sched: uninline scheduler
[wrt350n-kernel.git] / kernel / sched.c
blobce9bb7aa7c122f8fcaf716734809febcaaa6a792
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio)
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
154 static inline int rt_policy(int policy)
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
161 static inline int task_has_rt_policy(struct task_struct *p)
163 return rt_policy(p->policy);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
174 #ifdef CONFIG_FAIR_GROUP_SCHED
176 struct cfs_rq;
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
203 #ifdef CONFIG_FAIR_USER_SCHED
204 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
214 struct task_grp *tg;
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
222 return tg;
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
232 #else
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
243 u64 exec_clock;
244 u64 min_vruntime;
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
252 struct sched_entity *curr;
254 unsigned long nr_spread_over;
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
267 struct task_grp *tg; /* group that "owns" this runqueue */
268 struct rcu_head rcu;
269 #endif
272 /* Real-Time classes' related field in a runqueue: */
273 struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
280 * This is the main, per-CPU runqueue data structure.
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
286 struct rq {
287 spinlock_t lock; /* runqueue lock */
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
293 unsigned long nr_running;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296 unsigned char idle_at_tick;
297 #ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299 #endif
300 struct load_weight load; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates;
302 u64 nr_switches;
304 struct cfs_rq cfs;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
307 #endif
308 struct rt_rq rt;
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
316 unsigned long nr_uninterruptible;
318 struct task_struct *curr, *idle;
319 unsigned long next_balance;
320 struct mm_struct *prev_mm;
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
325 unsigned int clock_warps, clock_overflows;
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
328 u64 tick_timestamp;
330 atomic_t nr_iowait;
332 #ifdef CONFIG_SMP
333 struct sched_domain *sd;
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
338 int cpu; /* cpu of this runqueue */
340 struct task_struct *migration_thread;
341 struct list_head migration_queue;
342 #endif
344 #ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_count;
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_count;
357 unsigned long sched_goidle;
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_count;
361 unsigned long ttwu_local;
363 /* BKL stats */
364 unsigned long bkl_count;
365 #endif
366 struct lock_class_key rq_lock_key;
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370 static DEFINE_MUTEX(sched_hotcpu_mutex);
372 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
374 rq->curr->sched_class->check_preempt_curr(rq, p);
377 static inline int cpu_of(struct rq *rq)
379 #ifdef CONFIG_SMP
380 return rq->cpu;
381 #else
382 return 0;
383 #endif
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
390 static void __update_rq_clock(struct rq *rq)
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399 #endif
401 * Protect against sched_clock() occasionally going backwards:
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
408 * Catch too large forward jumps too:
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
427 static void update_rq_clock(struct rq *rq)
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
453 #else
454 # define const_debug static const
455 #endif
458 * Debugging: various feature bits
460 enum {
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
467 const_debug unsigned int sysctl_sched_features =
468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
479 unsigned long long cpu_clock(int cpu)
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
491 return now;
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
496 #endif
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
499 #endif
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq *rq, struct task_struct *p)
504 return rq->curr == p;
507 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
511 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516 #endif
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
524 spin_unlock_irq(&rq->lock);
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq *rq, struct task_struct *p)
530 #ifdef CONFIG_SMP
531 return p->oncpu;
532 #else
533 return rq->curr == p;
534 #endif
537 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
539 #ifdef CONFIG_SMP
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
545 next->oncpu = 1;
546 #endif
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549 #else
550 spin_unlock(&rq->lock);
551 #endif
554 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
556 #ifdef CONFIG_SMP
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
562 smp_wmb();
563 prev->oncpu = 0;
564 #endif
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
567 #endif
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
575 static inline struct rq *__task_rq_lock(struct task_struct *p)
576 __acquires(rq->lock)
578 struct rq *rq;
580 repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
587 return rq;
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
595 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
596 __acquires(rq->lock)
598 struct rq *rq;
600 repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
608 return rq;
611 static void __task_rq_unlock(struct rq *rq)
612 __releases(rq->lock)
614 spin_unlock(&rq->lock);
617 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
618 __releases(rq->lock)
620 spin_unlock_irqrestore(&rq->lock, *flags);
624 * this_rq_lock - lock this runqueue and disable interrupts.
626 static struct rq *this_rq_lock(void)
627 __acquires(rq->lock)
629 struct rq *rq;
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
635 return rq;
639 * We are going deep-idle (irqs are disabled):
641 void sched_clock_idle_sleep_event(void)
643 struct rq *rq = cpu_rq(smp_processor_id());
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
653 * We just idled delta nanoseconds (called with irqs disabled):
655 void sched_clock_idle_wakeup_event(u64 delta_ns)
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
660 rq->idle_clock += delta_ns;
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
675 * resched_task - mark a task 'to be rescheduled now'.
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
681 #ifdef CONFIG_SMP
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 #endif
687 static void resched_task(struct task_struct *p)
689 int cpu;
691 assert_spin_locked(&task_rq(p)->lock);
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
708 static void resched_cpu(int cpu)
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
718 #else
719 static inline void resched_task(struct task_struct *p)
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
724 #endif
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
728 #else
729 # define WMULT_CONST (1UL << 32)
730 #endif
732 #define WMULT_SHIFT 32
735 * Shift right and round:
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
739 static unsigned long
740 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
743 u64 tmp;
745 if (unlikely(!lw->inv_weight))
746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748 tmp = (u64)delta_exec * weight;
750 * Check whether we'd overflow the 64-bit multiplication:
752 if (unlikely(tmp > WMULT_CONST))
753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
754 WMULT_SHIFT/2);
755 else
756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
767 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 lw->weight += inc;
772 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 lw->weight -= dec;
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
837 struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
843 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
847 int *this_best_prio, struct rq_iterator *iterator);
849 #include "sched_stats.h"
850 #include "sched_idletask.c"
851 #include "sched_fair.c"
852 #include "sched_rt.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
855 #endif
857 #define sched_class_highest (&rt_sched_class)
860 * Update delta_exec, delta_fair fields for rq.
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
874 static inline void inc_load(struct rq *rq, const struct task_struct *p)
876 update_load_add(&rq->load, p->se.load.weight);
879 static inline void dec_load(struct rq *rq, const struct task_struct *p)
881 update_load_sub(&rq->load, p->se.load.weight);
884 static void inc_nr_running(struct task_struct *p, struct rq *rq)
886 rq->nr_running++;
887 inc_load(rq, p);
890 static void dec_nr_running(struct task_struct *p, struct rq *rq)
892 rq->nr_running--;
893 dec_load(rq, p);
896 static void set_load_weight(struct task_struct *p)
898 if (task_has_rt_policy(p)) {
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
905 * SCHED_IDLE tasks get minimal weight:
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
917 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
919 sched_info_queued(p);
920 p->sched_class->enqueue_task(rq, p, wakeup);
921 p->se.on_rq = 1;
924 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
926 p->sched_class->dequeue_task(rq, p, sleep);
927 p->se.on_rq = 0;
931 * __normal_prio - return the priority that is based on the static prio
933 static inline int __normal_prio(struct task_struct *p)
935 return p->static_prio;
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
945 static inline int normal_prio(struct task_struct *p)
947 int prio;
949 if (task_has_rt_policy(p))
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
963 static int effective_prio(struct task_struct *p)
965 p->normal_prio = normal_prio(p);
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
977 * activate_task - move a task to the runqueue.
979 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
984 enqueue_task(rq, p, wakeup);
985 inc_nr_running(p, rq);
989 * deactivate_task - remove a task from the runqueue.
991 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
993 if (p->state == TASK_UNINTERRUPTIBLE)
994 rq->nr_uninterruptible++;
996 dequeue_task(rq, p, sleep);
997 dec_nr_running(p, rq);
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1004 inline int task_curr(const struct task_struct *p)
1006 return cpu_curr(task_cpu(p)) == p;
1009 /* Used instead of source_load when we know the type == 0 */
1010 unsigned long weighted_cpuload(const int cpu)
1012 return cpu_rq(cpu)->load.weight;
1015 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1017 #ifdef CONFIG_SMP
1018 task_thread_info(p)->cpu = cpu;
1019 #endif
1020 set_task_cfs_rq(p);
1023 #ifdef CONFIG_SMP
1025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1027 int old_cpu = task_cpu(p);
1028 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1029 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1030 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1031 u64 clock_offset;
1033 clock_offset = old_rq->clock - new_rq->clock;
1035 #ifdef CONFIG_SCHEDSTATS
1036 if (p->se.wait_start)
1037 p->se.wait_start -= clock_offset;
1038 if (p->se.sleep_start)
1039 p->se.sleep_start -= clock_offset;
1040 if (p->se.block_start)
1041 p->se.block_start -= clock_offset;
1042 #endif
1043 p->se.vruntime -= old_cfsrq->min_vruntime -
1044 new_cfsrq->min_vruntime;
1046 __set_task_cpu(p, new_cpu);
1049 struct migration_req {
1050 struct list_head list;
1052 struct task_struct *task;
1053 int dest_cpu;
1055 struct completion done;
1059 * The task's runqueue lock must be held.
1060 * Returns true if you have to wait for migration thread.
1062 static int
1063 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1065 struct rq *rq = task_rq(p);
1068 * If the task is not on a runqueue (and not running), then
1069 * it is sufficient to simply update the task's cpu field.
1071 if (!p->se.on_rq && !task_running(rq, p)) {
1072 set_task_cpu(p, dest_cpu);
1073 return 0;
1076 init_completion(&req->done);
1077 req->task = p;
1078 req->dest_cpu = dest_cpu;
1079 list_add(&req->list, &rq->migration_queue);
1081 return 1;
1085 * wait_task_inactive - wait for a thread to unschedule.
1087 * The caller must ensure that the task *will* unschedule sometime soon,
1088 * else this function might spin for a *long* time. This function can't
1089 * be called with interrupts off, or it may introduce deadlock with
1090 * smp_call_function() if an IPI is sent by the same process we are
1091 * waiting to become inactive.
1093 void wait_task_inactive(struct task_struct *p)
1095 unsigned long flags;
1096 int running, on_rq;
1097 struct rq *rq;
1099 repeat:
1101 * We do the initial early heuristics without holding
1102 * any task-queue locks at all. We'll only try to get
1103 * the runqueue lock when things look like they will
1104 * work out!
1106 rq = task_rq(p);
1109 * If the task is actively running on another CPU
1110 * still, just relax and busy-wait without holding
1111 * any locks.
1113 * NOTE! Since we don't hold any locks, it's not
1114 * even sure that "rq" stays as the right runqueue!
1115 * But we don't care, since "task_running()" will
1116 * return false if the runqueue has changed and p
1117 * is actually now running somewhere else!
1119 while (task_running(rq, p))
1120 cpu_relax();
1123 * Ok, time to look more closely! We need the rq
1124 * lock now, to be *sure*. If we're wrong, we'll
1125 * just go back and repeat.
1127 rq = task_rq_lock(p, &flags);
1128 running = task_running(rq, p);
1129 on_rq = p->se.on_rq;
1130 task_rq_unlock(rq, &flags);
1133 * Was it really running after all now that we
1134 * checked with the proper locks actually held?
1136 * Oops. Go back and try again..
1138 if (unlikely(running)) {
1139 cpu_relax();
1140 goto repeat;
1144 * It's not enough that it's not actively running,
1145 * it must be off the runqueue _entirely_, and not
1146 * preempted!
1148 * So if it wa still runnable (but just not actively
1149 * running right now), it's preempted, and we should
1150 * yield - it could be a while.
1152 if (unlikely(on_rq)) {
1153 yield();
1154 goto repeat;
1158 * Ahh, all good. It wasn't running, and it wasn't
1159 * runnable, which means that it will never become
1160 * running in the future either. We're all done!
1164 /***
1165 * kick_process - kick a running thread to enter/exit the kernel
1166 * @p: the to-be-kicked thread
1168 * Cause a process which is running on another CPU to enter
1169 * kernel-mode, without any delay. (to get signals handled.)
1171 * NOTE: this function doesnt have to take the runqueue lock,
1172 * because all it wants to ensure is that the remote task enters
1173 * the kernel. If the IPI races and the task has been migrated
1174 * to another CPU then no harm is done and the purpose has been
1175 * achieved as well.
1177 void kick_process(struct task_struct *p)
1179 int cpu;
1181 preempt_disable();
1182 cpu = task_cpu(p);
1183 if ((cpu != smp_processor_id()) && task_curr(p))
1184 smp_send_reschedule(cpu);
1185 preempt_enable();
1189 * Return a low guess at the load of a migration-source cpu weighted
1190 * according to the scheduling class and "nice" value.
1192 * We want to under-estimate the load of migration sources, to
1193 * balance conservatively.
1195 static unsigned long source_load(int cpu, int type)
1197 struct rq *rq = cpu_rq(cpu);
1198 unsigned long total = weighted_cpuload(cpu);
1200 if (type == 0)
1201 return total;
1203 return min(rq->cpu_load[type-1], total);
1207 * Return a high guess at the load of a migration-target cpu weighted
1208 * according to the scheduling class and "nice" value.
1210 static unsigned long target_load(int cpu, int type)
1212 struct rq *rq = cpu_rq(cpu);
1213 unsigned long total = weighted_cpuload(cpu);
1215 if (type == 0)
1216 return total;
1218 return max(rq->cpu_load[type-1], total);
1222 * Return the average load per task on the cpu's run queue
1224 static inline unsigned long cpu_avg_load_per_task(int cpu)
1226 struct rq *rq = cpu_rq(cpu);
1227 unsigned long total = weighted_cpuload(cpu);
1228 unsigned long n = rq->nr_running;
1230 return n ? total / n : SCHED_LOAD_SCALE;
1234 * find_idlest_group finds and returns the least busy CPU group within the
1235 * domain.
1237 static struct sched_group *
1238 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1240 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1241 unsigned long min_load = ULONG_MAX, this_load = 0;
1242 int load_idx = sd->forkexec_idx;
1243 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1245 do {
1246 unsigned long load, avg_load;
1247 int local_group;
1248 int i;
1250 /* Skip over this group if it has no CPUs allowed */
1251 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1252 goto nextgroup;
1254 local_group = cpu_isset(this_cpu, group->cpumask);
1256 /* Tally up the load of all CPUs in the group */
1257 avg_load = 0;
1259 for_each_cpu_mask(i, group->cpumask) {
1260 /* Bias balancing toward cpus of our domain */
1261 if (local_group)
1262 load = source_load(i, load_idx);
1263 else
1264 load = target_load(i, load_idx);
1266 avg_load += load;
1269 /* Adjust by relative CPU power of the group */
1270 avg_load = sg_div_cpu_power(group,
1271 avg_load * SCHED_LOAD_SCALE);
1273 if (local_group) {
1274 this_load = avg_load;
1275 this = group;
1276 } else if (avg_load < min_load) {
1277 min_load = avg_load;
1278 idlest = group;
1280 nextgroup:
1281 group = group->next;
1282 } while (group != sd->groups);
1284 if (!idlest || 100*this_load < imbalance*min_load)
1285 return NULL;
1286 return idlest;
1290 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1292 static int
1293 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1295 cpumask_t tmp;
1296 unsigned long load, min_load = ULONG_MAX;
1297 int idlest = -1;
1298 int i;
1300 /* Traverse only the allowed CPUs */
1301 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1303 for_each_cpu_mask(i, tmp) {
1304 load = weighted_cpuload(i);
1306 if (load < min_load || (load == min_load && i == this_cpu)) {
1307 min_load = load;
1308 idlest = i;
1312 return idlest;
1316 * sched_balance_self: balance the current task (running on cpu) in domains
1317 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1318 * SD_BALANCE_EXEC.
1320 * Balance, ie. select the least loaded group.
1322 * Returns the target CPU number, or the same CPU if no balancing is needed.
1324 * preempt must be disabled.
1326 static int sched_balance_self(int cpu, int flag)
1328 struct task_struct *t = current;
1329 struct sched_domain *tmp, *sd = NULL;
1331 for_each_domain(cpu, tmp) {
1333 * If power savings logic is enabled for a domain, stop there.
1335 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1336 break;
1337 if (tmp->flags & flag)
1338 sd = tmp;
1341 while (sd) {
1342 cpumask_t span;
1343 struct sched_group *group;
1344 int new_cpu, weight;
1346 if (!(sd->flags & flag)) {
1347 sd = sd->child;
1348 continue;
1351 span = sd->span;
1352 group = find_idlest_group(sd, t, cpu);
1353 if (!group) {
1354 sd = sd->child;
1355 continue;
1358 new_cpu = find_idlest_cpu(group, t, cpu);
1359 if (new_cpu == -1 || new_cpu == cpu) {
1360 /* Now try balancing at a lower domain level of cpu */
1361 sd = sd->child;
1362 continue;
1365 /* Now try balancing at a lower domain level of new_cpu */
1366 cpu = new_cpu;
1367 sd = NULL;
1368 weight = cpus_weight(span);
1369 for_each_domain(cpu, tmp) {
1370 if (weight <= cpus_weight(tmp->span))
1371 break;
1372 if (tmp->flags & flag)
1373 sd = tmp;
1375 /* while loop will break here if sd == NULL */
1378 return cpu;
1381 #endif /* CONFIG_SMP */
1384 * wake_idle() will wake a task on an idle cpu if task->cpu is
1385 * not idle and an idle cpu is available. The span of cpus to
1386 * search starts with cpus closest then further out as needed,
1387 * so we always favor a closer, idle cpu.
1389 * Returns the CPU we should wake onto.
1391 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1392 static int wake_idle(int cpu, struct task_struct *p)
1394 cpumask_t tmp;
1395 struct sched_domain *sd;
1396 int i;
1399 * If it is idle, then it is the best cpu to run this task.
1401 * This cpu is also the best, if it has more than one task already.
1402 * Siblings must be also busy(in most cases) as they didn't already
1403 * pickup the extra load from this cpu and hence we need not check
1404 * sibling runqueue info. This will avoid the checks and cache miss
1405 * penalities associated with that.
1407 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1408 return cpu;
1410 for_each_domain(cpu, sd) {
1411 if (sd->flags & SD_WAKE_IDLE) {
1412 cpus_and(tmp, sd->span, p->cpus_allowed);
1413 for_each_cpu_mask(i, tmp) {
1414 if (idle_cpu(i))
1415 return i;
1417 } else {
1418 break;
1421 return cpu;
1423 #else
1424 static inline int wake_idle(int cpu, struct task_struct *p)
1426 return cpu;
1428 #endif
1430 /***
1431 * try_to_wake_up - wake up a thread
1432 * @p: the to-be-woken-up thread
1433 * @state: the mask of task states that can be woken
1434 * @sync: do a synchronous wakeup?
1436 * Put it on the run-queue if it's not already there. The "current"
1437 * thread is always on the run-queue (except when the actual
1438 * re-schedule is in progress), and as such you're allowed to do
1439 * the simpler "current->state = TASK_RUNNING" to mark yourself
1440 * runnable without the overhead of this.
1442 * returns failure only if the task is already active.
1444 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1446 int cpu, this_cpu, success = 0;
1447 unsigned long flags;
1448 long old_state;
1449 struct rq *rq;
1450 #ifdef CONFIG_SMP
1451 struct sched_domain *sd, *this_sd = NULL;
1452 unsigned long load, this_load;
1453 int new_cpu;
1454 #endif
1456 rq = task_rq_lock(p, &flags);
1457 old_state = p->state;
1458 if (!(old_state & state))
1459 goto out;
1461 if (p->se.on_rq)
1462 goto out_running;
1464 cpu = task_cpu(p);
1465 this_cpu = smp_processor_id();
1467 #ifdef CONFIG_SMP
1468 if (unlikely(task_running(rq, p)))
1469 goto out_activate;
1471 new_cpu = cpu;
1473 schedstat_inc(rq, ttwu_count);
1474 if (cpu == this_cpu) {
1475 schedstat_inc(rq, ttwu_local);
1476 goto out_set_cpu;
1479 for_each_domain(this_cpu, sd) {
1480 if (cpu_isset(cpu, sd->span)) {
1481 schedstat_inc(sd, ttwu_wake_remote);
1482 this_sd = sd;
1483 break;
1487 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1488 goto out_set_cpu;
1491 * Check for affine wakeup and passive balancing possibilities.
1493 if (this_sd) {
1494 int idx = this_sd->wake_idx;
1495 unsigned int imbalance;
1497 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1499 load = source_load(cpu, idx);
1500 this_load = target_load(this_cpu, idx);
1502 new_cpu = this_cpu; /* Wake to this CPU if we can */
1504 if (this_sd->flags & SD_WAKE_AFFINE) {
1505 unsigned long tl = this_load;
1506 unsigned long tl_per_task;
1508 tl_per_task = cpu_avg_load_per_task(this_cpu);
1511 * If sync wakeup then subtract the (maximum possible)
1512 * effect of the currently running task from the load
1513 * of the current CPU:
1515 if (sync)
1516 tl -= current->se.load.weight;
1518 if ((tl <= load &&
1519 tl + target_load(cpu, idx) <= tl_per_task) ||
1520 100*(tl + p->se.load.weight) <= imbalance*load) {
1522 * This domain has SD_WAKE_AFFINE and
1523 * p is cache cold in this domain, and
1524 * there is no bad imbalance.
1526 schedstat_inc(this_sd, ttwu_move_affine);
1527 goto out_set_cpu;
1532 * Start passive balancing when half the imbalance_pct
1533 * limit is reached.
1535 if (this_sd->flags & SD_WAKE_BALANCE) {
1536 if (imbalance*this_load <= 100*load) {
1537 schedstat_inc(this_sd, ttwu_move_balance);
1538 goto out_set_cpu;
1543 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1544 out_set_cpu:
1545 new_cpu = wake_idle(new_cpu, p);
1546 if (new_cpu != cpu) {
1547 set_task_cpu(p, new_cpu);
1548 task_rq_unlock(rq, &flags);
1549 /* might preempt at this point */
1550 rq = task_rq_lock(p, &flags);
1551 old_state = p->state;
1552 if (!(old_state & state))
1553 goto out;
1554 if (p->se.on_rq)
1555 goto out_running;
1557 this_cpu = smp_processor_id();
1558 cpu = task_cpu(p);
1561 out_activate:
1562 #endif /* CONFIG_SMP */
1563 update_rq_clock(rq);
1564 activate_task(rq, p, 1);
1566 * Sync wakeups (i.e. those types of wakeups where the waker
1567 * has indicated that it will leave the CPU in short order)
1568 * don't trigger a preemption, if the woken up task will run on
1569 * this cpu. (in this case the 'I will reschedule' promise of
1570 * the waker guarantees that the freshly woken up task is going
1571 * to be considered on this CPU.)
1573 if (!sync || cpu != this_cpu)
1574 check_preempt_curr(rq, p);
1575 success = 1;
1577 out_running:
1578 p->state = TASK_RUNNING;
1579 out:
1580 task_rq_unlock(rq, &flags);
1582 return success;
1585 int fastcall wake_up_process(struct task_struct *p)
1587 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1588 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1590 EXPORT_SYMBOL(wake_up_process);
1592 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1594 return try_to_wake_up(p, state, 0);
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
1601 * __sched_fork() is basic setup used by init_idle() too:
1603 static void __sched_fork(struct task_struct *p)
1605 p->se.exec_start = 0;
1606 p->se.sum_exec_runtime = 0;
1607 p->se.prev_sum_exec_runtime = 0;
1609 #ifdef CONFIG_SCHEDSTATS
1610 p->se.wait_start = 0;
1611 p->se.sum_sleep_runtime = 0;
1612 p->se.sleep_start = 0;
1613 p->se.block_start = 0;
1614 p->se.sleep_max = 0;
1615 p->se.block_max = 0;
1616 p->se.exec_max = 0;
1617 p->se.slice_max = 0;
1618 p->se.wait_max = 0;
1619 #endif
1621 INIT_LIST_HEAD(&p->run_list);
1622 p->se.on_rq = 0;
1624 #ifdef CONFIG_PREEMPT_NOTIFIERS
1625 INIT_HLIST_HEAD(&p->preempt_notifiers);
1626 #endif
1629 * We mark the process as running here, but have not actually
1630 * inserted it onto the runqueue yet. This guarantees that
1631 * nobody will actually run it, and a signal or other external
1632 * event cannot wake it up and insert it on the runqueue either.
1634 p->state = TASK_RUNNING;
1638 * fork()/clone()-time setup:
1640 void sched_fork(struct task_struct *p, int clone_flags)
1642 int cpu = get_cpu();
1644 __sched_fork(p);
1646 #ifdef CONFIG_SMP
1647 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1648 #endif
1649 set_task_cpu(p, cpu);
1652 * Make sure we do not leak PI boosting priority to the child:
1654 p->prio = current->normal_prio;
1655 if (!rt_prio(p->prio))
1656 p->sched_class = &fair_sched_class;
1658 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1659 if (likely(sched_info_on()))
1660 memset(&p->sched_info, 0, sizeof(p->sched_info));
1661 #endif
1662 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1663 p->oncpu = 0;
1664 #endif
1665 #ifdef CONFIG_PREEMPT
1666 /* Want to start with kernel preemption disabled. */
1667 task_thread_info(p)->preempt_count = 1;
1668 #endif
1669 put_cpu();
1673 * wake_up_new_task - wake up a newly created task for the first time.
1675 * This function will do some initial scheduler statistics housekeeping
1676 * that must be done for every newly created context, then puts the task
1677 * on the runqueue and wakes it.
1679 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1681 unsigned long flags;
1682 struct rq *rq;
1683 int this_cpu;
1685 rq = task_rq_lock(p, &flags);
1686 BUG_ON(p->state != TASK_RUNNING);
1687 this_cpu = smp_processor_id(); /* parent's CPU */
1688 update_rq_clock(rq);
1690 p->prio = effective_prio(p);
1692 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1693 !current->se.on_rq) {
1694 activate_task(rq, p, 0);
1695 } else {
1697 * Let the scheduling class do new task startup
1698 * management (if any):
1700 p->sched_class->task_new(rq, p);
1701 inc_nr_running(p, rq);
1703 check_preempt_curr(rq, p);
1704 task_rq_unlock(rq, &flags);
1707 #ifdef CONFIG_PREEMPT_NOTIFIERS
1710 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1711 * @notifier: notifier struct to register
1713 void preempt_notifier_register(struct preempt_notifier *notifier)
1715 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1717 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1720 * preempt_notifier_unregister - no longer interested in preemption notifications
1721 * @notifier: notifier struct to unregister
1723 * This is safe to call from within a preemption notifier.
1725 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1727 hlist_del(&notifier->link);
1729 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1731 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1733 struct preempt_notifier *notifier;
1734 struct hlist_node *node;
1736 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1737 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1740 static void
1741 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1742 struct task_struct *next)
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_out(notifier, next);
1751 #else
1753 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1757 static void
1758 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1759 struct task_struct *next)
1763 #endif
1766 * prepare_task_switch - prepare to switch tasks
1767 * @rq: the runqueue preparing to switch
1768 * @prev: the current task that is being switched out
1769 * @next: the task we are going to switch to.
1771 * This is called with the rq lock held and interrupts off. It must
1772 * be paired with a subsequent finish_task_switch after the context
1773 * switch.
1775 * prepare_task_switch sets up locking and calls architecture specific
1776 * hooks.
1778 static inline void
1779 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1780 struct task_struct *next)
1782 fire_sched_out_preempt_notifiers(prev, next);
1783 prepare_lock_switch(rq, next);
1784 prepare_arch_switch(next);
1788 * finish_task_switch - clean up after a task-switch
1789 * @rq: runqueue associated with task-switch
1790 * @prev: the thread we just switched away from.
1792 * finish_task_switch must be called after the context switch, paired
1793 * with a prepare_task_switch call before the context switch.
1794 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1795 * and do any other architecture-specific cleanup actions.
1797 * Note that we may have delayed dropping an mm in context_switch(). If
1798 * so, we finish that here outside of the runqueue lock. (Doing it
1799 * with the lock held can cause deadlocks; see schedule() for
1800 * details.)
1802 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1803 __releases(rq->lock)
1805 struct mm_struct *mm = rq->prev_mm;
1806 long prev_state;
1808 rq->prev_mm = NULL;
1811 * A task struct has one reference for the use as "current".
1812 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1813 * schedule one last time. The schedule call will never return, and
1814 * the scheduled task must drop that reference.
1815 * The test for TASK_DEAD must occur while the runqueue locks are
1816 * still held, otherwise prev could be scheduled on another cpu, die
1817 * there before we look at prev->state, and then the reference would
1818 * be dropped twice.
1819 * Manfred Spraul <manfred@colorfullife.com>
1821 prev_state = prev->state;
1822 finish_arch_switch(prev);
1823 finish_lock_switch(rq, prev);
1824 fire_sched_in_preempt_notifiers(current);
1825 if (mm)
1826 mmdrop(mm);
1827 if (unlikely(prev_state == TASK_DEAD)) {
1829 * Remove function-return probe instances associated with this
1830 * task and put them back on the free list.
1832 kprobe_flush_task(prev);
1833 put_task_struct(prev);
1838 * schedule_tail - first thing a freshly forked thread must call.
1839 * @prev: the thread we just switched away from.
1841 asmlinkage void schedule_tail(struct task_struct *prev)
1842 __releases(rq->lock)
1844 struct rq *rq = this_rq();
1846 finish_task_switch(rq, prev);
1847 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1848 /* In this case, finish_task_switch does not reenable preemption */
1849 preempt_enable();
1850 #endif
1851 if (current->set_child_tid)
1852 put_user(current->pid, current->set_child_tid);
1856 * context_switch - switch to the new MM and the new
1857 * thread's register state.
1859 static inline void
1860 context_switch(struct rq *rq, struct task_struct *prev,
1861 struct task_struct *next)
1863 struct mm_struct *mm, *oldmm;
1865 prepare_task_switch(rq, prev, next);
1866 mm = next->mm;
1867 oldmm = prev->active_mm;
1869 * For paravirt, this is coupled with an exit in switch_to to
1870 * combine the page table reload and the switch backend into
1871 * one hypercall.
1873 arch_enter_lazy_cpu_mode();
1875 if (unlikely(!mm)) {
1876 next->active_mm = oldmm;
1877 atomic_inc(&oldmm->mm_count);
1878 enter_lazy_tlb(oldmm, next);
1879 } else
1880 switch_mm(oldmm, mm, next);
1882 if (unlikely(!prev->mm)) {
1883 prev->active_mm = NULL;
1884 rq->prev_mm = oldmm;
1887 * Since the runqueue lock will be released by the next
1888 * task (which is an invalid locking op but in the case
1889 * of the scheduler it's an obvious special-case), so we
1890 * do an early lockdep release here:
1892 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1893 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1894 #endif
1896 /* Here we just switch the register state and the stack. */
1897 switch_to(prev, next, prev);
1899 barrier();
1901 * this_rq must be evaluated again because prev may have moved
1902 * CPUs since it called schedule(), thus the 'rq' on its stack
1903 * frame will be invalid.
1905 finish_task_switch(this_rq(), prev);
1909 * nr_running, nr_uninterruptible and nr_context_switches:
1911 * externally visible scheduler statistics: current number of runnable
1912 * threads, current number of uninterruptible-sleeping threads, total
1913 * number of context switches performed since bootup.
1915 unsigned long nr_running(void)
1917 unsigned long i, sum = 0;
1919 for_each_online_cpu(i)
1920 sum += cpu_rq(i)->nr_running;
1922 return sum;
1925 unsigned long nr_uninterruptible(void)
1927 unsigned long i, sum = 0;
1929 for_each_possible_cpu(i)
1930 sum += cpu_rq(i)->nr_uninterruptible;
1933 * Since we read the counters lockless, it might be slightly
1934 * inaccurate. Do not allow it to go below zero though:
1936 if (unlikely((long)sum < 0))
1937 sum = 0;
1939 return sum;
1942 unsigned long long nr_context_switches(void)
1944 int i;
1945 unsigned long long sum = 0;
1947 for_each_possible_cpu(i)
1948 sum += cpu_rq(i)->nr_switches;
1950 return sum;
1953 unsigned long nr_iowait(void)
1955 unsigned long i, sum = 0;
1957 for_each_possible_cpu(i)
1958 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1960 return sum;
1963 unsigned long nr_active(void)
1965 unsigned long i, running = 0, uninterruptible = 0;
1967 for_each_online_cpu(i) {
1968 running += cpu_rq(i)->nr_running;
1969 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1972 if (unlikely((long)uninterruptible < 0))
1973 uninterruptible = 0;
1975 return running + uninterruptible;
1979 * Update rq->cpu_load[] statistics. This function is usually called every
1980 * scheduler tick (TICK_NSEC).
1982 static void update_cpu_load(struct rq *this_rq)
1984 unsigned long this_load = this_rq->load.weight;
1985 int i, scale;
1987 this_rq->nr_load_updates++;
1989 /* Update our load: */
1990 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1991 unsigned long old_load, new_load;
1993 /* scale is effectively 1 << i now, and >> i divides by scale */
1995 old_load = this_rq->cpu_load[i];
1996 new_load = this_load;
1998 * Round up the averaging division if load is increasing. This
1999 * prevents us from getting stuck on 9 if the load is 10, for
2000 * example.
2002 if (new_load > old_load)
2003 new_load += scale-1;
2004 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2008 #ifdef CONFIG_SMP
2011 * double_rq_lock - safely lock two runqueues
2013 * Note this does not disable interrupts like task_rq_lock,
2014 * you need to do so manually before calling.
2016 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2017 __acquires(rq1->lock)
2018 __acquires(rq2->lock)
2020 BUG_ON(!irqs_disabled());
2021 if (rq1 == rq2) {
2022 spin_lock(&rq1->lock);
2023 __acquire(rq2->lock); /* Fake it out ;) */
2024 } else {
2025 if (rq1 < rq2) {
2026 spin_lock(&rq1->lock);
2027 spin_lock(&rq2->lock);
2028 } else {
2029 spin_lock(&rq2->lock);
2030 spin_lock(&rq1->lock);
2033 update_rq_clock(rq1);
2034 update_rq_clock(rq2);
2038 * double_rq_unlock - safely unlock two runqueues
2040 * Note this does not restore interrupts like task_rq_unlock,
2041 * you need to do so manually after calling.
2043 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2044 __releases(rq1->lock)
2045 __releases(rq2->lock)
2047 spin_unlock(&rq1->lock);
2048 if (rq1 != rq2)
2049 spin_unlock(&rq2->lock);
2050 else
2051 __release(rq2->lock);
2055 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2057 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2058 __releases(this_rq->lock)
2059 __acquires(busiest->lock)
2060 __acquires(this_rq->lock)
2062 if (unlikely(!irqs_disabled())) {
2063 /* printk() doesn't work good under rq->lock */
2064 spin_unlock(&this_rq->lock);
2065 BUG_ON(1);
2067 if (unlikely(!spin_trylock(&busiest->lock))) {
2068 if (busiest < this_rq) {
2069 spin_unlock(&this_rq->lock);
2070 spin_lock(&busiest->lock);
2071 spin_lock(&this_rq->lock);
2072 } else
2073 spin_lock(&busiest->lock);
2078 * If dest_cpu is allowed for this process, migrate the task to it.
2079 * This is accomplished by forcing the cpu_allowed mask to only
2080 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2081 * the cpu_allowed mask is restored.
2083 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2085 struct migration_req req;
2086 unsigned long flags;
2087 struct rq *rq;
2089 rq = task_rq_lock(p, &flags);
2090 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2091 || unlikely(cpu_is_offline(dest_cpu)))
2092 goto out;
2094 /* force the process onto the specified CPU */
2095 if (migrate_task(p, dest_cpu, &req)) {
2096 /* Need to wait for migration thread (might exit: take ref). */
2097 struct task_struct *mt = rq->migration_thread;
2099 get_task_struct(mt);
2100 task_rq_unlock(rq, &flags);
2101 wake_up_process(mt);
2102 put_task_struct(mt);
2103 wait_for_completion(&req.done);
2105 return;
2107 out:
2108 task_rq_unlock(rq, &flags);
2112 * sched_exec - execve() is a valuable balancing opportunity, because at
2113 * this point the task has the smallest effective memory and cache footprint.
2115 void sched_exec(void)
2117 int new_cpu, this_cpu = get_cpu();
2118 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2119 put_cpu();
2120 if (new_cpu != this_cpu)
2121 sched_migrate_task(current, new_cpu);
2125 * pull_task - move a task from a remote runqueue to the local runqueue.
2126 * Both runqueues must be locked.
2128 static void pull_task(struct rq *src_rq, struct task_struct *p,
2129 struct rq *this_rq, int this_cpu)
2131 deactivate_task(src_rq, p, 0);
2132 set_task_cpu(p, this_cpu);
2133 activate_task(this_rq, p, 0);
2135 * Note that idle threads have a prio of MAX_PRIO, for this test
2136 * to be always true for them.
2138 check_preempt_curr(this_rq, p);
2142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2144 static
2145 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2146 struct sched_domain *sd, enum cpu_idle_type idle,
2147 int *all_pinned)
2150 * We do not migrate tasks that are:
2151 * 1) running (obviously), or
2152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2153 * 3) are cache-hot on their current CPU.
2155 if (!cpu_isset(this_cpu, p->cpus_allowed))
2156 return 0;
2157 *all_pinned = 0;
2159 if (task_running(rq, p))
2160 return 0;
2162 return 1;
2165 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166 unsigned long max_nr_move, unsigned long max_load_move,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned, unsigned long *load_moved,
2169 int *this_best_prio, struct rq_iterator *iterator)
2171 int pulled = 0, pinned = 0, skip_for_load;
2172 struct task_struct *p;
2173 long rem_load_move = max_load_move;
2175 if (max_nr_move == 0 || max_load_move == 0)
2176 goto out;
2178 pinned = 1;
2181 * Start the load-balancing iterator:
2183 p = iterator->start(iterator->arg);
2184 next:
2185 if (!p)
2186 goto out;
2188 * To help distribute high priority tasks accross CPUs we don't
2189 * skip a task if it will be the highest priority task (i.e. smallest
2190 * prio value) on its new queue regardless of its load weight
2192 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2193 SCHED_LOAD_SCALE_FUZZ;
2194 if ((skip_for_load && p->prio >= *this_best_prio) ||
2195 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2196 p = iterator->next(iterator->arg);
2197 goto next;
2200 pull_task(busiest, p, this_rq, this_cpu);
2201 pulled++;
2202 rem_load_move -= p->se.load.weight;
2205 * We only want to steal up to the prescribed number of tasks
2206 * and the prescribed amount of weighted load.
2208 if (pulled < max_nr_move && rem_load_move > 0) {
2209 if (p->prio < *this_best_prio)
2210 *this_best_prio = p->prio;
2211 p = iterator->next(iterator->arg);
2212 goto next;
2214 out:
2216 * Right now, this is the only place pull_task() is called,
2217 * so we can safely collect pull_task() stats here rather than
2218 * inside pull_task().
2220 schedstat_add(sd, lb_gained[idle], pulled);
2222 if (all_pinned)
2223 *all_pinned = pinned;
2224 *load_moved = max_load_move - rem_load_move;
2225 return pulled;
2229 * move_tasks tries to move up to max_load_move weighted load from busiest to
2230 * this_rq, as part of a balancing operation within domain "sd".
2231 * Returns 1 if successful and 0 otherwise.
2233 * Called with both runqueues locked.
2235 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2236 unsigned long max_load_move,
2237 struct sched_domain *sd, enum cpu_idle_type idle,
2238 int *all_pinned)
2240 const struct sched_class *class = sched_class_highest;
2241 unsigned long total_load_moved = 0;
2242 int this_best_prio = this_rq->curr->prio;
2244 do {
2245 total_load_moved +=
2246 class->load_balance(this_rq, this_cpu, busiest,
2247 ULONG_MAX, max_load_move - total_load_moved,
2248 sd, idle, all_pinned, &this_best_prio);
2249 class = class->next;
2250 } while (class && max_load_move > total_load_moved);
2252 return total_load_moved > 0;
2256 * move_one_task tries to move exactly one task from busiest to this_rq, as
2257 * part of active balancing operations within "domain".
2258 * Returns 1 if successful and 0 otherwise.
2260 * Called with both runqueues locked.
2262 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2263 struct sched_domain *sd, enum cpu_idle_type idle)
2265 const struct sched_class *class;
2266 int this_best_prio = MAX_PRIO;
2268 for (class = sched_class_highest; class; class = class->next)
2269 if (class->load_balance(this_rq, this_cpu, busiest,
2270 1, ULONG_MAX, sd, idle, NULL,
2271 &this_best_prio))
2272 return 1;
2274 return 0;
2278 * find_busiest_group finds and returns the busiest CPU group within the
2279 * domain. It calculates and returns the amount of weighted load which
2280 * should be moved to restore balance via the imbalance parameter.
2282 static struct sched_group *
2283 find_busiest_group(struct sched_domain *sd, int this_cpu,
2284 unsigned long *imbalance, enum cpu_idle_type idle,
2285 int *sd_idle, cpumask_t *cpus, int *balance)
2287 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2288 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2289 unsigned long max_pull;
2290 unsigned long busiest_load_per_task, busiest_nr_running;
2291 unsigned long this_load_per_task, this_nr_running;
2292 int load_idx;
2293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2294 int power_savings_balance = 1;
2295 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2296 unsigned long min_nr_running = ULONG_MAX;
2297 struct sched_group *group_min = NULL, *group_leader = NULL;
2298 #endif
2300 max_load = this_load = total_load = total_pwr = 0;
2301 busiest_load_per_task = busiest_nr_running = 0;
2302 this_load_per_task = this_nr_running = 0;
2303 if (idle == CPU_NOT_IDLE)
2304 load_idx = sd->busy_idx;
2305 else if (idle == CPU_NEWLY_IDLE)
2306 load_idx = sd->newidle_idx;
2307 else
2308 load_idx = sd->idle_idx;
2310 do {
2311 unsigned long load, group_capacity;
2312 int local_group;
2313 int i;
2314 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2315 unsigned long sum_nr_running, sum_weighted_load;
2317 local_group = cpu_isset(this_cpu, group->cpumask);
2319 if (local_group)
2320 balance_cpu = first_cpu(group->cpumask);
2322 /* Tally up the load of all CPUs in the group */
2323 sum_weighted_load = sum_nr_running = avg_load = 0;
2325 for_each_cpu_mask(i, group->cpumask) {
2326 struct rq *rq;
2328 if (!cpu_isset(i, *cpus))
2329 continue;
2331 rq = cpu_rq(i);
2333 if (*sd_idle && rq->nr_running)
2334 *sd_idle = 0;
2336 /* Bias balancing toward cpus of our domain */
2337 if (local_group) {
2338 if (idle_cpu(i) && !first_idle_cpu) {
2339 first_idle_cpu = 1;
2340 balance_cpu = i;
2343 load = target_load(i, load_idx);
2344 } else
2345 load = source_load(i, load_idx);
2347 avg_load += load;
2348 sum_nr_running += rq->nr_running;
2349 sum_weighted_load += weighted_cpuload(i);
2353 * First idle cpu or the first cpu(busiest) in this sched group
2354 * is eligible for doing load balancing at this and above
2355 * domains. In the newly idle case, we will allow all the cpu's
2356 * to do the newly idle load balance.
2358 if (idle != CPU_NEWLY_IDLE && local_group &&
2359 balance_cpu != this_cpu && balance) {
2360 *balance = 0;
2361 goto ret;
2364 total_load += avg_load;
2365 total_pwr += group->__cpu_power;
2367 /* Adjust by relative CPU power of the group */
2368 avg_load = sg_div_cpu_power(group,
2369 avg_load * SCHED_LOAD_SCALE);
2371 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2373 if (local_group) {
2374 this_load = avg_load;
2375 this = group;
2376 this_nr_running = sum_nr_running;
2377 this_load_per_task = sum_weighted_load;
2378 } else if (avg_load > max_load &&
2379 sum_nr_running > group_capacity) {
2380 max_load = avg_load;
2381 busiest = group;
2382 busiest_nr_running = sum_nr_running;
2383 busiest_load_per_task = sum_weighted_load;
2386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2388 * Busy processors will not participate in power savings
2389 * balance.
2391 if (idle == CPU_NOT_IDLE ||
2392 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2393 goto group_next;
2396 * If the local group is idle or completely loaded
2397 * no need to do power savings balance at this domain
2399 if (local_group && (this_nr_running >= group_capacity ||
2400 !this_nr_running))
2401 power_savings_balance = 0;
2404 * If a group is already running at full capacity or idle,
2405 * don't include that group in power savings calculations
2407 if (!power_savings_balance || sum_nr_running >= group_capacity
2408 || !sum_nr_running)
2409 goto group_next;
2412 * Calculate the group which has the least non-idle load.
2413 * This is the group from where we need to pick up the load
2414 * for saving power
2416 if ((sum_nr_running < min_nr_running) ||
2417 (sum_nr_running == min_nr_running &&
2418 first_cpu(group->cpumask) <
2419 first_cpu(group_min->cpumask))) {
2420 group_min = group;
2421 min_nr_running = sum_nr_running;
2422 min_load_per_task = sum_weighted_load /
2423 sum_nr_running;
2427 * Calculate the group which is almost near its
2428 * capacity but still has some space to pick up some load
2429 * from other group and save more power
2431 if (sum_nr_running <= group_capacity - 1) {
2432 if (sum_nr_running > leader_nr_running ||
2433 (sum_nr_running == leader_nr_running &&
2434 first_cpu(group->cpumask) >
2435 first_cpu(group_leader->cpumask))) {
2436 group_leader = group;
2437 leader_nr_running = sum_nr_running;
2440 group_next:
2441 #endif
2442 group = group->next;
2443 } while (group != sd->groups);
2445 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2446 goto out_balanced;
2448 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2450 if (this_load >= avg_load ||
2451 100*max_load <= sd->imbalance_pct*this_load)
2452 goto out_balanced;
2454 busiest_load_per_task /= busiest_nr_running;
2456 * We're trying to get all the cpus to the average_load, so we don't
2457 * want to push ourselves above the average load, nor do we wish to
2458 * reduce the max loaded cpu below the average load, as either of these
2459 * actions would just result in more rebalancing later, and ping-pong
2460 * tasks around. Thus we look for the minimum possible imbalance.
2461 * Negative imbalances (*we* are more loaded than anyone else) will
2462 * be counted as no imbalance for these purposes -- we can't fix that
2463 * by pulling tasks to us. Be careful of negative numbers as they'll
2464 * appear as very large values with unsigned longs.
2466 if (max_load <= busiest_load_per_task)
2467 goto out_balanced;
2470 * In the presence of smp nice balancing, certain scenarios can have
2471 * max load less than avg load(as we skip the groups at or below
2472 * its cpu_power, while calculating max_load..)
2474 if (max_load < avg_load) {
2475 *imbalance = 0;
2476 goto small_imbalance;
2479 /* Don't want to pull so many tasks that a group would go idle */
2480 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2482 /* How much load to actually move to equalise the imbalance */
2483 *imbalance = min(max_pull * busiest->__cpu_power,
2484 (avg_load - this_load) * this->__cpu_power)
2485 / SCHED_LOAD_SCALE;
2488 * if *imbalance is less than the average load per runnable task
2489 * there is no gaurantee that any tasks will be moved so we'll have
2490 * a think about bumping its value to force at least one task to be
2491 * moved
2493 if (*imbalance < busiest_load_per_task) {
2494 unsigned long tmp, pwr_now, pwr_move;
2495 unsigned int imbn;
2497 small_imbalance:
2498 pwr_move = pwr_now = 0;
2499 imbn = 2;
2500 if (this_nr_running) {
2501 this_load_per_task /= this_nr_running;
2502 if (busiest_load_per_task > this_load_per_task)
2503 imbn = 1;
2504 } else
2505 this_load_per_task = SCHED_LOAD_SCALE;
2507 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2508 busiest_load_per_task * imbn) {
2509 *imbalance = busiest_load_per_task;
2510 return busiest;
2514 * OK, we don't have enough imbalance to justify moving tasks,
2515 * however we may be able to increase total CPU power used by
2516 * moving them.
2519 pwr_now += busiest->__cpu_power *
2520 min(busiest_load_per_task, max_load);
2521 pwr_now += this->__cpu_power *
2522 min(this_load_per_task, this_load);
2523 pwr_now /= SCHED_LOAD_SCALE;
2525 /* Amount of load we'd subtract */
2526 tmp = sg_div_cpu_power(busiest,
2527 busiest_load_per_task * SCHED_LOAD_SCALE);
2528 if (max_load > tmp)
2529 pwr_move += busiest->__cpu_power *
2530 min(busiest_load_per_task, max_load - tmp);
2532 /* Amount of load we'd add */
2533 if (max_load * busiest->__cpu_power <
2534 busiest_load_per_task * SCHED_LOAD_SCALE)
2535 tmp = sg_div_cpu_power(this,
2536 max_load * busiest->__cpu_power);
2537 else
2538 tmp = sg_div_cpu_power(this,
2539 busiest_load_per_task * SCHED_LOAD_SCALE);
2540 pwr_move += this->__cpu_power *
2541 min(this_load_per_task, this_load + tmp);
2542 pwr_move /= SCHED_LOAD_SCALE;
2544 /* Move if we gain throughput */
2545 if (pwr_move > pwr_now)
2546 *imbalance = busiest_load_per_task;
2549 return busiest;
2551 out_balanced:
2552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2553 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2554 goto ret;
2556 if (this == group_leader && group_leader != group_min) {
2557 *imbalance = min_load_per_task;
2558 return group_min;
2560 #endif
2561 ret:
2562 *imbalance = 0;
2563 return NULL;
2567 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2569 static struct rq *
2570 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2571 unsigned long imbalance, cpumask_t *cpus)
2573 struct rq *busiest = NULL, *rq;
2574 unsigned long max_load = 0;
2575 int i;
2577 for_each_cpu_mask(i, group->cpumask) {
2578 unsigned long wl;
2580 if (!cpu_isset(i, *cpus))
2581 continue;
2583 rq = cpu_rq(i);
2584 wl = weighted_cpuload(i);
2586 if (rq->nr_running == 1 && wl > imbalance)
2587 continue;
2589 if (wl > max_load) {
2590 max_load = wl;
2591 busiest = rq;
2595 return busiest;
2599 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2600 * so long as it is large enough.
2602 #define MAX_PINNED_INTERVAL 512
2605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2606 * tasks if there is an imbalance.
2608 static int load_balance(int this_cpu, struct rq *this_rq,
2609 struct sched_domain *sd, enum cpu_idle_type idle,
2610 int *balance)
2612 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2613 struct sched_group *group;
2614 unsigned long imbalance;
2615 struct rq *busiest;
2616 cpumask_t cpus = CPU_MASK_ALL;
2617 unsigned long flags;
2620 * When power savings policy is enabled for the parent domain, idle
2621 * sibling can pick up load irrespective of busy siblings. In this case,
2622 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2623 * portraying it as CPU_NOT_IDLE.
2625 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2626 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2627 sd_idle = 1;
2629 schedstat_inc(sd, lb_count[idle]);
2631 redo:
2632 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2633 &cpus, balance);
2635 if (*balance == 0)
2636 goto out_balanced;
2638 if (!group) {
2639 schedstat_inc(sd, lb_nobusyg[idle]);
2640 goto out_balanced;
2643 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2644 if (!busiest) {
2645 schedstat_inc(sd, lb_nobusyq[idle]);
2646 goto out_balanced;
2649 BUG_ON(busiest == this_rq);
2651 schedstat_add(sd, lb_imbalance[idle], imbalance);
2653 ld_moved = 0;
2654 if (busiest->nr_running > 1) {
2656 * Attempt to move tasks. If find_busiest_group has found
2657 * an imbalance but busiest->nr_running <= 1, the group is
2658 * still unbalanced. ld_moved simply stays zero, so it is
2659 * correctly treated as an imbalance.
2661 local_irq_save(flags);
2662 double_rq_lock(this_rq, busiest);
2663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2664 imbalance, sd, idle, &all_pinned);
2665 double_rq_unlock(this_rq, busiest);
2666 local_irq_restore(flags);
2669 * some other cpu did the load balance for us.
2671 if (ld_moved && this_cpu != smp_processor_id())
2672 resched_cpu(this_cpu);
2674 /* All tasks on this runqueue were pinned by CPU affinity */
2675 if (unlikely(all_pinned)) {
2676 cpu_clear(cpu_of(busiest), cpus);
2677 if (!cpus_empty(cpus))
2678 goto redo;
2679 goto out_balanced;
2683 if (!ld_moved) {
2684 schedstat_inc(sd, lb_failed[idle]);
2685 sd->nr_balance_failed++;
2687 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2689 spin_lock_irqsave(&busiest->lock, flags);
2691 /* don't kick the migration_thread, if the curr
2692 * task on busiest cpu can't be moved to this_cpu
2694 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2695 spin_unlock_irqrestore(&busiest->lock, flags);
2696 all_pinned = 1;
2697 goto out_one_pinned;
2700 if (!busiest->active_balance) {
2701 busiest->active_balance = 1;
2702 busiest->push_cpu = this_cpu;
2703 active_balance = 1;
2705 spin_unlock_irqrestore(&busiest->lock, flags);
2706 if (active_balance)
2707 wake_up_process(busiest->migration_thread);
2710 * We've kicked active balancing, reset the failure
2711 * counter.
2713 sd->nr_balance_failed = sd->cache_nice_tries+1;
2715 } else
2716 sd->nr_balance_failed = 0;
2718 if (likely(!active_balance)) {
2719 /* We were unbalanced, so reset the balancing interval */
2720 sd->balance_interval = sd->min_interval;
2721 } else {
2723 * If we've begun active balancing, start to back off. This
2724 * case may not be covered by the all_pinned logic if there
2725 * is only 1 task on the busy runqueue (because we don't call
2726 * move_tasks).
2728 if (sd->balance_interval < sd->max_interval)
2729 sd->balance_interval *= 2;
2732 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2733 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2734 return -1;
2735 return ld_moved;
2737 out_balanced:
2738 schedstat_inc(sd, lb_balanced[idle]);
2740 sd->nr_balance_failed = 0;
2742 out_one_pinned:
2743 /* tune up the balancing interval */
2744 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2745 (sd->balance_interval < sd->max_interval))
2746 sd->balance_interval *= 2;
2748 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2749 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2750 return -1;
2751 return 0;
2755 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2756 * tasks if there is an imbalance.
2758 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2759 * this_rq is locked.
2761 static int
2762 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2764 struct sched_group *group;
2765 struct rq *busiest = NULL;
2766 unsigned long imbalance;
2767 int ld_moved = 0;
2768 int sd_idle = 0;
2769 int all_pinned = 0;
2770 cpumask_t cpus = CPU_MASK_ALL;
2773 * When power savings policy is enabled for the parent domain, idle
2774 * sibling can pick up load irrespective of busy siblings. In this case,
2775 * let the state of idle sibling percolate up as IDLE, instead of
2776 * portraying it as CPU_NOT_IDLE.
2778 if (sd->flags & SD_SHARE_CPUPOWER &&
2779 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2780 sd_idle = 1;
2782 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2783 redo:
2784 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2785 &sd_idle, &cpus, NULL);
2786 if (!group) {
2787 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2788 goto out_balanced;
2791 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2792 &cpus);
2793 if (!busiest) {
2794 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2795 goto out_balanced;
2798 BUG_ON(busiest == this_rq);
2800 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2802 ld_moved = 0;
2803 if (busiest->nr_running > 1) {
2804 /* Attempt to move tasks */
2805 double_lock_balance(this_rq, busiest);
2806 /* this_rq->clock is already updated */
2807 update_rq_clock(busiest);
2808 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2809 imbalance, sd, CPU_NEWLY_IDLE,
2810 &all_pinned);
2811 spin_unlock(&busiest->lock);
2813 if (unlikely(all_pinned)) {
2814 cpu_clear(cpu_of(busiest), cpus);
2815 if (!cpus_empty(cpus))
2816 goto redo;
2820 if (!ld_moved) {
2821 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2822 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2823 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2824 return -1;
2825 } else
2826 sd->nr_balance_failed = 0;
2828 return ld_moved;
2830 out_balanced:
2831 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2832 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2833 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2834 return -1;
2835 sd->nr_balance_failed = 0;
2837 return 0;
2841 * idle_balance is called by schedule() if this_cpu is about to become
2842 * idle. Attempts to pull tasks from other CPUs.
2844 static void idle_balance(int this_cpu, struct rq *this_rq)
2846 struct sched_domain *sd;
2847 int pulled_task = -1;
2848 unsigned long next_balance = jiffies + HZ;
2850 for_each_domain(this_cpu, sd) {
2851 unsigned long interval;
2853 if (!(sd->flags & SD_LOAD_BALANCE))
2854 continue;
2856 if (sd->flags & SD_BALANCE_NEWIDLE)
2857 /* If we've pulled tasks over stop searching: */
2858 pulled_task = load_balance_newidle(this_cpu,
2859 this_rq, sd);
2861 interval = msecs_to_jiffies(sd->balance_interval);
2862 if (time_after(next_balance, sd->last_balance + interval))
2863 next_balance = sd->last_balance + interval;
2864 if (pulled_task)
2865 break;
2867 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2869 * We are going idle. next_balance may be set based on
2870 * a busy processor. So reset next_balance.
2872 this_rq->next_balance = next_balance;
2877 * active_load_balance is run by migration threads. It pushes running tasks
2878 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2879 * running on each physical CPU where possible, and avoids physical /
2880 * logical imbalances.
2882 * Called with busiest_rq locked.
2884 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2886 int target_cpu = busiest_rq->push_cpu;
2887 struct sched_domain *sd;
2888 struct rq *target_rq;
2890 /* Is there any task to move? */
2891 if (busiest_rq->nr_running <= 1)
2892 return;
2894 target_rq = cpu_rq(target_cpu);
2897 * This condition is "impossible", if it occurs
2898 * we need to fix it. Originally reported by
2899 * Bjorn Helgaas on a 128-cpu setup.
2901 BUG_ON(busiest_rq == target_rq);
2903 /* move a task from busiest_rq to target_rq */
2904 double_lock_balance(busiest_rq, target_rq);
2905 update_rq_clock(busiest_rq);
2906 update_rq_clock(target_rq);
2908 /* Search for an sd spanning us and the target CPU. */
2909 for_each_domain(target_cpu, sd) {
2910 if ((sd->flags & SD_LOAD_BALANCE) &&
2911 cpu_isset(busiest_cpu, sd->span))
2912 break;
2915 if (likely(sd)) {
2916 schedstat_inc(sd, alb_count);
2918 if (move_one_task(target_rq, target_cpu, busiest_rq,
2919 sd, CPU_IDLE))
2920 schedstat_inc(sd, alb_pushed);
2921 else
2922 schedstat_inc(sd, alb_failed);
2924 spin_unlock(&target_rq->lock);
2927 #ifdef CONFIG_NO_HZ
2928 static struct {
2929 atomic_t load_balancer;
2930 cpumask_t cpu_mask;
2931 } nohz ____cacheline_aligned = {
2932 .load_balancer = ATOMIC_INIT(-1),
2933 .cpu_mask = CPU_MASK_NONE,
2937 * This routine will try to nominate the ilb (idle load balancing)
2938 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2939 * load balancing on behalf of all those cpus. If all the cpus in the system
2940 * go into this tickless mode, then there will be no ilb owner (as there is
2941 * no need for one) and all the cpus will sleep till the next wakeup event
2942 * arrives...
2944 * For the ilb owner, tick is not stopped. And this tick will be used
2945 * for idle load balancing. ilb owner will still be part of
2946 * nohz.cpu_mask..
2948 * While stopping the tick, this cpu will become the ilb owner if there
2949 * is no other owner. And will be the owner till that cpu becomes busy
2950 * or if all cpus in the system stop their ticks at which point
2951 * there is no need for ilb owner.
2953 * When the ilb owner becomes busy, it nominates another owner, during the
2954 * next busy scheduler_tick()
2956 int select_nohz_load_balancer(int stop_tick)
2958 int cpu = smp_processor_id();
2960 if (stop_tick) {
2961 cpu_set(cpu, nohz.cpu_mask);
2962 cpu_rq(cpu)->in_nohz_recently = 1;
2965 * If we are going offline and still the leader, give up!
2967 if (cpu_is_offline(cpu) &&
2968 atomic_read(&nohz.load_balancer) == cpu) {
2969 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2970 BUG();
2971 return 0;
2974 /* time for ilb owner also to sleep */
2975 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2976 if (atomic_read(&nohz.load_balancer) == cpu)
2977 atomic_set(&nohz.load_balancer, -1);
2978 return 0;
2981 if (atomic_read(&nohz.load_balancer) == -1) {
2982 /* make me the ilb owner */
2983 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2984 return 1;
2985 } else if (atomic_read(&nohz.load_balancer) == cpu)
2986 return 1;
2987 } else {
2988 if (!cpu_isset(cpu, nohz.cpu_mask))
2989 return 0;
2991 cpu_clear(cpu, nohz.cpu_mask);
2993 if (atomic_read(&nohz.load_balancer) == cpu)
2994 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2995 BUG();
2997 return 0;
2999 #endif
3001 static DEFINE_SPINLOCK(balancing);
3004 * It checks each scheduling domain to see if it is due to be balanced,
3005 * and initiates a balancing operation if so.
3007 * Balancing parameters are set up in arch_init_sched_domains.
3009 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3011 int balance = 1;
3012 struct rq *rq = cpu_rq(cpu);
3013 unsigned long interval;
3014 struct sched_domain *sd;
3015 /* Earliest time when we have to do rebalance again */
3016 unsigned long next_balance = jiffies + 60*HZ;
3017 int update_next_balance = 0;
3019 for_each_domain(cpu, sd) {
3020 if (!(sd->flags & SD_LOAD_BALANCE))
3021 continue;
3023 interval = sd->balance_interval;
3024 if (idle != CPU_IDLE)
3025 interval *= sd->busy_factor;
3027 /* scale ms to jiffies */
3028 interval = msecs_to_jiffies(interval);
3029 if (unlikely(!interval))
3030 interval = 1;
3031 if (interval > HZ*NR_CPUS/10)
3032 interval = HZ*NR_CPUS/10;
3035 if (sd->flags & SD_SERIALIZE) {
3036 if (!spin_trylock(&balancing))
3037 goto out;
3040 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3041 if (load_balance(cpu, rq, sd, idle, &balance)) {
3043 * We've pulled tasks over so either we're no
3044 * longer idle, or one of our SMT siblings is
3045 * not idle.
3047 idle = CPU_NOT_IDLE;
3049 sd->last_balance = jiffies;
3051 if (sd->flags & SD_SERIALIZE)
3052 spin_unlock(&balancing);
3053 out:
3054 if (time_after(next_balance, sd->last_balance + interval)) {
3055 next_balance = sd->last_balance + interval;
3056 update_next_balance = 1;
3060 * Stop the load balance at this level. There is another
3061 * CPU in our sched group which is doing load balancing more
3062 * actively.
3064 if (!balance)
3065 break;
3069 * next_balance will be updated only when there is a need.
3070 * When the cpu is attached to null domain for ex, it will not be
3071 * updated.
3073 if (likely(update_next_balance))
3074 rq->next_balance = next_balance;
3078 * run_rebalance_domains is triggered when needed from the scheduler tick.
3079 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3080 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3082 static void run_rebalance_domains(struct softirq_action *h)
3084 int this_cpu = smp_processor_id();
3085 struct rq *this_rq = cpu_rq(this_cpu);
3086 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3087 CPU_IDLE : CPU_NOT_IDLE;
3089 rebalance_domains(this_cpu, idle);
3091 #ifdef CONFIG_NO_HZ
3093 * If this cpu is the owner for idle load balancing, then do the
3094 * balancing on behalf of the other idle cpus whose ticks are
3095 * stopped.
3097 if (this_rq->idle_at_tick &&
3098 atomic_read(&nohz.load_balancer) == this_cpu) {
3099 cpumask_t cpus = nohz.cpu_mask;
3100 struct rq *rq;
3101 int balance_cpu;
3103 cpu_clear(this_cpu, cpus);
3104 for_each_cpu_mask(balance_cpu, cpus) {
3106 * If this cpu gets work to do, stop the load balancing
3107 * work being done for other cpus. Next load
3108 * balancing owner will pick it up.
3110 if (need_resched())
3111 break;
3113 rebalance_domains(balance_cpu, CPU_IDLE);
3115 rq = cpu_rq(balance_cpu);
3116 if (time_after(this_rq->next_balance, rq->next_balance))
3117 this_rq->next_balance = rq->next_balance;
3120 #endif
3124 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3126 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3127 * idle load balancing owner or decide to stop the periodic load balancing,
3128 * if the whole system is idle.
3130 static inline void trigger_load_balance(struct rq *rq, int cpu)
3132 #ifdef CONFIG_NO_HZ
3134 * If we were in the nohz mode recently and busy at the current
3135 * scheduler tick, then check if we need to nominate new idle
3136 * load balancer.
3138 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3139 rq->in_nohz_recently = 0;
3141 if (atomic_read(&nohz.load_balancer) == cpu) {
3142 cpu_clear(cpu, nohz.cpu_mask);
3143 atomic_set(&nohz.load_balancer, -1);
3146 if (atomic_read(&nohz.load_balancer) == -1) {
3148 * simple selection for now: Nominate the
3149 * first cpu in the nohz list to be the next
3150 * ilb owner.
3152 * TBD: Traverse the sched domains and nominate
3153 * the nearest cpu in the nohz.cpu_mask.
3155 int ilb = first_cpu(nohz.cpu_mask);
3157 if (ilb != NR_CPUS)
3158 resched_cpu(ilb);
3163 * If this cpu is idle and doing idle load balancing for all the
3164 * cpus with ticks stopped, is it time for that to stop?
3166 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3167 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3168 resched_cpu(cpu);
3169 return;
3173 * If this cpu is idle and the idle load balancing is done by
3174 * someone else, then no need raise the SCHED_SOFTIRQ
3176 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3177 cpu_isset(cpu, nohz.cpu_mask))
3178 return;
3179 #endif
3180 if (time_after_eq(jiffies, rq->next_balance))
3181 raise_softirq(SCHED_SOFTIRQ);
3184 #else /* CONFIG_SMP */
3187 * on UP we do not need to balance between CPUs:
3189 static inline void idle_balance(int cpu, struct rq *rq)
3193 /* Avoid "used but not defined" warning on UP */
3194 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3195 unsigned long max_nr_move, unsigned long max_load_move,
3196 struct sched_domain *sd, enum cpu_idle_type idle,
3197 int *all_pinned, unsigned long *load_moved,
3198 int *this_best_prio, struct rq_iterator *iterator)
3200 *load_moved = 0;
3202 return 0;
3205 #endif
3207 DEFINE_PER_CPU(struct kernel_stat, kstat);
3209 EXPORT_PER_CPU_SYMBOL(kstat);
3212 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3213 * that have not yet been banked in case the task is currently running.
3215 unsigned long long task_sched_runtime(struct task_struct *p)
3217 unsigned long flags;
3218 u64 ns, delta_exec;
3219 struct rq *rq;
3221 rq = task_rq_lock(p, &flags);
3222 ns = p->se.sum_exec_runtime;
3223 if (rq->curr == p) {
3224 update_rq_clock(rq);
3225 delta_exec = rq->clock - p->se.exec_start;
3226 if ((s64)delta_exec > 0)
3227 ns += delta_exec;
3229 task_rq_unlock(rq, &flags);
3231 return ns;
3235 * Account user cpu time to a process.
3236 * @p: the process that the cpu time gets accounted to
3237 * @hardirq_offset: the offset to subtract from hardirq_count()
3238 * @cputime: the cpu time spent in user space since the last update
3240 void account_user_time(struct task_struct *p, cputime_t cputime)
3242 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3243 cputime64_t tmp;
3245 p->utime = cputime_add(p->utime, cputime);
3247 /* Add user time to cpustat. */
3248 tmp = cputime_to_cputime64(cputime);
3249 if (TASK_NICE(p) > 0)
3250 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3251 else
3252 cpustat->user = cputime64_add(cpustat->user, tmp);
3256 * Account system cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in kernel space since the last update
3261 void account_system_time(struct task_struct *p, int hardirq_offset,
3262 cputime_t cputime)
3264 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3265 struct rq *rq = this_rq();
3266 cputime64_t tmp;
3268 p->stime = cputime_add(p->stime, cputime);
3270 /* Add system time to cpustat. */
3271 tmp = cputime_to_cputime64(cputime);
3272 if (hardirq_count() - hardirq_offset)
3273 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3274 else if (softirq_count())
3275 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3276 else if (p != rq->idle)
3277 cpustat->system = cputime64_add(cpustat->system, tmp);
3278 else if (atomic_read(&rq->nr_iowait) > 0)
3279 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3280 else
3281 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3282 /* Account for system time used */
3283 acct_update_integrals(p);
3287 * Account for involuntary wait time.
3288 * @p: the process from which the cpu time has been stolen
3289 * @steal: the cpu time spent in involuntary wait
3291 void account_steal_time(struct task_struct *p, cputime_t steal)
3293 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3294 cputime64_t tmp = cputime_to_cputime64(steal);
3295 struct rq *rq = this_rq();
3297 if (p == rq->idle) {
3298 p->stime = cputime_add(p->stime, steal);
3299 if (atomic_read(&rq->nr_iowait) > 0)
3300 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3301 else
3302 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3303 } else
3304 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3308 * This function gets called by the timer code, with HZ frequency.
3309 * We call it with interrupts disabled.
3311 * It also gets called by the fork code, when changing the parent's
3312 * timeslices.
3314 void scheduler_tick(void)
3316 int cpu = smp_processor_id();
3317 struct rq *rq = cpu_rq(cpu);
3318 struct task_struct *curr = rq->curr;
3319 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3321 spin_lock(&rq->lock);
3322 __update_rq_clock(rq);
3324 * Let rq->clock advance by at least TICK_NSEC:
3326 if (unlikely(rq->clock < next_tick))
3327 rq->clock = next_tick;
3328 rq->tick_timestamp = rq->clock;
3329 update_cpu_load(rq);
3330 if (curr != rq->idle) /* FIXME: needed? */
3331 curr->sched_class->task_tick(rq, curr);
3332 spin_unlock(&rq->lock);
3334 #ifdef CONFIG_SMP
3335 rq->idle_at_tick = idle_cpu(cpu);
3336 trigger_load_balance(rq, cpu);
3337 #endif
3340 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3342 void fastcall add_preempt_count(int val)
3345 * Underflow?
3347 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3348 return;
3349 preempt_count() += val;
3351 * Spinlock count overflowing soon?
3353 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3354 PREEMPT_MASK - 10);
3356 EXPORT_SYMBOL(add_preempt_count);
3358 void fastcall sub_preempt_count(int val)
3361 * Underflow?
3363 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3364 return;
3366 * Is the spinlock portion underflowing?
3368 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3369 !(preempt_count() & PREEMPT_MASK)))
3370 return;
3372 preempt_count() -= val;
3374 EXPORT_SYMBOL(sub_preempt_count);
3376 #endif
3379 * Print scheduling while atomic bug:
3381 static noinline void __schedule_bug(struct task_struct *prev)
3383 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3384 prev->comm, preempt_count(), prev->pid);
3385 debug_show_held_locks(prev);
3386 if (irqs_disabled())
3387 print_irqtrace_events(prev);
3388 dump_stack();
3392 * Various schedule()-time debugging checks and statistics:
3394 static inline void schedule_debug(struct task_struct *prev)
3397 * Test if we are atomic. Since do_exit() needs to call into
3398 * schedule() atomically, we ignore that path for now.
3399 * Otherwise, whine if we are scheduling when we should not be.
3401 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3402 __schedule_bug(prev);
3404 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3406 schedstat_inc(this_rq(), sched_count);
3407 #ifdef CONFIG_SCHEDSTATS
3408 if (unlikely(prev->lock_depth >= 0)) {
3409 schedstat_inc(this_rq(), bkl_count);
3410 schedstat_inc(prev, sched_info.bkl_count);
3412 #endif
3416 * Pick up the highest-prio task:
3418 static inline struct task_struct *
3419 pick_next_task(struct rq *rq, struct task_struct *prev)
3421 const struct sched_class *class;
3422 struct task_struct *p;
3425 * Optimization: we know that if all tasks are in
3426 * the fair class we can call that function directly:
3428 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3429 p = fair_sched_class.pick_next_task(rq);
3430 if (likely(p))
3431 return p;
3434 class = sched_class_highest;
3435 for ( ; ; ) {
3436 p = class->pick_next_task(rq);
3437 if (p)
3438 return p;
3440 * Will never be NULL as the idle class always
3441 * returns a non-NULL p:
3443 class = class->next;
3448 * schedule() is the main scheduler function.
3450 asmlinkage void __sched schedule(void)
3452 struct task_struct *prev, *next;
3453 long *switch_count;
3454 struct rq *rq;
3455 int cpu;
3457 need_resched:
3458 preempt_disable();
3459 cpu = smp_processor_id();
3460 rq = cpu_rq(cpu);
3461 rcu_qsctr_inc(cpu);
3462 prev = rq->curr;
3463 switch_count = &prev->nivcsw;
3465 release_kernel_lock(prev);
3466 need_resched_nonpreemptible:
3468 schedule_debug(prev);
3471 * Do the rq-clock update outside the rq lock:
3473 local_irq_disable();
3474 __update_rq_clock(rq);
3475 spin_lock(&rq->lock);
3476 clear_tsk_need_resched(prev);
3478 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3479 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3480 unlikely(signal_pending(prev)))) {
3481 prev->state = TASK_RUNNING;
3482 } else {
3483 deactivate_task(rq, prev, 1);
3485 switch_count = &prev->nvcsw;
3488 if (unlikely(!rq->nr_running))
3489 idle_balance(cpu, rq);
3491 prev->sched_class->put_prev_task(rq, prev);
3492 next = pick_next_task(rq, prev);
3494 sched_info_switch(prev, next);
3496 if (likely(prev != next)) {
3497 rq->nr_switches++;
3498 rq->curr = next;
3499 ++*switch_count;
3501 context_switch(rq, prev, next); /* unlocks the rq */
3502 } else
3503 spin_unlock_irq(&rq->lock);
3505 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3506 cpu = smp_processor_id();
3507 rq = cpu_rq(cpu);
3508 goto need_resched_nonpreemptible;
3510 preempt_enable_no_resched();
3511 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3512 goto need_resched;
3514 EXPORT_SYMBOL(schedule);
3516 #ifdef CONFIG_PREEMPT
3518 * this is the entry point to schedule() from in-kernel preemption
3519 * off of preempt_enable. Kernel preemptions off return from interrupt
3520 * occur there and call schedule directly.
3522 asmlinkage void __sched preempt_schedule(void)
3524 struct thread_info *ti = current_thread_info();
3525 #ifdef CONFIG_PREEMPT_BKL
3526 struct task_struct *task = current;
3527 int saved_lock_depth;
3528 #endif
3530 * If there is a non-zero preempt_count or interrupts are disabled,
3531 * we do not want to preempt the current task. Just return..
3533 if (likely(ti->preempt_count || irqs_disabled()))
3534 return;
3536 need_resched:
3537 add_preempt_count(PREEMPT_ACTIVE);
3539 * We keep the big kernel semaphore locked, but we
3540 * clear ->lock_depth so that schedule() doesnt
3541 * auto-release the semaphore:
3543 #ifdef CONFIG_PREEMPT_BKL
3544 saved_lock_depth = task->lock_depth;
3545 task->lock_depth = -1;
3546 #endif
3547 schedule();
3548 #ifdef CONFIG_PREEMPT_BKL
3549 task->lock_depth = saved_lock_depth;
3550 #endif
3551 sub_preempt_count(PREEMPT_ACTIVE);
3553 /* we could miss a preemption opportunity between schedule and now */
3554 barrier();
3555 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3556 goto need_resched;
3558 EXPORT_SYMBOL(preempt_schedule);
3561 * this is the entry point to schedule() from kernel preemption
3562 * off of irq context.
3563 * Note, that this is called and return with irqs disabled. This will
3564 * protect us against recursive calling from irq.
3566 asmlinkage void __sched preempt_schedule_irq(void)
3568 struct thread_info *ti = current_thread_info();
3569 #ifdef CONFIG_PREEMPT_BKL
3570 struct task_struct *task = current;
3571 int saved_lock_depth;
3572 #endif
3573 /* Catch callers which need to be fixed */
3574 BUG_ON(ti->preempt_count || !irqs_disabled());
3576 need_resched:
3577 add_preempt_count(PREEMPT_ACTIVE);
3579 * We keep the big kernel semaphore locked, but we
3580 * clear ->lock_depth so that schedule() doesnt
3581 * auto-release the semaphore:
3583 #ifdef CONFIG_PREEMPT_BKL
3584 saved_lock_depth = task->lock_depth;
3585 task->lock_depth = -1;
3586 #endif
3587 local_irq_enable();
3588 schedule();
3589 local_irq_disable();
3590 #ifdef CONFIG_PREEMPT_BKL
3591 task->lock_depth = saved_lock_depth;
3592 #endif
3593 sub_preempt_count(PREEMPT_ACTIVE);
3595 /* we could miss a preemption opportunity between schedule and now */
3596 barrier();
3597 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3598 goto need_resched;
3601 #endif /* CONFIG_PREEMPT */
3603 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3604 void *key)
3606 return try_to_wake_up(curr->private, mode, sync);
3608 EXPORT_SYMBOL(default_wake_function);
3611 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3612 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3613 * number) then we wake all the non-exclusive tasks and one exclusive task.
3615 * There are circumstances in which we can try to wake a task which has already
3616 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3617 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3619 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3620 int nr_exclusive, int sync, void *key)
3622 wait_queue_t *curr, *next;
3624 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3625 unsigned flags = curr->flags;
3627 if (curr->func(curr, mode, sync, key) &&
3628 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3629 break;
3634 * __wake_up - wake up threads blocked on a waitqueue.
3635 * @q: the waitqueue
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3638 * @key: is directly passed to the wakeup function
3640 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3641 int nr_exclusive, void *key)
3643 unsigned long flags;
3645 spin_lock_irqsave(&q->lock, flags);
3646 __wake_up_common(q, mode, nr_exclusive, 0, key);
3647 spin_unlock_irqrestore(&q->lock, flags);
3649 EXPORT_SYMBOL(__wake_up);
3652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3654 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3656 __wake_up_common(q, mode, 1, 0, NULL);
3660 * __wake_up_sync - wake up threads blocked on a waitqueue.
3661 * @q: the waitqueue
3662 * @mode: which threads
3663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3665 * The sync wakeup differs that the waker knows that it will schedule
3666 * away soon, so while the target thread will be woken up, it will not
3667 * be migrated to another CPU - ie. the two threads are 'synchronized'
3668 * with each other. This can prevent needless bouncing between CPUs.
3670 * On UP it can prevent extra preemption.
3672 void fastcall
3673 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3675 unsigned long flags;
3676 int sync = 1;
3678 if (unlikely(!q))
3679 return;
3681 if (unlikely(!nr_exclusive))
3682 sync = 0;
3684 spin_lock_irqsave(&q->lock, flags);
3685 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3686 spin_unlock_irqrestore(&q->lock, flags);
3688 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3690 void fastcall complete(struct completion *x)
3692 unsigned long flags;
3694 spin_lock_irqsave(&x->wait.lock, flags);
3695 x->done++;
3696 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3697 1, 0, NULL);
3698 spin_unlock_irqrestore(&x->wait.lock, flags);
3700 EXPORT_SYMBOL(complete);
3702 void fastcall complete_all(struct completion *x)
3704 unsigned long flags;
3706 spin_lock_irqsave(&x->wait.lock, flags);
3707 x->done += UINT_MAX/2;
3708 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3709 0, 0, NULL);
3710 spin_unlock_irqrestore(&x->wait.lock, flags);
3712 EXPORT_SYMBOL(complete_all);
3714 void fastcall __sched wait_for_completion(struct completion *x)
3716 might_sleep();
3718 spin_lock_irq(&x->wait.lock);
3719 if (!x->done) {
3720 DECLARE_WAITQUEUE(wait, current);
3722 wait.flags |= WQ_FLAG_EXCLUSIVE;
3723 __add_wait_queue_tail(&x->wait, &wait);
3724 do {
3725 __set_current_state(TASK_UNINTERRUPTIBLE);
3726 spin_unlock_irq(&x->wait.lock);
3727 schedule();
3728 spin_lock_irq(&x->wait.lock);
3729 } while (!x->done);
3730 __remove_wait_queue(&x->wait, &wait);
3732 x->done--;
3733 spin_unlock_irq(&x->wait.lock);
3735 EXPORT_SYMBOL(wait_for_completion);
3737 unsigned long fastcall __sched
3738 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3740 might_sleep();
3742 spin_lock_irq(&x->wait.lock);
3743 if (!x->done) {
3744 DECLARE_WAITQUEUE(wait, current);
3746 wait.flags |= WQ_FLAG_EXCLUSIVE;
3747 __add_wait_queue_tail(&x->wait, &wait);
3748 do {
3749 __set_current_state(TASK_UNINTERRUPTIBLE);
3750 spin_unlock_irq(&x->wait.lock);
3751 timeout = schedule_timeout(timeout);
3752 spin_lock_irq(&x->wait.lock);
3753 if (!timeout) {
3754 __remove_wait_queue(&x->wait, &wait);
3755 goto out;
3757 } while (!x->done);
3758 __remove_wait_queue(&x->wait, &wait);
3760 x->done--;
3761 out:
3762 spin_unlock_irq(&x->wait.lock);
3763 return timeout;
3765 EXPORT_SYMBOL(wait_for_completion_timeout);
3767 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3769 int ret = 0;
3771 might_sleep();
3773 spin_lock_irq(&x->wait.lock);
3774 if (!x->done) {
3775 DECLARE_WAITQUEUE(wait, current);
3777 wait.flags |= WQ_FLAG_EXCLUSIVE;
3778 __add_wait_queue_tail(&x->wait, &wait);
3779 do {
3780 if (signal_pending(current)) {
3781 ret = -ERESTARTSYS;
3782 __remove_wait_queue(&x->wait, &wait);
3783 goto out;
3785 __set_current_state(TASK_INTERRUPTIBLE);
3786 spin_unlock_irq(&x->wait.lock);
3787 schedule();
3788 spin_lock_irq(&x->wait.lock);
3789 } while (!x->done);
3790 __remove_wait_queue(&x->wait, &wait);
3792 x->done--;
3793 out:
3794 spin_unlock_irq(&x->wait.lock);
3796 return ret;
3798 EXPORT_SYMBOL(wait_for_completion_interruptible);
3800 unsigned long fastcall __sched
3801 wait_for_completion_interruptible_timeout(struct completion *x,
3802 unsigned long timeout)
3804 might_sleep();
3806 spin_lock_irq(&x->wait.lock);
3807 if (!x->done) {
3808 DECLARE_WAITQUEUE(wait, current);
3810 wait.flags |= WQ_FLAG_EXCLUSIVE;
3811 __add_wait_queue_tail(&x->wait, &wait);
3812 do {
3813 if (signal_pending(current)) {
3814 timeout = -ERESTARTSYS;
3815 __remove_wait_queue(&x->wait, &wait);
3816 goto out;
3818 __set_current_state(TASK_INTERRUPTIBLE);
3819 spin_unlock_irq(&x->wait.lock);
3820 timeout = schedule_timeout(timeout);
3821 spin_lock_irq(&x->wait.lock);
3822 if (!timeout) {
3823 __remove_wait_queue(&x->wait, &wait);
3824 goto out;
3826 } while (!x->done);
3827 __remove_wait_queue(&x->wait, &wait);
3829 x->done--;
3830 out:
3831 spin_unlock_irq(&x->wait.lock);
3832 return timeout;
3834 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3836 static inline void
3837 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3839 spin_lock_irqsave(&q->lock, *flags);
3840 __add_wait_queue(q, wait);
3841 spin_unlock(&q->lock);
3844 static inline void
3845 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3847 spin_lock_irq(&q->lock);
3848 __remove_wait_queue(q, wait);
3849 spin_unlock_irqrestore(&q->lock, *flags);
3852 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3854 unsigned long flags;
3855 wait_queue_t wait;
3857 init_waitqueue_entry(&wait, current);
3859 current->state = TASK_INTERRUPTIBLE;
3861 sleep_on_head(q, &wait, &flags);
3862 schedule();
3863 sleep_on_tail(q, &wait, &flags);
3865 EXPORT_SYMBOL(interruptible_sleep_on);
3867 long __sched
3868 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3870 unsigned long flags;
3871 wait_queue_t wait;
3873 init_waitqueue_entry(&wait, current);
3875 current->state = TASK_INTERRUPTIBLE;
3877 sleep_on_head(q, &wait, &flags);
3878 timeout = schedule_timeout(timeout);
3879 sleep_on_tail(q, &wait, &flags);
3881 return timeout;
3883 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3885 void __sched sleep_on(wait_queue_head_t *q)
3887 unsigned long flags;
3888 wait_queue_t wait;
3890 init_waitqueue_entry(&wait, current);
3892 current->state = TASK_UNINTERRUPTIBLE;
3894 sleep_on_head(q, &wait, &flags);
3895 schedule();
3896 sleep_on_tail(q, &wait, &flags);
3898 EXPORT_SYMBOL(sleep_on);
3900 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3902 unsigned long flags;
3903 wait_queue_t wait;
3905 init_waitqueue_entry(&wait, current);
3907 current->state = TASK_UNINTERRUPTIBLE;
3909 sleep_on_head(q, &wait, &flags);
3910 timeout = schedule_timeout(timeout);
3911 sleep_on_tail(q, &wait, &flags);
3913 return timeout;
3915 EXPORT_SYMBOL(sleep_on_timeout);
3917 #ifdef CONFIG_RT_MUTEXES
3920 * rt_mutex_setprio - set the current priority of a task
3921 * @p: task
3922 * @prio: prio value (kernel-internal form)
3924 * This function changes the 'effective' priority of a task. It does
3925 * not touch ->normal_prio like __setscheduler().
3927 * Used by the rt_mutex code to implement priority inheritance logic.
3929 void rt_mutex_setprio(struct task_struct *p, int prio)
3931 unsigned long flags;
3932 int oldprio, on_rq, running;
3933 struct rq *rq;
3935 BUG_ON(prio < 0 || prio > MAX_PRIO);
3937 rq = task_rq_lock(p, &flags);
3938 update_rq_clock(rq);
3940 oldprio = p->prio;
3941 on_rq = p->se.on_rq;
3942 running = task_running(rq, p);
3943 if (on_rq) {
3944 dequeue_task(rq, p, 0);
3945 if (running)
3946 p->sched_class->put_prev_task(rq, p);
3949 if (rt_prio(prio))
3950 p->sched_class = &rt_sched_class;
3951 else
3952 p->sched_class = &fair_sched_class;
3954 p->prio = prio;
3956 if (on_rq) {
3957 if (running)
3958 p->sched_class->set_curr_task(rq);
3959 enqueue_task(rq, p, 0);
3961 * Reschedule if we are currently running on this runqueue and
3962 * our priority decreased, or if we are not currently running on
3963 * this runqueue and our priority is higher than the current's
3965 if (running) {
3966 if (p->prio > oldprio)
3967 resched_task(rq->curr);
3968 } else {
3969 check_preempt_curr(rq, p);
3972 task_rq_unlock(rq, &flags);
3975 #endif
3977 void set_user_nice(struct task_struct *p, long nice)
3979 int old_prio, delta, on_rq;
3980 unsigned long flags;
3981 struct rq *rq;
3983 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3984 return;
3986 * We have to be careful, if called from sys_setpriority(),
3987 * the task might be in the middle of scheduling on another CPU.
3989 rq = task_rq_lock(p, &flags);
3990 update_rq_clock(rq);
3992 * The RT priorities are set via sched_setscheduler(), but we still
3993 * allow the 'normal' nice value to be set - but as expected
3994 * it wont have any effect on scheduling until the task is
3995 * SCHED_FIFO/SCHED_RR:
3997 if (task_has_rt_policy(p)) {
3998 p->static_prio = NICE_TO_PRIO(nice);
3999 goto out_unlock;
4001 on_rq = p->se.on_rq;
4002 if (on_rq) {
4003 dequeue_task(rq, p, 0);
4004 dec_load(rq, p);
4007 p->static_prio = NICE_TO_PRIO(nice);
4008 set_load_weight(p);
4009 old_prio = p->prio;
4010 p->prio = effective_prio(p);
4011 delta = p->prio - old_prio;
4013 if (on_rq) {
4014 enqueue_task(rq, p, 0);
4015 inc_load(rq, p);
4017 * If the task increased its priority or is running and
4018 * lowered its priority, then reschedule its CPU:
4020 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4021 resched_task(rq->curr);
4023 out_unlock:
4024 task_rq_unlock(rq, &flags);
4026 EXPORT_SYMBOL(set_user_nice);
4029 * can_nice - check if a task can reduce its nice value
4030 * @p: task
4031 * @nice: nice value
4033 int can_nice(const struct task_struct *p, const int nice)
4035 /* convert nice value [19,-20] to rlimit style value [1,40] */
4036 int nice_rlim = 20 - nice;
4038 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4039 capable(CAP_SYS_NICE));
4042 #ifdef __ARCH_WANT_SYS_NICE
4045 * sys_nice - change the priority of the current process.
4046 * @increment: priority increment
4048 * sys_setpriority is a more generic, but much slower function that
4049 * does similar things.
4051 asmlinkage long sys_nice(int increment)
4053 long nice, retval;
4056 * Setpriority might change our priority at the same moment.
4057 * We don't have to worry. Conceptually one call occurs first
4058 * and we have a single winner.
4060 if (increment < -40)
4061 increment = -40;
4062 if (increment > 40)
4063 increment = 40;
4065 nice = PRIO_TO_NICE(current->static_prio) + increment;
4066 if (nice < -20)
4067 nice = -20;
4068 if (nice > 19)
4069 nice = 19;
4071 if (increment < 0 && !can_nice(current, nice))
4072 return -EPERM;
4074 retval = security_task_setnice(current, nice);
4075 if (retval)
4076 return retval;
4078 set_user_nice(current, nice);
4079 return 0;
4082 #endif
4085 * task_prio - return the priority value of a given task.
4086 * @p: the task in question.
4088 * This is the priority value as seen by users in /proc.
4089 * RT tasks are offset by -200. Normal tasks are centered
4090 * around 0, value goes from -16 to +15.
4092 int task_prio(const struct task_struct *p)
4094 return p->prio - MAX_RT_PRIO;
4098 * task_nice - return the nice value of a given task.
4099 * @p: the task in question.
4101 int task_nice(const struct task_struct *p)
4103 return TASK_NICE(p);
4105 EXPORT_SYMBOL_GPL(task_nice);
4108 * idle_cpu - is a given cpu idle currently?
4109 * @cpu: the processor in question.
4111 int idle_cpu(int cpu)
4113 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4117 * idle_task - return the idle task for a given cpu.
4118 * @cpu: the processor in question.
4120 struct task_struct *idle_task(int cpu)
4122 return cpu_rq(cpu)->idle;
4126 * find_process_by_pid - find a process with a matching PID value.
4127 * @pid: the pid in question.
4129 static struct task_struct *find_process_by_pid(pid_t pid)
4131 return pid ? find_task_by_pid(pid) : current;
4134 /* Actually do priority change: must hold rq lock. */
4135 static void
4136 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4138 BUG_ON(p->se.on_rq);
4140 p->policy = policy;
4141 switch (p->policy) {
4142 case SCHED_NORMAL:
4143 case SCHED_BATCH:
4144 case SCHED_IDLE:
4145 p->sched_class = &fair_sched_class;
4146 break;
4147 case SCHED_FIFO:
4148 case SCHED_RR:
4149 p->sched_class = &rt_sched_class;
4150 break;
4153 p->rt_priority = prio;
4154 p->normal_prio = normal_prio(p);
4155 /* we are holding p->pi_lock already */
4156 p->prio = rt_mutex_getprio(p);
4157 set_load_weight(p);
4161 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4162 * @p: the task in question.
4163 * @policy: new policy.
4164 * @param: structure containing the new RT priority.
4166 * NOTE that the task may be already dead.
4168 int sched_setscheduler(struct task_struct *p, int policy,
4169 struct sched_param *param)
4171 int retval, oldprio, oldpolicy = -1, on_rq, running;
4172 unsigned long flags;
4173 struct rq *rq;
4175 /* may grab non-irq protected spin_locks */
4176 BUG_ON(in_interrupt());
4177 recheck:
4178 /* double check policy once rq lock held */
4179 if (policy < 0)
4180 policy = oldpolicy = p->policy;
4181 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4182 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4183 policy != SCHED_IDLE)
4184 return -EINVAL;
4186 * Valid priorities for SCHED_FIFO and SCHED_RR are
4187 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4188 * SCHED_BATCH and SCHED_IDLE is 0.
4190 if (param->sched_priority < 0 ||
4191 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4192 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4193 return -EINVAL;
4194 if (rt_policy(policy) != (param->sched_priority != 0))
4195 return -EINVAL;
4198 * Allow unprivileged RT tasks to decrease priority:
4200 if (!capable(CAP_SYS_NICE)) {
4201 if (rt_policy(policy)) {
4202 unsigned long rlim_rtprio;
4204 if (!lock_task_sighand(p, &flags))
4205 return -ESRCH;
4206 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4207 unlock_task_sighand(p, &flags);
4209 /* can't set/change the rt policy */
4210 if (policy != p->policy && !rlim_rtprio)
4211 return -EPERM;
4213 /* can't increase priority */
4214 if (param->sched_priority > p->rt_priority &&
4215 param->sched_priority > rlim_rtprio)
4216 return -EPERM;
4219 * Like positive nice levels, dont allow tasks to
4220 * move out of SCHED_IDLE either:
4222 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4223 return -EPERM;
4225 /* can't change other user's priorities */
4226 if ((current->euid != p->euid) &&
4227 (current->euid != p->uid))
4228 return -EPERM;
4231 retval = security_task_setscheduler(p, policy, param);
4232 if (retval)
4233 return retval;
4235 * make sure no PI-waiters arrive (or leave) while we are
4236 * changing the priority of the task:
4238 spin_lock_irqsave(&p->pi_lock, flags);
4240 * To be able to change p->policy safely, the apropriate
4241 * runqueue lock must be held.
4243 rq = __task_rq_lock(p);
4244 /* recheck policy now with rq lock held */
4245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4246 policy = oldpolicy = -1;
4247 __task_rq_unlock(rq);
4248 spin_unlock_irqrestore(&p->pi_lock, flags);
4249 goto recheck;
4251 update_rq_clock(rq);
4252 on_rq = p->se.on_rq;
4253 running = task_running(rq, p);
4254 if (on_rq) {
4255 deactivate_task(rq, p, 0);
4256 if (running)
4257 p->sched_class->put_prev_task(rq, p);
4260 oldprio = p->prio;
4261 __setscheduler(rq, p, policy, param->sched_priority);
4263 if (on_rq) {
4264 if (running)
4265 p->sched_class->set_curr_task(rq);
4266 activate_task(rq, p, 0);
4268 * Reschedule if we are currently running on this runqueue and
4269 * our priority decreased, or if we are not currently running on
4270 * this runqueue and our priority is higher than the current's
4272 if (running) {
4273 if (p->prio > oldprio)
4274 resched_task(rq->curr);
4275 } else {
4276 check_preempt_curr(rq, p);
4279 __task_rq_unlock(rq);
4280 spin_unlock_irqrestore(&p->pi_lock, flags);
4282 rt_mutex_adjust_pi(p);
4284 return 0;
4286 EXPORT_SYMBOL_GPL(sched_setscheduler);
4288 static int
4289 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4291 struct sched_param lparam;
4292 struct task_struct *p;
4293 int retval;
4295 if (!param || pid < 0)
4296 return -EINVAL;
4297 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4298 return -EFAULT;
4300 rcu_read_lock();
4301 retval = -ESRCH;
4302 p = find_process_by_pid(pid);
4303 if (p != NULL)
4304 retval = sched_setscheduler(p, policy, &lparam);
4305 rcu_read_unlock();
4307 return retval;
4311 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4312 * @pid: the pid in question.
4313 * @policy: new policy.
4314 * @param: structure containing the new RT priority.
4316 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4317 struct sched_param __user *param)
4319 /* negative values for policy are not valid */
4320 if (policy < 0)
4321 return -EINVAL;
4323 return do_sched_setscheduler(pid, policy, param);
4327 * sys_sched_setparam - set/change the RT priority of a thread
4328 * @pid: the pid in question.
4329 * @param: structure containing the new RT priority.
4331 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4333 return do_sched_setscheduler(pid, -1, param);
4337 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4338 * @pid: the pid in question.
4340 asmlinkage long sys_sched_getscheduler(pid_t pid)
4342 struct task_struct *p;
4343 int retval = -EINVAL;
4345 if (pid < 0)
4346 goto out_nounlock;
4348 retval = -ESRCH;
4349 read_lock(&tasklist_lock);
4350 p = find_process_by_pid(pid);
4351 if (p) {
4352 retval = security_task_getscheduler(p);
4353 if (!retval)
4354 retval = p->policy;
4356 read_unlock(&tasklist_lock);
4358 out_nounlock:
4359 return retval;
4363 * sys_sched_getscheduler - get the RT priority of a thread
4364 * @pid: the pid in question.
4365 * @param: structure containing the RT priority.
4367 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4369 struct sched_param lp;
4370 struct task_struct *p;
4371 int retval = -EINVAL;
4373 if (!param || pid < 0)
4374 goto out_nounlock;
4376 read_lock(&tasklist_lock);
4377 p = find_process_by_pid(pid);
4378 retval = -ESRCH;
4379 if (!p)
4380 goto out_unlock;
4382 retval = security_task_getscheduler(p);
4383 if (retval)
4384 goto out_unlock;
4386 lp.sched_priority = p->rt_priority;
4387 read_unlock(&tasklist_lock);
4390 * This one might sleep, we cannot do it with a spinlock held ...
4392 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4394 out_nounlock:
4395 return retval;
4397 out_unlock:
4398 read_unlock(&tasklist_lock);
4399 return retval;
4402 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4404 cpumask_t cpus_allowed;
4405 struct task_struct *p;
4406 int retval;
4408 mutex_lock(&sched_hotcpu_mutex);
4409 read_lock(&tasklist_lock);
4411 p = find_process_by_pid(pid);
4412 if (!p) {
4413 read_unlock(&tasklist_lock);
4414 mutex_unlock(&sched_hotcpu_mutex);
4415 return -ESRCH;
4419 * It is not safe to call set_cpus_allowed with the
4420 * tasklist_lock held. We will bump the task_struct's
4421 * usage count and then drop tasklist_lock.
4423 get_task_struct(p);
4424 read_unlock(&tasklist_lock);
4426 retval = -EPERM;
4427 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4428 !capable(CAP_SYS_NICE))
4429 goto out_unlock;
4431 retval = security_task_setscheduler(p, 0, NULL);
4432 if (retval)
4433 goto out_unlock;
4435 cpus_allowed = cpuset_cpus_allowed(p);
4436 cpus_and(new_mask, new_mask, cpus_allowed);
4437 retval = set_cpus_allowed(p, new_mask);
4439 out_unlock:
4440 put_task_struct(p);
4441 mutex_unlock(&sched_hotcpu_mutex);
4442 return retval;
4445 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4446 cpumask_t *new_mask)
4448 if (len < sizeof(cpumask_t)) {
4449 memset(new_mask, 0, sizeof(cpumask_t));
4450 } else if (len > sizeof(cpumask_t)) {
4451 len = sizeof(cpumask_t);
4453 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4457 * sys_sched_setaffinity - set the cpu affinity of a process
4458 * @pid: pid of the process
4459 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4460 * @user_mask_ptr: user-space pointer to the new cpu mask
4462 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4463 unsigned long __user *user_mask_ptr)
4465 cpumask_t new_mask;
4466 int retval;
4468 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4469 if (retval)
4470 return retval;
4472 return sched_setaffinity(pid, new_mask);
4476 * Represents all cpu's present in the system
4477 * In systems capable of hotplug, this map could dynamically grow
4478 * as new cpu's are detected in the system via any platform specific
4479 * method, such as ACPI for e.g.
4482 cpumask_t cpu_present_map __read_mostly;
4483 EXPORT_SYMBOL(cpu_present_map);
4485 #ifndef CONFIG_SMP
4486 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4487 EXPORT_SYMBOL(cpu_online_map);
4489 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4490 EXPORT_SYMBOL(cpu_possible_map);
4491 #endif
4493 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4495 struct task_struct *p;
4496 int retval;
4498 mutex_lock(&sched_hotcpu_mutex);
4499 read_lock(&tasklist_lock);
4501 retval = -ESRCH;
4502 p = find_process_by_pid(pid);
4503 if (!p)
4504 goto out_unlock;
4506 retval = security_task_getscheduler(p);
4507 if (retval)
4508 goto out_unlock;
4510 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4512 out_unlock:
4513 read_unlock(&tasklist_lock);
4514 mutex_unlock(&sched_hotcpu_mutex);
4516 return retval;
4520 * sys_sched_getaffinity - get the cpu affinity of a process
4521 * @pid: pid of the process
4522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4525 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4526 unsigned long __user *user_mask_ptr)
4528 int ret;
4529 cpumask_t mask;
4531 if (len < sizeof(cpumask_t))
4532 return -EINVAL;
4534 ret = sched_getaffinity(pid, &mask);
4535 if (ret < 0)
4536 return ret;
4538 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4539 return -EFAULT;
4541 return sizeof(cpumask_t);
4545 * sys_sched_yield - yield the current processor to other threads.
4547 * This function yields the current CPU to other tasks. If there are no
4548 * other threads running on this CPU then this function will return.
4550 asmlinkage long sys_sched_yield(void)
4552 struct rq *rq = this_rq_lock();
4554 schedstat_inc(rq, yld_count);
4555 current->sched_class->yield_task(rq);
4558 * Since we are going to call schedule() anyway, there's
4559 * no need to preempt or enable interrupts:
4561 __release(rq->lock);
4562 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4563 _raw_spin_unlock(&rq->lock);
4564 preempt_enable_no_resched();
4566 schedule();
4568 return 0;
4571 static void __cond_resched(void)
4573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4574 __might_sleep(__FILE__, __LINE__);
4575 #endif
4577 * The BKS might be reacquired before we have dropped
4578 * PREEMPT_ACTIVE, which could trigger a second
4579 * cond_resched() call.
4581 do {
4582 add_preempt_count(PREEMPT_ACTIVE);
4583 schedule();
4584 sub_preempt_count(PREEMPT_ACTIVE);
4585 } while (need_resched());
4588 int __sched cond_resched(void)
4590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4591 system_state == SYSTEM_RUNNING) {
4592 __cond_resched();
4593 return 1;
4595 return 0;
4597 EXPORT_SYMBOL(cond_resched);
4600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4601 * call schedule, and on return reacquire the lock.
4603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4604 * operations here to prevent schedule() from being called twice (once via
4605 * spin_unlock(), once by hand).
4607 int cond_resched_lock(spinlock_t *lock)
4609 int ret = 0;
4611 if (need_lockbreak(lock)) {
4612 spin_unlock(lock);
4613 cpu_relax();
4614 ret = 1;
4615 spin_lock(lock);
4617 if (need_resched() && system_state == SYSTEM_RUNNING) {
4618 spin_release(&lock->dep_map, 1, _THIS_IP_);
4619 _raw_spin_unlock(lock);
4620 preempt_enable_no_resched();
4621 __cond_resched();
4622 ret = 1;
4623 spin_lock(lock);
4625 return ret;
4627 EXPORT_SYMBOL(cond_resched_lock);
4629 int __sched cond_resched_softirq(void)
4631 BUG_ON(!in_softirq());
4633 if (need_resched() && system_state == SYSTEM_RUNNING) {
4634 local_bh_enable();
4635 __cond_resched();
4636 local_bh_disable();
4637 return 1;
4639 return 0;
4641 EXPORT_SYMBOL(cond_resched_softirq);
4644 * yield - yield the current processor to other threads.
4646 * This is a shortcut for kernel-space yielding - it marks the
4647 * thread runnable and calls sys_sched_yield().
4649 void __sched yield(void)
4651 set_current_state(TASK_RUNNING);
4652 sys_sched_yield();
4654 EXPORT_SYMBOL(yield);
4657 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4658 * that process accounting knows that this is a task in IO wait state.
4660 * But don't do that if it is a deliberate, throttling IO wait (this task
4661 * has set its backing_dev_info: the queue against which it should throttle)
4663 void __sched io_schedule(void)
4665 struct rq *rq = &__raw_get_cpu_var(runqueues);
4667 delayacct_blkio_start();
4668 atomic_inc(&rq->nr_iowait);
4669 schedule();
4670 atomic_dec(&rq->nr_iowait);
4671 delayacct_blkio_end();
4673 EXPORT_SYMBOL(io_schedule);
4675 long __sched io_schedule_timeout(long timeout)
4677 struct rq *rq = &__raw_get_cpu_var(runqueues);
4678 long ret;
4680 delayacct_blkio_start();
4681 atomic_inc(&rq->nr_iowait);
4682 ret = schedule_timeout(timeout);
4683 atomic_dec(&rq->nr_iowait);
4684 delayacct_blkio_end();
4685 return ret;
4689 * sys_sched_get_priority_max - return maximum RT priority.
4690 * @policy: scheduling class.
4692 * this syscall returns the maximum rt_priority that can be used
4693 * by a given scheduling class.
4695 asmlinkage long sys_sched_get_priority_max(int policy)
4697 int ret = -EINVAL;
4699 switch (policy) {
4700 case SCHED_FIFO:
4701 case SCHED_RR:
4702 ret = MAX_USER_RT_PRIO-1;
4703 break;
4704 case SCHED_NORMAL:
4705 case SCHED_BATCH:
4706 case SCHED_IDLE:
4707 ret = 0;
4708 break;
4710 return ret;
4714 * sys_sched_get_priority_min - return minimum RT priority.
4715 * @policy: scheduling class.
4717 * this syscall returns the minimum rt_priority that can be used
4718 * by a given scheduling class.
4720 asmlinkage long sys_sched_get_priority_min(int policy)
4722 int ret = -EINVAL;
4724 switch (policy) {
4725 case SCHED_FIFO:
4726 case SCHED_RR:
4727 ret = 1;
4728 break;
4729 case SCHED_NORMAL:
4730 case SCHED_BATCH:
4731 case SCHED_IDLE:
4732 ret = 0;
4734 return ret;
4738 * sys_sched_rr_get_interval - return the default timeslice of a process.
4739 * @pid: pid of the process.
4740 * @interval: userspace pointer to the timeslice value.
4742 * this syscall writes the default timeslice value of a given process
4743 * into the user-space timespec buffer. A value of '0' means infinity.
4745 asmlinkage
4746 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4748 struct task_struct *p;
4749 int retval = -EINVAL;
4750 struct timespec t;
4752 if (pid < 0)
4753 goto out_nounlock;
4755 retval = -ESRCH;
4756 read_lock(&tasklist_lock);
4757 p = find_process_by_pid(pid);
4758 if (!p)
4759 goto out_unlock;
4761 retval = security_task_getscheduler(p);
4762 if (retval)
4763 goto out_unlock;
4765 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4766 0 : static_prio_timeslice(p->static_prio), &t);
4767 read_unlock(&tasklist_lock);
4768 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4769 out_nounlock:
4770 return retval;
4771 out_unlock:
4772 read_unlock(&tasklist_lock);
4773 return retval;
4776 static const char stat_nam[] = "RSDTtZX";
4778 static void show_task(struct task_struct *p)
4780 unsigned long free = 0;
4781 unsigned state;
4783 state = p->state ? __ffs(p->state) + 1 : 0;
4784 printk("%-13.13s %c", p->comm,
4785 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4786 #if BITS_PER_LONG == 32
4787 if (state == TASK_RUNNING)
4788 printk(" running ");
4789 else
4790 printk(" %08lx ", thread_saved_pc(p));
4791 #else
4792 if (state == TASK_RUNNING)
4793 printk(" running task ");
4794 else
4795 printk(" %016lx ", thread_saved_pc(p));
4796 #endif
4797 #ifdef CONFIG_DEBUG_STACK_USAGE
4799 unsigned long *n = end_of_stack(p);
4800 while (!*n)
4801 n++;
4802 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4804 #endif
4805 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4807 if (state != TASK_RUNNING)
4808 show_stack(p, NULL);
4811 void show_state_filter(unsigned long state_filter)
4813 struct task_struct *g, *p;
4815 #if BITS_PER_LONG == 32
4816 printk(KERN_INFO
4817 " task PC stack pid father\n");
4818 #else
4819 printk(KERN_INFO
4820 " task PC stack pid father\n");
4821 #endif
4822 read_lock(&tasklist_lock);
4823 do_each_thread(g, p) {
4825 * reset the NMI-timeout, listing all files on a slow
4826 * console might take alot of time:
4828 touch_nmi_watchdog();
4829 if (!state_filter || (p->state & state_filter))
4830 show_task(p);
4831 } while_each_thread(g, p);
4833 touch_all_softlockup_watchdogs();
4835 #ifdef CONFIG_SCHED_DEBUG
4836 sysrq_sched_debug_show();
4837 #endif
4838 read_unlock(&tasklist_lock);
4840 * Only show locks if all tasks are dumped:
4842 if (state_filter == -1)
4843 debug_show_all_locks();
4846 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4848 idle->sched_class = &idle_sched_class;
4852 * init_idle - set up an idle thread for a given CPU
4853 * @idle: task in question
4854 * @cpu: cpu the idle task belongs to
4856 * NOTE: this function does not set the idle thread's NEED_RESCHED
4857 * flag, to make booting more robust.
4859 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4861 struct rq *rq = cpu_rq(cpu);
4862 unsigned long flags;
4864 __sched_fork(idle);
4865 idle->se.exec_start = sched_clock();
4867 idle->prio = idle->normal_prio = MAX_PRIO;
4868 idle->cpus_allowed = cpumask_of_cpu(cpu);
4869 __set_task_cpu(idle, cpu);
4871 spin_lock_irqsave(&rq->lock, flags);
4872 rq->curr = rq->idle = idle;
4873 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4874 idle->oncpu = 1;
4875 #endif
4876 spin_unlock_irqrestore(&rq->lock, flags);
4878 /* Set the preempt count _outside_ the spinlocks! */
4879 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4880 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4881 #else
4882 task_thread_info(idle)->preempt_count = 0;
4883 #endif
4885 * The idle tasks have their own, simple scheduling class:
4887 idle->sched_class = &idle_sched_class;
4891 * In a system that switches off the HZ timer nohz_cpu_mask
4892 * indicates which cpus entered this state. This is used
4893 * in the rcu update to wait only for active cpus. For system
4894 * which do not switch off the HZ timer nohz_cpu_mask should
4895 * always be CPU_MASK_NONE.
4897 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4899 #ifdef CONFIG_SMP
4901 * This is how migration works:
4903 * 1) we queue a struct migration_req structure in the source CPU's
4904 * runqueue and wake up that CPU's migration thread.
4905 * 2) we down() the locked semaphore => thread blocks.
4906 * 3) migration thread wakes up (implicitly it forces the migrated
4907 * thread off the CPU)
4908 * 4) it gets the migration request and checks whether the migrated
4909 * task is still in the wrong runqueue.
4910 * 5) if it's in the wrong runqueue then the migration thread removes
4911 * it and puts it into the right queue.
4912 * 6) migration thread up()s the semaphore.
4913 * 7) we wake up and the migration is done.
4917 * Change a given task's CPU affinity. Migrate the thread to a
4918 * proper CPU and schedule it away if the CPU it's executing on
4919 * is removed from the allowed bitmask.
4921 * NOTE: the caller must have a valid reference to the task, the
4922 * task must not exit() & deallocate itself prematurely. The
4923 * call is not atomic; no spinlocks may be held.
4925 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4927 struct migration_req req;
4928 unsigned long flags;
4929 struct rq *rq;
4930 int ret = 0;
4932 rq = task_rq_lock(p, &flags);
4933 if (!cpus_intersects(new_mask, cpu_online_map)) {
4934 ret = -EINVAL;
4935 goto out;
4938 p->cpus_allowed = new_mask;
4939 /* Can the task run on the task's current CPU? If so, we're done */
4940 if (cpu_isset(task_cpu(p), new_mask))
4941 goto out;
4943 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4944 /* Need help from migration thread: drop lock and wait. */
4945 task_rq_unlock(rq, &flags);
4946 wake_up_process(rq->migration_thread);
4947 wait_for_completion(&req.done);
4948 tlb_migrate_finish(p->mm);
4949 return 0;
4951 out:
4952 task_rq_unlock(rq, &flags);
4954 return ret;
4956 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4959 * Move (not current) task off this cpu, onto dest cpu. We're doing
4960 * this because either it can't run here any more (set_cpus_allowed()
4961 * away from this CPU, or CPU going down), or because we're
4962 * attempting to rebalance this task on exec (sched_exec).
4964 * So we race with normal scheduler movements, but that's OK, as long
4965 * as the task is no longer on this CPU.
4967 * Returns non-zero if task was successfully migrated.
4969 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4971 struct rq *rq_dest, *rq_src;
4972 int ret = 0, on_rq;
4974 if (unlikely(cpu_is_offline(dest_cpu)))
4975 return ret;
4977 rq_src = cpu_rq(src_cpu);
4978 rq_dest = cpu_rq(dest_cpu);
4980 double_rq_lock(rq_src, rq_dest);
4981 /* Already moved. */
4982 if (task_cpu(p) != src_cpu)
4983 goto out;
4984 /* Affinity changed (again). */
4985 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4986 goto out;
4988 on_rq = p->se.on_rq;
4989 if (on_rq)
4990 deactivate_task(rq_src, p, 0);
4992 set_task_cpu(p, dest_cpu);
4993 if (on_rq) {
4994 activate_task(rq_dest, p, 0);
4995 check_preempt_curr(rq_dest, p);
4997 ret = 1;
4998 out:
4999 double_rq_unlock(rq_src, rq_dest);
5000 return ret;
5004 * migration_thread - this is a highprio system thread that performs
5005 * thread migration by bumping thread off CPU then 'pushing' onto
5006 * another runqueue.
5008 static int migration_thread(void *data)
5010 int cpu = (long)data;
5011 struct rq *rq;
5013 rq = cpu_rq(cpu);
5014 BUG_ON(rq->migration_thread != current);
5016 set_current_state(TASK_INTERRUPTIBLE);
5017 while (!kthread_should_stop()) {
5018 struct migration_req *req;
5019 struct list_head *head;
5021 spin_lock_irq(&rq->lock);
5023 if (cpu_is_offline(cpu)) {
5024 spin_unlock_irq(&rq->lock);
5025 goto wait_to_die;
5028 if (rq->active_balance) {
5029 active_load_balance(rq, cpu);
5030 rq->active_balance = 0;
5033 head = &rq->migration_queue;
5035 if (list_empty(head)) {
5036 spin_unlock_irq(&rq->lock);
5037 schedule();
5038 set_current_state(TASK_INTERRUPTIBLE);
5039 continue;
5041 req = list_entry(head->next, struct migration_req, list);
5042 list_del_init(head->next);
5044 spin_unlock(&rq->lock);
5045 __migrate_task(req->task, cpu, req->dest_cpu);
5046 local_irq_enable();
5048 complete(&req->done);
5050 __set_current_state(TASK_RUNNING);
5051 return 0;
5053 wait_to_die:
5054 /* Wait for kthread_stop */
5055 set_current_state(TASK_INTERRUPTIBLE);
5056 while (!kthread_should_stop()) {
5057 schedule();
5058 set_current_state(TASK_INTERRUPTIBLE);
5060 __set_current_state(TASK_RUNNING);
5061 return 0;
5064 #ifdef CONFIG_HOTPLUG_CPU
5066 * Figure out where task on dead CPU should go, use force if neccessary.
5067 * NOTE: interrupts should be disabled by the caller
5069 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5071 unsigned long flags;
5072 cpumask_t mask;
5073 struct rq *rq;
5074 int dest_cpu;
5076 restart:
5077 /* On same node? */
5078 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5079 cpus_and(mask, mask, p->cpus_allowed);
5080 dest_cpu = any_online_cpu(mask);
5082 /* On any allowed CPU? */
5083 if (dest_cpu == NR_CPUS)
5084 dest_cpu = any_online_cpu(p->cpus_allowed);
5086 /* No more Mr. Nice Guy. */
5087 if (dest_cpu == NR_CPUS) {
5088 rq = task_rq_lock(p, &flags);
5089 cpus_setall(p->cpus_allowed);
5090 dest_cpu = any_online_cpu(p->cpus_allowed);
5091 task_rq_unlock(rq, &flags);
5094 * Don't tell them about moving exiting tasks or
5095 * kernel threads (both mm NULL), since they never
5096 * leave kernel.
5098 if (p->mm && printk_ratelimit())
5099 printk(KERN_INFO "process %d (%s) no "
5100 "longer affine to cpu%d\n",
5101 p->pid, p->comm, dead_cpu);
5103 if (!__migrate_task(p, dead_cpu, dest_cpu))
5104 goto restart;
5108 * While a dead CPU has no uninterruptible tasks queued at this point,
5109 * it might still have a nonzero ->nr_uninterruptible counter, because
5110 * for performance reasons the counter is not stricly tracking tasks to
5111 * their home CPUs. So we just add the counter to another CPU's counter,
5112 * to keep the global sum constant after CPU-down:
5114 static void migrate_nr_uninterruptible(struct rq *rq_src)
5116 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5117 unsigned long flags;
5119 local_irq_save(flags);
5120 double_rq_lock(rq_src, rq_dest);
5121 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5122 rq_src->nr_uninterruptible = 0;
5123 double_rq_unlock(rq_src, rq_dest);
5124 local_irq_restore(flags);
5127 /* Run through task list and migrate tasks from the dead cpu. */
5128 static void migrate_live_tasks(int src_cpu)
5130 struct task_struct *p, *t;
5132 write_lock_irq(&tasklist_lock);
5134 do_each_thread(t, p) {
5135 if (p == current)
5136 continue;
5138 if (task_cpu(p) == src_cpu)
5139 move_task_off_dead_cpu(src_cpu, p);
5140 } while_each_thread(t, p);
5142 write_unlock_irq(&tasklist_lock);
5146 * activate_idle_task - move idle task to the _front_ of runqueue.
5148 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5150 update_rq_clock(rq);
5152 if (p->state == TASK_UNINTERRUPTIBLE)
5153 rq->nr_uninterruptible--;
5155 enqueue_task(rq, p, 0);
5156 inc_nr_running(p, rq);
5160 * Schedules idle task to be the next runnable task on current CPU.
5161 * It does so by boosting its priority to highest possible and adding it to
5162 * the _front_ of the runqueue. Used by CPU offline code.
5164 void sched_idle_next(void)
5166 int this_cpu = smp_processor_id();
5167 struct rq *rq = cpu_rq(this_cpu);
5168 struct task_struct *p = rq->idle;
5169 unsigned long flags;
5171 /* cpu has to be offline */
5172 BUG_ON(cpu_online(this_cpu));
5175 * Strictly not necessary since rest of the CPUs are stopped by now
5176 * and interrupts disabled on the current cpu.
5178 spin_lock_irqsave(&rq->lock, flags);
5180 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5182 /* Add idle task to the _front_ of its priority queue: */
5183 activate_idle_task(p, rq);
5185 spin_unlock_irqrestore(&rq->lock, flags);
5189 * Ensures that the idle task is using init_mm right before its cpu goes
5190 * offline.
5192 void idle_task_exit(void)
5194 struct mm_struct *mm = current->active_mm;
5196 BUG_ON(cpu_online(smp_processor_id()));
5198 if (mm != &init_mm)
5199 switch_mm(mm, &init_mm, current);
5200 mmdrop(mm);
5203 /* called under rq->lock with disabled interrupts */
5204 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5206 struct rq *rq = cpu_rq(dead_cpu);
5208 /* Must be exiting, otherwise would be on tasklist. */
5209 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5211 /* Cannot have done final schedule yet: would have vanished. */
5212 BUG_ON(p->state == TASK_DEAD);
5214 get_task_struct(p);
5217 * Drop lock around migration; if someone else moves it,
5218 * that's OK. No task can be added to this CPU, so iteration is
5219 * fine.
5220 * NOTE: interrupts should be left disabled --dev@
5222 spin_unlock(&rq->lock);
5223 move_task_off_dead_cpu(dead_cpu, p);
5224 spin_lock(&rq->lock);
5226 put_task_struct(p);
5229 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5230 static void migrate_dead_tasks(unsigned int dead_cpu)
5232 struct rq *rq = cpu_rq(dead_cpu);
5233 struct task_struct *next;
5235 for ( ; ; ) {
5236 if (!rq->nr_running)
5237 break;
5238 update_rq_clock(rq);
5239 next = pick_next_task(rq, rq->curr);
5240 if (!next)
5241 break;
5242 migrate_dead(dead_cpu, next);
5246 #endif /* CONFIG_HOTPLUG_CPU */
5248 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5250 static struct ctl_table sd_ctl_dir[] = {
5252 .procname = "sched_domain",
5253 .mode = 0555,
5255 {0,},
5258 static struct ctl_table sd_ctl_root[] = {
5260 .ctl_name = CTL_KERN,
5261 .procname = "kernel",
5262 .mode = 0555,
5263 .child = sd_ctl_dir,
5265 {0,},
5268 static struct ctl_table *sd_alloc_ctl_entry(int n)
5270 struct ctl_table *entry =
5271 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5273 BUG_ON(!entry);
5274 memset(entry, 0, n * sizeof(struct ctl_table));
5276 return entry;
5279 static void
5280 set_table_entry(struct ctl_table *entry,
5281 const char *procname, void *data, int maxlen,
5282 mode_t mode, proc_handler *proc_handler)
5284 entry->procname = procname;
5285 entry->data = data;
5286 entry->maxlen = maxlen;
5287 entry->mode = mode;
5288 entry->proc_handler = proc_handler;
5291 static struct ctl_table *
5292 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5294 struct ctl_table *table = sd_alloc_ctl_entry(14);
5296 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5297 sizeof(long), 0644, proc_doulongvec_minmax);
5298 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5299 sizeof(long), 0644, proc_doulongvec_minmax);
5300 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5305 sizeof(int), 0644, proc_dointvec_minmax);
5306 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5307 sizeof(int), 0644, proc_dointvec_minmax);
5308 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5313 sizeof(int), 0644, proc_dointvec_minmax);
5314 set_table_entry(&table[10], "cache_nice_tries",
5315 &sd->cache_nice_tries,
5316 sizeof(int), 0644, proc_dointvec_minmax);
5317 set_table_entry(&table[12], "flags", &sd->flags,
5318 sizeof(int), 0644, proc_dointvec_minmax);
5320 return table;
5323 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5325 struct ctl_table *entry, *table;
5326 struct sched_domain *sd;
5327 int domain_num = 0, i;
5328 char buf[32];
5330 for_each_domain(cpu, sd)
5331 domain_num++;
5332 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5334 i = 0;
5335 for_each_domain(cpu, sd) {
5336 snprintf(buf, 32, "domain%d", i);
5337 entry->procname = kstrdup(buf, GFP_KERNEL);
5338 entry->mode = 0555;
5339 entry->child = sd_alloc_ctl_domain_table(sd);
5340 entry++;
5341 i++;
5343 return table;
5346 static struct ctl_table_header *sd_sysctl_header;
5347 static void init_sched_domain_sysctl(void)
5349 int i, cpu_num = num_online_cpus();
5350 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5351 char buf[32];
5353 sd_ctl_dir[0].child = entry;
5355 for (i = 0; i < cpu_num; i++, entry++) {
5356 snprintf(buf, 32, "cpu%d", i);
5357 entry->procname = kstrdup(buf, GFP_KERNEL);
5358 entry->mode = 0555;
5359 entry->child = sd_alloc_ctl_cpu_table(i);
5361 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5363 #else
5364 static void init_sched_domain_sysctl(void)
5367 #endif
5370 * migration_call - callback that gets triggered when a CPU is added.
5371 * Here we can start up the necessary migration thread for the new CPU.
5373 static int __cpuinit
5374 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5376 struct task_struct *p;
5377 int cpu = (long)hcpu;
5378 unsigned long flags;
5379 struct rq *rq;
5381 switch (action) {
5382 case CPU_LOCK_ACQUIRE:
5383 mutex_lock(&sched_hotcpu_mutex);
5384 break;
5386 case CPU_UP_PREPARE:
5387 case CPU_UP_PREPARE_FROZEN:
5388 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5389 if (IS_ERR(p))
5390 return NOTIFY_BAD;
5391 kthread_bind(p, cpu);
5392 /* Must be high prio: stop_machine expects to yield to it. */
5393 rq = task_rq_lock(p, &flags);
5394 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5395 task_rq_unlock(rq, &flags);
5396 cpu_rq(cpu)->migration_thread = p;
5397 break;
5399 case CPU_ONLINE:
5400 case CPU_ONLINE_FROZEN:
5401 /* Strictly unneccessary, as first user will wake it. */
5402 wake_up_process(cpu_rq(cpu)->migration_thread);
5403 break;
5405 #ifdef CONFIG_HOTPLUG_CPU
5406 case CPU_UP_CANCELED:
5407 case CPU_UP_CANCELED_FROZEN:
5408 if (!cpu_rq(cpu)->migration_thread)
5409 break;
5410 /* Unbind it from offline cpu so it can run. Fall thru. */
5411 kthread_bind(cpu_rq(cpu)->migration_thread,
5412 any_online_cpu(cpu_online_map));
5413 kthread_stop(cpu_rq(cpu)->migration_thread);
5414 cpu_rq(cpu)->migration_thread = NULL;
5415 break;
5417 case CPU_DEAD:
5418 case CPU_DEAD_FROZEN:
5419 migrate_live_tasks(cpu);
5420 rq = cpu_rq(cpu);
5421 kthread_stop(rq->migration_thread);
5422 rq->migration_thread = NULL;
5423 /* Idle task back to normal (off runqueue, low prio) */
5424 rq = task_rq_lock(rq->idle, &flags);
5425 update_rq_clock(rq);
5426 deactivate_task(rq, rq->idle, 0);
5427 rq->idle->static_prio = MAX_PRIO;
5428 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5429 rq->idle->sched_class = &idle_sched_class;
5430 migrate_dead_tasks(cpu);
5431 task_rq_unlock(rq, &flags);
5432 migrate_nr_uninterruptible(rq);
5433 BUG_ON(rq->nr_running != 0);
5435 /* No need to migrate the tasks: it was best-effort if
5436 * they didn't take sched_hotcpu_mutex. Just wake up
5437 * the requestors. */
5438 spin_lock_irq(&rq->lock);
5439 while (!list_empty(&rq->migration_queue)) {
5440 struct migration_req *req;
5442 req = list_entry(rq->migration_queue.next,
5443 struct migration_req, list);
5444 list_del_init(&req->list);
5445 complete(&req->done);
5447 spin_unlock_irq(&rq->lock);
5448 break;
5449 #endif
5450 case CPU_LOCK_RELEASE:
5451 mutex_unlock(&sched_hotcpu_mutex);
5452 break;
5454 return NOTIFY_OK;
5457 /* Register at highest priority so that task migration (migrate_all_tasks)
5458 * happens before everything else.
5460 static struct notifier_block __cpuinitdata migration_notifier = {
5461 .notifier_call = migration_call,
5462 .priority = 10
5465 int __init migration_init(void)
5467 void *cpu = (void *)(long)smp_processor_id();
5468 int err;
5470 /* Start one for the boot CPU: */
5471 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5472 BUG_ON(err == NOTIFY_BAD);
5473 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5474 register_cpu_notifier(&migration_notifier);
5476 return 0;
5478 #endif
5480 #ifdef CONFIG_SMP
5482 /* Number of possible processor ids */
5483 int nr_cpu_ids __read_mostly = NR_CPUS;
5484 EXPORT_SYMBOL(nr_cpu_ids);
5486 #undef SCHED_DOMAIN_DEBUG
5487 #ifdef SCHED_DOMAIN_DEBUG
5488 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5490 int level = 0;
5492 if (!sd) {
5493 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5494 return;
5497 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5499 do {
5500 int i;
5501 char str[NR_CPUS];
5502 struct sched_group *group = sd->groups;
5503 cpumask_t groupmask;
5505 cpumask_scnprintf(str, NR_CPUS, sd->span);
5506 cpus_clear(groupmask);
5508 printk(KERN_DEBUG);
5509 for (i = 0; i < level + 1; i++)
5510 printk(" ");
5511 printk("domain %d: ", level);
5513 if (!(sd->flags & SD_LOAD_BALANCE)) {
5514 printk("does not load-balance\n");
5515 if (sd->parent)
5516 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5517 " has parent");
5518 break;
5521 printk("span %s\n", str);
5523 if (!cpu_isset(cpu, sd->span))
5524 printk(KERN_ERR "ERROR: domain->span does not contain "
5525 "CPU%d\n", cpu);
5526 if (!cpu_isset(cpu, group->cpumask))
5527 printk(KERN_ERR "ERROR: domain->groups does not contain"
5528 " CPU%d\n", cpu);
5530 printk(KERN_DEBUG);
5531 for (i = 0; i < level + 2; i++)
5532 printk(" ");
5533 printk("groups:");
5534 do {
5535 if (!group) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: group is NULL\n");
5538 break;
5541 if (!group->__cpu_power) {
5542 printk("\n");
5543 printk(KERN_ERR "ERROR: domain->cpu_power not "
5544 "set\n");
5547 if (!cpus_weight(group->cpumask)) {
5548 printk("\n");
5549 printk(KERN_ERR "ERROR: empty group\n");
5552 if (cpus_intersects(groupmask, group->cpumask)) {
5553 printk("\n");
5554 printk(KERN_ERR "ERROR: repeated CPUs\n");
5557 cpus_or(groupmask, groupmask, group->cpumask);
5559 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5560 printk(" %s", str);
5562 group = group->next;
5563 } while (group != sd->groups);
5564 printk("\n");
5566 if (!cpus_equal(sd->span, groupmask))
5567 printk(KERN_ERR "ERROR: groups don't span "
5568 "domain->span\n");
5570 level++;
5571 sd = sd->parent;
5572 if (!sd)
5573 continue;
5575 if (!cpus_subset(groupmask, sd->span))
5576 printk(KERN_ERR "ERROR: parent span is not a superset "
5577 "of domain->span\n");
5579 } while (sd);
5581 #else
5582 # define sched_domain_debug(sd, cpu) do { } while (0)
5583 #endif
5585 static int sd_degenerate(struct sched_domain *sd)
5587 if (cpus_weight(sd->span) == 1)
5588 return 1;
5590 /* Following flags need at least 2 groups */
5591 if (sd->flags & (SD_LOAD_BALANCE |
5592 SD_BALANCE_NEWIDLE |
5593 SD_BALANCE_FORK |
5594 SD_BALANCE_EXEC |
5595 SD_SHARE_CPUPOWER |
5596 SD_SHARE_PKG_RESOURCES)) {
5597 if (sd->groups != sd->groups->next)
5598 return 0;
5601 /* Following flags don't use groups */
5602 if (sd->flags & (SD_WAKE_IDLE |
5603 SD_WAKE_AFFINE |
5604 SD_WAKE_BALANCE))
5605 return 0;
5607 return 1;
5610 static int
5611 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5613 unsigned long cflags = sd->flags, pflags = parent->flags;
5615 if (sd_degenerate(parent))
5616 return 1;
5618 if (!cpus_equal(sd->span, parent->span))
5619 return 0;
5621 /* Does parent contain flags not in child? */
5622 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5623 if (cflags & SD_WAKE_AFFINE)
5624 pflags &= ~SD_WAKE_BALANCE;
5625 /* Flags needing groups don't count if only 1 group in parent */
5626 if (parent->groups == parent->groups->next) {
5627 pflags &= ~(SD_LOAD_BALANCE |
5628 SD_BALANCE_NEWIDLE |
5629 SD_BALANCE_FORK |
5630 SD_BALANCE_EXEC |
5631 SD_SHARE_CPUPOWER |
5632 SD_SHARE_PKG_RESOURCES);
5634 if (~cflags & pflags)
5635 return 0;
5637 return 1;
5641 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5642 * hold the hotplug lock.
5644 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5646 struct rq *rq = cpu_rq(cpu);
5647 struct sched_domain *tmp;
5649 /* Remove the sched domains which do not contribute to scheduling. */
5650 for (tmp = sd; tmp; tmp = tmp->parent) {
5651 struct sched_domain *parent = tmp->parent;
5652 if (!parent)
5653 break;
5654 if (sd_parent_degenerate(tmp, parent)) {
5655 tmp->parent = parent->parent;
5656 if (parent->parent)
5657 parent->parent->child = tmp;
5661 if (sd && sd_degenerate(sd)) {
5662 sd = sd->parent;
5663 if (sd)
5664 sd->child = NULL;
5667 sched_domain_debug(sd, cpu);
5669 rcu_assign_pointer(rq->sd, sd);
5672 /* cpus with isolated domains */
5673 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init isolated_cpu_setup(char *str)
5678 int ints[NR_CPUS], i;
5680 str = get_options(str, ARRAY_SIZE(ints), ints);
5681 cpus_clear(cpu_isolated_map);
5682 for (i = 1; i <= ints[0]; i++)
5683 if (ints[i] < NR_CPUS)
5684 cpu_set(ints[i], cpu_isolated_map);
5685 return 1;
5688 __setup ("isolcpus=", isolated_cpu_setup);
5691 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5692 * to a function which identifies what group(along with sched group) a CPU
5693 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5694 * (due to the fact that we keep track of groups covered with a cpumask_t).
5696 * init_sched_build_groups will build a circular linked list of the groups
5697 * covered by the given span, and will set each group's ->cpumask correctly,
5698 * and ->cpu_power to 0.
5700 static void
5701 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5702 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5703 struct sched_group **sg))
5705 struct sched_group *first = NULL, *last = NULL;
5706 cpumask_t covered = CPU_MASK_NONE;
5707 int i;
5709 for_each_cpu_mask(i, span) {
5710 struct sched_group *sg;
5711 int group = group_fn(i, cpu_map, &sg);
5712 int j;
5714 if (cpu_isset(i, covered))
5715 continue;
5717 sg->cpumask = CPU_MASK_NONE;
5718 sg->__cpu_power = 0;
5720 for_each_cpu_mask(j, span) {
5721 if (group_fn(j, cpu_map, NULL) != group)
5722 continue;
5724 cpu_set(j, covered);
5725 cpu_set(j, sg->cpumask);
5727 if (!first)
5728 first = sg;
5729 if (last)
5730 last->next = sg;
5731 last = sg;
5733 last->next = first;
5736 #define SD_NODES_PER_DOMAIN 16
5738 #ifdef CONFIG_NUMA
5741 * find_next_best_node - find the next node to include in a sched_domain
5742 * @node: node whose sched_domain we're building
5743 * @used_nodes: nodes already in the sched_domain
5745 * Find the next node to include in a given scheduling domain. Simply
5746 * finds the closest node not already in the @used_nodes map.
5748 * Should use nodemask_t.
5750 static int find_next_best_node(int node, unsigned long *used_nodes)
5752 int i, n, val, min_val, best_node = 0;
5754 min_val = INT_MAX;
5756 for (i = 0; i < MAX_NUMNODES; i++) {
5757 /* Start at @node */
5758 n = (node + i) % MAX_NUMNODES;
5760 if (!nr_cpus_node(n))
5761 continue;
5763 /* Skip already used nodes */
5764 if (test_bit(n, used_nodes))
5765 continue;
5767 /* Simple min distance search */
5768 val = node_distance(node, n);
5770 if (val < min_val) {
5771 min_val = val;
5772 best_node = n;
5776 set_bit(best_node, used_nodes);
5777 return best_node;
5781 * sched_domain_node_span - get a cpumask for a node's sched_domain
5782 * @node: node whose cpumask we're constructing
5783 * @size: number of nodes to include in this span
5785 * Given a node, construct a good cpumask for its sched_domain to span. It
5786 * should be one that prevents unnecessary balancing, but also spreads tasks
5787 * out optimally.
5789 static cpumask_t sched_domain_node_span(int node)
5791 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5792 cpumask_t span, nodemask;
5793 int i;
5795 cpus_clear(span);
5796 bitmap_zero(used_nodes, MAX_NUMNODES);
5798 nodemask = node_to_cpumask(node);
5799 cpus_or(span, span, nodemask);
5800 set_bit(node, used_nodes);
5802 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5803 int next_node = find_next_best_node(node, used_nodes);
5805 nodemask = node_to_cpumask(next_node);
5806 cpus_or(span, span, nodemask);
5809 return span;
5811 #endif
5813 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5816 * SMT sched-domains:
5818 #ifdef CONFIG_SCHED_SMT
5819 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5820 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5822 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5823 struct sched_group **sg)
5825 if (sg)
5826 *sg = &per_cpu(sched_group_cpus, cpu);
5827 return cpu;
5829 #endif
5832 * multi-core sched-domains:
5834 #ifdef CONFIG_SCHED_MC
5835 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5836 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5837 #endif
5839 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5840 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5841 struct sched_group **sg)
5843 int group;
5844 cpumask_t mask = cpu_sibling_map[cpu];
5845 cpus_and(mask, mask, *cpu_map);
5846 group = first_cpu(mask);
5847 if (sg)
5848 *sg = &per_cpu(sched_group_core, group);
5849 return group;
5851 #elif defined(CONFIG_SCHED_MC)
5852 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg)
5855 if (sg)
5856 *sg = &per_cpu(sched_group_core, cpu);
5857 return cpu;
5859 #endif
5861 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5862 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5864 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5865 struct sched_group **sg)
5867 int group;
5868 #ifdef CONFIG_SCHED_MC
5869 cpumask_t mask = cpu_coregroup_map(cpu);
5870 cpus_and(mask, mask, *cpu_map);
5871 group = first_cpu(mask);
5872 #elif defined(CONFIG_SCHED_SMT)
5873 cpumask_t mask = cpu_sibling_map[cpu];
5874 cpus_and(mask, mask, *cpu_map);
5875 group = first_cpu(mask);
5876 #else
5877 group = cpu;
5878 #endif
5879 if (sg)
5880 *sg = &per_cpu(sched_group_phys, group);
5881 return group;
5884 #ifdef CONFIG_NUMA
5886 * The init_sched_build_groups can't handle what we want to do with node
5887 * groups, so roll our own. Now each node has its own list of groups which
5888 * gets dynamically allocated.
5890 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5891 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5893 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5894 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5896 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5897 struct sched_group **sg)
5899 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5900 int group;
5902 cpus_and(nodemask, nodemask, *cpu_map);
5903 group = first_cpu(nodemask);
5905 if (sg)
5906 *sg = &per_cpu(sched_group_allnodes, group);
5907 return group;
5910 static void init_numa_sched_groups_power(struct sched_group *group_head)
5912 struct sched_group *sg = group_head;
5913 int j;
5915 if (!sg)
5916 return;
5917 next_sg:
5918 for_each_cpu_mask(j, sg->cpumask) {
5919 struct sched_domain *sd;
5921 sd = &per_cpu(phys_domains, j);
5922 if (j != first_cpu(sd->groups->cpumask)) {
5924 * Only add "power" once for each
5925 * physical package.
5927 continue;
5930 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5932 sg = sg->next;
5933 if (sg != group_head)
5934 goto next_sg;
5936 #endif
5938 #ifdef CONFIG_NUMA
5939 /* Free memory allocated for various sched_group structures */
5940 static void free_sched_groups(const cpumask_t *cpu_map)
5942 int cpu, i;
5944 for_each_cpu_mask(cpu, *cpu_map) {
5945 struct sched_group **sched_group_nodes
5946 = sched_group_nodes_bycpu[cpu];
5948 if (!sched_group_nodes)
5949 continue;
5951 for (i = 0; i < MAX_NUMNODES; i++) {
5952 cpumask_t nodemask = node_to_cpumask(i);
5953 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5955 cpus_and(nodemask, nodemask, *cpu_map);
5956 if (cpus_empty(nodemask))
5957 continue;
5959 if (sg == NULL)
5960 continue;
5961 sg = sg->next;
5962 next_sg:
5963 oldsg = sg;
5964 sg = sg->next;
5965 kfree(oldsg);
5966 if (oldsg != sched_group_nodes[i])
5967 goto next_sg;
5969 kfree(sched_group_nodes);
5970 sched_group_nodes_bycpu[cpu] = NULL;
5973 #else
5974 static void free_sched_groups(const cpumask_t *cpu_map)
5977 #endif
5980 * Initialize sched groups cpu_power.
5982 * cpu_power indicates the capacity of sched group, which is used while
5983 * distributing the load between different sched groups in a sched domain.
5984 * Typically cpu_power for all the groups in a sched domain will be same unless
5985 * there are asymmetries in the topology. If there are asymmetries, group
5986 * having more cpu_power will pickup more load compared to the group having
5987 * less cpu_power.
5989 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5990 * the maximum number of tasks a group can handle in the presence of other idle
5991 * or lightly loaded groups in the same sched domain.
5993 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5995 struct sched_domain *child;
5996 struct sched_group *group;
5998 WARN_ON(!sd || !sd->groups);
6000 if (cpu != first_cpu(sd->groups->cpumask))
6001 return;
6003 child = sd->child;
6005 sd->groups->__cpu_power = 0;
6008 * For perf policy, if the groups in child domain share resources
6009 * (for example cores sharing some portions of the cache hierarchy
6010 * or SMT), then set this domain groups cpu_power such that each group
6011 * can handle only one task, when there are other idle groups in the
6012 * same sched domain.
6014 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6015 (child->flags &
6016 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6017 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6018 return;
6022 * add cpu_power of each child group to this groups cpu_power
6024 group = child->groups;
6025 do {
6026 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6027 group = group->next;
6028 } while (group != child->groups);
6032 * Build sched domains for a given set of cpus and attach the sched domains
6033 * to the individual cpus
6035 static int build_sched_domains(const cpumask_t *cpu_map)
6037 int i;
6038 #ifdef CONFIG_NUMA
6039 struct sched_group **sched_group_nodes = NULL;
6040 int sd_allnodes = 0;
6043 * Allocate the per-node list of sched groups
6045 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6046 GFP_KERNEL);
6047 if (!sched_group_nodes) {
6048 printk(KERN_WARNING "Can not alloc sched group node list\n");
6049 return -ENOMEM;
6051 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6052 #endif
6055 * Set up domains for cpus specified by the cpu_map.
6057 for_each_cpu_mask(i, *cpu_map) {
6058 struct sched_domain *sd = NULL, *p;
6059 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6061 cpus_and(nodemask, nodemask, *cpu_map);
6063 #ifdef CONFIG_NUMA
6064 if (cpus_weight(*cpu_map) >
6065 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6066 sd = &per_cpu(allnodes_domains, i);
6067 *sd = SD_ALLNODES_INIT;
6068 sd->span = *cpu_map;
6069 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6070 p = sd;
6071 sd_allnodes = 1;
6072 } else
6073 p = NULL;
6075 sd = &per_cpu(node_domains, i);
6076 *sd = SD_NODE_INIT;
6077 sd->span = sched_domain_node_span(cpu_to_node(i));
6078 sd->parent = p;
6079 if (p)
6080 p->child = sd;
6081 cpus_and(sd->span, sd->span, *cpu_map);
6082 #endif
6084 p = sd;
6085 sd = &per_cpu(phys_domains, i);
6086 *sd = SD_CPU_INIT;
6087 sd->span = nodemask;
6088 sd->parent = p;
6089 if (p)
6090 p->child = sd;
6091 cpu_to_phys_group(i, cpu_map, &sd->groups);
6093 #ifdef CONFIG_SCHED_MC
6094 p = sd;
6095 sd = &per_cpu(core_domains, i);
6096 *sd = SD_MC_INIT;
6097 sd->span = cpu_coregroup_map(i);
6098 cpus_and(sd->span, sd->span, *cpu_map);
6099 sd->parent = p;
6100 p->child = sd;
6101 cpu_to_core_group(i, cpu_map, &sd->groups);
6102 #endif
6104 #ifdef CONFIG_SCHED_SMT
6105 p = sd;
6106 sd = &per_cpu(cpu_domains, i);
6107 *sd = SD_SIBLING_INIT;
6108 sd->span = cpu_sibling_map[i];
6109 cpus_and(sd->span, sd->span, *cpu_map);
6110 sd->parent = p;
6111 p->child = sd;
6112 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6113 #endif
6116 #ifdef CONFIG_SCHED_SMT
6117 /* Set up CPU (sibling) groups */
6118 for_each_cpu_mask(i, *cpu_map) {
6119 cpumask_t this_sibling_map = cpu_sibling_map[i];
6120 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6121 if (i != first_cpu(this_sibling_map))
6122 continue;
6124 init_sched_build_groups(this_sibling_map, cpu_map,
6125 &cpu_to_cpu_group);
6127 #endif
6129 #ifdef CONFIG_SCHED_MC
6130 /* Set up multi-core groups */
6131 for_each_cpu_mask(i, *cpu_map) {
6132 cpumask_t this_core_map = cpu_coregroup_map(i);
6133 cpus_and(this_core_map, this_core_map, *cpu_map);
6134 if (i != first_cpu(this_core_map))
6135 continue;
6136 init_sched_build_groups(this_core_map, cpu_map,
6137 &cpu_to_core_group);
6139 #endif
6141 /* Set up physical groups */
6142 for (i = 0; i < MAX_NUMNODES; i++) {
6143 cpumask_t nodemask = node_to_cpumask(i);
6145 cpus_and(nodemask, nodemask, *cpu_map);
6146 if (cpus_empty(nodemask))
6147 continue;
6149 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6152 #ifdef CONFIG_NUMA
6153 /* Set up node groups */
6154 if (sd_allnodes)
6155 init_sched_build_groups(*cpu_map, cpu_map,
6156 &cpu_to_allnodes_group);
6158 for (i = 0; i < MAX_NUMNODES; i++) {
6159 /* Set up node groups */
6160 struct sched_group *sg, *prev;
6161 cpumask_t nodemask = node_to_cpumask(i);
6162 cpumask_t domainspan;
6163 cpumask_t covered = CPU_MASK_NONE;
6164 int j;
6166 cpus_and(nodemask, nodemask, *cpu_map);
6167 if (cpus_empty(nodemask)) {
6168 sched_group_nodes[i] = NULL;
6169 continue;
6172 domainspan = sched_domain_node_span(i);
6173 cpus_and(domainspan, domainspan, *cpu_map);
6175 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6176 if (!sg) {
6177 printk(KERN_WARNING "Can not alloc domain group for "
6178 "node %d\n", i);
6179 goto error;
6181 sched_group_nodes[i] = sg;
6182 for_each_cpu_mask(j, nodemask) {
6183 struct sched_domain *sd;
6185 sd = &per_cpu(node_domains, j);
6186 sd->groups = sg;
6188 sg->__cpu_power = 0;
6189 sg->cpumask = nodemask;
6190 sg->next = sg;
6191 cpus_or(covered, covered, nodemask);
6192 prev = sg;
6194 for (j = 0; j < MAX_NUMNODES; j++) {
6195 cpumask_t tmp, notcovered;
6196 int n = (i + j) % MAX_NUMNODES;
6198 cpus_complement(notcovered, covered);
6199 cpus_and(tmp, notcovered, *cpu_map);
6200 cpus_and(tmp, tmp, domainspan);
6201 if (cpus_empty(tmp))
6202 break;
6204 nodemask = node_to_cpumask(n);
6205 cpus_and(tmp, tmp, nodemask);
6206 if (cpus_empty(tmp))
6207 continue;
6209 sg = kmalloc_node(sizeof(struct sched_group),
6210 GFP_KERNEL, i);
6211 if (!sg) {
6212 printk(KERN_WARNING
6213 "Can not alloc domain group for node %d\n", j);
6214 goto error;
6216 sg->__cpu_power = 0;
6217 sg->cpumask = tmp;
6218 sg->next = prev->next;
6219 cpus_or(covered, covered, tmp);
6220 prev->next = sg;
6221 prev = sg;
6224 #endif
6226 /* Calculate CPU power for physical packages and nodes */
6227 #ifdef CONFIG_SCHED_SMT
6228 for_each_cpu_mask(i, *cpu_map) {
6229 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6231 init_sched_groups_power(i, sd);
6233 #endif
6234 #ifdef CONFIG_SCHED_MC
6235 for_each_cpu_mask(i, *cpu_map) {
6236 struct sched_domain *sd = &per_cpu(core_domains, i);
6238 init_sched_groups_power(i, sd);
6240 #endif
6242 for_each_cpu_mask(i, *cpu_map) {
6243 struct sched_domain *sd = &per_cpu(phys_domains, i);
6245 init_sched_groups_power(i, sd);
6248 #ifdef CONFIG_NUMA
6249 for (i = 0; i < MAX_NUMNODES; i++)
6250 init_numa_sched_groups_power(sched_group_nodes[i]);
6252 if (sd_allnodes) {
6253 struct sched_group *sg;
6255 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6256 init_numa_sched_groups_power(sg);
6258 #endif
6260 /* Attach the domains */
6261 for_each_cpu_mask(i, *cpu_map) {
6262 struct sched_domain *sd;
6263 #ifdef CONFIG_SCHED_SMT
6264 sd = &per_cpu(cpu_domains, i);
6265 #elif defined(CONFIG_SCHED_MC)
6266 sd = &per_cpu(core_domains, i);
6267 #else
6268 sd = &per_cpu(phys_domains, i);
6269 #endif
6270 cpu_attach_domain(sd, i);
6273 return 0;
6275 #ifdef CONFIG_NUMA
6276 error:
6277 free_sched_groups(cpu_map);
6278 return -ENOMEM;
6279 #endif
6282 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6284 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6286 cpumask_t cpu_default_map;
6287 int err;
6290 * Setup mask for cpus without special case scheduling requirements.
6291 * For now this just excludes isolated cpus, but could be used to
6292 * exclude other special cases in the future.
6294 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6296 err = build_sched_domains(&cpu_default_map);
6298 return err;
6301 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6303 free_sched_groups(cpu_map);
6307 * Detach sched domains from a group of cpus specified in cpu_map
6308 * These cpus will now be attached to the NULL domain
6310 static void detach_destroy_domains(const cpumask_t *cpu_map)
6312 int i;
6314 for_each_cpu_mask(i, *cpu_map)
6315 cpu_attach_domain(NULL, i);
6316 synchronize_sched();
6317 arch_destroy_sched_domains(cpu_map);
6321 * Partition sched domains as specified by the cpumasks below.
6322 * This attaches all cpus from the cpumasks to the NULL domain,
6323 * waits for a RCU quiescent period, recalculates sched
6324 * domain information and then attaches them back to the
6325 * correct sched domains
6326 * Call with hotplug lock held
6328 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6330 cpumask_t change_map;
6331 int err = 0;
6333 cpus_and(*partition1, *partition1, cpu_online_map);
6334 cpus_and(*partition2, *partition2, cpu_online_map);
6335 cpus_or(change_map, *partition1, *partition2);
6337 /* Detach sched domains from all of the affected cpus */
6338 detach_destroy_domains(&change_map);
6339 if (!cpus_empty(*partition1))
6340 err = build_sched_domains(partition1);
6341 if (!err && !cpus_empty(*partition2))
6342 err = build_sched_domains(partition2);
6344 return err;
6347 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6348 static int arch_reinit_sched_domains(void)
6350 int err;
6352 mutex_lock(&sched_hotcpu_mutex);
6353 detach_destroy_domains(&cpu_online_map);
6354 err = arch_init_sched_domains(&cpu_online_map);
6355 mutex_unlock(&sched_hotcpu_mutex);
6357 return err;
6360 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6362 int ret;
6364 if (buf[0] != '0' && buf[0] != '1')
6365 return -EINVAL;
6367 if (smt)
6368 sched_smt_power_savings = (buf[0] == '1');
6369 else
6370 sched_mc_power_savings = (buf[0] == '1');
6372 ret = arch_reinit_sched_domains();
6374 return ret ? ret : count;
6377 #ifdef CONFIG_SCHED_MC
6378 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6380 return sprintf(page, "%u\n", sched_mc_power_savings);
6382 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6383 const char *buf, size_t count)
6385 return sched_power_savings_store(buf, count, 0);
6387 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6388 sched_mc_power_savings_store);
6389 #endif
6391 #ifdef CONFIG_SCHED_SMT
6392 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6394 return sprintf(page, "%u\n", sched_smt_power_savings);
6396 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
6399 return sched_power_savings_store(buf, count, 1);
6401 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6402 sched_smt_power_savings_store);
6403 #endif
6405 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6407 int err = 0;
6409 #ifdef CONFIG_SCHED_SMT
6410 if (smt_capable())
6411 err = sysfs_create_file(&cls->kset.kobj,
6412 &attr_sched_smt_power_savings.attr);
6413 #endif
6414 #ifdef CONFIG_SCHED_MC
6415 if (!err && mc_capable())
6416 err = sysfs_create_file(&cls->kset.kobj,
6417 &attr_sched_mc_power_savings.attr);
6418 #endif
6419 return err;
6421 #endif
6424 * Force a reinitialization of the sched domains hierarchy. The domains
6425 * and groups cannot be updated in place without racing with the balancing
6426 * code, so we temporarily attach all running cpus to the NULL domain
6427 * which will prevent rebalancing while the sched domains are recalculated.
6429 static int update_sched_domains(struct notifier_block *nfb,
6430 unsigned long action, void *hcpu)
6432 switch (action) {
6433 case CPU_UP_PREPARE:
6434 case CPU_UP_PREPARE_FROZEN:
6435 case CPU_DOWN_PREPARE:
6436 case CPU_DOWN_PREPARE_FROZEN:
6437 detach_destroy_domains(&cpu_online_map);
6438 return NOTIFY_OK;
6440 case CPU_UP_CANCELED:
6441 case CPU_UP_CANCELED_FROZEN:
6442 case CPU_DOWN_FAILED:
6443 case CPU_DOWN_FAILED_FROZEN:
6444 case CPU_ONLINE:
6445 case CPU_ONLINE_FROZEN:
6446 case CPU_DEAD:
6447 case CPU_DEAD_FROZEN:
6449 * Fall through and re-initialise the domains.
6451 break;
6452 default:
6453 return NOTIFY_DONE;
6456 /* The hotplug lock is already held by cpu_up/cpu_down */
6457 arch_init_sched_domains(&cpu_online_map);
6459 return NOTIFY_OK;
6462 void __init sched_init_smp(void)
6464 cpumask_t non_isolated_cpus;
6466 mutex_lock(&sched_hotcpu_mutex);
6467 arch_init_sched_domains(&cpu_online_map);
6468 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6469 if (cpus_empty(non_isolated_cpus))
6470 cpu_set(smp_processor_id(), non_isolated_cpus);
6471 mutex_unlock(&sched_hotcpu_mutex);
6472 /* XXX: Theoretical race here - CPU may be hotplugged now */
6473 hotcpu_notifier(update_sched_domains, 0);
6475 init_sched_domain_sysctl();
6477 /* Move init over to a non-isolated CPU */
6478 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6479 BUG();
6481 #else
6482 void __init sched_init_smp(void)
6485 #endif /* CONFIG_SMP */
6487 int in_sched_functions(unsigned long addr)
6489 /* Linker adds these: start and end of __sched functions */
6490 extern char __sched_text_start[], __sched_text_end[];
6492 return in_lock_functions(addr) ||
6493 (addr >= (unsigned long)__sched_text_start
6494 && addr < (unsigned long)__sched_text_end);
6497 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6499 cfs_rq->tasks_timeline = RB_ROOT;
6500 #ifdef CONFIG_FAIR_GROUP_SCHED
6501 cfs_rq->rq = rq;
6502 #endif
6503 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6506 void __init sched_init(void)
6508 int highest_cpu = 0;
6509 int i, j;
6511 for_each_possible_cpu(i) {
6512 struct rt_prio_array *array;
6513 struct rq *rq;
6515 rq = cpu_rq(i);
6516 spin_lock_init(&rq->lock);
6517 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6518 rq->nr_running = 0;
6519 rq->clock = 1;
6520 init_cfs_rq(&rq->cfs, rq);
6521 #ifdef CONFIG_FAIR_GROUP_SCHED
6522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6524 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6525 struct sched_entity *se =
6526 &per_cpu(init_sched_entity, i);
6528 init_cfs_rq_p[i] = cfs_rq;
6529 init_cfs_rq(cfs_rq, rq);
6530 cfs_rq->tg = &init_task_grp;
6531 list_add(&cfs_rq->leaf_cfs_rq_list,
6532 &rq->leaf_cfs_rq_list);
6534 init_sched_entity_p[i] = se;
6535 se->cfs_rq = &rq->cfs;
6536 se->my_q = cfs_rq;
6537 se->load.weight = init_task_grp_load;
6538 se->load.inv_weight =
6539 div64_64(1ULL<<32, init_task_grp_load);
6540 se->parent = NULL;
6542 init_task_grp.shares = init_task_grp_load;
6543 #endif
6545 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6546 rq->cpu_load[j] = 0;
6547 #ifdef CONFIG_SMP
6548 rq->sd = NULL;
6549 rq->active_balance = 0;
6550 rq->next_balance = jiffies;
6551 rq->push_cpu = 0;
6552 rq->cpu = i;
6553 rq->migration_thread = NULL;
6554 INIT_LIST_HEAD(&rq->migration_queue);
6555 #endif
6556 atomic_set(&rq->nr_iowait, 0);
6558 array = &rq->rt.active;
6559 for (j = 0; j < MAX_RT_PRIO; j++) {
6560 INIT_LIST_HEAD(array->queue + j);
6561 __clear_bit(j, array->bitmap);
6563 highest_cpu = i;
6564 /* delimiter for bitsearch: */
6565 __set_bit(MAX_RT_PRIO, array->bitmap);
6568 set_load_weight(&init_task);
6570 #ifdef CONFIG_PREEMPT_NOTIFIERS
6571 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6572 #endif
6574 #ifdef CONFIG_SMP
6575 nr_cpu_ids = highest_cpu + 1;
6576 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6577 #endif
6579 #ifdef CONFIG_RT_MUTEXES
6580 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6581 #endif
6584 * The boot idle thread does lazy MMU switching as well:
6586 atomic_inc(&init_mm.mm_count);
6587 enter_lazy_tlb(&init_mm, current);
6590 * Make us the idle thread. Technically, schedule() should not be
6591 * called from this thread, however somewhere below it might be,
6592 * but because we are the idle thread, we just pick up running again
6593 * when this runqueue becomes "idle".
6595 init_idle(current, smp_processor_id());
6597 * During early bootup we pretend to be a normal task:
6599 current->sched_class = &fair_sched_class;
6602 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6603 void __might_sleep(char *file, int line)
6605 #ifdef in_atomic
6606 static unsigned long prev_jiffy; /* ratelimiting */
6608 if ((in_atomic() || irqs_disabled()) &&
6609 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6610 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6611 return;
6612 prev_jiffy = jiffies;
6613 printk(KERN_ERR "BUG: sleeping function called from invalid"
6614 " context at %s:%d\n", file, line);
6615 printk("in_atomic():%d, irqs_disabled():%d\n",
6616 in_atomic(), irqs_disabled());
6617 debug_show_held_locks(current);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current);
6620 dump_stack();
6622 #endif
6624 EXPORT_SYMBOL(__might_sleep);
6625 #endif
6627 #ifdef CONFIG_MAGIC_SYSRQ
6628 void normalize_rt_tasks(void)
6630 struct task_struct *g, *p;
6631 unsigned long flags;
6632 struct rq *rq;
6633 int on_rq;
6635 read_lock_irq(&tasklist_lock);
6636 do_each_thread(g, p) {
6637 p->se.exec_start = 0;
6638 #ifdef CONFIG_SCHEDSTATS
6639 p->se.wait_start = 0;
6640 p->se.sleep_start = 0;
6641 p->se.block_start = 0;
6642 #endif
6643 task_rq(p)->clock = 0;
6645 if (!rt_task(p)) {
6647 * Renice negative nice level userspace
6648 * tasks back to 0:
6650 if (TASK_NICE(p) < 0 && p->mm)
6651 set_user_nice(p, 0);
6652 continue;
6655 spin_lock_irqsave(&p->pi_lock, flags);
6656 rq = __task_rq_lock(p);
6657 #ifdef CONFIG_SMP
6659 * Do not touch the migration thread:
6661 if (p == rq->migration_thread)
6662 goto out_unlock;
6663 #endif
6665 update_rq_clock(rq);
6666 on_rq = p->se.on_rq;
6667 if (on_rq)
6668 deactivate_task(rq, p, 0);
6669 __setscheduler(rq, p, SCHED_NORMAL, 0);
6670 if (on_rq) {
6671 activate_task(rq, p, 0);
6672 resched_task(rq->curr);
6674 #ifdef CONFIG_SMP
6675 out_unlock:
6676 #endif
6677 __task_rq_unlock(rq);
6678 spin_unlock_irqrestore(&p->pi_lock, flags);
6679 } while_each_thread(g, p);
6681 read_unlock_irq(&tasklist_lock);
6684 #endif /* CONFIG_MAGIC_SYSRQ */
6686 #ifdef CONFIG_IA64
6688 * These functions are only useful for the IA64 MCA handling.
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 struct task_struct *curr_task(int cpu)
6705 return cpu_curr(cpu);
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6723 void set_curr_task(int cpu, struct task_struct *p)
6725 cpu_curr(cpu) = p;
6728 #endif
6730 #ifdef CONFIG_FAIR_GROUP_SCHED
6732 /* allocate runqueue etc for a new task group */
6733 struct task_grp *sched_create_group(void)
6735 struct task_grp *tg;
6736 struct cfs_rq *cfs_rq;
6737 struct sched_entity *se;
6738 struct rq *rq;
6739 int i;
6741 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6742 if (!tg)
6743 return ERR_PTR(-ENOMEM);
6745 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6746 if (!tg->cfs_rq)
6747 goto err;
6748 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6749 if (!tg->se)
6750 goto err;
6752 for_each_possible_cpu(i) {
6753 rq = cpu_rq(i);
6755 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6756 cpu_to_node(i));
6757 if (!cfs_rq)
6758 goto err;
6760 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6761 cpu_to_node(i));
6762 if (!se)
6763 goto err;
6765 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6766 memset(se, 0, sizeof(struct sched_entity));
6768 tg->cfs_rq[i] = cfs_rq;
6769 init_cfs_rq(cfs_rq, rq);
6770 cfs_rq->tg = tg;
6772 tg->se[i] = se;
6773 se->cfs_rq = &rq->cfs;
6774 se->my_q = cfs_rq;
6775 se->load.weight = NICE_0_LOAD;
6776 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6777 se->parent = NULL;
6780 for_each_possible_cpu(i) {
6781 rq = cpu_rq(i);
6782 cfs_rq = tg->cfs_rq[i];
6783 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6786 tg->shares = NICE_0_LOAD;
6788 return tg;
6790 err:
6791 for_each_possible_cpu(i) {
6792 if (tg->cfs_rq && tg->cfs_rq[i])
6793 kfree(tg->cfs_rq[i]);
6794 if (tg->se && tg->se[i])
6795 kfree(tg->se[i]);
6797 if (tg->cfs_rq)
6798 kfree(tg->cfs_rq);
6799 if (tg->se)
6800 kfree(tg->se);
6801 if (tg)
6802 kfree(tg);
6804 return ERR_PTR(-ENOMEM);
6807 /* rcu callback to free various structures associated with a task group */
6808 static void free_sched_group(struct rcu_head *rhp)
6810 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6811 struct task_grp *tg = cfs_rq->tg;
6812 struct sched_entity *se;
6813 int i;
6815 /* now it should be safe to free those cfs_rqs */
6816 for_each_possible_cpu(i) {
6817 cfs_rq = tg->cfs_rq[i];
6818 kfree(cfs_rq);
6820 se = tg->se[i];
6821 kfree(se);
6824 kfree(tg->cfs_rq);
6825 kfree(tg->se);
6826 kfree(tg);
6829 /* Destroy runqueue etc associated with a task group */
6830 void sched_destroy_group(struct task_grp *tg)
6832 struct cfs_rq *cfs_rq;
6833 int i;
6835 for_each_possible_cpu(i) {
6836 cfs_rq = tg->cfs_rq[i];
6837 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6840 cfs_rq = tg->cfs_rq[0];
6842 /* wait for possible concurrent references to cfs_rqs complete */
6843 call_rcu(&cfs_rq->rcu, free_sched_group);
6846 /* change task's runqueue when it moves between groups.
6847 * The caller of this function should have put the task in its new group
6848 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6849 * reflect its new group.
6851 void sched_move_task(struct task_struct *tsk)
6853 int on_rq, running;
6854 unsigned long flags;
6855 struct rq *rq;
6857 rq = task_rq_lock(tsk, &flags);
6859 if (tsk->sched_class != &fair_sched_class)
6860 goto done;
6862 update_rq_clock(rq);
6864 running = task_running(rq, tsk);
6865 on_rq = tsk->se.on_rq;
6867 if (on_rq) {
6868 dequeue_task(rq, tsk, 0);
6869 if (unlikely(running))
6870 tsk->sched_class->put_prev_task(rq, tsk);
6873 set_task_cfs_rq(tsk);
6875 if (on_rq) {
6876 if (unlikely(running))
6877 tsk->sched_class->set_curr_task(rq);
6878 enqueue_task(rq, tsk, 0);
6881 done:
6882 task_rq_unlock(rq, &flags);
6885 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6887 struct cfs_rq *cfs_rq = se->cfs_rq;
6888 struct rq *rq = cfs_rq->rq;
6889 int on_rq;
6891 spin_lock_irq(&rq->lock);
6893 on_rq = se->on_rq;
6894 if (on_rq)
6895 dequeue_entity(cfs_rq, se, 0);
6897 se->load.weight = shares;
6898 se->load.inv_weight = div64_64((1ULL<<32), shares);
6900 if (on_rq)
6901 enqueue_entity(cfs_rq, se, 0);
6903 spin_unlock_irq(&rq->lock);
6906 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6908 int i;
6910 if (tg->shares == shares)
6911 return 0;
6913 /* return -EINVAL if the new value is not sane */
6915 tg->shares = shares;
6916 for_each_possible_cpu(i)
6917 set_se_shares(tg->se[i], shares);
6919 return 0;
6922 #endif /* CONFIG_FAIR_GROUP_SCHED */