_rq_clock(target_rq
);
2908 /* Search for an sd spanning us and the target CPU. */
2909 for_each_domain(target_cpu
, sd
) {
2910 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2911 cpu_isset(busiest_cpu
, sd
->span
))
2916 schedstat_inc(sd
, alb_count
);
2918 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2920 schedstat_inc(sd
, alb_pushed
);
2922 schedstat_inc(sd
, alb_failed
);
2924 spin_unlock(&target_rq
->lock
);
2929 atomic_t load_balancer
;
2931 } nohz ____cacheline_aligned
= {
2932 .load_balancer
= ATOMIC_INIT(-1),
2933 .cpu_mask
= CPU_MASK_NONE
,
2937 * This routine will try to nominate the ilb (idle load balancing)
2938 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2939 * load balancing on behalf of all those cpus. If all the cpus in the system
2940 * go into this tickless mode, then there will be no ilb owner (as there is
2941 * no need for one) and all the cpus will sleep till the next wakeup event
2944 * For the ilb owner, tick is not stopped. And this tick will be used
2945 * for idle load balancing. ilb owner will still be part of
2948 * While stopping the tick, this cpu will become the ilb owner if there
2949 * is no other owner. And will be the owner till that cpu becomes busy
2950 * or if all cpus in the system stop their ticks at which point
2951 * there is no need for ilb owner.
2953 * When the ilb owner becomes busy, it nominates another owner, during the
2954 * next busy scheduler_tick()
2956 int select_nohz_load_balancer(int stop_tick
)
2958 int cpu
= smp_processor_id();
2961 cpu_set(cpu
, nohz
.cpu_mask
);
2962 cpu_rq(cpu
)->in_nohz_recently
= 1;
2965 * If we are going offline and still the leader, give up!
2967 if (cpu_is_offline(cpu
) &&
2968 atomic_read(&nohz
.load_balancer
) == cpu
) {
2969 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2974 /* time for ilb owner also to sleep */
2975 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2976 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2977 atomic_set(&nohz
.load_balancer
, -1);
2981 if (atomic_read(&nohz
.load_balancer
) == -1) {
2982 /* make me the ilb owner */
2983 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2985 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2988 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2991 cpu_clear(cpu
, nohz
.cpu_mask
);
2993 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2994 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3001 static DEFINE_SPINLOCK(balancing
);
3004 * It checks each scheduling domain to see if it is due to be balanced,
3005 * and initiates a balancing operation if so.
3007 * Balancing parameters are set up in arch_init_sched_domains.
3009 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3012 struct rq
*rq
= cpu_rq(cpu
);
3013 unsigned long interval
;
3014 struct sched_domain
*sd
;
3015 /* Earliest time when we have to do rebalance again */
3016 unsigned long next_balance
= jiffies
+ 60*HZ
;
3017 int update_next_balance
= 0;
3019 for_each_domain(cpu
, sd
) {
3020 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3023 interval
= sd
->balance_interval
;
3024 if (idle
!= CPU_IDLE
)
3025 interval
*= sd
->busy_factor
;
3027 /* scale ms to jiffies */
3028 interval
= msecs_to_jiffies(interval
);
3029 if (unlikely(!interval
))
3031 if (interval
> HZ
*NR_CPUS
/10)
3032 interval
= HZ
*NR_CPUS
/10;
3035 if (sd
->flags
& SD_SERIALIZE
) {
3036 if (!spin_trylock(&balancing
))
3040 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3041 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3043 * We've pulled tasks over so either we're no
3044 * longer idle, or one of our SMT siblings is
3047 idle
= CPU_NOT_IDLE
;
3049 sd
->last_balance
= jiffies
;
3051 if (sd
->flags
& SD_SERIALIZE
)
3052 spin_unlock(&balancing
);
3054 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3055 next_balance
= sd
->last_balance
+ interval
;
3056 update_next_balance
= 1;
3060 * Stop the load balance at this level. There is another
3061 * CPU in our sched group which is doing load balancing more
3069 * next_balance will be updated only when there is a need.
3070 * When the cpu is attached to null domain for ex, it will not be
3073 if (likely(update_next_balance
))
3074 rq
->next_balance
= next_balance
;
3078 * run_rebalance_domains is triggered when needed from the scheduler tick.
3079 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3080 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3082 static void run_rebalance_domains(struct softirq_action
*h
)
3084 int this_cpu
= smp_processor_id();
3085 struct rq
*this_rq
= cpu_rq(this_cpu
);
3086 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3087 CPU_IDLE
: CPU_NOT_IDLE
;
3089 rebalance_domains(this_cpu
, idle
);
3093 * If this cpu is the owner for idle load balancing, then do the
3094 * balancing on behalf of the other idle cpus whose ticks are
3097 if (this_rq
->idle_at_tick
&&
3098 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3099 cpumask_t cpus
= nohz
.cpu_mask
;
3103 cpu_clear(this_cpu
, cpus
);
3104 for_each_cpu_mask(balance_cpu
, cpus
) {
3106 * If this cpu gets work to do, stop the load balancing
3107 * work being done for other cpus. Next load
3108 * balancing owner will pick it up.
3113 rebalance_domains(balance_cpu
, CPU_IDLE
);
3115 rq
= cpu_rq(balance_cpu
);
3116 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3117 this_rq
->next_balance
= rq
->next_balance
;
3124 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3126 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3127 * idle load balancing owner or decide to stop the periodic load balancing,
3128 * if the whole system is idle.
3130 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3134 * If we were in the nohz mode recently and busy at the current
3135 * scheduler tick, then check if we need to nominate new idle
3138 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3139 rq
->in_nohz_recently
= 0;
3141 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3142 cpu_clear(cpu
, nohz
.cpu_mask
);
3143 atomic_set(&nohz
.load_balancer
, -1);
3146 if (atomic_read(&nohz
.load_balancer
) == -1) {
3148 * simple selection for now: Nominate the
3149 * first cpu in the nohz list to be the next
3152 * TBD: Traverse the sched domains and nominate
3153 * the nearest cpu in the nohz.cpu_mask.
3155 int ilb
= first_cpu(nohz
.cpu_mask
);
3163 * If this cpu is idle and doing idle load balancing for all the
3164 * cpus with ticks stopped, is it time for that to stop?
3166 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3167 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3173 * If this cpu is idle and the idle load balancing is done by
3174 * someone else, then no need raise the SCHED_SOFTIRQ
3176 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3177 cpu_isset(cpu
, nohz
.cpu_mask
))
3180 if (time_after_eq(jiffies
, rq
->next_balance
))
3181 raise_softirq(SCHED_SOFTIRQ
);
3184 #else /* CONFIG_SMP */
3187 * on UP we do not need to balance between CPUs:
3189 static inline void idle_balance(int cpu
, struct rq
*rq
)
3193 /* Avoid "used but not defined" warning on UP */
3194 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3195 unsigned long max_nr_move
, unsigned long max_load_move
,
3196 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3197 int *all_pinned
, unsigned long *load_moved
,
3198 int *this_best_prio
, struct rq_iterator
*iterator
)
3207 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3209 EXPORT_PER_CPU_SYMBOL(kstat
);
3212 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3213 * that have not yet been banked in case the task is currently running.
3215 unsigned long long task_sched_runtime(struct task_struct
*p
)
3217 unsigned long flags
;
3221 rq
= task_rq_lock(p
, &flags
);
3222 ns
= p
->se
.sum_exec_runtime
;
3223 if (rq
->curr
== p
) {
3224 update_rq_clock(rq
);
3225 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3226 if ((s64
)delta_exec
> 0)
3229 task_rq_unlock(rq
, &flags
);
3235 * Account user cpu time to a process.
3236 * @p: the process that the cpu time gets accounted to
3237 * @hardirq_offset: the offset to subtract from hardirq_count()
3238 * @cputime: the cpu time spent in user space since the last update
3240 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3242 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3245 p
->utime
= cputime_add(p
->utime
, cputime
);
3247 /* Add user time to cpustat. */
3248 tmp
= cputime_to_cputime64(cputime
);
3249 if (TASK_NICE(p
) > 0)
3250 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3252 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3256 * Account system cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in kernel space since the last update
3261 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3264 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3265 struct rq
*rq
= this_rq();
3268 p
->stime
= cputime_add(p
->stime
, cputime
);
3270 /* Add system time to cpustat. */
3271 tmp
= cputime_to_cputime64(cputime
);
3272 if (hardirq_count() - hardirq_offset
)
3273 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3274 else if (softirq_count())
3275 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3276 else if (p
!= rq
->idle
)
3277 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3278 else if (atomic_read(&rq
->nr_iowait
) > 0)
3279 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3281 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3282 /* Account for system time used */
3283 acct_update_integrals(p
);
3287 * Account for involuntary wait time.
3288 * @p: the process from which the cpu time has been stolen
3289 * @steal: the cpu time spent in involuntary wait
3291 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3293 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3294 cputime64_t tmp
= cputime_to_cputime64(steal
);
3295 struct rq
*rq
= this_rq();
3297 if (p
== rq
->idle
) {
3298 p
->stime
= cputime_add(p
->stime
, steal
);
3299 if (atomic_read(&rq
->nr_iowait
) > 0)
3300 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3302 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3304 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3308 * This function gets called by the timer code, with HZ frequency.
3309 * We call it with interrupts disabled.
3311 * It also gets called by the fork code, when changing the parent's
3314 void scheduler_tick(void)
3316 int cpu
= smp_processor_id();
3317 struct rq
*rq
= cpu_rq(cpu
);
3318 struct task_struct
*curr
= rq
->curr
;
3319 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3321 spin_lock(&rq
->lock
);
3322 __update_rq_clock(rq
);
3324 * Let rq->clock advance by at least TICK_NSEC:
3326 if (unlikely(rq
->clock
< next_tick
))
3327 rq
->clock
= next_tick
;
3328 rq
->tick_timestamp
= rq
->clock
;
3329 update_cpu_load(rq
);
3330 if (curr
!= rq
->idle
) /* FIXME: needed? */
3331 curr
->sched_class
->task_tick(rq
, curr
);
3332 spin_unlock(&rq
->lock
);
3335 rq
->idle_at_tick
= idle_cpu(cpu
);
3336 trigger_load_balance(rq
, cpu
);
3340 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3342 void fastcall
add_preempt_count(int val
)
3347 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3349 preempt_count() += val
;
3351 * Spinlock count overflowing soon?
3353 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3356 EXPORT_SYMBOL(add_preempt_count
);
3358 void fastcall
sub_preempt_count(int val
)
3363 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3366 * Is the spinlock portion underflowing?
3368 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3369 !(preempt_count() & PREEMPT_MASK
)))
3372 preempt_count() -= val
;
3374 EXPORT_SYMBOL(sub_preempt_count
);
3379 * Print scheduling while atomic bug:
3381 static noinline
void __schedule_bug(struct task_struct
*prev
)
3383 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3384 prev
->comm
, preempt_count(), prev
->pid
);
3385 debug_show_held_locks(prev
);
3386 if (irqs_disabled())
3387 print_irqtrace_events(prev
);
3392 * Various schedule()-time debugging checks and statistics:
3394 static inline void schedule_debug(struct task_struct
*prev
)
3397 * Test if we are atomic. Since do_exit() needs to call into
3398 * schedule() atomically, we ignore that path for now.
3399 * Otherwise, whine if we are scheduling when we should not be.
3401 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3402 __schedule_bug(prev
);
3404 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3406 schedstat_inc(this_rq(), sched_count
);
3407 #ifdef CONFIG_SCHEDSTATS
3408 if (unlikely(prev
->lock_depth
>= 0)) {
3409 schedstat_inc(this_rq(), bkl_count
);
3410 schedstat_inc(prev
, sched_info
.bkl_count
);
3416 * Pick up the highest-prio task:
3418 static inline struct task_struct
*
3419 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3421 const struct sched_class
*class;
3422 struct task_struct
*p
;
3425 * Optimization: we know that if all tasks are in
3426 * the fair class we can call that function directly:
3428 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3429 p
= fair_sched_class
.pick_next_task(rq
);
3434 class = sched_class_highest
;
3436 p
= class->pick_next_task(rq
);
3440 * Will never be NULL as the idle class always
3441 * returns a non-NULL p:
3443 class = class->next
;
3448 * schedule() is the main scheduler function.
3450 asmlinkage
void __sched
schedule(void)
3452 struct task_struct
*prev
, *next
;
3459 cpu
= smp_processor_id();
3463 switch_count
= &prev
->nivcsw
;
3465 release_kernel_lock(prev
);
3466 need_resched_nonpreemptible
:
3468 schedule_debug(prev
);
3471 * Do the rq-clock update outside the rq lock:
3473 local_irq_disable();
3474 __update_rq_clock(rq
);
3475 spin_lock(&rq
->lock
);
3476 clear_tsk_need_resched(prev
);
3478 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3479 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3480 unlikely(signal_pending(prev
)))) {
3481 prev
->state
= TASK_RUNNING
;
3483 deactivate_task(rq
, prev
, 1);
3485 switch_count
= &prev
->nvcsw
;
3488 if (unlikely(!rq
->nr_running
))
3489 idle_balance(cpu
, rq
);
3491 prev
->sched_class
->put_prev_task(rq
, prev
);
3492 next
= pick_next_task(rq
, prev
);
3494 sched_info_switch(prev
, next
);
3496 if (likely(prev
!= next
)) {
3501 context_switch(rq
, prev
, next
); /* unlocks the rq */
3503 spin_unlock_irq(&rq
->lock
);
3505 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3506 cpu
= smp_processor_id();
3508 goto need_resched_nonpreemptible
;
3510 preempt_enable_no_resched();
3511 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3514 EXPORT_SYMBOL(schedule
);
3516 #ifdef CONFIG_PREEMPT
3518 * this is the entry point to schedule() from in-kernel preemption
3519 * off of preempt_enable. Kernel preemptions off return from interrupt
3520 * occur there and call schedule directly.
3522 asmlinkage
void __sched
preempt_schedule(void)
3524 struct thread_info
*ti
= current_thread_info();
3525 #ifdef CONFIG_PREEMPT_BKL
3526 struct task_struct
*task
= current
;
3527 int saved_lock_depth
;
3530 * If there is a non-zero preempt_count or interrupts are disabled,
3531 * we do not want to preempt the current task. Just return..
3533 if (likely(ti
->preempt_count
|| irqs_disabled()))
3537 add_preempt_count(PREEMPT_ACTIVE
);
3539 * We keep the big kernel semaphore locked, but we
3540 * clear ->lock_depth so that schedule() doesnt
3541 * auto-release the semaphore:
3543 #ifdef CONFIG_PREEMPT_BKL
3544 saved_lock_depth
= task
->lock_depth
;
3545 task
->lock_depth
= -1;
3548 #ifdef CONFIG_PREEMPT_BKL
3549 task
->lock_depth
= saved_lock_depth
;
3551 sub_preempt_count(PREEMPT_ACTIVE
);
3553 /* we could miss a preemption opportunity between schedule and now */
3555 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3558 EXPORT_SYMBOL(preempt_schedule
);
3561 * this is the entry point to schedule() from kernel preemption
3562 * off of irq context.
3563 * Note, that this is called and return with irqs disabled. This will
3564 * protect us against recursive calling from irq.
3566 asmlinkage
void __sched
preempt_schedule_irq(void)
3568 struct thread_info
*ti
= current_thread_info();
3569 #ifdef CONFIG_PREEMPT_BKL
3570 struct task_struct
*task
= current
;
3571 int saved_lock_depth
;
3573 /* Catch callers which need to be fixed */
3574 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3577 add_preempt_count(PREEMPT_ACTIVE
);
3579 * We keep the big kernel semaphore locked, but we
3580 * clear ->lock_depth so that schedule() doesnt
3581 * auto-release the semaphore:
3583 #ifdef CONFIG_PREEMPT_BKL
3584 saved_lock_depth
= task
->lock_depth
;
3585 task
->lock_depth
= -1;
3589 local_irq_disable();
3590 #ifdef CONFIG_PREEMPT_BKL
3591 task
->lock_depth
= saved_lock_depth
;
3593 sub_preempt_count(PREEMPT_ACTIVE
);
3595 /* we could miss a preemption opportunity between schedule and now */
3597 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3601 #endif /* CONFIG_PREEMPT */
3603 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3606 return try_to_wake_up(curr
->private, mode
, sync
);
3608 EXPORT_SYMBOL(default_wake_function
);
3611 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3612 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3613 * number) then we wake all the non-exclusive tasks and one exclusive task.
3615 * There are circumstances in which we can try to wake a task which has already
3616 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3617 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3619 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3620 int nr_exclusive
, int sync
, void *key
)
3622 wait_queue_t
*curr
, *next
;
3624 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3625 unsigned flags
= curr
->flags
;
3627 if (curr
->func(curr
, mode
, sync
, key
) &&
3628 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3634 * __wake_up - wake up threads blocked on a waitqueue.
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3638 * @key: is directly passed to the wakeup function
3640 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3641 int nr_exclusive
, void *key
)
3643 unsigned long flags
;
3645 spin_lock_irqsave(&q
->lock
, flags
);
3646 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3647 spin_unlock_irqrestore(&q
->lock
, flags
);
3649 EXPORT_SYMBOL(__wake_up
);
3652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3654 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3656 __wake_up_common(q
, mode
, 1, 0, NULL
);
3660 * __wake_up_sync - wake up threads blocked on a waitqueue.
3662 * @mode: which threads
3663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3665 * The sync wakeup differs that the waker knows that it will schedule
3666 * away soon, so while the target thread will be woken up, it will not
3667 * be migrated to another CPU - ie. the two threads are 'synchronized'
3668 * with each other. This can prevent needless bouncing between CPUs.
3670 * On UP it can prevent extra preemption.
3673 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3675 unsigned long flags
;
3681 if (unlikely(!nr_exclusive
))
3684 spin_lock_irqsave(&q
->lock
, flags
);
3685 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3686 spin_unlock_irqrestore(&q
->lock
, flags
);
3688 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3690 void fastcall
complete(struct completion
*x
)
3692 unsigned long flags
;
3694 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3696 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3698 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3700 EXPORT_SYMBOL(complete
);
3702 void fastcall
complete_all(struct completion
*x
)
3704 unsigned long flags
;
3706 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3707 x
->done
+= UINT_MAX
/2;
3708 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3710 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3712 EXPORT_SYMBOL(complete_all
);
3714 void fastcall __sched
wait_for_completion(struct completion
*x
)
3718 spin_lock_irq(&x
->wait
.lock
);
3720 DECLARE_WAITQUEUE(wait
, current
);
3722 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3723 __add_wait_queue_tail(&x
->wait
, &wait
);
3725 __set_current_state(TASK_UNINTERRUPTIBLE
);
3726 spin_unlock_irq(&x
->wait
.lock
);
3728 spin_lock_irq(&x
->wait
.lock
);
3730 __remove_wait_queue(&x
->wait
, &wait
);
3733 spin_unlock_irq(&x
->wait
.lock
);
3735 EXPORT_SYMBOL(wait_for_completion
);
3737 unsigned long fastcall __sched
3738 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3742 spin_lock_irq(&x
->wait
.lock
);
3744 DECLARE_WAITQUEUE(wait
, current
);
3746 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3747 __add_wait_queue_tail(&x
->wait
, &wait
);
3749 __set_current_state(TASK_UNINTERRUPTIBLE
);
3750 spin_unlock_irq(&x
->wait
.lock
);
3751 timeout
= schedule_timeout(timeout
);
3752 spin_lock_irq(&x
->wait
.lock
);
3754 __remove_wait_queue(&x
->wait
, &wait
);
3758 __remove_wait_queue(&x
->wait
, &wait
);
3762 spin_unlock_irq(&x
->wait
.lock
);
3765 EXPORT_SYMBOL(wait_for_completion_timeout
);
3767 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3773 spin_lock_irq(&x
->wait
.lock
);
3775 DECLARE_WAITQUEUE(wait
, current
);
3777 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3778 __add_wait_queue_tail(&x
->wait
, &wait
);
3780 if (signal_pending(current
)) {
3782 __remove_wait_queue(&x
->wait
, &wait
);
3785 __set_current_state(TASK_INTERRUPTIBLE
);
3786 spin_unlock_irq(&x
->wait
.lock
);
3788 spin_lock_irq(&x
->wait
.lock
);
3790 __remove_wait_queue(&x
->wait
, &wait
);
3794 spin_unlock_irq(&x
->wait
.lock
);
3798 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3800 unsigned long fastcall __sched
3801 wait_for_completion_interruptible_timeout(struct completion
*x
,
3802 unsigned long timeout
)
3806 spin_lock_irq(&x
->wait
.lock
);
3808 DECLARE_WAITQUEUE(wait
, current
);
3810 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3811 __add_wait_queue_tail(&x
->wait
, &wait
);
3813 if (signal_pending(current
)) {
3814 timeout
= -ERESTARTSYS
;
3815 __remove_wait_queue(&x
->wait
, &wait
);
3818 __set_current_state(TASK_INTERRUPTIBLE
);
3819 spin_unlock_irq(&x
->wait
.lock
);
3820 timeout
= schedule_timeout(timeout
);
3821 spin_lock_irq(&x
->wait
.lock
);
3823 __remove_wait_queue(&x
->wait
, &wait
);
3827 __remove_wait_queue(&x
->wait
, &wait
);
3831 spin_unlock_irq(&x
->wait
.lock
);
3834 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3837 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3839 spin_lock_irqsave(&q
->lock
, *flags
);
3840 __add_wait_queue(q
, wait
);
3841 spin_unlock(&q
->lock
);
3845 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3847 spin_lock_irq(&q
->lock
);
3848 __remove_wait_queue(q
, wait
);
3849 spin_unlock_irqrestore(&q
->lock
, *flags
);
3852 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3854 unsigned long flags
;
3857 init_waitqueue_entry(&wait
, current
);
3859 current
->state
= TASK_INTERRUPTIBLE
;
3861 sleep_on_head(q
, &wait
, &flags
);
3863 sleep_on_tail(q
, &wait
, &flags
);
3865 EXPORT_SYMBOL(interruptible_sleep_on
);
3868 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3870 unsigned long flags
;
3873 init_waitqueue_entry(&wait
, current
);
3875 current
->state
= TASK_INTERRUPTIBLE
;
3877 sleep_on_head(q
, &wait
, &flags
);
3878 timeout
= schedule_timeout(timeout
);
3879 sleep_on_tail(q
, &wait
, &flags
);
3883 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3885 void __sched
sleep_on(wait_queue_head_t
*q
)
3887 unsigned long flags
;
3890 init_waitqueue_entry(&wait
, current
);
3892 current
->state
= TASK_UNINTERRUPTIBLE
;
3894 sleep_on_head(q
, &wait
, &flags
);
3896 sleep_on_tail(q
, &wait
, &flags
);
3898 EXPORT_SYMBOL(sleep_on
);
3900 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3902 unsigned long flags
;
3905 init_waitqueue_entry(&wait
, current
);
3907 current
->state
= TASK_UNINTERRUPTIBLE
;
3909 sleep_on_head(q
, &wait
, &flags
);
3910 timeout
= schedule_timeout(timeout
);
3911 sleep_on_tail(q
, &wait
, &flags
);
3915 EXPORT_SYMBOL(sleep_on_timeout
);
3917 #ifdef CONFIG_RT_MUTEXES
3920 * rt_mutex_setprio - set the current priority of a task
3922 * @prio: prio value (kernel-internal form)
3924 * This function changes the 'effective' priority of a task. It does
3925 * not touch ->normal_prio like __setscheduler().
3927 * Used by the rt_mutex code to implement priority inheritance logic.
3929 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3931 unsigned long flags
;
3932 int oldprio
, on_rq
, running
;
3935 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3937 rq
= task_rq_lock(p
, &flags
);
3938 update_rq_clock(rq
);
3941 on_rq
= p
->se
.on_rq
;
3942 running
= task_running(rq
, p
);
3944 dequeue_task(rq
, p
, 0);
3946 p
->sched_class
->put_prev_task(rq
, p
);
3950 p
->sched_class
= &rt_sched_class
;
3952 p
->sched_class
= &fair_sched_class
;
3958 p
->sched_class
->set_curr_task(rq
);
3959 enqueue_task(rq
, p
, 0);
3961 * Reschedule if we are currently running on this runqueue and
3962 * our priority decreased, or if we are not currently running on
3963 * this runqueue and our priority is higher than the current's
3966 if (p
->prio
> oldprio
)
3967 resched_task(rq
->curr
);
3969 check_preempt_curr(rq
, p
);
3972 task_rq_unlock(rq
, &flags
);
3977 void set_user_nice(struct task_struct
*p
, long nice
)
3979 int old_prio
, delta
, on_rq
;
3980 unsigned long flags
;
3983 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3986 * We have to be careful, if called from sys_setpriority(),
3987 * the task might be in the middle of scheduling on another CPU.
3989 rq
= task_rq_lock(p
, &flags
);
3990 update_rq_clock(rq
);
3992 * The RT priorities are set via sched_setscheduler(), but we still
3993 * allow the 'normal' nice value to be set - but as expected
3994 * it wont have any effect on scheduling until the task is
3995 * SCHED_FIFO/SCHED_RR:
3997 if (task_has_rt_policy(p
)) {
3998 p
->static_prio
= NICE_TO_PRIO(nice
);
4001 on_rq
= p
->se
.on_rq
;
4003 dequeue_task(rq
, p
, 0);
4007 p
->static_prio
= NICE_TO_PRIO(nice
);
4010 p
->prio
= effective_prio(p
);
4011 delta
= p
->prio
- old_prio
;
4014 enqueue_task(rq
, p
, 0);
4017 * If the task increased its priority or is running and
4018 * lowered its priority, then reschedule its CPU:
4020 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4021 resched_task(rq
->curr
);
4024 task_rq_unlock(rq
, &flags
);
4026 EXPORT_SYMBOL(set_user_nice
);
4029 * can_nice - check if a task can reduce its nice value
4033 int can_nice(const struct task_struct
*p
, const int nice
)
4035 /* convert nice value [19,-20] to rlimit style value [1,40] */
4036 int nice_rlim
= 20 - nice
;
4038 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4039 capable(CAP_SYS_NICE
));
4042 #ifdef __ARCH_WANT_SYS_NICE
4045 * sys_nice - change the priority of the current process.
4046 * @increment: priority increment
4048 * sys_setpriority is a more generic, but much slower function that
4049 * does similar things.
4051 asmlinkage
long sys_nice(int increment
)
4056 * Setpriority might change our priority at the same moment.
4057 * We don't have to worry. Conceptually one call occurs first
4058 * and we have a single winner.
4060 if (increment
< -40)
4065 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4071 if (increment
< 0 && !can_nice(current
, nice
))
4074 retval
= security_task_setnice(current
, nice
);
4078 set_user_nice(current
, nice
);
4085 * task_prio - return the priority value of a given task.
4086 * @p: the task in question.
4088 * This is the priority value as seen by users in /proc.
4089 * RT tasks are offset by -200. Normal tasks are centered
4090 * around 0, value goes from -16 to +15.
4092 int task_prio(const struct task_struct
*p
)
4094 return p
->prio
- MAX_RT_PRIO
;
4098 * task_nice - return the nice value of a given task.
4099 * @p: the task in question.
4101 int task_nice(const struct task_struct
*p
)
4103 return TASK_NICE(p
);
4105 EXPORT_SYMBOL_GPL(task_nice
);
4108 * idle_cpu - is a given cpu idle currently?
4109 * @cpu: the processor in question.
4111 int idle_cpu(int cpu
)
4113 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4117 * idle_task - return the idle task for a given cpu.
4118 * @cpu: the processor in question.
4120 struct task_struct
*idle_task(int cpu
)
4122 return cpu_rq(cpu
)->idle
;
4126 * find_process_by_pid - find a process with a matching PID value.
4127 * @pid: the pid in question.
4129 static struct task_struct
*find_process_by_pid(pid_t pid
)
4131 return pid
? find_task_by_pid(pid
) : current
;
4134 /* Actually do priority change: must hold rq lock. */
4136 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4138 BUG_ON(p
->se
.on_rq
);
4141 switch (p
->policy
) {
4145 p
->sched_class
= &fair_sched_class
;
4149 p
->sched_class
= &rt_sched_class
;
4153 p
->rt_priority
= prio
;
4154 p
->normal_prio
= normal_prio(p
);
4155 /* we are holding p->pi_lock already */
4156 p
->prio
= rt_mutex_getprio(p
);
4161 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4162 * @p: the task in question.
4163 * @policy: new policy.
4164 * @param: structure containing the new RT priority.
4166 * NOTE that the task may be already dead.
4168 int sched_setscheduler(struct task_struct
*p
, int policy
,
4169 struct sched_param
*param
)
4171 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4172 unsigned long flags
;
4175 /* may grab non-irq protected spin_locks */
4176 BUG_ON(in_interrupt());
4178 /* double check policy once rq lock held */
4180 policy
= oldpolicy
= p
->policy
;
4181 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4182 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4183 policy
!= SCHED_IDLE
)
4186 * Valid priorities for SCHED_FIFO and SCHED_RR are
4187 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4188 * SCHED_BATCH and SCHED_IDLE is 0.
4190 if (param
->sched_priority
< 0 ||
4191 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4192 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4194 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4198 * Allow unprivileged RT tasks to decrease priority:
4200 if (!capable(CAP_SYS_NICE
)) {
4201 if (rt_policy(policy
)) {
4202 unsigned long rlim_rtprio
;
4204 if (!lock_task_sighand(p
, &flags
))
4206 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4207 unlock_task_sighand(p
, &flags
);
4209 /* can't set/change the rt policy */
4210 if (policy
!= p
->policy
&& !rlim_rtprio
)
4213 /* can't increase priority */
4214 if (param
->sched_priority
> p
->rt_priority
&&
4215 param
->sched_priority
> rlim_rtprio
)
4219 * Like positive nice levels, dont allow tasks to
4220 * move out of SCHED_IDLE either:
4222 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4225 /* can't change other user's priorities */
4226 if ((current
->euid
!= p
->euid
) &&
4227 (current
->euid
!= p
->uid
))
4231 retval
= security_task_setscheduler(p
, policy
, param
);
4235 * make sure no PI-waiters arrive (or leave) while we are
4236 * changing the priority of the task:
4238 spin_lock_irqsave(&p
->pi_lock
, flags
);
4240 * To be able to change p->policy safely, the apropriate
4241 * runqueue lock must be held.
4243 rq
= __task_rq_lock(p
);
4244 /* recheck policy now with rq lock held */
4245 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4246 policy
= oldpolicy
= -1;
4247 __task_rq_unlock(rq
);
4248 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4251 update_rq_clock(rq
);
4252 on_rq
= p
->se
.on_rq
;
4253 running
= task_running(rq
, p
);
4255 deactivate_task(rq
, p
, 0);
4257 p
->sched_class
->put_prev_task(rq
, p
);
4261 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4265 p
->sched_class
->set_curr_task(rq
);
4266 activate_task(rq
, p
, 0);
4268 * Reschedule if we are currently running on this runqueue and
4269 * our priority decreased, or if we are not currently running on
4270 * this runqueue and our priority is higher than the current's
4273 if (p
->prio
> oldprio
)
4274 resched_task(rq
->curr
);
4276 check_preempt_curr(rq
, p
);
4279 __task_rq_unlock(rq
);
4280 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4282 rt_mutex_adjust_pi(p
);
4286 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4289 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4291 struct sched_param lparam
;
4292 struct task_struct
*p
;
4295 if (!param
|| pid
< 0)
4297 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4302 p
= find_process_by_pid(pid
);
4304 retval
= sched_setscheduler(p
, policy
, &lparam
);
4311 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4312 * @pid: the pid in question.
4313 * @policy: new policy.
4314 * @param: structure containing the new RT priority.
4316 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4317 struct sched_param __user
*param
)
4319 /* negative values for policy are not valid */
4323 return do_sched_setscheduler(pid
, policy
, param
);
4327 * sys_sched_setparam - set/change the RT priority of a thread
4328 * @pid: the pid in question.
4329 * @param: structure containing the new RT priority.
4331 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4333 return do_sched_setscheduler(pid
, -1, param
);
4337 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4338 * @pid: the pid in question.
4340 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4342 struct task_struct
*p
;
4343 int retval
= -EINVAL
;
4349 read_lock(&tasklist_lock
);
4350 p
= find_process_by_pid(pid
);
4352 retval
= security_task_getscheduler(p
);
4356 read_unlock(&tasklist_lock
);
4363 * sys_sched_getscheduler - get the RT priority of a thread
4364 * @pid: the pid in question.
4365 * @param: structure containing the RT priority.
4367 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4369 struct sched_param lp
;
4370 struct task_struct
*p
;
4371 int retval
= -EINVAL
;
4373 if (!param
|| pid
< 0)
4376 read_lock(&tasklist_lock
);
4377 p
= find_process_by_pid(pid
);
4382 retval
= security_task_getscheduler(p
);
4386 lp
.sched_priority
= p
->rt_priority
;
4387 read_unlock(&tasklist_lock
);
4390 * This one might sleep, we cannot do it with a spinlock held ...
4392 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4398 read_unlock(&tasklist_lock
);
4402 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4404 cpumask_t cpus_allowed
;
4405 struct task_struct
*p
;
4408 mutex_lock(&sched_hotcpu_mutex
);
4409 read_lock(&tasklist_lock
);
4411 p
= find_process_by_pid(pid
);
4413 read_unlock(&tasklist_lock
);
4414 mutex_unlock(&sched_hotcpu_mutex
);
4419 * It is not safe to call set_cpus_allowed with the
4420 * tasklist_lock held. We will bump the task_struct's
4421 * usage count and then drop tasklist_lock.
4424 read_unlock(&tasklist_lock
);
4427 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4428 !capable(CAP_SYS_NICE
))
4431 retval
= security_task_setscheduler(p
, 0, NULL
);
4435 cpus_allowed
= cpuset_cpus_allowed(p
);
4436 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4437 retval
= set_cpus_allowed(p
, new_mask
);
4441 mutex_unlock(&sched_hotcpu_mutex
);
4445 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4446 cpumask_t
*new_mask
)
4448 if (len
< sizeof(cpumask_t
)) {
4449 memset(new_mask
, 0, sizeof(cpumask_t
));
4450 } else if (len
> sizeof(cpumask_t
)) {
4451 len
= sizeof(cpumask_t
);
4453 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4457 * sys_sched_setaffinity - set the cpu affinity of a process
4458 * @pid: pid of the process
4459 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4460 * @user_mask_ptr: user-space pointer to the new cpu mask
4462 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4463 unsigned long __user
*user_mask_ptr
)
4468 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4472 return sched_setaffinity(pid
, new_mask
);
4476 * Represents all cpu's present in the system
4477 * In systems capable of hotplug, this map could dynamically grow
4478 * as new cpu's are detected in the system via any platform specific
4479 * method, such as ACPI for e.g.
4482 cpumask_t cpu_present_map __read_mostly
;
4483 EXPORT_SYMBOL(cpu_present_map
);
4486 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4487 EXPORT_SYMBOL(cpu_online_map
);
4489 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4490 EXPORT_SYMBOL(cpu_possible_map
);
4493 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4495 struct task_struct
*p
;
4498 mutex_lock(&sched_hotcpu_mutex
);
4499 read_lock(&tasklist_lock
);
4502 p
= find_process_by_pid(pid
);
4506 retval
= security_task_getscheduler(p
);
4510 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4513 read_unlock(&tasklist_lock
);
4514 mutex_unlock(&sched_hotcpu_mutex
);
4520 * sys_sched_getaffinity - get the cpu affinity of a process
4521 * @pid: pid of the process
4522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4525 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4526 unsigned long __user
*user_mask_ptr
)
4531 if (len
< sizeof(cpumask_t
))
4534 ret
= sched_getaffinity(pid
, &mask
);
4538 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4541 return sizeof(cpumask_t
);
4545 * sys_sched_yield - yield the current processor to other threads.
4547 * This function yields the current CPU to other tasks. If there are no
4548 * other threads running on this CPU then this function will return.
4550 asmlinkage
long sys_sched_yield(void)
4552 struct rq
*rq
= this_rq_lock();
4554 schedstat_inc(rq
, yld_count
);
4555 current
->sched_class
->yield_task(rq
);
4558 * Since we are going to call schedule() anyway, there's
4559 * no need to preempt or enable interrupts:
4561 __release(rq
->lock
);
4562 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4563 _raw_spin_unlock(&rq
->lock
);
4564 preempt_enable_no_resched();
4571 static void __cond_resched(void)
4573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4574 __might_sleep(__FILE__
, __LINE__
);
4577 * The BKS might be reacquired before we have dropped
4578 * PREEMPT_ACTIVE, which could trigger a second
4579 * cond_resched() call.
4582 add_preempt_count(PREEMPT_ACTIVE
);
4584 sub_preempt_count(PREEMPT_ACTIVE
);
4585 } while (need_resched());
4588 int __sched
cond_resched(void)
4590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4591 system_state
== SYSTEM_RUNNING
) {
4597 EXPORT_SYMBOL(cond_resched
);
4600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4601 * call schedule, and on return reacquire the lock.
4603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4604 * operations here to prevent schedule() from being called twice (once via
4605 * spin_unlock(), once by hand).
4607 int cond_resched_lock(spinlock_t
*lock
)
4611 if (need_lockbreak(lock
)) {
4617 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4618 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4619 _raw_spin_unlock(lock
);
4620 preempt_enable_no_resched();
4627 EXPORT_SYMBOL(cond_resched_lock
);
4629 int __sched
cond_resched_softirq(void)
4631 BUG_ON(!in_softirq());
4633 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4641 EXPORT_SYMBOL(cond_resched_softirq
);
4644 * yield - yield the current processor to other threads.
4646 * This is a shortcut for kernel-space yielding - it marks the
4647 * thread runnable and calls sys_sched_yield().
4649 void __sched
yield(void)
4651 set_current_state(TASK_RUNNING
);
4654 EXPORT_SYMBOL(yield
);
4657 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4658 * that process accounting knows that this is a task in IO wait state.
4660 * But don't do that if it is a deliberate, throttling IO wait (this task
4661 * has set its backing_dev_info: the queue against which it should throttle)
4663 void __sched
io_schedule(void)
4665 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4667 delayacct_blkio_start();
4668 atomic_inc(&rq
->nr_iowait
);
4670 atomic_dec(&rq
->nr_iowait
);
4671 delayacct_blkio_end();
4673 EXPORT_SYMBOL(io_schedule
);
4675 long __sched
io_schedule_timeout(long timeout
)
4677 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4680 delayacct_blkio_start();
4681 atomic_inc(&rq
->nr_iowait
);
4682 ret
= schedule_timeout(timeout
);
4683 atomic_dec(&rq
->nr_iowait
);
4684 delayacct_blkio_end();
4689 * sys_sched_get_priority_max - return maximum RT priority.
4690 * @policy: scheduling class.
4692 * this syscall returns the maximum rt_priority that can be used
4693 * by a given scheduling class.
4695 asmlinkage
long sys_sched_get_priority_max(int policy
)
4702 ret
= MAX_USER_RT_PRIO
-1;
4714 * sys_sched_get_priority_min - return minimum RT priority.
4715 * @policy: scheduling class.
4717 * this syscall returns the minimum rt_priority that can be used
4718 * by a given scheduling class.
4720 asmlinkage
long sys_sched_get_priority_min(int policy
)
4738 * sys_sched_rr_get_interval - return the default timeslice of a process.
4739 * @pid: pid of the process.
4740 * @interval: userspace pointer to the timeslice value.
4742 * this syscall writes the default timeslice value of a given process
4743 * into the user-space timespec buffer. A value of '0' means infinity.
4746 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4748 struct task_struct
*p
;
4749 int retval
= -EINVAL
;
4756 read_lock(&tasklist_lock
);
4757 p
= find_process_by_pid(pid
);
4761 retval
= security_task_getscheduler(p
);
4765 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4766 0 : static_prio_timeslice(p
->static_prio
), &t
);
4767 read_unlock(&tasklist_lock
);
4768 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4772 read_unlock(&tasklist_lock
);
4776 static const char stat_nam
[] = "RSDTtZX";
4778 static void show_task(struct task_struct
*p
)
4780 unsigned long free
= 0;
4783 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4784 printk("%-13.13s %c", p
->comm
,
4785 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4786 #if BITS_PER_LONG == 32
4787 if (state
== TASK_RUNNING
)
4788 printk(" running ");
4790 printk(" %08lx ", thread_saved_pc(p
));
4792 if (state
== TASK_RUNNING
)
4793 printk(" running task ");
4795 printk(" %016lx ", thread_saved_pc(p
));
4797 #ifdef CONFIG_DEBUG_STACK_USAGE
4799 unsigned long *n
= end_of_stack(p
);
4802 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4805 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4807 if (state
!= TASK_RUNNING
)
4808 show_stack(p
, NULL
);
4811 void show_state_filter(unsigned long state_filter
)
4813 struct task_struct
*g
, *p
;
4815 #if BITS_PER_LONG == 32
4817 " task PC stack pid father\n");
4820 " task PC stack pid father\n");
4822 read_lock(&tasklist_lock
);
4823 do_each_thread(g
, p
) {
4825 * reset the NMI-timeout, listing all files on a slow
4826 * console might take alot of time:
4828 touch_nmi_watchdog();
4829 if (!state_filter
|| (p
->state
& state_filter
))
4831 } while_each_thread(g
, p
);
4833 touch_all_softlockup_watchdogs();
4835 #ifdef CONFIG_SCHED_DEBUG
4836 sysrq_sched_debug_show();
4838 read_unlock(&tasklist_lock
);
4840 * Only show locks if all tasks are dumped:
4842 if (state_filter
== -1)
4843 debug_show_all_locks();
4846 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4848 idle
->sched_class
= &idle_sched_class
;
4852 * init_idle - set up an idle thread for a given CPU
4853 * @idle: task in question
4854 * @cpu: cpu the idle task belongs to
4856 * NOTE: this function does not set the idle thread's NEED_RESCHED
4857 * flag, to make booting more robust.
4859 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4861 struct rq
*rq
= cpu_rq(cpu
);
4862 unsigned long flags
;
4865 idle
->se
.exec_start
= sched_clock();
4867 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4868 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4869 __set_task_cpu(idle
, cpu
);
4871 spin_lock_irqsave(&rq
->lock
, flags
);
4872 rq
->curr
= rq
->idle
= idle
;
4873 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4876 spin_unlock_irqrestore(&rq
->lock
, flags
);
4878 /* Set the preempt count _outside_ the spinlocks! */
4879 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4880 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4882 task_thread_info(idle
)->preempt_count
= 0;
4885 * The idle tasks have their own, simple scheduling class:
4887 idle
->sched_class
= &idle_sched_class
;
4891 * In a system that switches off the HZ timer nohz_cpu_mask
4892 * indicates which cpus entered this state. This is used
4893 * in the rcu update to wait only for active cpus. For system
4894 * which do not switch off the HZ timer nohz_cpu_mask should
4895 * always be CPU_MASK_NONE.
4897 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4901 * This is how migration works:
4903 * 1) we queue a struct migration_req structure in the source CPU's
4904 * runqueue and wake up that CPU's migration thread.
4905 * 2) we down() the locked semaphore => thread blocks.
4906 * 3) migration thread wakes up (implicitly it forces the migrated
4907 * thread off the CPU)
4908 * 4) it gets the migration request and checks whether the migrated
4909 * task is still in the wrong runqueue.
4910 * 5) if it's in the wrong runqueue then the migration thread removes
4911 * it and puts it into the right queue.
4912 * 6) migration thread up()s the semaphore.
4913 * 7) we wake up and the migration is done.
4917 * Change a given task's CPU affinity. Migrate the thread to a
4918 * proper CPU and schedule it away if the CPU it's executing on
4919 * is removed from the allowed bitmask.
4921 * NOTE: the caller must have a valid reference to the task, the
4922 * task must not exit() & deallocate itself prematurely. The
4923 * call is not atomic; no spinlocks may be held.
4925 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4927 struct migration_req req
;
4928 unsigned long flags
;
4932 rq
= task_rq_lock(p
, &flags
);
4933 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4938 p
->cpus_allowed
= new_mask
;
4939 /* Can the task run on the task's current CPU? If so, we're done */
4940 if (cpu_isset(task_cpu(p
), new_mask
))
4943 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4944 /* Need help from migration thread: drop lock and wait. */
4945 task_rq_unlock(rq
, &flags
);
4946 wake_up_process(rq
->migration_thread
);
4947 wait_for_completion(&req
.done
);
4948 tlb_migrate_finish(p
->mm
);
4952 task_rq_unlock(rq
, &flags
);
4956 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4959 * Move (not current) task off this cpu, onto dest cpu. We're doing
4960 * this because either it can't run here any more (set_cpus_allowed()
4961 * away from this CPU, or CPU going down), or because we're
4962 * attempting to rebalance this task on exec (sched_exec).
4964 * So we race with normal scheduler movements, but that's OK, as long
4965 * as the task is no longer on this CPU.
4967 * Returns non-zero if task was successfully migrated.
4969 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4971 struct rq
*rq_dest
, *rq_src
;
4974 if (unlikely(cpu_is_offline(dest_cpu
)))
4977 rq_src
= cpu_rq(src_cpu
);
4978 rq_dest
= cpu_rq(dest_cpu
);
4980 double_rq_lock(rq_src
, rq_dest
);
4981 /* Already moved. */
4982 if (task_cpu(p
) != src_cpu
)
4984 /* Affinity changed (again). */
4985 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4988 on_rq
= p
->se
.on_rq
;
4990 deactivate_task(rq_src
, p
, 0);
4992 set_task_cpu(p
, dest_cpu
);
4994 activate_task(rq_dest
, p
, 0);
4995 check_preempt_curr(rq_dest
, p
);
4999 double_rq_unlock(rq_src
, rq_dest
);
5004 * migration_thread - this is a highprio system thread that performs
5005 * thread migration by bumping thread off CPU then 'pushing' onto
5008 static int migration_thread(void *data
)
5010 int cpu
= (long)data
;
5014 BUG_ON(rq
->migration_thread
!= current
);
5016 set_current_state(TASK_INTERRUPTIBLE
);
5017 while (!kthread_should_stop()) {
5018 struct migration_req
*req
;
5019 struct list_head
*head
;
5021 spin_lock_irq(&rq
->lock
);
5023 if (cpu_is_offline(cpu
)) {
5024 spin_unlock_irq(&rq
->lock
);
5028 if (rq
->active_balance
) {
5029 active_load_balance(rq
, cpu
);
5030 rq
->active_balance
= 0;
5033 head
= &rq
->migration_queue
;
5035 if (list_empty(head
)) {
5036 spin_unlock_irq(&rq
->lock
);
5038 set_current_state(TASK_INTERRUPTIBLE
);
5041 req
= list_entry(head
->next
, struct migration_req
, list
);
5042 list_del_init(head
->next
);
5044 spin_unlock(&rq
->lock
);
5045 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5048 complete(&req
->done
);
5050 __set_current_state(TASK_RUNNING
);
5054 /* Wait for kthread_stop */
5055 set_current_state(TASK_INTERRUPTIBLE
);
5056 while (!kthread_should_stop()) {
5058 set_current_state(TASK_INTERRUPTIBLE
);
5060 __set_current_state(TASK_RUNNING
);
5064 #ifdef CONFIG_HOTPLUG_CPU
5066 * Figure out where task on dead CPU should go, use force if neccessary.
5067 * NOTE: interrupts should be disabled by the caller
5069 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5071 unsigned long flags
;
5078 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5079 cpus_and(mask
, mask
, p
->cpus_allowed
);
5080 dest_cpu
= any_online_cpu(mask
);
5082 /* On any allowed CPU? */
5083 if (dest_cpu
== NR_CPUS
)
5084 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5086 /* No more Mr. Nice Guy. */
5087 if (dest_cpu
== NR_CPUS
) {
5088 rq
= task_rq_lock(p
, &flags
);
5089 cpus_setall(p
->cpus_allowed
);
5090 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5091 task_rq_unlock(rq
, &flags
);
5094 * Don't tell them about moving exiting tasks or
5095 * kernel threads (both mm NULL), since they never
5098 if (p
->mm
&& printk_ratelimit())
5099 printk(KERN_INFO
"process %d (%s) no "
5100 "longer affine to cpu%d\n",
5101 p
->pid
, p
->comm
, dead_cpu
);
5103 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5108 * While a dead CPU has no uninterruptible tasks queued at this point,
5109 * it might still have a nonzero ->nr_uninterruptible counter, because
5110 * for performance reasons the counter is not stricly tracking tasks to
5111 * their home CPUs. So we just add the counter to another CPU's counter,
5112 * to keep the global sum constant after CPU-down:
5114 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5116 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5117 unsigned long flags
;
5119 local_irq_save(flags
);
5120 double_rq_lock(rq_src
, rq_dest
);
5121 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5122 rq_src
->nr_uninterruptible
= 0;
5123 double_rq_unlock(rq_src
, rq_dest
);
5124 local_irq_restore(flags
);
5127 /* Run through task list and migrate tasks from the dead cpu. */
5128 static void migrate_live_tasks(int src_cpu
)
5130 struct task_struct
*p
, *t
;
5132 write_lock_irq(&tasklist_lock
);
5134 do_each_thread(t
, p
) {
5138 if (task_cpu(p
) == src_cpu
)
5139 move_task_off_dead_cpu(src_cpu
, p
);
5140 } while_each_thread(t
, p
);
5142 write_unlock_irq(&tasklist_lock
);
5146 * activate_idle_task - move idle task to the _front_ of runqueue.
5148 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5150 update_rq_clock(rq
);
5152 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5153 rq
->nr_uninterruptible
--;
5155 enqueue_task(rq
, p
, 0);
5156 inc_nr_running(p
, rq
);
5160 * Schedules idle task to be the next runnable task on current CPU.
5161 * It does so by boosting its priority to highest possible and adding it to
5162 * the _front_ of the runqueue. Used by CPU offline code.
5164 void sched_idle_next(void)
5166 int this_cpu
= smp_processor_id();
5167 struct rq
*rq
= cpu_rq(this_cpu
);
5168 struct task_struct
*p
= rq
->idle
;
5169 unsigned long flags
;
5171 /* cpu has to be offline */
5172 BUG_ON(cpu_online(this_cpu
));
5175 * Strictly not necessary since rest of the CPUs are stopped by now
5176 * and interrupts disabled on the current cpu.
5178 spin_lock_irqsave(&rq
->lock
, flags
);
5180 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5182 /* Add idle task to the _front_ of its priority queue: */
5183 activate_idle_task(p
, rq
);
5185 spin_unlock_irqrestore(&rq
->lock
, flags
);
5189 * Ensures that the idle task is using init_mm right before its cpu goes
5192 void idle_task_exit(void)
5194 struct mm_struct
*mm
= current
->active_mm
;
5196 BUG_ON(cpu_online(smp_processor_id()));
5199 switch_mm(mm
, &init_mm
, current
);
5203 /* called under rq->lock with disabled interrupts */
5204 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5206 struct rq
*rq
= cpu_rq(dead_cpu
);
5208 /* Must be exiting, otherwise would be on tasklist. */
5209 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5211 /* Cannot have done final schedule yet: would have vanished. */
5212 BUG_ON(p
->state
== TASK_DEAD
);
5217 * Drop lock around migration; if someone else moves it,
5218 * that's OK. No task can be added to this CPU, so iteration is
5220 * NOTE: interrupts should be left disabled --dev@
5222 spin_unlock(&rq
->lock
);
5223 move_task_off_dead_cpu(dead_cpu
, p
);
5224 spin_lock(&rq
->lock
);
5229 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5230 static void migrate_dead_tasks(unsigned int dead_cpu
)
5232 struct rq
*rq
= cpu_rq(dead_cpu
);
5233 struct task_struct
*next
;
5236 if (!rq
->nr_running
)
5238 update_rq_clock(rq
);
5239 next
= pick_next_task(rq
, rq
->curr
);
5242 migrate_dead(dead_cpu
, next
);
5246 #endif /* CONFIG_HOTPLUG_CPU */
5248 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5250 static struct ctl_table sd_ctl_dir
[] = {
5252 .procname
= "sched_domain",
5258 static struct ctl_table sd_ctl_root
[] = {
5260 .ctl_name
= CTL_KERN
,
5261 .procname
= "kernel",
5263 .child
= sd_ctl_dir
,
5268 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5270 struct ctl_table
*entry
=
5271 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5274 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5280 set_table_entry(struct ctl_table
*entry
,
5281 const char *procname
, void *data
, int maxlen
,
5282 mode_t mode
, proc_handler
*proc_handler
)
5284 entry
->procname
= procname
;
5286 entry
->maxlen
= maxlen
;
5288 entry
->proc_handler
= proc_handler
;
5291 static struct ctl_table
*
5292 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5294 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5296 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5297 sizeof(long), 0644, proc_doulongvec_minmax
);
5298 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5299 sizeof(long), 0644, proc_doulongvec_minmax
);
5300 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5301 sizeof(int), 0644, proc_dointvec_minmax
);
5302 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5303 sizeof(int), 0644, proc_dointvec_minmax
);
5304 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5305 sizeof(int), 0644, proc_dointvec_minmax
);
5306 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5307 sizeof(int), 0644, proc_dointvec_minmax
);
5308 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5309 sizeof(int), 0644, proc_dointvec_minmax
);
5310 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5311 sizeof(int), 0644, proc_dointvec_minmax
);
5312 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5313 sizeof(int), 0644, proc_dointvec_minmax
);
5314 set_table_entry(&table
[10], "cache_nice_tries",
5315 &sd
->cache_nice_tries
,
5316 sizeof(int), 0644, proc_dointvec_minmax
);
5317 set_table_entry(&table
[12], "flags", &sd
->flags
,
5318 sizeof(int), 0644, proc_dointvec_minmax
);
5323 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5325 struct ctl_table
*entry
, *table
;
5326 struct sched_domain
*sd
;
5327 int domain_num
= 0, i
;
5330 for_each_domain(cpu
, sd
)
5332 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5335 for_each_domain(cpu
, sd
) {
5336 snprintf(buf
, 32, "domain%d", i
);
5337 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5339 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5346 static struct ctl_table_header
*sd_sysctl_header
;
5347 static void init_sched_domain_sysctl(void)
5349 int i
, cpu_num
= num_online_cpus();
5350 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5353 sd_ctl_dir
[0].child
= entry
;
5355 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5356 snprintf(buf
, 32, "cpu%d", i
);
5357 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5359 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5361 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5364 static void init_sched_domain_sysctl(void)
5370 * migration_call - callback that gets triggered when a CPU is added.
5371 * Here we can start up the necessary migration thread for the new CPU.
5373 static int __cpuinit
5374 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5376 struct task_struct
*p
;
5377 int cpu
= (long)hcpu
;
5378 unsigned long flags
;
5382 case CPU_LOCK_ACQUIRE
:
5383 mutex_lock(&sched_hotcpu_mutex
);
5386 case CPU_UP_PREPARE
:
5387 case CPU_UP_PREPARE_FROZEN
:
5388 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5391 kthread_bind(p
, cpu
);
5392 /* Must be high prio: stop_machine expects to yield to it. */
5393 rq
= task_rq_lock(p
, &flags
);
5394 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5395 task_rq_unlock(rq
, &flags
);
5396 cpu_rq(cpu
)->migration_thread
= p
;
5400 case CPU_ONLINE_FROZEN
:
5401 /* Strictly unneccessary, as first user will wake it. */
5402 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5405 #ifdef CONFIG_HOTPLUG_CPU
5406 case CPU_UP_CANCELED
:
5407 case CPU_UP_CANCELED_FROZEN
:
5408 if (!cpu_rq(cpu
)->migration_thread
)
5410 /* Unbind it from offline cpu so it can run. Fall thru. */
5411 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5412 any_online_cpu(cpu_online_map
));
5413 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5414 cpu_rq(cpu
)->migration_thread
= NULL
;
5418 case CPU_DEAD_FROZEN
:
5419 migrate_live_tasks(cpu
);
5421 kthread_stop(rq
->migration_thread
);
5422 rq
->migration_thread
= NULL
;
5423 /* Idle task back to normal (off runqueue, low prio) */
5424 rq
= task_rq_lock(rq
->idle
, &flags
);
5425 update_rq_clock(rq
);
5426 deactivate_task(rq
, rq
->idle
, 0);
5427 rq
->idle
->static_prio
= MAX_PRIO
;
5428 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5429 rq
->idle
->sched_class
= &idle_sched_class
;
5430 migrate_dead_tasks(cpu
);
5431 task_rq_unlock(rq
, &flags
);
5432 migrate_nr_uninterruptible(rq
);
5433 BUG_ON(rq
->nr_running
!= 0);
5435 /* No need to migrate the tasks: it was best-effort if
5436 * they didn't take sched_hotcpu_mutex. Just wake up
5437 * the requestors. */
5438 spin_lock_irq(&rq
->lock
);
5439 while (!list_empty(&rq
->migration_queue
)) {
5440 struct migration_req
*req
;
5442 req
= list_entry(rq
->migration_queue
.next
,
5443 struct migration_req
, list
);
5444 list_del_init(&req
->list
);
5445 complete(&req
->done
);
5447 spin_unlock_irq(&rq
->lock
);
5450 case CPU_LOCK_RELEASE
:
5451 mutex_unlock(&sched_hotcpu_mutex
);
5457 /* Register at highest priority so that task migration (migrate_all_tasks)
5458 * happens before everything else.
5460 static struct notifier_block __cpuinitdata migration_notifier
= {
5461 .notifier_call
= migration_call
,
5465 int __init
migration_init(void)
5467 void *cpu
= (void *)(long)smp_processor_id();
5470 /* Start one for the boot CPU: */
5471 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5472 BUG_ON(err
== NOTIFY_BAD
);
5473 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5474 register_cpu_notifier(&migration_notifier
);
5482 /* Number of possible processor ids */
5483 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5484 EXPORT_SYMBOL(nr_cpu_ids
);
5486 #undef SCHED_DOMAIN_DEBUG
5487 #ifdef SCHED_DOMAIN_DEBUG
5488 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5493 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5497 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5502 struct sched_group
*group
= sd
->groups
;
5503 cpumask_t groupmask
;
5505 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5506 cpus_clear(groupmask
);
5509 for (i
= 0; i
< level
+ 1; i
++)
5511 printk("domain %d: ", level
);
5513 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5514 printk("does not load-balance\n");
5516 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5521 printk("span %s\n", str
);
5523 if (!cpu_isset(cpu
, sd
->span
))
5524 printk(KERN_ERR
"ERROR: domain->span does not contain "
5526 if (!cpu_isset(cpu
, group
->cpumask
))
5527 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5531 for (i
= 0; i
< level
+ 2; i
++)
5537 printk(KERN_ERR
"ERROR: group is NULL\n");
5541 if (!group
->__cpu_power
) {
5543 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5547 if (!cpus_weight(group
->cpumask
)) {
5549 printk(KERN_ERR
"ERROR: empty group\n");
5552 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5554 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5557 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5559 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5562 group
= group
->next
;
5563 } while (group
!= sd
->groups
);
5566 if (!cpus_equal(sd
->span
, groupmask
))
5567 printk(KERN_ERR
"ERROR: groups don't span "
5575 if (!cpus_subset(groupmask
, sd
->span
))
5576 printk(KERN_ERR
"ERROR: parent span is not a superset "
5577 "of domain->span\n");
5582 # define sched_domain_debug(sd, cpu) do { } while (0)
5585 static int sd_degenerate(struct sched_domain
*sd
)
5587 if (cpus_weight(sd
->span
) == 1)
5590 /* Following flags need at least 2 groups */
5591 if (sd
->flags
& (SD_LOAD_BALANCE
|
5592 SD_BALANCE_NEWIDLE
|
5596 SD_SHARE_PKG_RESOURCES
)) {
5597 if (sd
->groups
!= sd
->groups
->next
)
5601 /* Following flags don't use groups */
5602 if (sd
->flags
& (SD_WAKE_IDLE
|
5611 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5613 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5615 if (sd_degenerate(parent
))
5618 if (!cpus_equal(sd
->span
, parent
->span
))
5621 /* Does parent contain flags not in child? */
5622 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5623 if (cflags
& SD_WAKE_AFFINE
)
5624 pflags
&= ~SD_WAKE_BALANCE
;
5625 /* Flags needing groups don't count if only 1 group in parent */
5626 if (parent
->groups
== parent
->groups
->next
) {
5627 pflags
&= ~(SD_LOAD_BALANCE
|
5628 SD_BALANCE_NEWIDLE
|
5632 SD_SHARE_PKG_RESOURCES
);
5634 if (~cflags
& pflags
)
5641 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5642 * hold the hotplug lock.
5644 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5646 struct rq
*rq
= cpu_rq(cpu
);
5647 struct sched_domain
*tmp
;
5649 /* Remove the sched domains which do not contribute to scheduling. */
5650 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5651 struct sched_domain
*parent
= tmp
->parent
;
5654 if (sd_parent_degenerate(tmp
, parent
)) {
5655 tmp
->parent
= parent
->parent
;
5657 parent
->parent
->child
= tmp
;
5661 if (sd
&& sd_degenerate(sd
)) {
5667 sched_domain_debug(sd
, cpu
);
5669 rcu_assign_pointer(rq
->sd
, sd
);
5672 /* cpus with isolated domains */
5673 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init
isolated_cpu_setup(char *str
)
5678 int ints
[NR_CPUS
], i
;
5680 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5681 cpus_clear(cpu_isolated_map
);
5682 for (i
= 1; i
<= ints
[0]; i
++)
5683 if (ints
[i
] < NR_CPUS
)
5684 cpu_set(ints
[i
], cpu_isolated_map
);
5688 __setup ("isolcpus=", isolated_cpu_setup
);
5691 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5692 * to a function which identifies what group(along with sched group) a CPU
5693 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5694 * (due to the fact that we keep track of groups covered with a cpumask_t).
5696 * init_sched_build_groups will build a circular linked list of the groups
5697 * covered by the given span, and will set each group's ->cpumask correctly,
5698 * and ->cpu_power to 0.
5701 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5702 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5703 struct sched_group
**sg
))
5705 struct sched_group
*first
= NULL
, *last
= NULL
;
5706 cpumask_t covered
= CPU_MASK_NONE
;
5709 for_each_cpu_mask(i
, span
) {
5710 struct sched_group
*sg
;
5711 int group
= group_fn(i
, cpu_map
, &sg
);
5714 if (cpu_isset(i
, covered
))
5717 sg
->cpumask
= CPU_MASK_NONE
;
5718 sg
->__cpu_power
= 0;
5720 for_each_cpu_mask(j
, span
) {
5721 if (group_fn(j
, cpu_map
, NULL
) != group
)
5724 cpu_set(j
, covered
);
5725 cpu_set(j
, sg
->cpumask
);
5736 #define SD_NODES_PER_DOMAIN 16
5741 * find_next_best_node - find the next node to include in a sched_domain
5742 * @node: node whose sched_domain we're building
5743 * @used_nodes: nodes already in the sched_domain
5745 * Find the next node to include in a given scheduling domain. Simply
5746 * finds the closest node not already in the @used_nodes map.
5748 * Should use nodemask_t.
5750 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5752 int i
, n
, val
, min_val
, best_node
= 0;
5756 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5757 /* Start at @node */
5758 n
= (node
+ i
) % MAX_NUMNODES
;
5760 if (!nr_cpus_node(n
))
5763 /* Skip already used nodes */
5764 if (test_bit(n
, used_nodes
))
5767 /* Simple min distance search */
5768 val
= node_distance(node
, n
);
5770 if (val
< min_val
) {
5776 set_bit(best_node
, used_nodes
);
5781 * sched_domain_node_span - get a cpumask for a node's sched_domain
5782 * @node: node whose cpumask we're constructing
5783 * @size: number of nodes to include in this span
5785 * Given a node, construct a good cpumask for its sched_domain to span. It
5786 * should be one that prevents unnecessary balancing, but also spreads tasks
5789 static cpumask_t
sched_domain_node_span(int node
)
5791 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5792 cpumask_t span
, nodemask
;
5796 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5798 nodemask
= node_to_cpumask(node
);
5799 cpus_or(span
, span
, nodemask
);
5800 set_bit(node
, used_nodes
);
5802 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5803 int next_node
= find_next_best_node(node
, used_nodes
);
5805 nodemask
= node_to_cpumask(next_node
);
5806 cpus_or(span
, span
, nodemask
);
5813 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5816 * SMT sched-domains:
5818 #ifdef CONFIG_SCHED_SMT
5819 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5820 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5822 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5823 struct sched_group
**sg
)
5826 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5832 * multi-core sched-domains:
5834 #ifdef CONFIG_SCHED_MC
5835 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5836 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5839 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5840 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5841 struct sched_group
**sg
)
5844 cpumask_t mask
= cpu_sibling_map
[cpu
];
5845 cpus_and(mask
, mask
, *cpu_map
);
5846 group
= first_cpu(mask
);
5848 *sg
= &per_cpu(sched_group_core
, group
);
5851 #elif defined(CONFIG_SCHED_MC)
5852 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5853 struct sched_group
**sg
)
5856 *sg
= &per_cpu(sched_group_core
, cpu
);
5861 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5862 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5864 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5865 struct sched_group
**sg
)
5868 #ifdef CONFIG_SCHED_MC
5869 cpumask_t mask
= cpu_coregroup_map(cpu
);
5870 cpus_and(mask
, mask
, *cpu_map
);
5871 group
= first_cpu(mask
);
5872 #elif defined(CONFIG_SCHED_SMT)
5873 cpumask_t mask
= cpu_sibling_map
[cpu
];
5874 cpus_and(mask
, mask
, *cpu_map
);
5875 group
= first_cpu(mask
);
5880 *sg
= &per_cpu(sched_group_phys
, group
);
5886 * The init_sched_build_groups can't handle what we want to do with node
5887 * groups, so roll our own. Now each node has its own list of groups which
5888 * gets dynamically allocated.
5890 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5891 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5893 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5894 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5896 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5897 struct sched_group
**sg
)
5899 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5902 cpus_and(nodemask
, nodemask
, *cpu_map
);
5903 group
= first_cpu(nodemask
);
5906 *sg
= &per_cpu(sched_group_allnodes
, group
);
5910 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5912 struct sched_group
*sg
= group_head
;
5918 for_each_cpu_mask(j
, sg
->cpumask
) {
5919 struct sched_domain
*sd
;
5921 sd
= &per_cpu(phys_domains
, j
);
5922 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5924 * Only add "power" once for each
5930 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5933 if (sg
!= group_head
)
5939 /* Free memory allocated for various sched_group structures */
5940 static void free_sched_groups(const cpumask_t
*cpu_map
)
5944 for_each_cpu_mask(cpu
, *cpu_map
) {
5945 struct sched_group
**sched_group_nodes
5946 = sched_group_nodes_bycpu
[cpu
];
5948 if (!sched_group_nodes
)
5951 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5952 cpumask_t nodemask
= node_to_cpumask(i
);
5953 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5955 cpus_and(nodemask
, nodemask
, *cpu_map
);
5956 if (cpus_empty(nodemask
))
5966 if (oldsg
!= sched_group_nodes
[i
])
5969 kfree(sched_group_nodes
);
5970 sched_group_nodes_bycpu
[cpu
] = NULL
;
5974 static void free_sched_groups(const cpumask_t
*cpu_map
)
5980 * Initialize sched groups cpu_power.
5982 * cpu_power indicates the capacity of sched group, which is used while
5983 * distributing the load between different sched groups in a sched domain.
5984 * Typically cpu_power for all the groups in a sched domain will be same unless
5985 * there are asymmetries in the topology. If there are asymmetries, group
5986 * having more cpu_power will pickup more load compared to the group having
5989 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5990 * the maximum number of tasks a group can handle in the presence of other idle
5991 * or lightly loaded groups in the same sched domain.
5993 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5995 struct sched_domain
*child
;
5996 struct sched_group
*group
;
5998 WARN_ON(!sd
|| !sd
->groups
);
6000 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6005 sd
->groups
->__cpu_power
= 0;
6008 * For perf policy, if the groups in child domain share resources
6009 * (for example cores sharing some portions of the cache hierarchy
6010 * or SMT), then set this domain groups cpu_power such that each group
6011 * can handle only one task, when there are other idle groups in the
6012 * same sched domain.
6014 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6016 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6017 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6022 * add cpu_power of each child group to this groups cpu_power
6024 group
= child
->groups
;
6026 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6027 group
= group
->next
;
6028 } while (group
!= child
->groups
);
6032 * Build sched domains for a given set of cpus and attach the sched domains
6033 * to the individual cpus
6035 static int build_sched_domains(const cpumask_t
*cpu_map
)
6039 struct sched_group
**sched_group_nodes
= NULL
;
6040 int sd_allnodes
= 0;
6043 * Allocate the per-node list of sched groups
6045 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6047 if (!sched_group_nodes
) {
6048 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6051 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6055 * Set up domains for cpus specified by the cpu_map.
6057 for_each_cpu_mask(i
, *cpu_map
) {
6058 struct sched_domain
*sd
= NULL
, *p
;
6059 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6061 cpus_and(nodemask
, nodemask
, *cpu_map
);
6064 if (cpus_weight(*cpu_map
) >
6065 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6066 sd
= &per_cpu(allnodes_domains
, i
);
6067 *sd
= SD_ALLNODES_INIT
;
6068 sd
->span
= *cpu_map
;
6069 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6075 sd
= &per_cpu(node_domains
, i
);
6077 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6081 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6085 sd
= &per_cpu(phys_domains
, i
);
6087 sd
->span
= nodemask
;
6091 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6093 #ifdef CONFIG_SCHED_MC
6095 sd
= &per_cpu(core_domains
, i
);
6097 sd
->span
= cpu_coregroup_map(i
);
6098 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6101 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6104 #ifdef CONFIG_SCHED_SMT
6106 sd
= &per_cpu(cpu_domains
, i
);
6107 *sd
= SD_SIBLING_INIT
;
6108 sd
->span
= cpu_sibling_map
[i
];
6109 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6112 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6116 #ifdef CONFIG_SCHED_SMT
6117 /* Set up CPU (sibling) groups */
6118 for_each_cpu_mask(i
, *cpu_map
) {
6119 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6120 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6121 if (i
!= first_cpu(this_sibling_map
))
6124 init_sched_build_groups(this_sibling_map
, cpu_map
,
6129 #ifdef CONFIG_SCHED_MC
6130 /* Set up multi-core groups */
6131 for_each_cpu_mask(i
, *cpu_map
) {
6132 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6133 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6134 if (i
!= first_cpu(this_core_map
))
6136 init_sched_build_groups(this_core_map
, cpu_map
,
6137 &cpu_to_core_group
);
6141 /* Set up physical groups */
6142 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6143 cpumask_t nodemask
= node_to_cpumask(i
);
6145 cpus_and(nodemask
, nodemask
, *cpu_map
);
6146 if (cpus_empty(nodemask
))
6149 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6153 /* Set up node groups */
6155 init_sched_build_groups(*cpu_map
, cpu_map
,
6156 &cpu_to_allnodes_group
);
6158 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6159 /* Set up node groups */
6160 struct sched_group
*sg
, *prev
;
6161 cpumask_t nodemask
= node_to_cpumask(i
);
6162 cpumask_t domainspan
;
6163 cpumask_t covered
= CPU_MASK_NONE
;
6166 cpus_and(nodemask
, nodemask
, *cpu_map
);
6167 if (cpus_empty(nodemask
)) {
6168 sched_group_nodes
[i
] = NULL
;
6172 domainspan
= sched_domain_node_span(i
);
6173 cpus_and(domainspan
, domainspan
, *cpu_map
);
6175 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6177 printk(KERN_WARNING
"Can not alloc domain group for "
6181 sched_group_nodes
[i
] = sg
;
6182 for_each_cpu_mask(j
, nodemask
) {
6183 struct sched_domain
*sd
;
6185 sd
= &per_cpu(node_domains
, j
);
6188 sg
->__cpu_power
= 0;
6189 sg
->cpumask
= nodemask
;
6191 cpus_or(covered
, covered
, nodemask
);
6194 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6195 cpumask_t tmp
, notcovered
;
6196 int n
= (i
+ j
) % MAX_NUMNODES
;
6198 cpus_complement(notcovered
, covered
);
6199 cpus_and(tmp
, notcovered
, *cpu_map
);
6200 cpus_and(tmp
, tmp
, domainspan
);
6201 if (cpus_empty(tmp
))
6204 nodemask
= node_to_cpumask(n
);
6205 cpus_and(tmp
, tmp
, nodemask
);
6206 if (cpus_empty(tmp
))
6209 sg
= kmalloc_node(sizeof(struct sched_group
),
6213 "Can not alloc domain group for node %d\n", j
);
6216 sg
->__cpu_power
= 0;
6218 sg
->next
= prev
->next
;
6219 cpus_or(covered
, covered
, tmp
);
6226 /* Calculate CPU power for physical packages and nodes */
6227 #ifdef CONFIG_SCHED_SMT
6228 for_each_cpu_mask(i
, *cpu_map
) {
6229 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6231 init_sched_groups_power(i
, sd
);
6234 #ifdef CONFIG_SCHED_MC
6235 for_each_cpu_mask(i
, *cpu_map
) {
6236 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6238 init_sched_groups_power(i
, sd
);
6242 for_each_cpu_mask(i
, *cpu_map
) {
6243 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6245 init_sched_groups_power(i
, sd
);
6249 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6250 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6253 struct sched_group
*sg
;
6255 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6256 init_numa_sched_groups_power(sg
);
6260 /* Attach the domains */
6261 for_each_cpu_mask(i
, *cpu_map
) {
6262 struct sched_domain
*sd
;
6263 #ifdef CONFIG_SCHED_SMT
6264 sd
= &per_cpu(cpu_domains
, i
);
6265 #elif defined(CONFIG_SCHED_MC)
6266 sd
= &per_cpu(core_domains
, i
);
6268 sd
= &per_cpu(phys_domains
, i
);
6270 cpu_attach_domain(sd
, i
);
6277 free_sched_groups(cpu_map
);
6282 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6284 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6286 cpumask_t cpu_default_map
;
6290 * Setup mask for cpus without special case scheduling requirements.
6291 * For now this just excludes isolated cpus, but could be used to
6292 * exclude other special cases in the future.
6294 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6296 err
= build_sched_domains(&cpu_default_map
);
6301 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6303 free_sched_groups(cpu_map
);
6307 * Detach sched domains from a group of cpus specified in cpu_map
6308 * These cpus will now be attached to the NULL domain
6310 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6314 for_each_cpu_mask(i
, *cpu_map
)
6315 cpu_attach_domain(NULL
, i
);
6316 synchronize_sched();
6317 arch_destroy_sched_domains(cpu_map
);
6321 * Partition sched domains as specified by the cpumasks below.
6322 * This attaches all cpus from the cpumasks to the NULL domain,
6323 * waits for a RCU quiescent period, recalculates sched
6324 * domain information and then attaches them back to the
6325 * correct sched domains
6326 * Call with hotplug lock held
6328 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6330 cpumask_t change_map
;
6333 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6334 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6335 cpus_or(change_map
, *partition1
, *partition2
);
6337 /* Detach sched domains from all of the affected cpus */
6338 detach_destroy_domains(&change_map
);
6339 if (!cpus_empty(*partition1
))
6340 err
= build_sched_domains(partition1
);
6341 if (!err
&& !cpus_empty(*partition2
))
6342 err
= build_sched_domains(partition2
);
6347 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6348 static int arch_reinit_sched_domains(void)
6352 mutex_lock(&sched_hotcpu_mutex
);
6353 detach_destroy_domains(&cpu_online_map
);
6354 err
= arch_init_sched_domains(&cpu_online_map
);
6355 mutex_unlock(&sched_hotcpu_mutex
);
6360 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6364 if (buf
[0] != '0' && buf
[0] != '1')
6368 sched_smt_power_savings
= (buf
[0] == '1');
6370 sched_mc_power_savings
= (buf
[0] == '1');
6372 ret
= arch_reinit_sched_domains();
6374 return ret
? ret
: count
;
6377 #ifdef CONFIG_SCHED_MC
6378 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6380 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6382 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6383 const char *buf
, size_t count
)
6385 return sched_power_savings_store(buf
, count
, 0);
6387 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6388 sched_mc_power_savings_store
);
6391 #ifdef CONFIG_SCHED_SMT
6392 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6394 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6396 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6397 const char *buf
, size_t count
)
6399 return sched_power_savings_store(buf
, count
, 1);
6401 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6402 sched_smt_power_savings_store
);
6405 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6409 #ifdef CONFIG_SCHED_SMT
6411 err
= sysfs_create_file(&cls
->kset
.kobj
,
6412 &attr_sched_smt_power_savings
.attr
);
6414 #ifdef CONFIG_SCHED_MC
6415 if (!err
&& mc_capable())
6416 err
= sysfs_create_file(&cls
->kset
.kobj
,
6417 &attr_sched_mc_power_savings
.attr
);
6424 * Force a reinitialization of the sched domains hierarchy. The domains
6425 * and groups cannot be updated in place without racing with the balancing
6426 * code, so we temporarily attach all running cpus to the NULL domain
6427 * which will prevent rebalancing while the sched domains are recalculated.
6429 static int update_sched_domains(struct notifier_block
*nfb
,
6430 unsigned long action
, void *hcpu
)
6433 case CPU_UP_PREPARE
:
6434 case CPU_UP_PREPARE_FROZEN
:
6435 case CPU_DOWN_PREPARE
:
6436 case CPU_DOWN_PREPARE_FROZEN
:
6437 detach_destroy_domains(&cpu_online_map
);
6440 case CPU_UP_CANCELED
:
6441 case CPU_UP_CANCELED_FROZEN
:
6442 case CPU_DOWN_FAILED
:
6443 case CPU_DOWN_FAILED_FROZEN
:
6445 case CPU_ONLINE_FROZEN
:
6447 case CPU_DEAD_FROZEN
:
6449 * Fall through and re-initialise the domains.
6456 /* The hotplug lock is already held by cpu_up/cpu_down */
6457 arch_init_sched_domains(&cpu_online_map
);
6462 void __init
sched_init_smp(void)
6464 cpumask_t non_isolated_cpus
;
6466 mutex_lock(&sched_hotcpu_mutex
);
6467 arch_init_sched_domains(&cpu_online_map
);
6468 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6469 if (cpus_empty(non_isolated_cpus
))
6470 cpu_set(smp_processor_id(), non_isolated_cpus
);
6471 mutex_unlock(&sched_hotcpu_mutex
);
6472 /* XXX: Theoretical race here - CPU may be hotplugged now */
6473 hotcpu_notifier(update_sched_domains
, 0);
6475 init_sched_domain_sysctl();
6477 /* Move init over to a non-isolated CPU */
6478 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6482 void __init
sched_init_smp(void)
6485 #endif /* CONFIG_SMP */
6487 int in_sched_functions(unsigned long addr
)
6489 /* Linker adds these: start and end of __sched functions */
6490 extern char __sched_text_start
[], __sched_text_end
[];
6492 return in_lock_functions(addr
) ||
6493 (addr
>= (unsigned long)__sched_text_start
6494 && addr
< (unsigned long)__sched_text_end
);
6497 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6499 cfs_rq
->tasks_timeline
= RB_ROOT
;
6500 #ifdef CONFIG_FAIR_GROUP_SCHED
6503 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6506 void __init
sched_init(void)
6508 int highest_cpu
= 0;
6511 for_each_possible_cpu(i
) {
6512 struct rt_prio_array
*array
;
6516 spin_lock_init(&rq
->lock
);
6517 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6520 init_cfs_rq(&rq
->cfs
, rq
);
6521 #ifdef CONFIG_FAIR_GROUP_SCHED
6522 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6524 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6525 struct sched_entity
*se
=
6526 &per_cpu(init_sched_entity
, i
);
6528 init_cfs_rq_p
[i
] = cfs_rq
;
6529 init_cfs_rq(cfs_rq
, rq
);
6530 cfs_rq
->tg
= &init_task_grp
;
6531 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6532 &rq
->leaf_cfs_rq_list
);
6534 init_sched_entity_p
[i
] = se
;
6535 se
->cfs_rq
= &rq
->cfs
;
6537 se
->load
.weight
= init_task_grp_load
;
6538 se
->load
.inv_weight
=
6539 div64_64(1ULL<<32, init_task_grp_load
);
6542 init_task_grp
.shares
= init_task_grp_load
;
6545 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6546 rq
->cpu_load
[j
] = 0;
6549 rq
->active_balance
= 0;
6550 rq
->next_balance
= jiffies
;
6553 rq
->migration_thread
= NULL
;
6554 INIT_LIST_HEAD(&rq
->migration_queue
);
6556 atomic_set(&rq
->nr_iowait
, 0);
6558 array
= &rq
->rt
.active
;
6559 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6560 INIT_LIST_HEAD(array
->queue
+ j
);
6561 __clear_bit(j
, array
->bitmap
);
6564 /* delimiter for bitsearch: */
6565 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6568 set_load_weight(&init_task
);
6570 #ifdef CONFIG_PREEMPT_NOTIFIERS
6571 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6575 nr_cpu_ids
= highest_cpu
+ 1;
6576 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6579 #ifdef CONFIG_RT_MUTEXES
6580 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6584 * The boot idle thread does lazy MMU switching as well:
6586 atomic_inc(&init_mm
.mm_count
);
6587 enter_lazy_tlb(&init_mm
, current
);
6590 * Make us the idle thread. Technically, schedule() should not be
6591 * called from this thread, however somewhere below it might be,
6592 * but because we are the idle thread, we just pick up running again
6593 * when this runqueue becomes "idle".
6595 init_idle(current
, smp_processor_id());
6597 * During early bootup we pretend to be a normal task:
6599 current
->sched_class
= &fair_sched_class
;
6602 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6603 void __might_sleep(char *file
, int line
)
6606 static unsigned long prev_jiffy
; /* ratelimiting */
6608 if ((in_atomic() || irqs_disabled()) &&
6609 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6610 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6612 prev_jiffy
= jiffies
;
6613 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6614 " context at %s:%d\n", file
, line
);
6615 printk("in_atomic():%d, irqs_disabled():%d\n",
6616 in_atomic(), irqs_disabled());
6617 debug_show_held_locks(current
);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current
);
6624 EXPORT_SYMBOL(__might_sleep
);
6627 #ifdef CONFIG_MAGIC_SYSRQ
6628 void normalize_rt_tasks(void)
6630 struct task_struct
*g
, *p
;
6631 unsigned long flags
;
6635 read_lock_irq(&tasklist_lock
);
6636 do_each_thread(g
, p
) {
6637 p
->se
.exec_start
= 0;
6638 #ifdef CONFIG_SCHEDSTATS
6639 p
->se
.wait_start
= 0;
6640 p
->se
.sleep_start
= 0;
6641 p
->se
.block_start
= 0;
6643 task_rq(p
)->clock
= 0;
6647 * Renice negative nice level userspace
6650 if (TASK_NICE(p
) < 0 && p
->mm
)
6651 set_user_nice(p
, 0);
6655 spin_lock_irqsave(&p
->pi_lock
, flags
);
6656 rq
= __task_rq_lock(p
);
6659 * Do not touch the migration thread:
6661 if (p
== rq
->migration_thread
)
6665 update_rq_clock(rq
);
6666 on_rq
= p
->se
.on_rq
;
6668 deactivate_task(rq
, p
, 0);
6669 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6671 activate_task(rq
, p
, 0);
6672 resched_task(rq
->curr
);
6677 __task_rq_unlock(rq
);
6678 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6679 } while_each_thread(g
, p
);
6681 read_unlock_irq(&tasklist_lock
);
6684 #endif /* CONFIG_MAGIC_SYSRQ */
6688 * These functions are only useful for the IA64 MCA handling.
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 struct task_struct
*curr_task(int cpu
)
6705 return cpu_curr(cpu
);
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6723 void set_curr_task(int cpu
, struct task_struct
*p
)
6730 #ifdef CONFIG_FAIR_GROUP_SCHED
6732 /* allocate runqueue etc for a new task group */
6733 struct task_grp
*sched_create_group(void)
6735 struct task_grp
*tg
;
6736 struct cfs_rq
*cfs_rq
;
6737 struct sched_entity
*se
;
6741 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6743 return ERR_PTR(-ENOMEM
);
6745 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6748 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6752 for_each_possible_cpu(i
) {
6755 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6760 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6765 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6766 memset(se
, 0, sizeof(struct sched_entity
));
6768 tg
->cfs_rq
[i
] = cfs_rq
;
6769 init_cfs_rq(cfs_rq
, rq
);
6773 se
->cfs_rq
= &rq
->cfs
;
6775 se
->load
.weight
= NICE_0_LOAD
;
6776 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6780 for_each_possible_cpu(i
) {
6782 cfs_rq
= tg
->cfs_rq
[i
];
6783 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6786 tg
->shares
= NICE_0_LOAD
;
6791 for_each_possible_cpu(i
) {
6792 if (tg
->cfs_rq
&& tg
->cfs_rq
[i
])
6793 kfree(tg
->cfs_rq
[i
]);
6794 if (tg
->se
&& tg
->se
[i
])
6804 return ERR_PTR(-ENOMEM
);
6807 /* rcu callback to free various structures associated with a task group */
6808 static void free_sched_group(struct rcu_head
*rhp
)
6810 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6811 struct task_grp
*tg
= cfs_rq
->tg
;
6812 struct sched_entity
*se
;
6815 /* now it should be safe to free those cfs_rqs */
6816 for_each_possible_cpu(i
) {
6817 cfs_rq
= tg
->cfs_rq
[i
];
6829 /* Destroy runqueue etc associated with a task group */
6830 void sched_destroy_group(struct task_grp
*tg
)
6832 struct cfs_rq
*cfs_rq
;
6835 for_each_possible_cpu(i
) {
6836 cfs_rq
= tg
->cfs_rq
[i
];
6837 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
6840 cfs_rq
= tg
->cfs_rq
[0];
6842 /* wait for possible concurrent references to cfs_rqs complete */
6843 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
6846 /* change task's runqueue when it moves between groups.
6847 * The caller of this function should have put the task in its new group
6848 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6849 * reflect its new group.
6851 void sched_move_task(struct task_struct
*tsk
)
6854 unsigned long flags
;
6857 rq
= task_rq_lock(tsk
, &flags
);
6859 if (tsk
->sched_class
!= &fair_sched_class
)
6862 update_rq_clock(rq
);
6864 running
= task_running(rq
, tsk
);
6865 on_rq
= tsk
->se
.on_rq
;
6868 dequeue_task(rq
, tsk
, 0);
6869 if (unlikely(running
))
6870 tsk
->sched_class
->put_prev_task(rq
, tsk
);
6873 set_task_cfs_rq(tsk
);
6876 if (unlikely(running
))
6877 tsk
->sched_class
->set_curr_task(rq
);
6878 enqueue_task(rq
, tsk
, 0);
6882 task_rq_unlock(rq
, &flags
);
6885 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
6887 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
6888 struct rq
*rq
= cfs_rq
->rq
;
6891 spin_lock_irq(&rq
->lock
);
6895 dequeue_entity(cfs_rq
, se
, 0);
6897 se
->load
.weight
= shares
;
6898 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
6901 enqueue_entity(cfs_rq
, se
, 0);
6903 spin_unlock_irq(&rq
->lock
);
6906 int sched_group_set_shares(struct task_grp
*tg
, unsigned long shares
)
6910 if (tg
->shares
== shares
)
6913 /* return -EINVAL if the new value is not sane */
6915 tg
->shares
= shares
;
6916 for_each_possible_cpu(i
)
6917 set_se_shares(tg
->se
[i
], shares
);
6922 #endif /* CONFIG_FAIR_GROUP_SCHED */