x86: fix bootup crash in native_read_tsc()
[wrt350n-kernel.git] / drivers / net / s2io.c
blob5fab7d7b5d74a430dd9e72870ba347fa38d07f47
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.15-2"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
361 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
362 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
363 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
364 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
365 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 /* Add the vlan */
368 static void s2io_vlan_rx_register(struct net_device *dev,
369 struct vlan_group *grp)
371 int i;
372 struct s2io_nic *nic = dev->priv;
373 unsigned long flags[MAX_TX_FIFOS];
374 struct mac_info *mac_control = &nic->mac_control;
375 struct config_param *config = &nic->config;
377 for (i = 0; i < config->tx_fifo_num; i++)
378 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
380 nic->vlgrp = grp;
381 for (i = config->tx_fifo_num - 1; i >= 0; i--)
382 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
383 flags[i]);
386 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
387 static int vlan_strip_flag;
390 * Constants to be programmed into the Xena's registers, to configure
391 * the XAUI.
394 #define END_SIGN 0x0
395 static const u64 herc_act_dtx_cfg[] = {
396 /* Set address */
397 0x8000051536750000ULL, 0x80000515367500E0ULL,
398 /* Write data */
399 0x8000051536750004ULL, 0x80000515367500E4ULL,
400 /* Set address */
401 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
402 /* Write data */
403 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
404 /* Set address */
405 0x801205150D440000ULL, 0x801205150D4400E0ULL,
406 /* Write data */
407 0x801205150D440004ULL, 0x801205150D4400E4ULL,
408 /* Set address */
409 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
410 /* Write data */
411 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
412 /* Done */
413 END_SIGN
416 static const u64 xena_dtx_cfg[] = {
417 /* Set address */
418 0x8000051500000000ULL, 0x80000515000000E0ULL,
419 /* Write data */
420 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
421 /* Set address */
422 0x8001051500000000ULL, 0x80010515000000E0ULL,
423 /* Write data */
424 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
425 /* Set address */
426 0x8002051500000000ULL, 0x80020515000000E0ULL,
427 /* Write data */
428 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
429 END_SIGN
433 * Constants for Fixing the MacAddress problem seen mostly on
434 * Alpha machines.
436 static const u64 fix_mac[] = {
437 0x0060000000000000ULL, 0x0060600000000000ULL,
438 0x0040600000000000ULL, 0x0000600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0060600000000000ULL,
444 0x0020600000000000ULL, 0x0060600000000000ULL,
445 0x0020600000000000ULL, 0x0060600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0000600000000000ULL,
450 0x0040600000000000ULL, 0x0060600000000000ULL,
451 END_SIGN
454 MODULE_LICENSE("GPL");
455 MODULE_VERSION(DRV_VERSION);
458 /* Module Loadable parameters. */
459 S2IO_PARM_INT(tx_fifo_num, 1);
460 S2IO_PARM_INT(rx_ring_num, 1);
463 S2IO_PARM_INT(rx_ring_mode, 1);
464 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
465 S2IO_PARM_INT(rmac_pause_time, 0x100);
466 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
467 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
468 S2IO_PARM_INT(shared_splits, 0);
469 S2IO_PARM_INT(tmac_util_period, 5);
470 S2IO_PARM_INT(rmac_util_period, 5);
471 S2IO_PARM_INT(l3l4hdr_size, 128);
472 /* Frequency of Rx desc syncs expressed as power of 2 */
473 S2IO_PARM_INT(rxsync_frequency, 3);
474 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
475 S2IO_PARM_INT(intr_type, 2);
476 /* Large receive offload feature */
477 static unsigned int lro_enable;
478 module_param_named(lro, lro_enable, uint, 0);
480 /* Max pkts to be aggregated by LRO at one time. If not specified,
481 * aggregation happens until we hit max IP pkt size(64K)
483 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
484 S2IO_PARM_INT(indicate_max_pkts, 0);
486 S2IO_PARM_INT(napi, 1);
487 S2IO_PARM_INT(ufo, 0);
488 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
490 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
491 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
492 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
493 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
494 static unsigned int rts_frm_len[MAX_RX_RINGS] =
495 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
497 module_param_array(tx_fifo_len, uint, NULL, 0);
498 module_param_array(rx_ring_sz, uint, NULL, 0);
499 module_param_array(rts_frm_len, uint, NULL, 0);
502 * S2IO device table.
503 * This table lists all the devices that this driver supports.
505 static struct pci_device_id s2io_tbl[] __devinitdata = {
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
507 PCI_ANY_ID, PCI_ANY_ID},
508 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
509 PCI_ANY_ID, PCI_ANY_ID},
510 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
511 PCI_ANY_ID, PCI_ANY_ID},
512 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
513 PCI_ANY_ID, PCI_ANY_ID},
514 {0,}
517 MODULE_DEVICE_TABLE(pci, s2io_tbl);
519 static struct pci_error_handlers s2io_err_handler = {
520 .error_detected = s2io_io_error_detected,
521 .slot_reset = s2io_io_slot_reset,
522 .resume = s2io_io_resume,
525 static struct pci_driver s2io_driver = {
526 .name = "S2IO",
527 .id_table = s2io_tbl,
528 .probe = s2io_init_nic,
529 .remove = __devexit_p(s2io_rem_nic),
530 .err_handler = &s2io_err_handler,
533 /* A simplifier macro used both by init and free shared_mem Fns(). */
534 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
537 * init_shared_mem - Allocation and Initialization of Memory
538 * @nic: Device private variable.
539 * Description: The function allocates all the memory areas shared
540 * between the NIC and the driver. This includes Tx descriptors,
541 * Rx descriptors and the statistics block.
544 static int init_shared_mem(struct s2io_nic *nic)
546 u32 size;
547 void *tmp_v_addr, *tmp_v_addr_next;
548 dma_addr_t tmp_p_addr, tmp_p_addr_next;
549 struct RxD_block *pre_rxd_blk = NULL;
550 int i, j, blk_cnt;
551 int lst_size, lst_per_page;
552 struct net_device *dev = nic->dev;
553 unsigned long tmp;
554 struct buffAdd *ba;
556 struct mac_info *mac_control;
557 struct config_param *config;
558 unsigned long long mem_allocated = 0;
560 mac_control = &nic->mac_control;
561 config = &nic->config;
564 /* Allocation and initialization of TXDLs in FIOFs */
565 size = 0;
566 for (i = 0; i < config->tx_fifo_num; i++) {
567 size += config->tx_cfg[i].fifo_len;
569 if (size > MAX_AVAILABLE_TXDS) {
570 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
571 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
572 return -EINVAL;
575 size = 0;
576 for (i = 0; i < config->tx_fifo_num; i++) {
577 size = config->tx_cfg[i].fifo_len;
579 * Legal values are from 2 to 8192
581 if (size < 2) {
582 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
583 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
584 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
585 "are 2 to 8192\n");
586 return -EINVAL;
590 lst_size = (sizeof(struct TxD) * config->max_txds);
591 lst_per_page = PAGE_SIZE / lst_size;
593 for (i = 0; i < config->tx_fifo_num; i++) {
594 int fifo_len = config->tx_cfg[i].fifo_len;
595 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
596 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
597 GFP_KERNEL);
598 if (!mac_control->fifos[i].list_info) {
599 DBG_PRINT(INFO_DBG,
600 "Malloc failed for list_info\n");
601 return -ENOMEM;
603 mem_allocated += list_holder_size;
605 for (i = 0; i < config->tx_fifo_num; i++) {
606 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
607 lst_per_page);
608 mac_control->fifos[i].tx_curr_put_info.offset = 0;
609 mac_control->fifos[i].tx_curr_put_info.fifo_len =
610 config->tx_cfg[i].fifo_len - 1;
611 mac_control->fifos[i].tx_curr_get_info.offset = 0;
612 mac_control->fifos[i].tx_curr_get_info.fifo_len =
613 config->tx_cfg[i].fifo_len - 1;
614 mac_control->fifos[i].fifo_no = i;
615 mac_control->fifos[i].nic = nic;
616 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
618 for (j = 0; j < page_num; j++) {
619 int k = 0;
620 dma_addr_t tmp_p;
621 void *tmp_v;
622 tmp_v = pci_alloc_consistent(nic->pdev,
623 PAGE_SIZE, &tmp_p);
624 if (!tmp_v) {
625 DBG_PRINT(INFO_DBG,
626 "pci_alloc_consistent ");
627 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
628 return -ENOMEM;
630 /* If we got a zero DMA address(can happen on
631 * certain platforms like PPC), reallocate.
632 * Store virtual address of page we don't want,
633 * to be freed later.
635 if (!tmp_p) {
636 mac_control->zerodma_virt_addr = tmp_v;
637 DBG_PRINT(INIT_DBG,
638 "%s: Zero DMA address for TxDL. ", dev->name);
639 DBG_PRINT(INIT_DBG,
640 "Virtual address %p\n", tmp_v);
641 tmp_v = pci_alloc_consistent(nic->pdev,
642 PAGE_SIZE, &tmp_p);
643 if (!tmp_v) {
644 DBG_PRINT(INFO_DBG,
645 "pci_alloc_consistent ");
646 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
647 return -ENOMEM;
649 mem_allocated += PAGE_SIZE;
651 while (k < lst_per_page) {
652 int l = (j * lst_per_page) + k;
653 if (l == config->tx_cfg[i].fifo_len)
654 break;
655 mac_control->fifos[i].list_info[l].list_virt_addr =
656 tmp_v + (k * lst_size);
657 mac_control->fifos[i].list_info[l].list_phy_addr =
658 tmp_p + (k * lst_size);
659 k++;
664 for (i = 0; i < config->tx_fifo_num; i++) {
665 size = config->tx_cfg[i].fifo_len;
666 mac_control->fifos[i].ufo_in_band_v
667 = kcalloc(size, sizeof(u64), GFP_KERNEL);
668 if (!mac_control->fifos[i].ufo_in_band_v)
669 return -ENOMEM;
670 mem_allocated += (size * sizeof(u64));
673 /* Allocation and initialization of RXDs in Rings */
674 size = 0;
675 for (i = 0; i < config->rx_ring_num; i++) {
676 if (config->rx_cfg[i].num_rxd %
677 (rxd_count[nic->rxd_mode] + 1)) {
678 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
679 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
681 DBG_PRINT(ERR_DBG, "RxDs per Block");
682 return FAILURE;
684 size += config->rx_cfg[i].num_rxd;
685 mac_control->rings[i].block_count =
686 config->rx_cfg[i].num_rxd /
687 (rxd_count[nic->rxd_mode] + 1 );
688 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
689 mac_control->rings[i].block_count;
691 if (nic->rxd_mode == RXD_MODE_1)
692 size = (size * (sizeof(struct RxD1)));
693 else
694 size = (size * (sizeof(struct RxD3)));
696 for (i = 0; i < config->rx_ring_num; i++) {
697 mac_control->rings[i].rx_curr_get_info.block_index = 0;
698 mac_control->rings[i].rx_curr_get_info.offset = 0;
699 mac_control->rings[i].rx_curr_get_info.ring_len =
700 config->rx_cfg[i].num_rxd - 1;
701 mac_control->rings[i].rx_curr_put_info.block_index = 0;
702 mac_control->rings[i].rx_curr_put_info.offset = 0;
703 mac_control->rings[i].rx_curr_put_info.ring_len =
704 config->rx_cfg[i].num_rxd - 1;
705 mac_control->rings[i].nic = nic;
706 mac_control->rings[i].ring_no = i;
708 blk_cnt = config->rx_cfg[i].num_rxd /
709 (rxd_count[nic->rxd_mode] + 1);
710 /* Allocating all the Rx blocks */
711 for (j = 0; j < blk_cnt; j++) {
712 struct rx_block_info *rx_blocks;
713 int l;
715 rx_blocks = &mac_control->rings[i].rx_blocks[j];
716 size = SIZE_OF_BLOCK; //size is always page size
717 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
718 &tmp_p_addr);
719 if (tmp_v_addr == NULL) {
721 * In case of failure, free_shared_mem()
722 * is called, which should free any
723 * memory that was alloced till the
724 * failure happened.
726 rx_blocks->block_virt_addr = tmp_v_addr;
727 return -ENOMEM;
729 mem_allocated += size;
730 memset(tmp_v_addr, 0, size);
731 rx_blocks->block_virt_addr = tmp_v_addr;
732 rx_blocks->block_dma_addr = tmp_p_addr;
733 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
734 rxd_count[nic->rxd_mode],
735 GFP_KERNEL);
736 if (!rx_blocks->rxds)
737 return -ENOMEM;
738 mem_allocated +=
739 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
740 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
741 rx_blocks->rxds[l].virt_addr =
742 rx_blocks->block_virt_addr +
743 (rxd_size[nic->rxd_mode] * l);
744 rx_blocks->rxds[l].dma_addr =
745 rx_blocks->block_dma_addr +
746 (rxd_size[nic->rxd_mode] * l);
749 /* Interlinking all Rx Blocks */
750 for (j = 0; j < blk_cnt; j++) {
751 tmp_v_addr =
752 mac_control->rings[i].rx_blocks[j].block_virt_addr;
753 tmp_v_addr_next =
754 mac_control->rings[i].rx_blocks[(j + 1) %
755 blk_cnt].block_virt_addr;
756 tmp_p_addr =
757 mac_control->rings[i].rx_blocks[j].block_dma_addr;
758 tmp_p_addr_next =
759 mac_control->rings[i].rx_blocks[(j + 1) %
760 blk_cnt].block_dma_addr;
762 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
763 pre_rxd_blk->reserved_2_pNext_RxD_block =
764 (unsigned long) tmp_v_addr_next;
765 pre_rxd_blk->pNext_RxD_Blk_physical =
766 (u64) tmp_p_addr_next;
769 if (nic->rxd_mode == RXD_MODE_3B) {
771 * Allocation of Storages for buffer addresses in 2BUFF mode
772 * and the buffers as well.
774 for (i = 0; i < config->rx_ring_num; i++) {
775 blk_cnt = config->rx_cfg[i].num_rxd /
776 (rxd_count[nic->rxd_mode]+ 1);
777 mac_control->rings[i].ba =
778 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
779 GFP_KERNEL);
780 if (!mac_control->rings[i].ba)
781 return -ENOMEM;
782 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
783 for (j = 0; j < blk_cnt; j++) {
784 int k = 0;
785 mac_control->rings[i].ba[j] =
786 kmalloc((sizeof(struct buffAdd) *
787 (rxd_count[nic->rxd_mode] + 1)),
788 GFP_KERNEL);
789 if (!mac_control->rings[i].ba[j])
790 return -ENOMEM;
791 mem_allocated += (sizeof(struct buffAdd) * \
792 (rxd_count[nic->rxd_mode] + 1));
793 while (k != rxd_count[nic->rxd_mode]) {
794 ba = &mac_control->rings[i].ba[j][k];
796 ba->ba_0_org = (void *) kmalloc
797 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
798 if (!ba->ba_0_org)
799 return -ENOMEM;
800 mem_allocated +=
801 (BUF0_LEN + ALIGN_SIZE);
802 tmp = (unsigned long)ba->ba_0_org;
803 tmp += ALIGN_SIZE;
804 tmp &= ~((unsigned long) ALIGN_SIZE);
805 ba->ba_0 = (void *) tmp;
807 ba->ba_1_org = (void *) kmalloc
808 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
809 if (!ba->ba_1_org)
810 return -ENOMEM;
811 mem_allocated
812 += (BUF1_LEN + ALIGN_SIZE);
813 tmp = (unsigned long) ba->ba_1_org;
814 tmp += ALIGN_SIZE;
815 tmp &= ~((unsigned long) ALIGN_SIZE);
816 ba->ba_1 = (void *) tmp;
817 k++;
823 /* Allocation and initialization of Statistics block */
824 size = sizeof(struct stat_block);
825 mac_control->stats_mem = pci_alloc_consistent
826 (nic->pdev, size, &mac_control->stats_mem_phy);
828 if (!mac_control->stats_mem) {
830 * In case of failure, free_shared_mem() is called, which
831 * should free any memory that was alloced till the
832 * failure happened.
834 return -ENOMEM;
836 mem_allocated += size;
837 mac_control->stats_mem_sz = size;
839 tmp_v_addr = mac_control->stats_mem;
840 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
841 memset(tmp_v_addr, 0, size);
842 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
843 (unsigned long long) tmp_p_addr);
844 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
845 return SUCCESS;
849 * free_shared_mem - Free the allocated Memory
850 * @nic: Device private variable.
851 * Description: This function is to free all memory locations allocated by
852 * the init_shared_mem() function and return it to the kernel.
855 static void free_shared_mem(struct s2io_nic *nic)
857 int i, j, blk_cnt, size;
858 void *tmp_v_addr;
859 dma_addr_t tmp_p_addr;
860 struct mac_info *mac_control;
861 struct config_param *config;
862 int lst_size, lst_per_page;
863 struct net_device *dev;
864 int page_num = 0;
866 if (!nic)
867 return;
869 dev = nic->dev;
871 mac_control = &nic->mac_control;
872 config = &nic->config;
874 lst_size = (sizeof(struct TxD) * config->max_txds);
875 lst_per_page = PAGE_SIZE / lst_size;
877 for (i = 0; i < config->tx_fifo_num; i++) {
878 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
879 lst_per_page);
880 for (j = 0; j < page_num; j++) {
881 int mem_blks = (j * lst_per_page);
882 if (!mac_control->fifos[i].list_info)
883 return;
884 if (!mac_control->fifos[i].list_info[mem_blks].
885 list_virt_addr)
886 break;
887 pci_free_consistent(nic->pdev, PAGE_SIZE,
888 mac_control->fifos[i].
889 list_info[mem_blks].
890 list_virt_addr,
891 mac_control->fifos[i].
892 list_info[mem_blks].
893 list_phy_addr);
894 nic->mac_control.stats_info->sw_stat.mem_freed
895 += PAGE_SIZE;
897 /* If we got a zero DMA address during allocation,
898 * free the page now
900 if (mac_control->zerodma_virt_addr) {
901 pci_free_consistent(nic->pdev, PAGE_SIZE,
902 mac_control->zerodma_virt_addr,
903 (dma_addr_t)0);
904 DBG_PRINT(INIT_DBG,
905 "%s: Freeing TxDL with zero DMA addr. ",
906 dev->name);
907 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
908 mac_control->zerodma_virt_addr);
909 nic->mac_control.stats_info->sw_stat.mem_freed
910 += PAGE_SIZE;
912 kfree(mac_control->fifos[i].list_info);
913 nic->mac_control.stats_info->sw_stat.mem_freed +=
914 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
917 size = SIZE_OF_BLOCK;
918 for (i = 0; i < config->rx_ring_num; i++) {
919 blk_cnt = mac_control->rings[i].block_count;
920 for (j = 0; j < blk_cnt; j++) {
921 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
922 block_virt_addr;
923 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
924 block_dma_addr;
925 if (tmp_v_addr == NULL)
926 break;
927 pci_free_consistent(nic->pdev, size,
928 tmp_v_addr, tmp_p_addr);
929 nic->mac_control.stats_info->sw_stat.mem_freed += size;
930 kfree(mac_control->rings[i].rx_blocks[j].rxds);
931 nic->mac_control.stats_info->sw_stat.mem_freed +=
932 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
936 if (nic->rxd_mode == RXD_MODE_3B) {
937 /* Freeing buffer storage addresses in 2BUFF mode. */
938 for (i = 0; i < config->rx_ring_num; i++) {
939 blk_cnt = config->rx_cfg[i].num_rxd /
940 (rxd_count[nic->rxd_mode] + 1);
941 for (j = 0; j < blk_cnt; j++) {
942 int k = 0;
943 if (!mac_control->rings[i].ba[j])
944 continue;
945 while (k != rxd_count[nic->rxd_mode]) {
946 struct buffAdd *ba =
947 &mac_control->rings[i].ba[j][k];
948 kfree(ba->ba_0_org);
949 nic->mac_control.stats_info->sw_stat.\
950 mem_freed += (BUF0_LEN + ALIGN_SIZE);
951 kfree(ba->ba_1_org);
952 nic->mac_control.stats_info->sw_stat.\
953 mem_freed += (BUF1_LEN + ALIGN_SIZE);
954 k++;
956 kfree(mac_control->rings[i].ba[j]);
957 nic->mac_control.stats_info->sw_stat.mem_freed +=
958 (sizeof(struct buffAdd) *
959 (rxd_count[nic->rxd_mode] + 1));
961 kfree(mac_control->rings[i].ba);
962 nic->mac_control.stats_info->sw_stat.mem_freed +=
963 (sizeof(struct buffAdd *) * blk_cnt);
967 for (i = 0; i < nic->config.tx_fifo_num; i++) {
968 if (mac_control->fifos[i].ufo_in_band_v) {
969 nic->mac_control.stats_info->sw_stat.mem_freed
970 += (config->tx_cfg[i].fifo_len * sizeof(u64));
971 kfree(mac_control->fifos[i].ufo_in_band_v);
975 if (mac_control->stats_mem) {
976 nic->mac_control.stats_info->sw_stat.mem_freed +=
977 mac_control->stats_mem_sz;
978 pci_free_consistent(nic->pdev,
979 mac_control->stats_mem_sz,
980 mac_control->stats_mem,
981 mac_control->stats_mem_phy);
986 * s2io_verify_pci_mode -
989 static int s2io_verify_pci_mode(struct s2io_nic *nic)
991 struct XENA_dev_config __iomem *bar0 = nic->bar0;
992 register u64 val64 = 0;
993 int mode;
995 val64 = readq(&bar0->pci_mode);
996 mode = (u8)GET_PCI_MODE(val64);
998 if ( val64 & PCI_MODE_UNKNOWN_MODE)
999 return -1; /* Unknown PCI mode */
1000 return mode;
1003 #define NEC_VENID 0x1033
1004 #define NEC_DEVID 0x0125
1005 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1007 struct pci_dev *tdev = NULL;
1008 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1009 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1010 if (tdev->bus == s2io_pdev->bus->parent)
1011 pci_dev_put(tdev);
1012 return 1;
1015 return 0;
1018 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1020 * s2io_print_pci_mode -
1022 static int s2io_print_pci_mode(struct s2io_nic *nic)
1024 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1025 register u64 val64 = 0;
1026 int mode;
1027 struct config_param *config = &nic->config;
1029 val64 = readq(&bar0->pci_mode);
1030 mode = (u8)GET_PCI_MODE(val64);
1032 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1033 return -1; /* Unknown PCI mode */
1035 config->bus_speed = bus_speed[mode];
1037 if (s2io_on_nec_bridge(nic->pdev)) {
1038 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1039 nic->dev->name);
1040 return mode;
1043 if (val64 & PCI_MODE_32_BITS) {
1044 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1045 } else {
1046 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1049 switch(mode) {
1050 case PCI_MODE_PCI_33:
1051 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1052 break;
1053 case PCI_MODE_PCI_66:
1054 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1055 break;
1056 case PCI_MODE_PCIX_M1_66:
1057 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1058 break;
1059 case PCI_MODE_PCIX_M1_100:
1060 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1061 break;
1062 case PCI_MODE_PCIX_M1_133:
1063 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1064 break;
1065 case PCI_MODE_PCIX_M2_66:
1066 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1067 break;
1068 case PCI_MODE_PCIX_M2_100:
1069 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1070 break;
1071 case PCI_MODE_PCIX_M2_133:
1072 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1073 break;
1074 default:
1075 return -1; /* Unsupported bus speed */
1078 return mode;
1082 * init_tti - Initialization transmit traffic interrupt scheme
1083 * @nic: device private variable
1084 * @link: link status (UP/DOWN) used to enable/disable continuous
1085 * transmit interrupts
1086 * Description: The function configures transmit traffic interrupts
1087 * Return Value: SUCCESS on success and
1088 * '-1' on failure
1091 int init_tti(struct s2io_nic *nic, int link)
1093 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1094 register u64 val64 = 0;
1095 int i;
1096 struct config_param *config;
1098 config = &nic->config;
1100 for (i = 0; i < config->tx_fifo_num; i++) {
1102 * TTI Initialization. Default Tx timer gets us about
1103 * 250 interrupts per sec. Continuous interrupts are enabled
1104 * by default.
1106 if (nic->device_type == XFRAME_II_DEVICE) {
1107 int count = (nic->config.bus_speed * 125)/2;
1108 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1109 } else
1110 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1112 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1113 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1114 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1115 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1117 if (use_continuous_tx_intrs && (link == LINK_UP))
1118 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1119 writeq(val64, &bar0->tti_data1_mem);
1121 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1122 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1123 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1124 TTI_DATA2_MEM_TX_UFC_D(0x80);
1126 writeq(val64, &bar0->tti_data2_mem);
1128 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1129 TTI_CMD_MEM_OFFSET(i);
1130 writeq(val64, &bar0->tti_command_mem);
1132 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1133 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1134 return FAILURE;
1137 return SUCCESS;
1141 * init_nic - Initialization of hardware
1142 * @nic: device private variable
1143 * Description: The function sequentially configures every block
1144 * of the H/W from their reset values.
1145 * Return Value: SUCCESS on success and
1146 * '-1' on failure (endian settings incorrect).
1149 static int init_nic(struct s2io_nic *nic)
1151 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1152 struct net_device *dev = nic->dev;
1153 register u64 val64 = 0;
1154 void __iomem *add;
1155 u32 time;
1156 int i, j;
1157 struct mac_info *mac_control;
1158 struct config_param *config;
1159 int dtx_cnt = 0;
1160 unsigned long long mem_share;
1161 int mem_size;
1163 mac_control = &nic->mac_control;
1164 config = &nic->config;
1166 /* to set the swapper controle on the card */
1167 if(s2io_set_swapper(nic)) {
1168 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1169 return -EIO;
1173 * Herc requires EOI to be removed from reset before XGXS, so..
1175 if (nic->device_type & XFRAME_II_DEVICE) {
1176 val64 = 0xA500000000ULL;
1177 writeq(val64, &bar0->sw_reset);
1178 msleep(500);
1179 val64 = readq(&bar0->sw_reset);
1182 /* Remove XGXS from reset state */
1183 val64 = 0;
1184 writeq(val64, &bar0->sw_reset);
1185 msleep(500);
1186 val64 = readq(&bar0->sw_reset);
1188 /* Ensure that it's safe to access registers by checking
1189 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1191 if (nic->device_type == XFRAME_II_DEVICE) {
1192 for (i = 0; i < 50; i++) {
1193 val64 = readq(&bar0->adapter_status);
1194 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1195 break;
1196 msleep(10);
1198 if (i == 50)
1199 return -ENODEV;
1202 /* Enable Receiving broadcasts */
1203 add = &bar0->mac_cfg;
1204 val64 = readq(&bar0->mac_cfg);
1205 val64 |= MAC_RMAC_BCAST_ENABLE;
1206 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1207 writel((u32) val64, add);
1208 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1209 writel((u32) (val64 >> 32), (add + 4));
1211 /* Read registers in all blocks */
1212 val64 = readq(&bar0->mac_int_mask);
1213 val64 = readq(&bar0->mc_int_mask);
1214 val64 = readq(&bar0->xgxs_int_mask);
1216 /* Set MTU */
1217 val64 = dev->mtu;
1218 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1220 if (nic->device_type & XFRAME_II_DEVICE) {
1221 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1222 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1223 &bar0->dtx_control, UF);
1224 if (dtx_cnt & 0x1)
1225 msleep(1); /* Necessary!! */
1226 dtx_cnt++;
1228 } else {
1229 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1230 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1231 &bar0->dtx_control, UF);
1232 val64 = readq(&bar0->dtx_control);
1233 dtx_cnt++;
1237 /* Tx DMA Initialization */
1238 val64 = 0;
1239 writeq(val64, &bar0->tx_fifo_partition_0);
1240 writeq(val64, &bar0->tx_fifo_partition_1);
1241 writeq(val64, &bar0->tx_fifo_partition_2);
1242 writeq(val64, &bar0->tx_fifo_partition_3);
1245 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1246 val64 |=
1247 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1248 13) | vBIT(config->tx_cfg[i].fifo_priority,
1249 ((j * 32) + 5), 3);
1251 if (i == (config->tx_fifo_num - 1)) {
1252 if (i % 2 == 0)
1253 i++;
1256 switch (i) {
1257 case 1:
1258 writeq(val64, &bar0->tx_fifo_partition_0);
1259 val64 = 0;
1260 j = 0;
1261 break;
1262 case 3:
1263 writeq(val64, &bar0->tx_fifo_partition_1);
1264 val64 = 0;
1265 j = 0;
1266 break;
1267 case 5:
1268 writeq(val64, &bar0->tx_fifo_partition_2);
1269 val64 = 0;
1270 j = 0;
1271 break;
1272 case 7:
1273 writeq(val64, &bar0->tx_fifo_partition_3);
1274 val64 = 0;
1275 j = 0;
1276 break;
1277 default:
1278 j++;
1279 break;
1284 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1285 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1287 if ((nic->device_type == XFRAME_I_DEVICE) &&
1288 (nic->pdev->revision < 4))
1289 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1291 val64 = readq(&bar0->tx_fifo_partition_0);
1292 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1293 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1296 * Initialization of Tx_PA_CONFIG register to ignore packet
1297 * integrity checking.
1299 val64 = readq(&bar0->tx_pa_cfg);
1300 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1301 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1302 writeq(val64, &bar0->tx_pa_cfg);
1304 /* Rx DMA intialization. */
1305 val64 = 0;
1306 for (i = 0; i < config->rx_ring_num; i++) {
1307 val64 |=
1308 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1311 writeq(val64, &bar0->rx_queue_priority);
1314 * Allocating equal share of memory to all the
1315 * configured Rings.
1317 val64 = 0;
1318 if (nic->device_type & XFRAME_II_DEVICE)
1319 mem_size = 32;
1320 else
1321 mem_size = 64;
1323 for (i = 0; i < config->rx_ring_num; i++) {
1324 switch (i) {
1325 case 0:
1326 mem_share = (mem_size / config->rx_ring_num +
1327 mem_size % config->rx_ring_num);
1328 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1329 continue;
1330 case 1:
1331 mem_share = (mem_size / config->rx_ring_num);
1332 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1333 continue;
1334 case 2:
1335 mem_share = (mem_size / config->rx_ring_num);
1336 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1337 continue;
1338 case 3:
1339 mem_share = (mem_size / config->rx_ring_num);
1340 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1341 continue;
1342 case 4:
1343 mem_share = (mem_size / config->rx_ring_num);
1344 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1345 continue;
1346 case 5:
1347 mem_share = (mem_size / config->rx_ring_num);
1348 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1349 continue;
1350 case 6:
1351 mem_share = (mem_size / config->rx_ring_num);
1352 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1353 continue;
1354 case 7:
1355 mem_share = (mem_size / config->rx_ring_num);
1356 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1357 continue;
1360 writeq(val64, &bar0->rx_queue_cfg);
1363 * Filling Tx round robin registers
1364 * as per the number of FIFOs for equal scheduling priority
1366 switch (config->tx_fifo_num) {
1367 case 1:
1368 val64 = 0x0;
1369 writeq(val64, &bar0->tx_w_round_robin_0);
1370 writeq(val64, &bar0->tx_w_round_robin_1);
1371 writeq(val64, &bar0->tx_w_round_robin_2);
1372 writeq(val64, &bar0->tx_w_round_robin_3);
1373 writeq(val64, &bar0->tx_w_round_robin_4);
1374 break;
1375 case 2:
1376 val64 = 0x0001000100010001ULL;
1377 writeq(val64, &bar0->tx_w_round_robin_0);
1378 writeq(val64, &bar0->tx_w_round_robin_1);
1379 writeq(val64, &bar0->tx_w_round_robin_2);
1380 writeq(val64, &bar0->tx_w_round_robin_3);
1381 val64 = 0x0001000100000000ULL;
1382 writeq(val64, &bar0->tx_w_round_robin_4);
1383 break;
1384 case 3:
1385 val64 = 0x0001020001020001ULL;
1386 writeq(val64, &bar0->tx_w_round_robin_0);
1387 val64 = 0x0200010200010200ULL;
1388 writeq(val64, &bar0->tx_w_round_robin_1);
1389 val64 = 0x0102000102000102ULL;
1390 writeq(val64, &bar0->tx_w_round_robin_2);
1391 val64 = 0x0001020001020001ULL;
1392 writeq(val64, &bar0->tx_w_round_robin_3);
1393 val64 = 0x0200010200000000ULL;
1394 writeq(val64, &bar0->tx_w_round_robin_4);
1395 break;
1396 case 4:
1397 val64 = 0x0001020300010203ULL;
1398 writeq(val64, &bar0->tx_w_round_robin_0);
1399 writeq(val64, &bar0->tx_w_round_robin_1);
1400 writeq(val64, &bar0->tx_w_round_robin_2);
1401 writeq(val64, &bar0->tx_w_round_robin_3);
1402 val64 = 0x0001020300000000ULL;
1403 writeq(val64, &bar0->tx_w_round_robin_4);
1404 break;
1405 case 5:
1406 val64 = 0x0001020304000102ULL;
1407 writeq(val64, &bar0->tx_w_round_robin_0);
1408 val64 = 0x0304000102030400ULL;
1409 writeq(val64, &bar0->tx_w_round_robin_1);
1410 val64 = 0x0102030400010203ULL;
1411 writeq(val64, &bar0->tx_w_round_robin_2);
1412 val64 = 0x0400010203040001ULL;
1413 writeq(val64, &bar0->tx_w_round_robin_3);
1414 val64 = 0x0203040000000000ULL;
1415 writeq(val64, &bar0->tx_w_round_robin_4);
1416 break;
1417 case 6:
1418 val64 = 0x0001020304050001ULL;
1419 writeq(val64, &bar0->tx_w_round_robin_0);
1420 val64 = 0x0203040500010203ULL;
1421 writeq(val64, &bar0->tx_w_round_robin_1);
1422 val64 = 0x0405000102030405ULL;
1423 writeq(val64, &bar0->tx_w_round_robin_2);
1424 val64 = 0x0001020304050001ULL;
1425 writeq(val64, &bar0->tx_w_round_robin_3);
1426 val64 = 0x0203040500000000ULL;
1427 writeq(val64, &bar0->tx_w_round_robin_4);
1428 break;
1429 case 7:
1430 val64 = 0x0001020304050600ULL;
1431 writeq(val64, &bar0->tx_w_round_robin_0);
1432 val64 = 0x0102030405060001ULL;
1433 writeq(val64, &bar0->tx_w_round_robin_1);
1434 val64 = 0x0203040506000102ULL;
1435 writeq(val64, &bar0->tx_w_round_robin_2);
1436 val64 = 0x0304050600010203ULL;
1437 writeq(val64, &bar0->tx_w_round_robin_3);
1438 val64 = 0x0405060000000000ULL;
1439 writeq(val64, &bar0->tx_w_round_robin_4);
1440 break;
1441 case 8:
1442 val64 = 0x0001020304050607ULL;
1443 writeq(val64, &bar0->tx_w_round_robin_0);
1444 writeq(val64, &bar0->tx_w_round_robin_1);
1445 writeq(val64, &bar0->tx_w_round_robin_2);
1446 writeq(val64, &bar0->tx_w_round_robin_3);
1447 val64 = 0x0001020300000000ULL;
1448 writeq(val64, &bar0->tx_w_round_robin_4);
1449 break;
1452 /* Enable all configured Tx FIFO partitions */
1453 val64 = readq(&bar0->tx_fifo_partition_0);
1454 val64 |= (TX_FIFO_PARTITION_EN);
1455 writeq(val64, &bar0->tx_fifo_partition_0);
1457 /* Filling the Rx round robin registers as per the
1458 * number of Rings and steering based on QoS.
1460 switch (config->rx_ring_num) {
1461 case 1:
1462 val64 = 0x8080808080808080ULL;
1463 writeq(val64, &bar0->rts_qos_steering);
1464 break;
1465 case 2:
1466 val64 = 0x0000010000010000ULL;
1467 writeq(val64, &bar0->rx_w_round_robin_0);
1468 val64 = 0x0100000100000100ULL;
1469 writeq(val64, &bar0->rx_w_round_robin_1);
1470 val64 = 0x0001000001000001ULL;
1471 writeq(val64, &bar0->rx_w_round_robin_2);
1472 val64 = 0x0000010000010000ULL;
1473 writeq(val64, &bar0->rx_w_round_robin_3);
1474 val64 = 0x0100000000000000ULL;
1475 writeq(val64, &bar0->rx_w_round_robin_4);
1477 val64 = 0x8080808040404040ULL;
1478 writeq(val64, &bar0->rts_qos_steering);
1479 break;
1480 case 3:
1481 val64 = 0x0001000102000001ULL;
1482 writeq(val64, &bar0->rx_w_round_robin_0);
1483 val64 = 0x0001020000010001ULL;
1484 writeq(val64, &bar0->rx_w_round_robin_1);
1485 val64 = 0x0200000100010200ULL;
1486 writeq(val64, &bar0->rx_w_round_robin_2);
1487 val64 = 0x0001000102000001ULL;
1488 writeq(val64, &bar0->rx_w_round_robin_3);
1489 val64 = 0x0001020000000000ULL;
1490 writeq(val64, &bar0->rx_w_round_robin_4);
1492 val64 = 0x8080804040402020ULL;
1493 writeq(val64, &bar0->rts_qos_steering);
1494 break;
1495 case 4:
1496 val64 = 0x0001020300010200ULL;
1497 writeq(val64, &bar0->rx_w_round_robin_0);
1498 val64 = 0x0100000102030001ULL;
1499 writeq(val64, &bar0->rx_w_round_robin_1);
1500 val64 = 0x0200010000010203ULL;
1501 writeq(val64, &bar0->rx_w_round_robin_2);
1502 val64 = 0x0001020001000001ULL;
1503 writeq(val64, &bar0->rx_w_round_robin_3);
1504 val64 = 0x0203000100000000ULL;
1505 writeq(val64, &bar0->rx_w_round_robin_4);
1507 val64 = 0x8080404020201010ULL;
1508 writeq(val64, &bar0->rts_qos_steering);
1509 break;
1510 case 5:
1511 val64 = 0x0001000203000102ULL;
1512 writeq(val64, &bar0->rx_w_round_robin_0);
1513 val64 = 0x0001020001030004ULL;
1514 writeq(val64, &bar0->rx_w_round_robin_1);
1515 val64 = 0x0001000203000102ULL;
1516 writeq(val64, &bar0->rx_w_round_robin_2);
1517 val64 = 0x0001020001030004ULL;
1518 writeq(val64, &bar0->rx_w_round_robin_3);
1519 val64 = 0x0001000000000000ULL;
1520 writeq(val64, &bar0->rx_w_round_robin_4);
1522 val64 = 0x8080404020201008ULL;
1523 writeq(val64, &bar0->rts_qos_steering);
1524 break;
1525 case 6:
1526 val64 = 0x0001020304000102ULL;
1527 writeq(val64, &bar0->rx_w_round_robin_0);
1528 val64 = 0x0304050001020001ULL;
1529 writeq(val64, &bar0->rx_w_round_robin_1);
1530 val64 = 0x0203000100000102ULL;
1531 writeq(val64, &bar0->rx_w_round_robin_2);
1532 val64 = 0x0304000102030405ULL;
1533 writeq(val64, &bar0->rx_w_round_robin_3);
1534 val64 = 0x0001000200000000ULL;
1535 writeq(val64, &bar0->rx_w_round_robin_4);
1537 val64 = 0x8080404020100804ULL;
1538 writeq(val64, &bar0->rts_qos_steering);
1539 break;
1540 case 7:
1541 val64 = 0x0001020001020300ULL;
1542 writeq(val64, &bar0->rx_w_round_robin_0);
1543 val64 = 0x0102030400010203ULL;
1544 writeq(val64, &bar0->rx_w_round_robin_1);
1545 val64 = 0x0405060001020001ULL;
1546 writeq(val64, &bar0->rx_w_round_robin_2);
1547 val64 = 0x0304050000010200ULL;
1548 writeq(val64, &bar0->rx_w_round_robin_3);
1549 val64 = 0x0102030000000000ULL;
1550 writeq(val64, &bar0->rx_w_round_robin_4);
1552 val64 = 0x8080402010080402ULL;
1553 writeq(val64, &bar0->rts_qos_steering);
1554 break;
1555 case 8:
1556 val64 = 0x0001020300040105ULL;
1557 writeq(val64, &bar0->rx_w_round_robin_0);
1558 val64 = 0x0200030106000204ULL;
1559 writeq(val64, &bar0->rx_w_round_robin_1);
1560 val64 = 0x0103000502010007ULL;
1561 writeq(val64, &bar0->rx_w_round_robin_2);
1562 val64 = 0x0304010002060500ULL;
1563 writeq(val64, &bar0->rx_w_round_robin_3);
1564 val64 = 0x0103020400000000ULL;
1565 writeq(val64, &bar0->rx_w_round_robin_4);
1567 val64 = 0x8040201008040201ULL;
1568 writeq(val64, &bar0->rts_qos_steering);
1569 break;
1572 /* UDP Fix */
1573 val64 = 0;
1574 for (i = 0; i < 8; i++)
1575 writeq(val64, &bar0->rts_frm_len_n[i]);
1577 /* Set the default rts frame length for the rings configured */
1578 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1579 for (i = 0 ; i < config->rx_ring_num ; i++)
1580 writeq(val64, &bar0->rts_frm_len_n[i]);
1582 /* Set the frame length for the configured rings
1583 * desired by the user
1585 for (i = 0; i < config->rx_ring_num; i++) {
1586 /* If rts_frm_len[i] == 0 then it is assumed that user not
1587 * specified frame length steering.
1588 * If the user provides the frame length then program
1589 * the rts_frm_len register for those values or else
1590 * leave it as it is.
1592 if (rts_frm_len[i] != 0) {
1593 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1594 &bar0->rts_frm_len_n[i]);
1598 /* Disable differentiated services steering logic */
1599 for (i = 0; i < 64; i++) {
1600 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1601 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1602 dev->name);
1603 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1604 return -ENODEV;
1608 /* Program statistics memory */
1609 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1611 if (nic->device_type == XFRAME_II_DEVICE) {
1612 val64 = STAT_BC(0x320);
1613 writeq(val64, &bar0->stat_byte_cnt);
1617 * Initializing the sampling rate for the device to calculate the
1618 * bandwidth utilization.
1620 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1621 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1622 writeq(val64, &bar0->mac_link_util);
1625 * Initializing the Transmit and Receive Traffic Interrupt
1626 * Scheme.
1629 /* Initialize TTI */
1630 if (SUCCESS != init_tti(nic, nic->last_link_state))
1631 return -ENODEV;
1633 /* RTI Initialization */
1634 if (nic->device_type == XFRAME_II_DEVICE) {
1636 * Programmed to generate Apprx 500 Intrs per
1637 * second
1639 int count = (nic->config.bus_speed * 125)/4;
1640 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1641 } else
1642 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1643 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1644 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1645 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1647 writeq(val64, &bar0->rti_data1_mem);
1649 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1650 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1651 if (nic->config.intr_type == MSI_X)
1652 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1653 RTI_DATA2_MEM_RX_UFC_D(0x40));
1654 else
1655 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1656 RTI_DATA2_MEM_RX_UFC_D(0x80));
1657 writeq(val64, &bar0->rti_data2_mem);
1659 for (i = 0; i < config->rx_ring_num; i++) {
1660 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1661 | RTI_CMD_MEM_OFFSET(i);
1662 writeq(val64, &bar0->rti_command_mem);
1665 * Once the operation completes, the Strobe bit of the
1666 * command register will be reset. We poll for this
1667 * particular condition. We wait for a maximum of 500ms
1668 * for the operation to complete, if it's not complete
1669 * by then we return error.
1671 time = 0;
1672 while (TRUE) {
1673 val64 = readq(&bar0->rti_command_mem);
1674 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1675 break;
1677 if (time > 10) {
1678 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1679 dev->name);
1680 return -ENODEV;
1682 time++;
1683 msleep(50);
1688 * Initializing proper values as Pause threshold into all
1689 * the 8 Queues on Rx side.
1691 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1692 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1694 /* Disable RMAC PAD STRIPPING */
1695 add = &bar0->mac_cfg;
1696 val64 = readq(&bar0->mac_cfg);
1697 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1698 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1699 writel((u32) (val64), add);
1700 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1701 writel((u32) (val64 >> 32), (add + 4));
1702 val64 = readq(&bar0->mac_cfg);
1704 /* Enable FCS stripping by adapter */
1705 add = &bar0->mac_cfg;
1706 val64 = readq(&bar0->mac_cfg);
1707 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1708 if (nic->device_type == XFRAME_II_DEVICE)
1709 writeq(val64, &bar0->mac_cfg);
1710 else {
1711 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1712 writel((u32) (val64), add);
1713 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1714 writel((u32) (val64 >> 32), (add + 4));
1718 * Set the time value to be inserted in the pause frame
1719 * generated by xena.
1721 val64 = readq(&bar0->rmac_pause_cfg);
1722 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1723 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1724 writeq(val64, &bar0->rmac_pause_cfg);
1727 * Set the Threshold Limit for Generating the pause frame
1728 * If the amount of data in any Queue exceeds ratio of
1729 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1730 * pause frame is generated
1732 val64 = 0;
1733 for (i = 0; i < 4; i++) {
1734 val64 |=
1735 (((u64) 0xFF00 | nic->mac_control.
1736 mc_pause_threshold_q0q3)
1737 << (i * 2 * 8));
1739 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1741 val64 = 0;
1742 for (i = 0; i < 4; i++) {
1743 val64 |=
1744 (((u64) 0xFF00 | nic->mac_control.
1745 mc_pause_threshold_q4q7)
1746 << (i * 2 * 8));
1748 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1751 * TxDMA will stop Read request if the number of read split has
1752 * exceeded the limit pointed by shared_splits
1754 val64 = readq(&bar0->pic_control);
1755 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1756 writeq(val64, &bar0->pic_control);
1758 if (nic->config.bus_speed == 266) {
1759 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1760 writeq(0x0, &bar0->read_retry_delay);
1761 writeq(0x0, &bar0->write_retry_delay);
1765 * Programming the Herc to split every write transaction
1766 * that does not start on an ADB to reduce disconnects.
1768 if (nic->device_type == XFRAME_II_DEVICE) {
1769 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1770 MISC_LINK_STABILITY_PRD(3);
1771 writeq(val64, &bar0->misc_control);
1772 val64 = readq(&bar0->pic_control2);
1773 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1774 writeq(val64, &bar0->pic_control2);
1776 if (strstr(nic->product_name, "CX4")) {
1777 val64 = TMAC_AVG_IPG(0x17);
1778 writeq(val64, &bar0->tmac_avg_ipg);
1781 return SUCCESS;
1783 #define LINK_UP_DOWN_INTERRUPT 1
1784 #define MAC_RMAC_ERR_TIMER 2
1786 static int s2io_link_fault_indication(struct s2io_nic *nic)
1788 if (nic->config.intr_type != INTA)
1789 return MAC_RMAC_ERR_TIMER;
1790 if (nic->device_type == XFRAME_II_DEVICE)
1791 return LINK_UP_DOWN_INTERRUPT;
1792 else
1793 return MAC_RMAC_ERR_TIMER;
1797 * do_s2io_write_bits - update alarm bits in alarm register
1798 * @value: alarm bits
1799 * @flag: interrupt status
1800 * @addr: address value
1801 * Description: update alarm bits in alarm register
1802 * Return Value:
1803 * NONE.
1805 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1807 u64 temp64;
1809 temp64 = readq(addr);
1811 if(flag == ENABLE_INTRS)
1812 temp64 &= ~((u64) value);
1813 else
1814 temp64 |= ((u64) value);
1815 writeq(temp64, addr);
1818 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1820 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1821 register u64 gen_int_mask = 0;
1823 if (mask & TX_DMA_INTR) {
1825 gen_int_mask |= TXDMA_INT_M;
1827 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1828 TXDMA_PCC_INT | TXDMA_TTI_INT |
1829 TXDMA_LSO_INT | TXDMA_TPA_INT |
1830 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1832 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1833 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1834 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1835 &bar0->pfc_err_mask);
1837 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1838 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1839 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1841 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1842 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1843 PCC_N_SERR | PCC_6_COF_OV_ERR |
1844 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1845 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1846 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1848 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1849 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1851 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1852 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1853 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1854 flag, &bar0->lso_err_mask);
1856 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1857 flag, &bar0->tpa_err_mask);
1859 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1863 if (mask & TX_MAC_INTR) {
1864 gen_int_mask |= TXMAC_INT_M;
1865 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1866 &bar0->mac_int_mask);
1867 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1868 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1869 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1870 flag, &bar0->mac_tmac_err_mask);
1873 if (mask & TX_XGXS_INTR) {
1874 gen_int_mask |= TXXGXS_INT_M;
1875 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1876 &bar0->xgxs_int_mask);
1877 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1878 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1879 flag, &bar0->xgxs_txgxs_err_mask);
1882 if (mask & RX_DMA_INTR) {
1883 gen_int_mask |= RXDMA_INT_M;
1884 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1885 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1886 flag, &bar0->rxdma_int_mask);
1887 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1888 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1889 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1890 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1891 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1892 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1893 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1894 &bar0->prc_pcix_err_mask);
1895 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1896 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1897 &bar0->rpa_err_mask);
1898 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1899 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1900 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1901 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1902 flag, &bar0->rda_err_mask);
1903 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1904 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1905 flag, &bar0->rti_err_mask);
1908 if (mask & RX_MAC_INTR) {
1909 gen_int_mask |= RXMAC_INT_M;
1910 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1911 &bar0->mac_int_mask);
1912 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1913 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1914 RMAC_DOUBLE_ECC_ERR |
1915 RMAC_LINK_STATE_CHANGE_INT,
1916 flag, &bar0->mac_rmac_err_mask);
1919 if (mask & RX_XGXS_INTR)
1921 gen_int_mask |= RXXGXS_INT_M;
1922 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1923 &bar0->xgxs_int_mask);
1924 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1925 &bar0->xgxs_rxgxs_err_mask);
1928 if (mask & MC_INTR) {
1929 gen_int_mask |= MC_INT_M;
1930 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1931 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1932 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1933 &bar0->mc_err_mask);
1935 nic->general_int_mask = gen_int_mask;
1937 /* Remove this line when alarm interrupts are enabled */
1938 nic->general_int_mask = 0;
1941 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1942 * @nic: device private variable,
1943 * @mask: A mask indicating which Intr block must be modified and,
1944 * @flag: A flag indicating whether to enable or disable the Intrs.
1945 * Description: This function will either disable or enable the interrupts
1946 * depending on the flag argument. The mask argument can be used to
1947 * enable/disable any Intr block.
1948 * Return Value: NONE.
1951 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1953 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1954 register u64 temp64 = 0, intr_mask = 0;
1956 intr_mask = nic->general_int_mask;
1958 /* Top level interrupt classification */
1959 /* PIC Interrupts */
1960 if (mask & TX_PIC_INTR) {
1961 /* Enable PIC Intrs in the general intr mask register */
1962 intr_mask |= TXPIC_INT_M;
1963 if (flag == ENABLE_INTRS) {
1965 * If Hercules adapter enable GPIO otherwise
1966 * disable all PCIX, Flash, MDIO, IIC and GPIO
1967 * interrupts for now.
1968 * TODO
1970 if (s2io_link_fault_indication(nic) ==
1971 LINK_UP_DOWN_INTERRUPT ) {
1972 do_s2io_write_bits(PIC_INT_GPIO, flag,
1973 &bar0->pic_int_mask);
1974 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1975 &bar0->gpio_int_mask);
1976 } else
1977 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1978 } else if (flag == DISABLE_INTRS) {
1980 * Disable PIC Intrs in the general
1981 * intr mask register
1983 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1987 /* Tx traffic interrupts */
1988 if (mask & TX_TRAFFIC_INTR) {
1989 intr_mask |= TXTRAFFIC_INT_M;
1990 if (flag == ENABLE_INTRS) {
1992 * Enable all the Tx side interrupts
1993 * writing 0 Enables all 64 TX interrupt levels
1995 writeq(0x0, &bar0->tx_traffic_mask);
1996 } else if (flag == DISABLE_INTRS) {
1998 * Disable Tx Traffic Intrs in the general intr mask
1999 * register.
2001 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2005 /* Rx traffic interrupts */
2006 if (mask & RX_TRAFFIC_INTR) {
2007 intr_mask |= RXTRAFFIC_INT_M;
2008 if (flag == ENABLE_INTRS) {
2009 /* writing 0 Enables all 8 RX interrupt levels */
2010 writeq(0x0, &bar0->rx_traffic_mask);
2011 } else if (flag == DISABLE_INTRS) {
2013 * Disable Rx Traffic Intrs in the general intr mask
2014 * register.
2016 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2020 temp64 = readq(&bar0->general_int_mask);
2021 if (flag == ENABLE_INTRS)
2022 temp64 &= ~((u64) intr_mask);
2023 else
2024 temp64 = DISABLE_ALL_INTRS;
2025 writeq(temp64, &bar0->general_int_mask);
2027 nic->general_int_mask = readq(&bar0->general_int_mask);
2031 * verify_pcc_quiescent- Checks for PCC quiescent state
2032 * Return: 1 If PCC is quiescence
2033 * 0 If PCC is not quiescence
2035 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2037 int ret = 0, herc;
2038 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039 u64 val64 = readq(&bar0->adapter_status);
2041 herc = (sp->device_type == XFRAME_II_DEVICE);
2043 if (flag == FALSE) {
2044 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2045 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2046 ret = 1;
2047 } else {
2048 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2049 ret = 1;
2051 } else {
2052 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2053 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2054 ADAPTER_STATUS_RMAC_PCC_IDLE))
2055 ret = 1;
2056 } else {
2057 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2058 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2059 ret = 1;
2063 return ret;
2066 * verify_xena_quiescence - Checks whether the H/W is ready
2067 * Description: Returns whether the H/W is ready to go or not. Depending
2068 * on whether adapter enable bit was written or not the comparison
2069 * differs and the calling function passes the input argument flag to
2070 * indicate this.
2071 * Return: 1 If xena is quiescence
2072 * 0 If Xena is not quiescence
2075 static int verify_xena_quiescence(struct s2io_nic *sp)
2077 int mode;
2078 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079 u64 val64 = readq(&bar0->adapter_status);
2080 mode = s2io_verify_pci_mode(sp);
2082 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2083 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2084 return 0;
2086 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2087 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2088 return 0;
2090 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2091 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2092 return 0;
2094 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2095 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2096 return 0;
2098 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2099 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2100 return 0;
2102 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2103 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2104 return 0;
2106 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2107 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2108 return 0;
2110 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2111 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2112 return 0;
2116 * In PCI 33 mode, the P_PLL is not used, and therefore,
2117 * the the P_PLL_LOCK bit in the adapter_status register will
2118 * not be asserted.
2120 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2121 sp->device_type == XFRAME_II_DEVICE && mode !=
2122 PCI_MODE_PCI_33) {
2123 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2124 return 0;
2126 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2127 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2128 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2129 return 0;
2131 return 1;
2135 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2136 * @sp: Pointer to device specifc structure
2137 * Description :
2138 * New procedure to clear mac address reading problems on Alpha platforms
2142 static void fix_mac_address(struct s2io_nic * sp)
2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145 u64 val64;
2146 int i = 0;
2148 while (fix_mac[i] != END_SIGN) {
2149 writeq(fix_mac[i++], &bar0->gpio_control);
2150 udelay(10);
2151 val64 = readq(&bar0->gpio_control);
2156 * start_nic - Turns the device on
2157 * @nic : device private variable.
2158 * Description:
2159 * This function actually turns the device on. Before this function is
2160 * called,all Registers are configured from their reset states
2161 * and shared memory is allocated but the NIC is still quiescent. On
2162 * calling this function, the device interrupts are cleared and the NIC is
2163 * literally switched on by writing into the adapter control register.
2164 * Return Value:
2165 * SUCCESS on success and -1 on failure.
2168 static int start_nic(struct s2io_nic *nic)
2170 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2171 struct net_device *dev = nic->dev;
2172 register u64 val64 = 0;
2173 u16 subid, i;
2174 struct mac_info *mac_control;
2175 struct config_param *config;
2177 mac_control = &nic->mac_control;
2178 config = &nic->config;
2180 /* PRC Initialization and configuration */
2181 for (i = 0; i < config->rx_ring_num; i++) {
2182 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2183 &bar0->prc_rxd0_n[i]);
2185 val64 = readq(&bar0->prc_ctrl_n[i]);
2186 if (nic->rxd_mode == RXD_MODE_1)
2187 val64 |= PRC_CTRL_RC_ENABLED;
2188 else
2189 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2190 if (nic->device_type == XFRAME_II_DEVICE)
2191 val64 |= PRC_CTRL_GROUP_READS;
2192 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2193 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2194 writeq(val64, &bar0->prc_ctrl_n[i]);
2197 if (nic->rxd_mode == RXD_MODE_3B) {
2198 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2199 val64 = readq(&bar0->rx_pa_cfg);
2200 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2201 writeq(val64, &bar0->rx_pa_cfg);
2204 if (vlan_tag_strip == 0) {
2205 val64 = readq(&bar0->rx_pa_cfg);
2206 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2207 writeq(val64, &bar0->rx_pa_cfg);
2208 vlan_strip_flag = 0;
2212 * Enabling MC-RLDRAM. After enabling the device, we timeout
2213 * for around 100ms, which is approximately the time required
2214 * for the device to be ready for operation.
2216 val64 = readq(&bar0->mc_rldram_mrs);
2217 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2218 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2219 val64 = readq(&bar0->mc_rldram_mrs);
2221 msleep(100); /* Delay by around 100 ms. */
2223 /* Enabling ECC Protection. */
2224 val64 = readq(&bar0->adapter_control);
2225 val64 &= ~ADAPTER_ECC_EN;
2226 writeq(val64, &bar0->adapter_control);
2229 * Verify if the device is ready to be enabled, if so enable
2230 * it.
2232 val64 = readq(&bar0->adapter_status);
2233 if (!verify_xena_quiescence(nic)) {
2234 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2235 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2236 (unsigned long long) val64);
2237 return FAILURE;
2241 * With some switches, link might be already up at this point.
2242 * Because of this weird behavior, when we enable laser,
2243 * we may not get link. We need to handle this. We cannot
2244 * figure out which switch is misbehaving. So we are forced to
2245 * make a global change.
2248 /* Enabling Laser. */
2249 val64 = readq(&bar0->adapter_control);
2250 val64 |= ADAPTER_EOI_TX_ON;
2251 writeq(val64, &bar0->adapter_control);
2253 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2255 * Dont see link state interrupts initally on some switches,
2256 * so directly scheduling the link state task here.
2258 schedule_work(&nic->set_link_task);
2260 /* SXE-002: Initialize link and activity LED */
2261 subid = nic->pdev->subsystem_device;
2262 if (((subid & 0xFF) >= 0x07) &&
2263 (nic->device_type == XFRAME_I_DEVICE)) {
2264 val64 = readq(&bar0->gpio_control);
2265 val64 |= 0x0000800000000000ULL;
2266 writeq(val64, &bar0->gpio_control);
2267 val64 = 0x0411040400000000ULL;
2268 writeq(val64, (void __iomem *)bar0 + 0x2700);
2271 return SUCCESS;
2274 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2276 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2277 TxD *txdlp, int get_off)
2279 struct s2io_nic *nic = fifo_data->nic;
2280 struct sk_buff *skb;
2281 struct TxD *txds;
2282 u16 j, frg_cnt;
2284 txds = txdlp;
2285 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2286 pci_unmap_single(nic->pdev, (dma_addr_t)
2287 txds->Buffer_Pointer, sizeof(u64),
2288 PCI_DMA_TODEVICE);
2289 txds++;
2292 skb = (struct sk_buff *) ((unsigned long)
2293 txds->Host_Control);
2294 if (!skb) {
2295 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2296 return NULL;
2298 pci_unmap_single(nic->pdev, (dma_addr_t)
2299 txds->Buffer_Pointer,
2300 skb->len - skb->data_len,
2301 PCI_DMA_TODEVICE);
2302 frg_cnt = skb_shinfo(skb)->nr_frags;
2303 if (frg_cnt) {
2304 txds++;
2305 for (j = 0; j < frg_cnt; j++, txds++) {
2306 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2307 if (!txds->Buffer_Pointer)
2308 break;
2309 pci_unmap_page(nic->pdev, (dma_addr_t)
2310 txds->Buffer_Pointer,
2311 frag->size, PCI_DMA_TODEVICE);
2314 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2315 return(skb);
2319 * free_tx_buffers - Free all queued Tx buffers
2320 * @nic : device private variable.
2321 * Description:
2322 * Free all queued Tx buffers.
2323 * Return Value: void
2326 static void free_tx_buffers(struct s2io_nic *nic)
2328 struct net_device *dev = nic->dev;
2329 struct sk_buff *skb;
2330 struct TxD *txdp;
2331 int i, j;
2332 struct mac_info *mac_control;
2333 struct config_param *config;
2334 int cnt = 0;
2336 mac_control = &nic->mac_control;
2337 config = &nic->config;
2339 for (i = 0; i < config->tx_fifo_num; i++) {
2340 unsigned long flags;
2341 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2342 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2343 txdp = (struct TxD *) \
2344 mac_control->fifos[i].list_info[j].list_virt_addr;
2345 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2346 if (skb) {
2347 nic->mac_control.stats_info->sw_stat.mem_freed
2348 += skb->truesize;
2349 dev_kfree_skb(skb);
2350 cnt++;
2353 DBG_PRINT(INTR_DBG,
2354 "%s:forcibly freeing %d skbs on FIFO%d\n",
2355 dev->name, cnt, i);
2356 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2357 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2358 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2363 * stop_nic - To stop the nic
2364 * @nic ; device private variable.
2365 * Description:
2366 * This function does exactly the opposite of what the start_nic()
2367 * function does. This function is called to stop the device.
2368 * Return Value:
2369 * void.
2372 static void stop_nic(struct s2io_nic *nic)
2374 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2375 register u64 val64 = 0;
2376 u16 interruptible;
2377 struct mac_info *mac_control;
2378 struct config_param *config;
2380 mac_control = &nic->mac_control;
2381 config = &nic->config;
2383 /* Disable all interrupts */
2384 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2385 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2386 interruptible |= TX_PIC_INTR;
2387 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2389 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2390 val64 = readq(&bar0->adapter_control);
2391 val64 &= ~(ADAPTER_CNTL_EN);
2392 writeq(val64, &bar0->adapter_control);
2396 * fill_rx_buffers - Allocates the Rx side skbs
2397 * @nic: device private variable
2398 * @ring_no: ring number
2399 * Description:
2400 * The function allocates Rx side skbs and puts the physical
2401 * address of these buffers into the RxD buffer pointers, so that the NIC
2402 * can DMA the received frame into these locations.
2403 * The NIC supports 3 receive modes, viz
2404 * 1. single buffer,
2405 * 2. three buffer and
2406 * 3. Five buffer modes.
2407 * Each mode defines how many fragments the received frame will be split
2408 * up into by the NIC. The frame is split into L3 header, L4 Header,
2409 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2410 * is split into 3 fragments. As of now only single buffer mode is
2411 * supported.
2412 * Return Value:
2413 * SUCCESS on success or an appropriate -ve value on failure.
2416 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2418 struct net_device *dev = nic->dev;
2419 struct sk_buff *skb;
2420 struct RxD_t *rxdp;
2421 int off, off1, size, block_no, block_no1;
2422 u32 alloc_tab = 0;
2423 u32 alloc_cnt;
2424 struct mac_info *mac_control;
2425 struct config_param *config;
2426 u64 tmp;
2427 struct buffAdd *ba;
2428 unsigned long flags;
2429 struct RxD_t *first_rxdp = NULL;
2430 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2431 struct RxD1 *rxdp1;
2432 struct RxD3 *rxdp3;
2433 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2435 mac_control = &nic->mac_control;
2436 config = &nic->config;
2437 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2438 atomic_read(&nic->rx_bufs_left[ring_no]);
2440 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2441 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2442 while (alloc_tab < alloc_cnt) {
2443 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2444 block_index;
2445 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2447 rxdp = mac_control->rings[ring_no].
2448 rx_blocks[block_no].rxds[off].virt_addr;
2450 if ((block_no == block_no1) && (off == off1) &&
2451 (rxdp->Host_Control)) {
2452 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2453 dev->name);
2454 DBG_PRINT(INTR_DBG, " info equated\n");
2455 goto end;
2457 if (off && (off == rxd_count[nic->rxd_mode])) {
2458 mac_control->rings[ring_no].rx_curr_put_info.
2459 block_index++;
2460 if (mac_control->rings[ring_no].rx_curr_put_info.
2461 block_index == mac_control->rings[ring_no].
2462 block_count)
2463 mac_control->rings[ring_no].rx_curr_put_info.
2464 block_index = 0;
2465 block_no = mac_control->rings[ring_no].
2466 rx_curr_put_info.block_index;
2467 if (off == rxd_count[nic->rxd_mode])
2468 off = 0;
2469 mac_control->rings[ring_no].rx_curr_put_info.
2470 offset = off;
2471 rxdp = mac_control->rings[ring_no].
2472 rx_blocks[block_no].block_virt_addr;
2473 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2474 dev->name, rxdp);
2476 if(!napi) {
2477 spin_lock_irqsave(&nic->put_lock, flags);
2478 mac_control->rings[ring_no].put_pos =
2479 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2480 spin_unlock_irqrestore(&nic->put_lock, flags);
2481 } else {
2482 mac_control->rings[ring_no].put_pos =
2483 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2485 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2486 ((nic->rxd_mode == RXD_MODE_3B) &&
2487 (rxdp->Control_2 & s2BIT(0)))) {
2488 mac_control->rings[ring_no].rx_curr_put_info.
2489 offset = off;
2490 goto end;
2492 /* calculate size of skb based on ring mode */
2493 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2494 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2495 if (nic->rxd_mode == RXD_MODE_1)
2496 size += NET_IP_ALIGN;
2497 else
2498 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2500 /* allocate skb */
2501 skb = dev_alloc_skb(size);
2502 if(!skb) {
2503 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2504 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2505 if (first_rxdp) {
2506 wmb();
2507 first_rxdp->Control_1 |= RXD_OWN_XENA;
2509 nic->mac_control.stats_info->sw_stat. \
2510 mem_alloc_fail_cnt++;
2511 return -ENOMEM ;
2513 nic->mac_control.stats_info->sw_stat.mem_allocated
2514 += skb->truesize;
2515 if (nic->rxd_mode == RXD_MODE_1) {
2516 /* 1 buffer mode - normal operation mode */
2517 rxdp1 = (struct RxD1*)rxdp;
2518 memset(rxdp, 0, sizeof(struct RxD1));
2519 skb_reserve(skb, NET_IP_ALIGN);
2520 rxdp1->Buffer0_ptr = pci_map_single
2521 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2522 PCI_DMA_FROMDEVICE);
2523 if( (rxdp1->Buffer0_ptr == 0) ||
2524 (rxdp1->Buffer0_ptr ==
2525 DMA_ERROR_CODE))
2526 goto pci_map_failed;
2528 rxdp->Control_2 =
2529 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2531 } else if (nic->rxd_mode == RXD_MODE_3B) {
2533 * 2 buffer mode -
2534 * 2 buffer mode provides 128
2535 * byte aligned receive buffers.
2538 rxdp3 = (struct RxD3*)rxdp;
2539 /* save buffer pointers to avoid frequent dma mapping */
2540 Buffer0_ptr = rxdp3->Buffer0_ptr;
2541 Buffer1_ptr = rxdp3->Buffer1_ptr;
2542 memset(rxdp, 0, sizeof(struct RxD3));
2543 /* restore the buffer pointers for dma sync*/
2544 rxdp3->Buffer0_ptr = Buffer0_ptr;
2545 rxdp3->Buffer1_ptr = Buffer1_ptr;
2547 ba = &mac_control->rings[ring_no].ba[block_no][off];
2548 skb_reserve(skb, BUF0_LEN);
2549 tmp = (u64)(unsigned long) skb->data;
2550 tmp += ALIGN_SIZE;
2551 tmp &= ~ALIGN_SIZE;
2552 skb->data = (void *) (unsigned long)tmp;
2553 skb_reset_tail_pointer(skb);
2555 if (!(rxdp3->Buffer0_ptr))
2556 rxdp3->Buffer0_ptr =
2557 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2558 PCI_DMA_FROMDEVICE);
2559 else
2560 pci_dma_sync_single_for_device(nic->pdev,
2561 (dma_addr_t) rxdp3->Buffer0_ptr,
2562 BUF0_LEN, PCI_DMA_FROMDEVICE);
2563 if( (rxdp3->Buffer0_ptr == 0) ||
2564 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2565 goto pci_map_failed;
2567 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2568 if (nic->rxd_mode == RXD_MODE_3B) {
2569 /* Two buffer mode */
2572 * Buffer2 will have L3/L4 header plus
2573 * L4 payload
2575 rxdp3->Buffer2_ptr = pci_map_single
2576 (nic->pdev, skb->data, dev->mtu + 4,
2577 PCI_DMA_FROMDEVICE);
2579 if( (rxdp3->Buffer2_ptr == 0) ||
2580 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2581 goto pci_map_failed;
2583 rxdp3->Buffer1_ptr =
2584 pci_map_single(nic->pdev,
2585 ba->ba_1, BUF1_LEN,
2586 PCI_DMA_FROMDEVICE);
2587 if( (rxdp3->Buffer1_ptr == 0) ||
2588 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2589 pci_unmap_single
2590 (nic->pdev,
2591 (dma_addr_t)rxdp3->Buffer2_ptr,
2592 dev->mtu + 4,
2593 PCI_DMA_FROMDEVICE);
2594 goto pci_map_failed;
2596 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2597 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2598 (dev->mtu + 4);
2600 rxdp->Control_2 |= s2BIT(0);
2602 rxdp->Host_Control = (unsigned long) (skb);
2603 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2604 rxdp->Control_1 |= RXD_OWN_XENA;
2605 off++;
2606 if (off == (rxd_count[nic->rxd_mode] + 1))
2607 off = 0;
2608 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2610 rxdp->Control_2 |= SET_RXD_MARKER;
2611 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2612 if (first_rxdp) {
2613 wmb();
2614 first_rxdp->Control_1 |= RXD_OWN_XENA;
2616 first_rxdp = rxdp;
2618 atomic_inc(&nic->rx_bufs_left[ring_no]);
2619 alloc_tab++;
2622 end:
2623 /* Transfer ownership of first descriptor to adapter just before
2624 * exiting. Before that, use memory barrier so that ownership
2625 * and other fields are seen by adapter correctly.
2627 if (first_rxdp) {
2628 wmb();
2629 first_rxdp->Control_1 |= RXD_OWN_XENA;
2632 return SUCCESS;
2633 pci_map_failed:
2634 stats->pci_map_fail_cnt++;
2635 stats->mem_freed += skb->truesize;
2636 dev_kfree_skb_irq(skb);
2637 return -ENOMEM;
2640 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2642 struct net_device *dev = sp->dev;
2643 int j;
2644 struct sk_buff *skb;
2645 struct RxD_t *rxdp;
2646 struct mac_info *mac_control;
2647 struct buffAdd *ba;
2648 struct RxD1 *rxdp1;
2649 struct RxD3 *rxdp3;
2651 mac_control = &sp->mac_control;
2652 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2653 rxdp = mac_control->rings[ring_no].
2654 rx_blocks[blk].rxds[j].virt_addr;
2655 skb = (struct sk_buff *)
2656 ((unsigned long) rxdp->Host_Control);
2657 if (!skb) {
2658 continue;
2660 if (sp->rxd_mode == RXD_MODE_1) {
2661 rxdp1 = (struct RxD1*)rxdp;
2662 pci_unmap_single(sp->pdev, (dma_addr_t)
2663 rxdp1->Buffer0_ptr,
2664 dev->mtu +
2665 HEADER_ETHERNET_II_802_3_SIZE
2666 + HEADER_802_2_SIZE +
2667 HEADER_SNAP_SIZE,
2668 PCI_DMA_FROMDEVICE);
2669 memset(rxdp, 0, sizeof(struct RxD1));
2670 } else if(sp->rxd_mode == RXD_MODE_3B) {
2671 rxdp3 = (struct RxD3*)rxdp;
2672 ba = &mac_control->rings[ring_no].
2673 ba[blk][j];
2674 pci_unmap_single(sp->pdev, (dma_addr_t)
2675 rxdp3->Buffer0_ptr,
2676 BUF0_LEN,
2677 PCI_DMA_FROMDEVICE);
2678 pci_unmap_single(sp->pdev, (dma_addr_t)
2679 rxdp3->Buffer1_ptr,
2680 BUF1_LEN,
2681 PCI_DMA_FROMDEVICE);
2682 pci_unmap_single(sp->pdev, (dma_addr_t)
2683 rxdp3->Buffer2_ptr,
2684 dev->mtu + 4,
2685 PCI_DMA_FROMDEVICE);
2686 memset(rxdp, 0, sizeof(struct RxD3));
2688 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2689 dev_kfree_skb(skb);
2690 atomic_dec(&sp->rx_bufs_left[ring_no]);
2695 * free_rx_buffers - Frees all Rx buffers
2696 * @sp: device private variable.
2697 * Description:
2698 * This function will free all Rx buffers allocated by host.
2699 * Return Value:
2700 * NONE.
2703 static void free_rx_buffers(struct s2io_nic *sp)
2705 struct net_device *dev = sp->dev;
2706 int i, blk = 0, buf_cnt = 0;
2707 struct mac_info *mac_control;
2708 struct config_param *config;
2710 mac_control = &sp->mac_control;
2711 config = &sp->config;
2713 for (i = 0; i < config->rx_ring_num; i++) {
2714 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2715 free_rxd_blk(sp,i,blk);
2717 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2718 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2719 mac_control->rings[i].rx_curr_put_info.offset = 0;
2720 mac_control->rings[i].rx_curr_get_info.offset = 0;
2721 atomic_set(&sp->rx_bufs_left[i], 0);
2722 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2723 dev->name, buf_cnt, i);
2728 * s2io_poll - Rx interrupt handler for NAPI support
2729 * @napi : pointer to the napi structure.
2730 * @budget : The number of packets that were budgeted to be processed
2731 * during one pass through the 'Poll" function.
2732 * Description:
2733 * Comes into picture only if NAPI support has been incorporated. It does
2734 * the same thing that rx_intr_handler does, but not in a interrupt context
2735 * also It will process only a given number of packets.
2736 * Return value:
2737 * 0 on success and 1 if there are No Rx packets to be processed.
2740 static int s2io_poll(struct napi_struct *napi, int budget)
2742 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2743 struct net_device *dev = nic->dev;
2744 int pkt_cnt = 0, org_pkts_to_process;
2745 struct mac_info *mac_control;
2746 struct config_param *config;
2747 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2748 int i;
2750 mac_control = &nic->mac_control;
2751 config = &nic->config;
2753 nic->pkts_to_process = budget;
2754 org_pkts_to_process = nic->pkts_to_process;
2756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2757 readl(&bar0->rx_traffic_int);
2759 for (i = 0; i < config->rx_ring_num; i++) {
2760 rx_intr_handler(&mac_control->rings[i]);
2761 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2762 if (!nic->pkts_to_process) {
2763 /* Quota for the current iteration has been met */
2764 goto no_rx;
2768 netif_rx_complete(dev, napi);
2770 for (i = 0; i < config->rx_ring_num; i++) {
2771 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2772 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2773 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2774 break;
2777 /* Re enable the Rx interrupts. */
2778 writeq(0x0, &bar0->rx_traffic_mask);
2779 readl(&bar0->rx_traffic_mask);
2780 return pkt_cnt;
2782 no_rx:
2783 for (i = 0; i < config->rx_ring_num; i++) {
2784 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2785 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2786 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2787 break;
2790 return pkt_cnt;
2793 #ifdef CONFIG_NET_POLL_CONTROLLER
2795 * s2io_netpoll - netpoll event handler entry point
2796 * @dev : pointer to the device structure.
2797 * Description:
2798 * This function will be called by upper layer to check for events on the
2799 * interface in situations where interrupts are disabled. It is used for
2800 * specific in-kernel networking tasks, such as remote consoles and kernel
2801 * debugging over the network (example netdump in RedHat).
2803 static void s2io_netpoll(struct net_device *dev)
2805 struct s2io_nic *nic = dev->priv;
2806 struct mac_info *mac_control;
2807 struct config_param *config;
2808 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2809 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2810 int i;
2812 if (pci_channel_offline(nic->pdev))
2813 return;
2815 disable_irq(dev->irq);
2817 mac_control = &nic->mac_control;
2818 config = &nic->config;
2820 writeq(val64, &bar0->rx_traffic_int);
2821 writeq(val64, &bar0->tx_traffic_int);
2823 /* we need to free up the transmitted skbufs or else netpoll will
2824 * run out of skbs and will fail and eventually netpoll application such
2825 * as netdump will fail.
2827 for (i = 0; i < config->tx_fifo_num; i++)
2828 tx_intr_handler(&mac_control->fifos[i]);
2830 /* check for received packet and indicate up to network */
2831 for (i = 0; i < config->rx_ring_num; i++)
2832 rx_intr_handler(&mac_control->rings[i]);
2834 for (i = 0; i < config->rx_ring_num; i++) {
2835 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2836 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2837 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2838 break;
2841 enable_irq(dev->irq);
2842 return;
2844 #endif
2847 * rx_intr_handler - Rx interrupt handler
2848 * @nic: device private variable.
2849 * Description:
2850 * If the interrupt is because of a received frame or if the
2851 * receive ring contains fresh as yet un-processed frames,this function is
2852 * called. It picks out the RxD at which place the last Rx processing had
2853 * stopped and sends the skb to the OSM's Rx handler and then increments
2854 * the offset.
2855 * Return Value:
2856 * NONE.
2858 static void rx_intr_handler(struct ring_info *ring_data)
2860 struct s2io_nic *nic = ring_data->nic;
2861 struct net_device *dev = (struct net_device *) nic->dev;
2862 int get_block, put_block, put_offset;
2863 struct rx_curr_get_info get_info, put_info;
2864 struct RxD_t *rxdp;
2865 struct sk_buff *skb;
2866 int pkt_cnt = 0;
2867 int i;
2868 struct RxD1* rxdp1;
2869 struct RxD3* rxdp3;
2871 spin_lock(&nic->rx_lock);
2873 get_info = ring_data->rx_curr_get_info;
2874 get_block = get_info.block_index;
2875 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2876 put_block = put_info.block_index;
2877 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2878 if (!napi) {
2879 spin_lock(&nic->put_lock);
2880 put_offset = ring_data->put_pos;
2881 spin_unlock(&nic->put_lock);
2882 } else
2883 put_offset = ring_data->put_pos;
2885 while (RXD_IS_UP2DT(rxdp)) {
2887 * If your are next to put index then it's
2888 * FIFO full condition
2890 if ((get_block == put_block) &&
2891 (get_info.offset + 1) == put_info.offset) {
2892 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2893 break;
2895 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2896 if (skb == NULL) {
2897 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2898 dev->name);
2899 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2900 spin_unlock(&nic->rx_lock);
2901 return;
2903 if (nic->rxd_mode == RXD_MODE_1) {
2904 rxdp1 = (struct RxD1*)rxdp;
2905 pci_unmap_single(nic->pdev, (dma_addr_t)
2906 rxdp1->Buffer0_ptr,
2907 dev->mtu +
2908 HEADER_ETHERNET_II_802_3_SIZE +
2909 HEADER_802_2_SIZE +
2910 HEADER_SNAP_SIZE,
2911 PCI_DMA_FROMDEVICE);
2912 } else if (nic->rxd_mode == RXD_MODE_3B) {
2913 rxdp3 = (struct RxD3*)rxdp;
2914 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2915 rxdp3->Buffer0_ptr,
2916 BUF0_LEN, PCI_DMA_FROMDEVICE);
2917 pci_unmap_single(nic->pdev, (dma_addr_t)
2918 rxdp3->Buffer2_ptr,
2919 dev->mtu + 4,
2920 PCI_DMA_FROMDEVICE);
2922 prefetch(skb->data);
2923 rx_osm_handler(ring_data, rxdp);
2924 get_info.offset++;
2925 ring_data->rx_curr_get_info.offset = get_info.offset;
2926 rxdp = ring_data->rx_blocks[get_block].
2927 rxds[get_info.offset].virt_addr;
2928 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2929 get_info.offset = 0;
2930 ring_data->rx_curr_get_info.offset = get_info.offset;
2931 get_block++;
2932 if (get_block == ring_data->block_count)
2933 get_block = 0;
2934 ring_data->rx_curr_get_info.block_index = get_block;
2935 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2938 nic->pkts_to_process -= 1;
2939 if ((napi) && (!nic->pkts_to_process))
2940 break;
2941 pkt_cnt++;
2942 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2943 break;
2945 if (nic->lro) {
2946 /* Clear all LRO sessions before exiting */
2947 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2948 struct lro *lro = &nic->lro0_n[i];
2949 if (lro->in_use) {
2950 update_L3L4_header(nic, lro);
2951 queue_rx_frame(lro->parent);
2952 clear_lro_session(lro);
2957 spin_unlock(&nic->rx_lock);
2961 * tx_intr_handler - Transmit interrupt handler
2962 * @nic : device private variable
2963 * Description:
2964 * If an interrupt was raised to indicate DMA complete of the
2965 * Tx packet, this function is called. It identifies the last TxD
2966 * whose buffer was freed and frees all skbs whose data have already
2967 * DMA'ed into the NICs internal memory.
2968 * Return Value:
2969 * NONE
2972 static void tx_intr_handler(struct fifo_info *fifo_data)
2974 struct s2io_nic *nic = fifo_data->nic;
2975 struct net_device *dev = (struct net_device *) nic->dev;
2976 struct tx_curr_get_info get_info, put_info;
2977 struct sk_buff *skb;
2978 struct TxD *txdlp;
2979 unsigned long flags = 0;
2980 u8 err_mask;
2982 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
2983 return;
2985 get_info = fifo_data->tx_curr_get_info;
2986 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2987 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2988 list_virt_addr;
2989 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2990 (get_info.offset != put_info.offset) &&
2991 (txdlp->Host_Control)) {
2992 /* Check for TxD errors */
2993 if (txdlp->Control_1 & TXD_T_CODE) {
2994 unsigned long long err;
2995 err = txdlp->Control_1 & TXD_T_CODE;
2996 if (err & 0x1) {
2997 nic->mac_control.stats_info->sw_stat.
2998 parity_err_cnt++;
3001 /* update t_code statistics */
3002 err_mask = err >> 48;
3003 switch(err_mask) {
3004 case 2:
3005 nic->mac_control.stats_info->sw_stat.
3006 tx_buf_abort_cnt++;
3007 break;
3009 case 3:
3010 nic->mac_control.stats_info->sw_stat.
3011 tx_desc_abort_cnt++;
3012 break;
3014 case 7:
3015 nic->mac_control.stats_info->sw_stat.
3016 tx_parity_err_cnt++;
3017 break;
3019 case 10:
3020 nic->mac_control.stats_info->sw_stat.
3021 tx_link_loss_cnt++;
3022 break;
3024 case 15:
3025 nic->mac_control.stats_info->sw_stat.
3026 tx_list_proc_err_cnt++;
3027 break;
3031 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3032 if (skb == NULL) {
3033 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3034 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3035 __FUNCTION__);
3036 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3037 return;
3040 /* Updating the statistics block */
3041 nic->stats.tx_bytes += skb->len;
3042 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3043 dev_kfree_skb_irq(skb);
3045 get_info.offset++;
3046 if (get_info.offset == get_info.fifo_len + 1)
3047 get_info.offset = 0;
3048 txdlp = (struct TxD *) fifo_data->list_info
3049 [get_info.offset].list_virt_addr;
3050 fifo_data->tx_curr_get_info.offset =
3051 get_info.offset;
3054 if (netif_queue_stopped(dev))
3055 netif_wake_queue(dev);
3057 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3061 * s2io_mdio_write - Function to write in to MDIO registers
3062 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063 * @addr : address value
3064 * @value : data value
3065 * @dev : pointer to net_device structure
3066 * Description:
3067 * This function is used to write values to the MDIO registers
3068 * NONE
3070 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3072 u64 val64 = 0x0;
3073 struct s2io_nic *sp = dev->priv;
3074 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3076 //address transaction
3077 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078 | MDIO_MMD_DEV_ADDR(mmd_type)
3079 | MDIO_MMS_PRT_ADDR(0x0);
3080 writeq(val64, &bar0->mdio_control);
3081 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3082 writeq(val64, &bar0->mdio_control);
3083 udelay(100);
3085 //Data transaction
3086 val64 = 0x0;
3087 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3088 | MDIO_MMD_DEV_ADDR(mmd_type)
3089 | MDIO_MMS_PRT_ADDR(0x0)
3090 | MDIO_MDIO_DATA(value)
3091 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3092 writeq(val64, &bar0->mdio_control);
3093 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64, &bar0->mdio_control);
3095 udelay(100);
3097 val64 = 0x0;
3098 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3099 | MDIO_MMD_DEV_ADDR(mmd_type)
3100 | MDIO_MMS_PRT_ADDR(0x0)
3101 | MDIO_OP(MDIO_OP_READ_TRANS);
3102 writeq(val64, &bar0->mdio_control);
3103 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3104 writeq(val64, &bar0->mdio_control);
3105 udelay(100);
3110 * s2io_mdio_read - Function to write in to MDIO registers
3111 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3112 * @addr : address value
3113 * @dev : pointer to net_device structure
3114 * Description:
3115 * This function is used to read values to the MDIO registers
3116 * NONE
3118 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3120 u64 val64 = 0x0;
3121 u64 rval64 = 0x0;
3122 struct s2io_nic *sp = dev->priv;
3123 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3125 /* address transaction */
3126 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3127 | MDIO_MMD_DEV_ADDR(mmd_type)
3128 | MDIO_MMS_PRT_ADDR(0x0);
3129 writeq(val64, &bar0->mdio_control);
3130 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3131 writeq(val64, &bar0->mdio_control);
3132 udelay(100);
3134 /* Data transaction */
3135 val64 = 0x0;
3136 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3137 | MDIO_MMD_DEV_ADDR(mmd_type)
3138 | MDIO_MMS_PRT_ADDR(0x0)
3139 | MDIO_OP(MDIO_OP_READ_TRANS);
3140 writeq(val64, &bar0->mdio_control);
3141 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3142 writeq(val64, &bar0->mdio_control);
3143 udelay(100);
3145 /* Read the value from regs */
3146 rval64 = readq(&bar0->mdio_control);
3147 rval64 = rval64 & 0xFFFF0000;
3148 rval64 = rval64 >> 16;
3149 return rval64;
3152 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3153 * @counter : couter value to be updated
3154 * @flag : flag to indicate the status
3155 * @type : counter type
3156 * Description:
3157 * This function is to check the status of the xpak counters value
3158 * NONE
3161 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3163 u64 mask = 0x3;
3164 u64 val64;
3165 int i;
3166 for(i = 0; i <index; i++)
3167 mask = mask << 0x2;
3169 if(flag > 0)
3171 *counter = *counter + 1;
3172 val64 = *regs_stat & mask;
3173 val64 = val64 >> (index * 0x2);
3174 val64 = val64 + 1;
3175 if(val64 == 3)
3177 switch(type)
3179 case 1:
3180 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3181 "service. Excessive temperatures may "
3182 "result in premature transceiver "
3183 "failure \n");
3184 break;
3185 case 2:
3186 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3187 "service Excessive bias currents may "
3188 "indicate imminent laser diode "
3189 "failure \n");
3190 break;
3191 case 3:
3192 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3193 "service Excessive laser output "
3194 "power may saturate far-end "
3195 "receiver\n");
3196 break;
3197 default:
3198 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3199 "type \n");
3201 val64 = 0x0;
3203 val64 = val64 << (index * 0x2);
3204 *regs_stat = (*regs_stat & (~mask)) | (val64);
3206 } else {
3207 *regs_stat = *regs_stat & (~mask);
3212 * s2io_updt_xpak_counter - Function to update the xpak counters
3213 * @dev : pointer to net_device struct
3214 * Description:
3215 * This function is to upate the status of the xpak counters value
3216 * NONE
3218 static void s2io_updt_xpak_counter(struct net_device *dev)
3220 u16 flag = 0x0;
3221 u16 type = 0x0;
3222 u16 val16 = 0x0;
3223 u64 val64 = 0x0;
3224 u64 addr = 0x0;
3226 struct s2io_nic *sp = dev->priv;
3227 struct stat_block *stat_info = sp->mac_control.stats_info;
3229 /* Check the communication with the MDIO slave */
3230 addr = 0x0000;
3231 val64 = 0x0;
3232 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3233 if((val64 == 0xFFFF) || (val64 == 0x0000))
3235 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3236 "Returned %llx\n", (unsigned long long)val64);
3237 return;
3240 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3241 if(val64 != 0x2040)
3243 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3244 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3245 (unsigned long long)val64);
3246 return;
3249 /* Loading the DOM register to MDIO register */
3250 addr = 0xA100;
3251 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3252 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3254 /* Reading the Alarm flags */
3255 addr = 0xA070;
3256 val64 = 0x0;
3257 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3259 flag = CHECKBIT(val64, 0x7);
3260 type = 1;
3261 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3262 &stat_info->xpak_stat.xpak_regs_stat,
3263 0x0, flag, type);
3265 if(CHECKBIT(val64, 0x6))
3266 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3268 flag = CHECKBIT(val64, 0x3);
3269 type = 2;
3270 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3271 &stat_info->xpak_stat.xpak_regs_stat,
3272 0x2, flag, type);
3274 if(CHECKBIT(val64, 0x2))
3275 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3277 flag = CHECKBIT(val64, 0x1);
3278 type = 3;
3279 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3280 &stat_info->xpak_stat.xpak_regs_stat,
3281 0x4, flag, type);
3283 if(CHECKBIT(val64, 0x0))
3284 stat_info->xpak_stat.alarm_laser_output_power_low++;
3286 /* Reading the Warning flags */
3287 addr = 0xA074;
3288 val64 = 0x0;
3289 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3291 if(CHECKBIT(val64, 0x7))
3292 stat_info->xpak_stat.warn_transceiver_temp_high++;
3294 if(CHECKBIT(val64, 0x6))
3295 stat_info->xpak_stat.warn_transceiver_temp_low++;
3297 if(CHECKBIT(val64, 0x3))
3298 stat_info->xpak_stat.warn_laser_bias_current_high++;
3300 if(CHECKBIT(val64, 0x2))
3301 stat_info->xpak_stat.warn_laser_bias_current_low++;
3303 if(CHECKBIT(val64, 0x1))
3304 stat_info->xpak_stat.warn_laser_output_power_high++;
3306 if(CHECKBIT(val64, 0x0))
3307 stat_info->xpak_stat.warn_laser_output_power_low++;
3311 * wait_for_cmd_complete - waits for a command to complete.
3312 * @sp : private member of the device structure, which is a pointer to the
3313 * s2io_nic structure.
3314 * Description: Function that waits for a command to Write into RMAC
3315 * ADDR DATA registers to be completed and returns either success or
3316 * error depending on whether the command was complete or not.
3317 * Return value:
3318 * SUCCESS on success and FAILURE on failure.
3321 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3322 int bit_state)
3324 int ret = FAILURE, cnt = 0, delay = 1;
3325 u64 val64;
3327 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3328 return FAILURE;
3330 do {
3331 val64 = readq(addr);
3332 if (bit_state == S2IO_BIT_RESET) {
3333 if (!(val64 & busy_bit)) {
3334 ret = SUCCESS;
3335 break;
3337 } else {
3338 if (!(val64 & busy_bit)) {
3339 ret = SUCCESS;
3340 break;
3344 if(in_interrupt())
3345 mdelay(delay);
3346 else
3347 msleep(delay);
3349 if (++cnt >= 10)
3350 delay = 50;
3351 } while (cnt < 20);
3352 return ret;
3355 * check_pci_device_id - Checks if the device id is supported
3356 * @id : device id
3357 * Description: Function to check if the pci device id is supported by driver.
3358 * Return value: Actual device id if supported else PCI_ANY_ID
3360 static u16 check_pci_device_id(u16 id)
3362 switch (id) {
3363 case PCI_DEVICE_ID_HERC_WIN:
3364 case PCI_DEVICE_ID_HERC_UNI:
3365 return XFRAME_II_DEVICE;
3366 case PCI_DEVICE_ID_S2IO_UNI:
3367 case PCI_DEVICE_ID_S2IO_WIN:
3368 return XFRAME_I_DEVICE;
3369 default:
3370 return PCI_ANY_ID;
3375 * s2io_reset - Resets the card.
3376 * @sp : private member of the device structure.
3377 * Description: Function to Reset the card. This function then also
3378 * restores the previously saved PCI configuration space registers as
3379 * the card reset also resets the configuration space.
3380 * Return value:
3381 * void.
3384 static void s2io_reset(struct s2io_nic * sp)
3386 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3387 u64 val64;
3388 u16 subid, pci_cmd;
3389 int i;
3390 u16 val16;
3391 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3392 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3394 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3395 __FUNCTION__, sp->dev->name);
3397 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3398 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3400 val64 = SW_RESET_ALL;
3401 writeq(val64, &bar0->sw_reset);
3402 if (strstr(sp->product_name, "CX4")) {
3403 msleep(750);
3405 msleep(250);
3406 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3408 /* Restore the PCI state saved during initialization. */
3409 pci_restore_state(sp->pdev);
3410 pci_read_config_word(sp->pdev, 0x2, &val16);
3411 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3412 break;
3413 msleep(200);
3416 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3417 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3420 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3422 s2io_init_pci(sp);
3424 /* Set swapper to enable I/O register access */
3425 s2io_set_swapper(sp);
3427 /* restore mac_addr entries */
3428 do_s2io_restore_unicast_mc(sp);
3430 /* Restore the MSIX table entries from local variables */
3431 restore_xmsi_data(sp);
3433 /* Clear certain PCI/PCI-X fields after reset */
3434 if (sp->device_type == XFRAME_II_DEVICE) {
3435 /* Clear "detected parity error" bit */
3436 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3438 /* Clearing PCIX Ecc status register */
3439 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3441 /* Clearing PCI_STATUS error reflected here */
3442 writeq(s2BIT(62), &bar0->txpic_int_reg);
3445 /* Reset device statistics maintained by OS */
3446 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3448 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3449 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3450 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3451 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3452 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3453 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3454 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3455 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3456 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3457 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3458 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3459 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3460 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3461 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3462 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3463 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3464 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3465 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3466 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3468 /* SXE-002: Configure link and activity LED to turn it off */
3469 subid = sp->pdev->subsystem_device;
3470 if (((subid & 0xFF) >= 0x07) &&
3471 (sp->device_type == XFRAME_I_DEVICE)) {
3472 val64 = readq(&bar0->gpio_control);
3473 val64 |= 0x0000800000000000ULL;
3474 writeq(val64, &bar0->gpio_control);
3475 val64 = 0x0411040400000000ULL;
3476 writeq(val64, (void __iomem *)bar0 + 0x2700);
3480 * Clear spurious ECC interrupts that would have occured on
3481 * XFRAME II cards after reset.
3483 if (sp->device_type == XFRAME_II_DEVICE) {
3484 val64 = readq(&bar0->pcc_err_reg);
3485 writeq(val64, &bar0->pcc_err_reg);
3488 sp->device_enabled_once = FALSE;
3492 * s2io_set_swapper - to set the swapper controle on the card
3493 * @sp : private member of the device structure,
3494 * pointer to the s2io_nic structure.
3495 * Description: Function to set the swapper control on the card
3496 * correctly depending on the 'endianness' of the system.
3497 * Return value:
3498 * SUCCESS on success and FAILURE on failure.
3501 static int s2io_set_swapper(struct s2io_nic * sp)
3503 struct net_device *dev = sp->dev;
3504 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3505 u64 val64, valt, valr;
3508 * Set proper endian settings and verify the same by reading
3509 * the PIF Feed-back register.
3512 val64 = readq(&bar0->pif_rd_swapper_fb);
3513 if (val64 != 0x0123456789ABCDEFULL) {
3514 int i = 0;
3515 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3516 0x8100008181000081ULL, /* FE=1, SE=0 */
3517 0x4200004242000042ULL, /* FE=0, SE=1 */
3518 0}; /* FE=0, SE=0 */
3520 while(i<4) {
3521 writeq(value[i], &bar0->swapper_ctrl);
3522 val64 = readq(&bar0->pif_rd_swapper_fb);
3523 if (val64 == 0x0123456789ABCDEFULL)
3524 break;
3525 i++;
3527 if (i == 4) {
3528 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3529 dev->name);
3530 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3531 (unsigned long long) val64);
3532 return FAILURE;
3534 valr = value[i];
3535 } else {
3536 valr = readq(&bar0->swapper_ctrl);
3539 valt = 0x0123456789ABCDEFULL;
3540 writeq(valt, &bar0->xmsi_address);
3541 val64 = readq(&bar0->xmsi_address);
3543 if(val64 != valt) {
3544 int i = 0;
3545 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3546 0x0081810000818100ULL, /* FE=1, SE=0 */
3547 0x0042420000424200ULL, /* FE=0, SE=1 */
3548 0}; /* FE=0, SE=0 */
3550 while(i<4) {
3551 writeq((value[i] | valr), &bar0->swapper_ctrl);
3552 writeq(valt, &bar0->xmsi_address);
3553 val64 = readq(&bar0->xmsi_address);
3554 if(val64 == valt)
3555 break;
3556 i++;
3558 if(i == 4) {
3559 unsigned long long x = val64;
3560 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3561 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3562 return FAILURE;
3565 val64 = readq(&bar0->swapper_ctrl);
3566 val64 &= 0xFFFF000000000000ULL;
3568 #ifdef __BIG_ENDIAN
3570 * The device by default set to a big endian format, so a
3571 * big endian driver need not set anything.
3573 val64 |= (SWAPPER_CTRL_TXP_FE |
3574 SWAPPER_CTRL_TXP_SE |
3575 SWAPPER_CTRL_TXD_R_FE |
3576 SWAPPER_CTRL_TXD_W_FE |
3577 SWAPPER_CTRL_TXF_R_FE |
3578 SWAPPER_CTRL_RXD_R_FE |
3579 SWAPPER_CTRL_RXD_W_FE |
3580 SWAPPER_CTRL_RXF_W_FE |
3581 SWAPPER_CTRL_XMSI_FE |
3582 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3583 if (sp->config.intr_type == INTA)
3584 val64 |= SWAPPER_CTRL_XMSI_SE;
3585 writeq(val64, &bar0->swapper_ctrl);
3586 #else
3588 * Initially we enable all bits to make it accessible by the
3589 * driver, then we selectively enable only those bits that
3590 * we want to set.
3592 val64 |= (SWAPPER_CTRL_TXP_FE |
3593 SWAPPER_CTRL_TXP_SE |
3594 SWAPPER_CTRL_TXD_R_FE |
3595 SWAPPER_CTRL_TXD_R_SE |
3596 SWAPPER_CTRL_TXD_W_FE |
3597 SWAPPER_CTRL_TXD_W_SE |
3598 SWAPPER_CTRL_TXF_R_FE |
3599 SWAPPER_CTRL_RXD_R_FE |
3600 SWAPPER_CTRL_RXD_R_SE |
3601 SWAPPER_CTRL_RXD_W_FE |
3602 SWAPPER_CTRL_RXD_W_SE |
3603 SWAPPER_CTRL_RXF_W_FE |
3604 SWAPPER_CTRL_XMSI_FE |
3605 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3606 if (sp->config.intr_type == INTA)
3607 val64 |= SWAPPER_CTRL_XMSI_SE;
3608 writeq(val64, &bar0->swapper_ctrl);
3609 #endif
3610 val64 = readq(&bar0->swapper_ctrl);
3613 * Verifying if endian settings are accurate by reading a
3614 * feedback register.
3616 val64 = readq(&bar0->pif_rd_swapper_fb);
3617 if (val64 != 0x0123456789ABCDEFULL) {
3618 /* Endian settings are incorrect, calls for another dekko. */
3619 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3620 dev->name);
3621 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3622 (unsigned long long) val64);
3623 return FAILURE;
3626 return SUCCESS;
3629 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3631 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3632 u64 val64;
3633 int ret = 0, cnt = 0;
3635 do {
3636 val64 = readq(&bar0->xmsi_access);
3637 if (!(val64 & s2BIT(15)))
3638 break;
3639 mdelay(1);
3640 cnt++;
3641 } while(cnt < 5);
3642 if (cnt == 5) {
3643 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3644 ret = 1;
3647 return ret;
3650 static void restore_xmsi_data(struct s2io_nic *nic)
3652 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3653 u64 val64;
3654 int i;
3656 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3657 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3658 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3659 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3660 writeq(val64, &bar0->xmsi_access);
3661 if (wait_for_msix_trans(nic, i)) {
3662 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3663 continue;
3668 static void store_xmsi_data(struct s2io_nic *nic)
3670 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3671 u64 val64, addr, data;
3672 int i;
3674 /* Store and display */
3675 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3676 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3677 writeq(val64, &bar0->xmsi_access);
3678 if (wait_for_msix_trans(nic, i)) {
3679 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3680 continue;
3682 addr = readq(&bar0->xmsi_address);
3683 data = readq(&bar0->xmsi_data);
3684 if (addr && data) {
3685 nic->msix_info[i].addr = addr;
3686 nic->msix_info[i].data = data;
3691 static int s2io_enable_msi_x(struct s2io_nic *nic)
3693 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3694 u64 tx_mat, rx_mat;
3695 u16 msi_control; /* Temp variable */
3696 int ret, i, j, msix_indx = 1;
3698 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3699 GFP_KERNEL);
3700 if (!nic->entries) {
3701 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3702 __FUNCTION__);
3703 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3704 return -ENOMEM;
3706 nic->mac_control.stats_info->sw_stat.mem_allocated
3707 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3709 nic->s2io_entries =
3710 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3711 GFP_KERNEL);
3712 if (!nic->s2io_entries) {
3713 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3714 __FUNCTION__);
3715 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3716 kfree(nic->entries);
3717 nic->mac_control.stats_info->sw_stat.mem_freed
3718 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3719 return -ENOMEM;
3721 nic->mac_control.stats_info->sw_stat.mem_allocated
3722 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3724 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3725 nic->entries[i].entry = i;
3726 nic->s2io_entries[i].entry = i;
3727 nic->s2io_entries[i].arg = NULL;
3728 nic->s2io_entries[i].in_use = 0;
3731 tx_mat = readq(&bar0->tx_mat0_n[0]);
3732 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3733 tx_mat |= TX_MAT_SET(i, msix_indx);
3734 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3735 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3736 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3738 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3740 rx_mat = readq(&bar0->rx_mat);
3741 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3742 rx_mat |= RX_MAT_SET(j, msix_indx);
3743 nic->s2io_entries[msix_indx].arg
3744 = &nic->mac_control.rings[j];
3745 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3746 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3748 writeq(rx_mat, &bar0->rx_mat);
3750 nic->avail_msix_vectors = 0;
3751 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3752 /* We fail init if error or we get less vectors than min required */
3753 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3754 nic->avail_msix_vectors = ret;
3755 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3757 if (ret) {
3758 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3759 kfree(nic->entries);
3760 nic->mac_control.stats_info->sw_stat.mem_freed
3761 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3762 kfree(nic->s2io_entries);
3763 nic->mac_control.stats_info->sw_stat.mem_freed
3764 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3765 nic->entries = NULL;
3766 nic->s2io_entries = NULL;
3767 nic->avail_msix_vectors = 0;
3768 return -ENOMEM;
3770 if (!nic->avail_msix_vectors)
3771 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3774 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775 * in the herc NIC. (Temp change, needs to be removed later)
3777 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3778 msi_control |= 0x1; /* Enable MSI */
3779 pci_write_config_word(nic->pdev, 0x42, msi_control);
3781 return 0;
3784 /* Handle software interrupt used during MSI(X) test */
3785 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3787 struct s2io_nic *sp = dev_id;
3789 sp->msi_detected = 1;
3790 wake_up(&sp->msi_wait);
3792 return IRQ_HANDLED;
3795 /* Test interrupt path by forcing a a software IRQ */
3796 static int s2io_test_msi(struct s2io_nic *sp)
3798 struct pci_dev *pdev = sp->pdev;
3799 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3800 int err;
3801 u64 val64, saved64;
3803 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3804 sp->name, sp);
3805 if (err) {
3806 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3807 sp->dev->name, pci_name(pdev), pdev->irq);
3808 return err;
3811 init_waitqueue_head (&sp->msi_wait);
3812 sp->msi_detected = 0;
3814 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3815 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3816 val64 |= SCHED_INT_CTRL_TIMER_EN;
3817 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3818 writeq(val64, &bar0->scheduled_int_ctrl);
3820 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3822 if (!sp->msi_detected) {
3823 /* MSI(X) test failed, go back to INTx mode */
3824 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3825 "using MSI(X) during test\n", sp->dev->name,
3826 pci_name(pdev));
3828 err = -EOPNOTSUPP;
3831 free_irq(sp->entries[1].vector, sp);
3833 writeq(saved64, &bar0->scheduled_int_ctrl);
3835 return err;
3838 static void remove_msix_isr(struct s2io_nic *sp)
3840 int i;
3841 u16 msi_control;
3843 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3844 if (sp->s2io_entries[i].in_use ==
3845 MSIX_REGISTERED_SUCCESS) {
3846 int vector = sp->entries[i].vector;
3847 void *arg = sp->s2io_entries[i].arg;
3848 free_irq(vector, arg);
3852 kfree(sp->entries);
3853 kfree(sp->s2io_entries);
3854 sp->entries = NULL;
3855 sp->s2io_entries = NULL;
3857 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3858 msi_control &= 0xFFFE; /* Disable MSI */
3859 pci_write_config_word(sp->pdev, 0x42, msi_control);
3861 pci_disable_msix(sp->pdev);
3864 static void remove_inta_isr(struct s2io_nic *sp)
3866 struct net_device *dev = sp->dev;
3868 free_irq(sp->pdev->irq, dev);
3871 /* ********************************************************* *
3872 * Functions defined below concern the OS part of the driver *
3873 * ********************************************************* */
3876 * s2io_open - open entry point of the driver
3877 * @dev : pointer to the device structure.
3878 * Description:
3879 * This function is the open entry point of the driver. It mainly calls a
3880 * function to allocate Rx buffers and inserts them into the buffer
3881 * descriptors and then enables the Rx part of the NIC.
3882 * Return value:
3883 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3884 * file on failure.
3887 static int s2io_open(struct net_device *dev)
3889 struct s2io_nic *sp = dev->priv;
3890 int err = 0;
3893 * Make sure you have link off by default every time
3894 * Nic is initialized
3896 netif_carrier_off(dev);
3897 sp->last_link_state = 0;
3899 if (sp->config.intr_type == MSI_X) {
3900 int ret = s2io_enable_msi_x(sp);
3902 if (!ret) {
3903 ret = s2io_test_msi(sp);
3904 /* rollback MSI-X, will re-enable during add_isr() */
3905 remove_msix_isr(sp);
3907 if (ret) {
3909 DBG_PRINT(ERR_DBG,
3910 "%s: MSI-X requested but failed to enable\n",
3911 dev->name);
3912 sp->config.intr_type = INTA;
3916 /* NAPI doesn't work well with MSI(X) */
3917 if (sp->config.intr_type != INTA) {
3918 if(sp->config.napi)
3919 sp->config.napi = 0;
3922 /* Initialize H/W and enable interrupts */
3923 err = s2io_card_up(sp);
3924 if (err) {
3925 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926 dev->name);
3927 goto hw_init_failed;
3930 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932 s2io_card_down(sp);
3933 err = -ENODEV;
3934 goto hw_init_failed;
3937 netif_start_queue(dev);
3938 return 0;
3940 hw_init_failed:
3941 if (sp->config.intr_type == MSI_X) {
3942 if (sp->entries) {
3943 kfree(sp->entries);
3944 sp->mac_control.stats_info->sw_stat.mem_freed
3945 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3947 if (sp->s2io_entries) {
3948 kfree(sp->s2io_entries);
3949 sp->mac_control.stats_info->sw_stat.mem_freed
3950 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3953 return err;
3957 * s2io_close -close entry point of the driver
3958 * @dev : device pointer.
3959 * Description:
3960 * This is the stop entry point of the driver. It needs to undo exactly
3961 * whatever was done by the open entry point,thus it's usually referred to
3962 * as the close function.Among other things this function mainly stops the
3963 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964 * Return value:
3965 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3966 * file on failure.
3969 static int s2io_close(struct net_device *dev)
3971 struct s2io_nic *sp = dev->priv;
3972 struct config_param *config = &sp->config;
3973 u64 tmp64;
3974 int offset;
3976 /* Return if the device is already closed *
3977 * Can happen when s2io_card_up failed in change_mtu *
3979 if (!is_s2io_card_up(sp))
3980 return 0;
3982 netif_stop_queue(dev);
3984 /* delete all populated mac entries */
3985 for (offset = 1; offset < config->max_mc_addr; offset++) {
3986 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3987 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3988 do_s2io_delete_unicast_mc(sp, tmp64);
3991 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3992 s2io_card_down(sp);
3994 return 0;
3998 * s2io_xmit - Tx entry point of te driver
3999 * @skb : the socket buffer containing the Tx data.
4000 * @dev : device pointer.
4001 * Description :
4002 * This function is the Tx entry point of the driver. S2IO NIC supports
4003 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4004 * NOTE: when device cant queue the pkt,just the trans_start variable will
4005 * not be upadted.
4006 * Return value:
4007 * 0 on success & 1 on failure.
4010 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4012 struct s2io_nic *sp = dev->priv;
4013 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4014 register u64 val64;
4015 struct TxD *txdp;
4016 struct TxFIFO_element __iomem *tx_fifo;
4017 unsigned long flags = 0;
4018 u16 vlan_tag = 0;
4019 int vlan_priority = 0;
4020 struct fifo_info *fifo = NULL;
4021 struct mac_info *mac_control;
4022 struct config_param *config;
4023 int offload_type;
4024 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4026 mac_control = &sp->mac_control;
4027 config = &sp->config;
4029 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4031 if (unlikely(skb->len <= 0)) {
4032 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4033 dev_kfree_skb_any(skb);
4034 return 0;
4037 if (!is_s2io_card_up(sp)) {
4038 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4039 dev->name);
4040 dev_kfree_skb(skb);
4041 return 0;
4044 queue = 0;
4045 /* Get Fifo number to Transmit based on vlan priority */
4046 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4047 vlan_tag = vlan_tx_tag_get(skb);
4048 vlan_priority = vlan_tag >> 13;
4049 queue = config->fifo_mapping[vlan_priority];
4052 fifo = &mac_control->fifos[queue];
4053 spin_lock_irqsave(&fifo->tx_lock, flags);
4054 put_off = (u16) fifo->tx_curr_put_info.offset;
4055 get_off = (u16) fifo->tx_curr_get_info.offset;
4056 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4058 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4059 /* Avoid "put" pointer going beyond "get" pointer */
4060 if (txdp->Host_Control ||
4061 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4062 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4063 netif_stop_queue(dev);
4064 dev_kfree_skb(skb);
4065 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4066 return 0;
4069 offload_type = s2io_offload_type(skb);
4070 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4071 txdp->Control_1 |= TXD_TCP_LSO_EN;
4072 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4074 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4075 txdp->Control_2 |=
4076 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4077 TXD_TX_CKO_UDP_EN);
4079 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4080 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4081 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4083 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4084 txdp->Control_2 |= TXD_VLAN_ENABLE;
4085 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4088 frg_len = skb->len - skb->data_len;
4089 if (offload_type == SKB_GSO_UDP) {
4090 int ufo_size;
4092 ufo_size = s2io_udp_mss(skb);
4093 ufo_size &= ~7;
4094 txdp->Control_1 |= TXD_UFO_EN;
4095 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4096 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4097 #ifdef __BIG_ENDIAN
4098 fifo->ufo_in_band_v[put_off] =
4099 (u64)skb_shinfo(skb)->ip6_frag_id;
4100 #else
4101 fifo->ufo_in_band_v[put_off] =
4102 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4103 #endif
4104 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4105 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4106 fifo->ufo_in_band_v,
4107 sizeof(u64), PCI_DMA_TODEVICE);
4108 if((txdp->Buffer_Pointer == 0) ||
4109 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4110 goto pci_map_failed;
4111 txdp++;
4114 txdp->Buffer_Pointer = pci_map_single
4115 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4116 if((txdp->Buffer_Pointer == 0) ||
4117 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4118 goto pci_map_failed;
4120 txdp->Host_Control = (unsigned long) skb;
4121 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4122 if (offload_type == SKB_GSO_UDP)
4123 txdp->Control_1 |= TXD_UFO_EN;
4125 frg_cnt = skb_shinfo(skb)->nr_frags;
4126 /* For fragmented SKB. */
4127 for (i = 0; i < frg_cnt; i++) {
4128 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4129 /* A '0' length fragment will be ignored */
4130 if (!frag->size)
4131 continue;
4132 txdp++;
4133 txdp->Buffer_Pointer = (u64) pci_map_page
4134 (sp->pdev, frag->page, frag->page_offset,
4135 frag->size, PCI_DMA_TODEVICE);
4136 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4137 if (offload_type == SKB_GSO_UDP)
4138 txdp->Control_1 |= TXD_UFO_EN;
4140 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4142 if (offload_type == SKB_GSO_UDP)
4143 frg_cnt++; /* as Txd0 was used for inband header */
4145 tx_fifo = mac_control->tx_FIFO_start[queue];
4146 val64 = fifo->list_info[put_off].list_phy_addr;
4147 writeq(val64, &tx_fifo->TxDL_Pointer);
4149 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4150 TX_FIFO_LAST_LIST);
4151 if (offload_type)
4152 val64 |= TX_FIFO_SPECIAL_FUNC;
4154 writeq(val64, &tx_fifo->List_Control);
4156 mmiowb();
4158 put_off++;
4159 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4160 put_off = 0;
4161 fifo->tx_curr_put_info.offset = put_off;
4163 /* Avoid "put" pointer going beyond "get" pointer */
4164 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4165 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4166 DBG_PRINT(TX_DBG,
4167 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4168 put_off, get_off);
4169 netif_stop_queue(dev);
4171 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4172 dev->trans_start = jiffies;
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4175 return 0;
4176 pci_map_failed:
4177 stats->pci_map_fail_cnt++;
4178 netif_stop_queue(dev);
4179 stats->mem_freed += skb->truesize;
4180 dev_kfree_skb(skb);
4181 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4182 return 0;
4185 static void
4186 s2io_alarm_handle(unsigned long data)
4188 struct s2io_nic *sp = (struct s2io_nic *)data;
4189 struct net_device *dev = sp->dev;
4191 s2io_handle_errors(dev);
4192 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4195 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4197 int rxb_size, level;
4199 if (!sp->lro) {
4200 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4201 level = rx_buffer_level(sp, rxb_size, rng_n);
4203 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4204 int ret;
4205 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4206 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4207 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4208 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4209 __FUNCTION__);
4210 clear_bit(0, (&sp->tasklet_status));
4211 return -1;
4213 clear_bit(0, (&sp->tasklet_status));
4214 } else if (level == LOW)
4215 tasklet_schedule(&sp->task);
4217 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4218 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4219 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4221 return 0;
4224 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4226 struct ring_info *ring = (struct ring_info *)dev_id;
4227 struct s2io_nic *sp = ring->nic;
4229 if (!is_s2io_card_up(sp))
4230 return IRQ_HANDLED;
4232 rx_intr_handler(ring);
4233 s2io_chk_rx_buffers(sp, ring->ring_no);
4235 return IRQ_HANDLED;
4238 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4240 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4241 struct s2io_nic *sp = fifo->nic;
4243 if (!is_s2io_card_up(sp))
4244 return IRQ_HANDLED;
4246 tx_intr_handler(fifo);
4247 return IRQ_HANDLED;
4249 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4252 u64 val64;
4254 val64 = readq(&bar0->pic_int_status);
4255 if (val64 & PIC_INT_GPIO) {
4256 val64 = readq(&bar0->gpio_int_reg);
4257 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4258 (val64 & GPIO_INT_REG_LINK_UP)) {
4260 * This is unstable state so clear both up/down
4261 * interrupt and adapter to re-evaluate the link state.
4263 val64 |= GPIO_INT_REG_LINK_DOWN;
4264 val64 |= GPIO_INT_REG_LINK_UP;
4265 writeq(val64, &bar0->gpio_int_reg);
4266 val64 = readq(&bar0->gpio_int_mask);
4267 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4268 GPIO_INT_MASK_LINK_DOWN);
4269 writeq(val64, &bar0->gpio_int_mask);
4271 else if (val64 & GPIO_INT_REG_LINK_UP) {
4272 val64 = readq(&bar0->adapter_status);
4273 /* Enable Adapter */
4274 val64 = readq(&bar0->adapter_control);
4275 val64 |= ADAPTER_CNTL_EN;
4276 writeq(val64, &bar0->adapter_control);
4277 val64 |= ADAPTER_LED_ON;
4278 writeq(val64, &bar0->adapter_control);
4279 if (!sp->device_enabled_once)
4280 sp->device_enabled_once = 1;
4282 s2io_link(sp, LINK_UP);
4284 * unmask link down interrupt and mask link-up
4285 * intr
4287 val64 = readq(&bar0->gpio_int_mask);
4288 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4289 val64 |= GPIO_INT_MASK_LINK_UP;
4290 writeq(val64, &bar0->gpio_int_mask);
4292 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4293 val64 = readq(&bar0->adapter_status);
4294 s2io_link(sp, LINK_DOWN);
4295 /* Link is down so unmaks link up interrupt */
4296 val64 = readq(&bar0->gpio_int_mask);
4297 val64 &= ~GPIO_INT_MASK_LINK_UP;
4298 val64 |= GPIO_INT_MASK_LINK_DOWN;
4299 writeq(val64, &bar0->gpio_int_mask);
4301 /* turn off LED */
4302 val64 = readq(&bar0->adapter_control);
4303 val64 = val64 &(~ADAPTER_LED_ON);
4304 writeq(val64, &bar0->adapter_control);
4307 val64 = readq(&bar0->gpio_int_mask);
4311 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4312 * @value: alarm bits
4313 * @addr: address value
4314 * @cnt: counter variable
4315 * Description: Check for alarm and increment the counter
4316 * Return Value:
4317 * 1 - if alarm bit set
4318 * 0 - if alarm bit is not set
4320 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4321 unsigned long long *cnt)
4323 u64 val64;
4324 val64 = readq(addr);
4325 if ( val64 & value ) {
4326 writeq(val64, addr);
4327 (*cnt)++;
4328 return 1;
4330 return 0;
4335 * s2io_handle_errors - Xframe error indication handler
4336 * @nic: device private variable
4337 * Description: Handle alarms such as loss of link, single or
4338 * double ECC errors, critical and serious errors.
4339 * Return Value:
4340 * NONE
4342 static void s2io_handle_errors(void * dev_id)
4344 struct net_device *dev = (struct net_device *) dev_id;
4345 struct s2io_nic *sp = dev->priv;
4346 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347 u64 temp64 = 0,val64=0;
4348 int i = 0;
4350 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4351 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4353 if (!is_s2io_card_up(sp))
4354 return;
4356 if (pci_channel_offline(sp->pdev))
4357 return;
4359 memset(&sw_stat->ring_full_cnt, 0,
4360 sizeof(sw_stat->ring_full_cnt));
4362 /* Handling the XPAK counters update */
4363 if(stats->xpak_timer_count < 72000) {
4364 /* waiting for an hour */
4365 stats->xpak_timer_count++;
4366 } else {
4367 s2io_updt_xpak_counter(dev);
4368 /* reset the count to zero */
4369 stats->xpak_timer_count = 0;
4372 /* Handling link status change error Intr */
4373 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4374 val64 = readq(&bar0->mac_rmac_err_reg);
4375 writeq(val64, &bar0->mac_rmac_err_reg);
4376 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4377 schedule_work(&sp->set_link_task);
4380 /* In case of a serious error, the device will be Reset. */
4381 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4382 &sw_stat->serious_err_cnt))
4383 goto reset;
4385 /* Check for data parity error */
4386 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4387 &sw_stat->parity_err_cnt))
4388 goto reset;
4390 /* Check for ring full counter */
4391 if (sp->device_type == XFRAME_II_DEVICE) {
4392 val64 = readq(&bar0->ring_bump_counter1);
4393 for (i=0; i<4; i++) {
4394 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4395 temp64 >>= 64 - ((i+1)*16);
4396 sw_stat->ring_full_cnt[i] += temp64;
4399 val64 = readq(&bar0->ring_bump_counter2);
4400 for (i=0; i<4; i++) {
4401 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4402 temp64 >>= 64 - ((i+1)*16);
4403 sw_stat->ring_full_cnt[i+4] += temp64;
4407 val64 = readq(&bar0->txdma_int_status);
4408 /*check for pfc_err*/
4409 if (val64 & TXDMA_PFC_INT) {
4410 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4411 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4412 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4413 &sw_stat->pfc_err_cnt))
4414 goto reset;
4415 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4416 &sw_stat->pfc_err_cnt);
4419 /*check for tda_err*/
4420 if (val64 & TXDMA_TDA_INT) {
4421 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4422 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4423 &sw_stat->tda_err_cnt))
4424 goto reset;
4425 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4426 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4428 /*check for pcc_err*/
4429 if (val64 & TXDMA_PCC_INT) {
4430 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4431 | PCC_N_SERR | PCC_6_COF_OV_ERR
4432 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4433 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4434 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4435 &sw_stat->pcc_err_cnt))
4436 goto reset;
4437 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4438 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4441 /*check for tti_err*/
4442 if (val64 & TXDMA_TTI_INT) {
4443 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4444 &sw_stat->tti_err_cnt))
4445 goto reset;
4446 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4447 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4450 /*check for lso_err*/
4451 if (val64 & TXDMA_LSO_INT) {
4452 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4453 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4454 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4455 goto reset;
4456 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4457 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4460 /*check for tpa_err*/
4461 if (val64 & TXDMA_TPA_INT) {
4462 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4463 &sw_stat->tpa_err_cnt))
4464 goto reset;
4465 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4466 &sw_stat->tpa_err_cnt);
4469 /*check for sm_err*/
4470 if (val64 & TXDMA_SM_INT) {
4471 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4472 &sw_stat->sm_err_cnt))
4473 goto reset;
4476 val64 = readq(&bar0->mac_int_status);
4477 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4478 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4479 &bar0->mac_tmac_err_reg,
4480 &sw_stat->mac_tmac_err_cnt))
4481 goto reset;
4482 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4483 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4484 &bar0->mac_tmac_err_reg,
4485 &sw_stat->mac_tmac_err_cnt);
4488 val64 = readq(&bar0->xgxs_int_status);
4489 if (val64 & XGXS_INT_STATUS_TXGXS) {
4490 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4491 &bar0->xgxs_txgxs_err_reg,
4492 &sw_stat->xgxs_txgxs_err_cnt))
4493 goto reset;
4494 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4495 &bar0->xgxs_txgxs_err_reg,
4496 &sw_stat->xgxs_txgxs_err_cnt);
4499 val64 = readq(&bar0->rxdma_int_status);
4500 if (val64 & RXDMA_INT_RC_INT_M) {
4501 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4502 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4503 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4504 goto reset;
4505 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4506 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4507 &sw_stat->rc_err_cnt);
4508 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4509 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4510 &sw_stat->prc_pcix_err_cnt))
4511 goto reset;
4512 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4513 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4514 &sw_stat->prc_pcix_err_cnt);
4517 if (val64 & RXDMA_INT_RPA_INT_M) {
4518 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4519 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4520 goto reset;
4521 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4522 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4525 if (val64 & RXDMA_INT_RDA_INT_M) {
4526 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4527 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4528 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4529 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4530 goto reset;
4531 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4532 | RDA_MISC_ERR | RDA_PCIX_ERR,
4533 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4536 if (val64 & RXDMA_INT_RTI_INT_M) {
4537 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4538 &sw_stat->rti_err_cnt))
4539 goto reset;
4540 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4541 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4544 val64 = readq(&bar0->mac_int_status);
4545 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4546 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4547 &bar0->mac_rmac_err_reg,
4548 &sw_stat->mac_rmac_err_cnt))
4549 goto reset;
4550 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4551 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4552 &sw_stat->mac_rmac_err_cnt);
4555 val64 = readq(&bar0->xgxs_int_status);
4556 if (val64 & XGXS_INT_STATUS_RXGXS) {
4557 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4558 &bar0->xgxs_rxgxs_err_reg,
4559 &sw_stat->xgxs_rxgxs_err_cnt))
4560 goto reset;
4563 val64 = readq(&bar0->mc_int_status);
4564 if(val64 & MC_INT_STATUS_MC_INT) {
4565 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4566 &sw_stat->mc_err_cnt))
4567 goto reset;
4569 /* Handling Ecc errors */
4570 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4571 writeq(val64, &bar0->mc_err_reg);
4572 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4573 sw_stat->double_ecc_errs++;
4574 if (sp->device_type != XFRAME_II_DEVICE) {
4576 * Reset XframeI only if critical error
4578 if (val64 &
4579 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4580 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4581 goto reset;
4583 } else
4584 sw_stat->single_ecc_errs++;
4587 return;
4589 reset:
4590 netif_stop_queue(dev);
4591 schedule_work(&sp->rst_timer_task);
4592 sw_stat->soft_reset_cnt++;
4593 return;
4597 * s2io_isr - ISR handler of the device .
4598 * @irq: the irq of the device.
4599 * @dev_id: a void pointer to the dev structure of the NIC.
4600 * Description: This function is the ISR handler of the device. It
4601 * identifies the reason for the interrupt and calls the relevant
4602 * service routines. As a contongency measure, this ISR allocates the
4603 * recv buffers, if their numbers are below the panic value which is
4604 * presently set to 25% of the original number of rcv buffers allocated.
4605 * Return value:
4606 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4607 * IRQ_NONE: will be returned if interrupt is not from our device
4609 static irqreturn_t s2io_isr(int irq, void *dev_id)
4611 struct net_device *dev = (struct net_device *) dev_id;
4612 struct s2io_nic *sp = dev->priv;
4613 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4614 int i;
4615 u64 reason = 0;
4616 struct mac_info *mac_control;
4617 struct config_param *config;
4619 /* Pretend we handled any irq's from a disconnected card */
4620 if (pci_channel_offline(sp->pdev))
4621 return IRQ_NONE;
4623 if (!is_s2io_card_up(sp))
4624 return IRQ_NONE;
4626 mac_control = &sp->mac_control;
4627 config = &sp->config;
4630 * Identify the cause for interrupt and call the appropriate
4631 * interrupt handler. Causes for the interrupt could be;
4632 * 1. Rx of packet.
4633 * 2. Tx complete.
4634 * 3. Link down.
4636 reason = readq(&bar0->general_int_status);
4638 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4639 /* Nothing much can be done. Get out */
4640 return IRQ_HANDLED;
4643 if (reason & (GEN_INTR_RXTRAFFIC |
4644 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4646 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4648 if (config->napi) {
4649 if (reason & GEN_INTR_RXTRAFFIC) {
4650 if (likely(netif_rx_schedule_prep(dev,
4651 &sp->napi))) {
4652 __netif_rx_schedule(dev, &sp->napi);
4653 writeq(S2IO_MINUS_ONE,
4654 &bar0->rx_traffic_mask);
4655 } else
4656 writeq(S2IO_MINUS_ONE,
4657 &bar0->rx_traffic_int);
4659 } else {
4661 * rx_traffic_int reg is an R1 register, writing all 1's
4662 * will ensure that the actual interrupt causing bit
4663 * get's cleared and hence a read can be avoided.
4665 if (reason & GEN_INTR_RXTRAFFIC)
4666 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4668 for (i = 0; i < config->rx_ring_num; i++)
4669 rx_intr_handler(&mac_control->rings[i]);
4673 * tx_traffic_int reg is an R1 register, writing all 1's
4674 * will ensure that the actual interrupt causing bit get's
4675 * cleared and hence a read can be avoided.
4677 if (reason & GEN_INTR_TXTRAFFIC)
4678 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4680 for (i = 0; i < config->tx_fifo_num; i++)
4681 tx_intr_handler(&mac_control->fifos[i]);
4683 if (reason & GEN_INTR_TXPIC)
4684 s2io_txpic_intr_handle(sp);
4687 * Reallocate the buffers from the interrupt handler itself.
4689 if (!config->napi) {
4690 for (i = 0; i < config->rx_ring_num; i++)
4691 s2io_chk_rx_buffers(sp, i);
4693 writeq(sp->general_int_mask, &bar0->general_int_mask);
4694 readl(&bar0->general_int_status);
4696 return IRQ_HANDLED;
4699 else if (!reason) {
4700 /* The interrupt was not raised by us */
4701 return IRQ_NONE;
4704 return IRQ_HANDLED;
4708 * s2io_updt_stats -
4710 static void s2io_updt_stats(struct s2io_nic *sp)
4712 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4713 u64 val64;
4714 int cnt = 0;
4716 if (is_s2io_card_up(sp)) {
4717 /* Apprx 30us on a 133 MHz bus */
4718 val64 = SET_UPDT_CLICKS(10) |
4719 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4720 writeq(val64, &bar0->stat_cfg);
4721 do {
4722 udelay(100);
4723 val64 = readq(&bar0->stat_cfg);
4724 if (!(val64 & s2BIT(0)))
4725 break;
4726 cnt++;
4727 if (cnt == 5)
4728 break; /* Updt failed */
4729 } while(1);
4734 * s2io_get_stats - Updates the device statistics structure.
4735 * @dev : pointer to the device structure.
4736 * Description:
4737 * This function updates the device statistics structure in the s2io_nic
4738 * structure and returns a pointer to the same.
4739 * Return value:
4740 * pointer to the updated net_device_stats structure.
4743 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4745 struct s2io_nic *sp = dev->priv;
4746 struct mac_info *mac_control;
4747 struct config_param *config;
4750 mac_control = &sp->mac_control;
4751 config = &sp->config;
4753 /* Configure Stats for immediate updt */
4754 s2io_updt_stats(sp);
4756 sp->stats.tx_packets =
4757 le32_to_cpu(mac_control->stats_info->tmac_frms);
4758 sp->stats.tx_errors =
4759 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4760 sp->stats.rx_errors =
4761 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4762 sp->stats.multicast =
4763 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4764 sp->stats.rx_length_errors =
4765 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4767 return (&sp->stats);
4771 * s2io_set_multicast - entry point for multicast address enable/disable.
4772 * @dev : pointer to the device structure
4773 * Description:
4774 * This function is a driver entry point which gets called by the kernel
4775 * whenever multicast addresses must be enabled/disabled. This also gets
4776 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4777 * determine, if multicast address must be enabled or if promiscuous mode
4778 * is to be disabled etc.
4779 * Return value:
4780 * void.
4783 static void s2io_set_multicast(struct net_device *dev)
4785 int i, j, prev_cnt;
4786 struct dev_mc_list *mclist;
4787 struct s2io_nic *sp = dev->priv;
4788 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4789 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4790 0xfeffffffffffULL;
4791 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4792 void __iomem *add;
4793 struct config_param *config = &sp->config;
4795 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4796 /* Enable all Multicast addresses */
4797 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4798 &bar0->rmac_addr_data0_mem);
4799 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4800 &bar0->rmac_addr_data1_mem);
4801 val64 = RMAC_ADDR_CMD_MEM_WE |
4802 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4803 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4804 writeq(val64, &bar0->rmac_addr_cmd_mem);
4805 /* Wait till command completes */
4806 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4807 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4808 S2IO_BIT_RESET);
4810 sp->m_cast_flg = 1;
4811 sp->all_multi_pos = config->max_mc_addr - 1;
4812 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4813 /* Disable all Multicast addresses */
4814 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4815 &bar0->rmac_addr_data0_mem);
4816 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4817 &bar0->rmac_addr_data1_mem);
4818 val64 = RMAC_ADDR_CMD_MEM_WE |
4819 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4820 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4821 writeq(val64, &bar0->rmac_addr_cmd_mem);
4822 /* Wait till command completes */
4823 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4824 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4825 S2IO_BIT_RESET);
4827 sp->m_cast_flg = 0;
4828 sp->all_multi_pos = 0;
4831 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4832 /* Put the NIC into promiscuous mode */
4833 add = &bar0->mac_cfg;
4834 val64 = readq(&bar0->mac_cfg);
4835 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4838 writel((u32) val64, add);
4839 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4840 writel((u32) (val64 >> 32), (add + 4));
4842 if (vlan_tag_strip != 1) {
4843 val64 = readq(&bar0->rx_pa_cfg);
4844 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4845 writeq(val64, &bar0->rx_pa_cfg);
4846 vlan_strip_flag = 0;
4849 val64 = readq(&bar0->mac_cfg);
4850 sp->promisc_flg = 1;
4851 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4852 dev->name);
4853 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4854 /* Remove the NIC from promiscuous mode */
4855 add = &bar0->mac_cfg;
4856 val64 = readq(&bar0->mac_cfg);
4857 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4859 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4860 writel((u32) val64, add);
4861 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4862 writel((u32) (val64 >> 32), (add + 4));
4864 if (vlan_tag_strip != 0) {
4865 val64 = readq(&bar0->rx_pa_cfg);
4866 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4867 writeq(val64, &bar0->rx_pa_cfg);
4868 vlan_strip_flag = 1;
4871 val64 = readq(&bar0->mac_cfg);
4872 sp->promisc_flg = 0;
4873 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4874 dev->name);
4877 /* Update individual M_CAST address list */
4878 if ((!sp->m_cast_flg) && dev->mc_count) {
4879 if (dev->mc_count >
4880 (config->max_mc_addr - config->max_mac_addr)) {
4881 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4882 dev->name);
4883 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4884 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4885 return;
4888 prev_cnt = sp->mc_addr_count;
4889 sp->mc_addr_count = dev->mc_count;
4891 /* Clear out the previous list of Mc in the H/W. */
4892 for (i = 0; i < prev_cnt; i++) {
4893 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4894 &bar0->rmac_addr_data0_mem);
4895 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4896 &bar0->rmac_addr_data1_mem);
4897 val64 = RMAC_ADDR_CMD_MEM_WE |
4898 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4899 RMAC_ADDR_CMD_MEM_OFFSET
4900 (config->mc_start_offset + i);
4901 writeq(val64, &bar0->rmac_addr_cmd_mem);
4903 /* Wait for command completes */
4904 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4905 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4906 S2IO_BIT_RESET)) {
4907 DBG_PRINT(ERR_DBG, "%s: Adding ",
4908 dev->name);
4909 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4910 return;
4914 /* Create the new Rx filter list and update the same in H/W. */
4915 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4916 i++, mclist = mclist->next) {
4917 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4918 ETH_ALEN);
4919 mac_addr = 0;
4920 for (j = 0; j < ETH_ALEN; j++) {
4921 mac_addr |= mclist->dmi_addr[j];
4922 mac_addr <<= 8;
4924 mac_addr >>= 8;
4925 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4926 &bar0->rmac_addr_data0_mem);
4927 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4928 &bar0->rmac_addr_data1_mem);
4929 val64 = RMAC_ADDR_CMD_MEM_WE |
4930 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4931 RMAC_ADDR_CMD_MEM_OFFSET
4932 (i + config->mc_start_offset);
4933 writeq(val64, &bar0->rmac_addr_cmd_mem);
4935 /* Wait for command completes */
4936 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4937 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4938 S2IO_BIT_RESET)) {
4939 DBG_PRINT(ERR_DBG, "%s: Adding ",
4940 dev->name);
4941 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4942 return;
4948 /* read from CAM unicast & multicast addresses and store it in
4949 * def_mac_addr structure
4951 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
4953 int offset;
4954 u64 mac_addr = 0x0;
4955 struct config_param *config = &sp->config;
4957 /* store unicast & multicast mac addresses */
4958 for (offset = 0; offset < config->max_mc_addr; offset++) {
4959 mac_addr = do_s2io_read_unicast_mc(sp, offset);
4960 /* if read fails disable the entry */
4961 if (mac_addr == FAILURE)
4962 mac_addr = S2IO_DISABLE_MAC_ENTRY;
4963 do_s2io_copy_mac_addr(sp, offset, mac_addr);
4967 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4968 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
4970 int offset;
4971 struct config_param *config = &sp->config;
4972 /* restore unicast mac address */
4973 for (offset = 0; offset < config->max_mac_addr; offset++)
4974 do_s2io_prog_unicast(sp->dev,
4975 sp->def_mac_addr[offset].mac_addr);
4977 /* restore multicast mac address */
4978 for (offset = config->mc_start_offset;
4979 offset < config->max_mc_addr; offset++)
4980 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
4983 /* add a multicast MAC address to CAM */
4984 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
4986 int i;
4987 u64 mac_addr = 0;
4988 struct config_param *config = &sp->config;
4990 for (i = 0; i < ETH_ALEN; i++) {
4991 mac_addr <<= 8;
4992 mac_addr |= addr[i];
4994 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
4995 return SUCCESS;
4997 /* check if the multicast mac already preset in CAM */
4998 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
4999 u64 tmp64;
5000 tmp64 = do_s2io_read_unicast_mc(sp, i);
5001 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5002 break;
5004 if (tmp64 == mac_addr)
5005 return SUCCESS;
5007 if (i == config->max_mc_addr) {
5008 DBG_PRINT(ERR_DBG,
5009 "CAM full no space left for multicast MAC\n");
5010 return FAILURE;
5012 /* Update the internal structure with this new mac address */
5013 do_s2io_copy_mac_addr(sp, i, mac_addr);
5015 return (do_s2io_add_mac(sp, mac_addr, i));
5018 /* add MAC address to CAM */
5019 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5021 u64 val64;
5022 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5024 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5025 &bar0->rmac_addr_data0_mem);
5027 val64 =
5028 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5029 RMAC_ADDR_CMD_MEM_OFFSET(off);
5030 writeq(val64, &bar0->rmac_addr_cmd_mem);
5032 /* Wait till command completes */
5033 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5034 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5035 S2IO_BIT_RESET)) {
5036 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5037 return FAILURE;
5039 return SUCCESS;
5041 /* deletes a specified unicast/multicast mac entry from CAM */
5042 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5044 int offset;
5045 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5046 struct config_param *config = &sp->config;
5048 for (offset = 1;
5049 offset < config->max_mc_addr; offset++) {
5050 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5051 if (tmp64 == addr) {
5052 /* disable the entry by writing 0xffffffffffffULL */
5053 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5054 return FAILURE;
5055 /* store the new mac list from CAM */
5056 do_s2io_store_unicast_mc(sp);
5057 return SUCCESS;
5060 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5061 (unsigned long long)addr);
5062 return FAILURE;
5065 /* read mac entries from CAM */
5066 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5068 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5069 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5071 /* read mac addr */
5072 val64 =
5073 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5074 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5075 writeq(val64, &bar0->rmac_addr_cmd_mem);
5077 /* Wait till command completes */
5078 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5079 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5080 S2IO_BIT_RESET)) {
5081 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5082 return FAILURE;
5084 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5085 return (tmp64 >> 16);
5089 * s2io_set_mac_addr driver entry point
5092 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5094 struct sockaddr *addr = p;
5096 if (!is_valid_ether_addr(addr->sa_data))
5097 return -EINVAL;
5099 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5101 /* store the MAC address in CAM */
5102 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5105 * do_s2io_prog_unicast - Programs the Xframe mac address
5106 * @dev : pointer to the device structure.
5107 * @addr: a uchar pointer to the new mac address which is to be set.
5108 * Description : This procedure will program the Xframe to receive
5109 * frames with new Mac Address
5110 * Return value: SUCCESS on success and an appropriate (-)ve integer
5111 * as defined in errno.h file on failure.
5114 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5116 struct s2io_nic *sp = dev->priv;
5117 register u64 mac_addr = 0, perm_addr = 0;
5118 int i;
5119 u64 tmp64;
5120 struct config_param *config = &sp->config;
5123 * Set the new MAC address as the new unicast filter and reflect this
5124 * change on the device address registered with the OS. It will be
5125 * at offset 0.
5127 for (i = 0; i < ETH_ALEN; i++) {
5128 mac_addr <<= 8;
5129 mac_addr |= addr[i];
5130 perm_addr <<= 8;
5131 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5134 /* check if the dev_addr is different than perm_addr */
5135 if (mac_addr == perm_addr)
5136 return SUCCESS;
5138 /* check if the mac already preset in CAM */
5139 for (i = 1; i < config->max_mac_addr; i++) {
5140 tmp64 = do_s2io_read_unicast_mc(sp, i);
5141 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5142 break;
5144 if (tmp64 == mac_addr) {
5145 DBG_PRINT(INFO_DBG,
5146 "MAC addr:0x%llx already present in CAM\n",
5147 (unsigned long long)mac_addr);
5148 return SUCCESS;
5151 if (i == config->max_mac_addr) {
5152 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5153 return FAILURE;
5155 /* Update the internal structure with this new mac address */
5156 do_s2io_copy_mac_addr(sp, i, mac_addr);
5157 return (do_s2io_add_mac(sp, mac_addr, i));
5161 * s2io_ethtool_sset - Sets different link parameters.
5162 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5163 * @info: pointer to the structure with parameters given by ethtool to set
5164 * link information.
5165 * Description:
5166 * The function sets different link parameters provided by the user onto
5167 * the NIC.
5168 * Return value:
5169 * 0 on success.
5172 static int s2io_ethtool_sset(struct net_device *dev,
5173 struct ethtool_cmd *info)
5175 struct s2io_nic *sp = dev->priv;
5176 if ((info->autoneg == AUTONEG_ENABLE) ||
5177 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5178 return -EINVAL;
5179 else {
5180 s2io_close(sp->dev);
5181 s2io_open(sp->dev);
5184 return 0;
5188 * s2io_ethtol_gset - Return link specific information.
5189 * @sp : private member of the device structure, pointer to the
5190 * s2io_nic structure.
5191 * @info : pointer to the structure with parameters given by ethtool
5192 * to return link information.
5193 * Description:
5194 * Returns link specific information like speed, duplex etc.. to ethtool.
5195 * Return value :
5196 * return 0 on success.
5199 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5201 struct s2io_nic *sp = dev->priv;
5202 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5203 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5204 info->port = PORT_FIBRE;
5206 /* info->transceiver */
5207 info->transceiver = XCVR_EXTERNAL;
5209 if (netif_carrier_ok(sp->dev)) {
5210 info->speed = 10000;
5211 info->duplex = DUPLEX_FULL;
5212 } else {
5213 info->speed = -1;
5214 info->duplex = -1;
5217 info->autoneg = AUTONEG_DISABLE;
5218 return 0;
5222 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5223 * @sp : private member of the device structure, which is a pointer to the
5224 * s2io_nic structure.
5225 * @info : pointer to the structure with parameters given by ethtool to
5226 * return driver information.
5227 * Description:
5228 * Returns driver specefic information like name, version etc.. to ethtool.
5229 * Return value:
5230 * void
5233 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5234 struct ethtool_drvinfo *info)
5236 struct s2io_nic *sp = dev->priv;
5238 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5239 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5240 strncpy(info->fw_version, "", sizeof(info->fw_version));
5241 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5242 info->regdump_len = XENA_REG_SPACE;
5243 info->eedump_len = XENA_EEPROM_SPACE;
5247 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5248 * @sp: private member of the device structure, which is a pointer to the
5249 * s2io_nic structure.
5250 * @regs : pointer to the structure with parameters given by ethtool for
5251 * dumping the registers.
5252 * @reg_space: The input argumnet into which all the registers are dumped.
5253 * Description:
5254 * Dumps the entire register space of xFrame NIC into the user given
5255 * buffer area.
5256 * Return value :
5257 * void .
5260 static void s2io_ethtool_gregs(struct net_device *dev,
5261 struct ethtool_regs *regs, void *space)
5263 int i;
5264 u64 reg;
5265 u8 *reg_space = (u8 *) space;
5266 struct s2io_nic *sp = dev->priv;
5268 regs->len = XENA_REG_SPACE;
5269 regs->version = sp->pdev->subsystem_device;
5271 for (i = 0; i < regs->len; i += 8) {
5272 reg = readq(sp->bar0 + i);
5273 memcpy((reg_space + i), &reg, 8);
5278 * s2io_phy_id - timer function that alternates adapter LED.
5279 * @data : address of the private member of the device structure, which
5280 * is a pointer to the s2io_nic structure, provided as an u32.
5281 * Description: This is actually the timer function that alternates the
5282 * adapter LED bit of the adapter control bit to set/reset every time on
5283 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5284 * once every second.
5286 static void s2io_phy_id(unsigned long data)
5288 struct s2io_nic *sp = (struct s2io_nic *) data;
5289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5290 u64 val64 = 0;
5291 u16 subid;
5293 subid = sp->pdev->subsystem_device;
5294 if ((sp->device_type == XFRAME_II_DEVICE) ||
5295 ((subid & 0xFF) >= 0x07)) {
5296 val64 = readq(&bar0->gpio_control);
5297 val64 ^= GPIO_CTRL_GPIO_0;
5298 writeq(val64, &bar0->gpio_control);
5299 } else {
5300 val64 = readq(&bar0->adapter_control);
5301 val64 ^= ADAPTER_LED_ON;
5302 writeq(val64, &bar0->adapter_control);
5305 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5309 * s2io_ethtool_idnic - To physically identify the nic on the system.
5310 * @sp : private member of the device structure, which is a pointer to the
5311 * s2io_nic structure.
5312 * @id : pointer to the structure with identification parameters given by
5313 * ethtool.
5314 * Description: Used to physically identify the NIC on the system.
5315 * The Link LED will blink for a time specified by the user for
5316 * identification.
5317 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5318 * identification is possible only if it's link is up.
5319 * Return value:
5320 * int , returns 0 on success
5323 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5325 u64 val64 = 0, last_gpio_ctrl_val;
5326 struct s2io_nic *sp = dev->priv;
5327 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5328 u16 subid;
5330 subid = sp->pdev->subsystem_device;
5331 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5332 if ((sp->device_type == XFRAME_I_DEVICE) &&
5333 ((subid & 0xFF) < 0x07)) {
5334 val64 = readq(&bar0->adapter_control);
5335 if (!(val64 & ADAPTER_CNTL_EN)) {
5336 printk(KERN_ERR
5337 "Adapter Link down, cannot blink LED\n");
5338 return -EFAULT;
5341 if (sp->id_timer.function == NULL) {
5342 init_timer(&sp->id_timer);
5343 sp->id_timer.function = s2io_phy_id;
5344 sp->id_timer.data = (unsigned long) sp;
5346 mod_timer(&sp->id_timer, jiffies);
5347 if (data)
5348 msleep_interruptible(data * HZ);
5349 else
5350 msleep_interruptible(MAX_FLICKER_TIME);
5351 del_timer_sync(&sp->id_timer);
5353 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5354 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5355 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5358 return 0;
5361 static void s2io_ethtool_gringparam(struct net_device *dev,
5362 struct ethtool_ringparam *ering)
5364 struct s2io_nic *sp = dev->priv;
5365 int i,tx_desc_count=0,rx_desc_count=0;
5367 if (sp->rxd_mode == RXD_MODE_1)
5368 ering->rx_max_pending = MAX_RX_DESC_1;
5369 else if (sp->rxd_mode == RXD_MODE_3B)
5370 ering->rx_max_pending = MAX_RX_DESC_2;
5372 ering->tx_max_pending = MAX_TX_DESC;
5373 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5374 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5376 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5377 ering->tx_pending = tx_desc_count;
5378 rx_desc_count = 0;
5379 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5380 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5382 ering->rx_pending = rx_desc_count;
5384 ering->rx_mini_max_pending = 0;
5385 ering->rx_mini_pending = 0;
5386 if(sp->rxd_mode == RXD_MODE_1)
5387 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5388 else if (sp->rxd_mode == RXD_MODE_3B)
5389 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5390 ering->rx_jumbo_pending = rx_desc_count;
5394 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5395 * @sp : private member of the device structure, which is a pointer to the
5396 * s2io_nic structure.
5397 * @ep : pointer to the structure with pause parameters given by ethtool.
5398 * Description:
5399 * Returns the Pause frame generation and reception capability of the NIC.
5400 * Return value:
5401 * void
5403 static void s2io_ethtool_getpause_data(struct net_device *dev,
5404 struct ethtool_pauseparam *ep)
5406 u64 val64;
5407 struct s2io_nic *sp = dev->priv;
5408 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5410 val64 = readq(&bar0->rmac_pause_cfg);
5411 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5412 ep->tx_pause = TRUE;
5413 if (val64 & RMAC_PAUSE_RX_ENABLE)
5414 ep->rx_pause = TRUE;
5415 ep->autoneg = FALSE;
5419 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5420 * @sp : private member of the device structure, which is a pointer to the
5421 * s2io_nic structure.
5422 * @ep : pointer to the structure with pause parameters given by ethtool.
5423 * Description:
5424 * It can be used to set or reset Pause frame generation or reception
5425 * support of the NIC.
5426 * Return value:
5427 * int, returns 0 on Success
5430 static int s2io_ethtool_setpause_data(struct net_device *dev,
5431 struct ethtool_pauseparam *ep)
5433 u64 val64;
5434 struct s2io_nic *sp = dev->priv;
5435 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5437 val64 = readq(&bar0->rmac_pause_cfg);
5438 if (ep->tx_pause)
5439 val64 |= RMAC_PAUSE_GEN_ENABLE;
5440 else
5441 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5442 if (ep->rx_pause)
5443 val64 |= RMAC_PAUSE_RX_ENABLE;
5444 else
5445 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5446 writeq(val64, &bar0->rmac_pause_cfg);
5447 return 0;
5451 * read_eeprom - reads 4 bytes of data from user given offset.
5452 * @sp : private member of the device structure, which is a pointer to the
5453 * s2io_nic structure.
5454 * @off : offset at which the data must be written
5455 * @data : Its an output parameter where the data read at the given
5456 * offset is stored.
5457 * Description:
5458 * Will read 4 bytes of data from the user given offset and return the
5459 * read data.
5460 * NOTE: Will allow to read only part of the EEPROM visible through the
5461 * I2C bus.
5462 * Return value:
5463 * -1 on failure and 0 on success.
5466 #define S2IO_DEV_ID 5
5467 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5469 int ret = -1;
5470 u32 exit_cnt = 0;
5471 u64 val64;
5472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5474 if (sp->device_type == XFRAME_I_DEVICE) {
5475 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5476 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5477 I2C_CONTROL_CNTL_START;
5478 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5480 while (exit_cnt < 5) {
5481 val64 = readq(&bar0->i2c_control);
5482 if (I2C_CONTROL_CNTL_END(val64)) {
5483 *data = I2C_CONTROL_GET_DATA(val64);
5484 ret = 0;
5485 break;
5487 msleep(50);
5488 exit_cnt++;
5492 if (sp->device_type == XFRAME_II_DEVICE) {
5493 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5494 SPI_CONTROL_BYTECNT(0x3) |
5495 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5496 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5497 val64 |= SPI_CONTROL_REQ;
5498 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5499 while (exit_cnt < 5) {
5500 val64 = readq(&bar0->spi_control);
5501 if (val64 & SPI_CONTROL_NACK) {
5502 ret = 1;
5503 break;
5504 } else if (val64 & SPI_CONTROL_DONE) {
5505 *data = readq(&bar0->spi_data);
5506 *data &= 0xffffff;
5507 ret = 0;
5508 break;
5510 msleep(50);
5511 exit_cnt++;
5514 return ret;
5518 * write_eeprom - actually writes the relevant part of the data value.
5519 * @sp : private member of the device structure, which is a pointer to the
5520 * s2io_nic structure.
5521 * @off : offset at which the data must be written
5522 * @data : The data that is to be written
5523 * @cnt : Number of bytes of the data that are actually to be written into
5524 * the Eeprom. (max of 3)
5525 * Description:
5526 * Actually writes the relevant part of the data value into the Eeprom
5527 * through the I2C bus.
5528 * Return value:
5529 * 0 on success, -1 on failure.
5532 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5534 int exit_cnt = 0, ret = -1;
5535 u64 val64;
5536 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5538 if (sp->device_type == XFRAME_I_DEVICE) {
5539 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5540 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5541 I2C_CONTROL_CNTL_START;
5542 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5544 while (exit_cnt < 5) {
5545 val64 = readq(&bar0->i2c_control);
5546 if (I2C_CONTROL_CNTL_END(val64)) {
5547 if (!(val64 & I2C_CONTROL_NACK))
5548 ret = 0;
5549 break;
5551 msleep(50);
5552 exit_cnt++;
5556 if (sp->device_type == XFRAME_II_DEVICE) {
5557 int write_cnt = (cnt == 8) ? 0 : cnt;
5558 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5560 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5561 SPI_CONTROL_BYTECNT(write_cnt) |
5562 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5563 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5564 val64 |= SPI_CONTROL_REQ;
5565 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5566 while (exit_cnt < 5) {
5567 val64 = readq(&bar0->spi_control);
5568 if (val64 & SPI_CONTROL_NACK) {
5569 ret = 1;
5570 break;
5571 } else if (val64 & SPI_CONTROL_DONE) {
5572 ret = 0;
5573 break;
5575 msleep(50);
5576 exit_cnt++;
5579 return ret;
5581 static void s2io_vpd_read(struct s2io_nic *nic)
5583 u8 *vpd_data;
5584 u8 data;
5585 int i=0, cnt, fail = 0;
5586 int vpd_addr = 0x80;
5588 if (nic->device_type == XFRAME_II_DEVICE) {
5589 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5590 vpd_addr = 0x80;
5592 else {
5593 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5594 vpd_addr = 0x50;
5596 strcpy(nic->serial_num, "NOT AVAILABLE");
5598 vpd_data = kmalloc(256, GFP_KERNEL);
5599 if (!vpd_data) {
5600 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5601 return;
5603 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5605 for (i = 0; i < 256; i +=4 ) {
5606 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5607 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5608 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5609 for (cnt = 0; cnt <5; cnt++) {
5610 msleep(2);
5611 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5612 if (data == 0x80)
5613 break;
5615 if (cnt >= 5) {
5616 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5617 fail = 1;
5618 break;
5620 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5621 (u32 *)&vpd_data[i]);
5624 if(!fail) {
5625 /* read serial number of adapter */
5626 for (cnt = 0; cnt < 256; cnt++) {
5627 if ((vpd_data[cnt] == 'S') &&
5628 (vpd_data[cnt+1] == 'N') &&
5629 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5630 memset(nic->serial_num, 0, VPD_STRING_LEN);
5631 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5632 vpd_data[cnt+2]);
5633 break;
5638 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5639 memset(nic->product_name, 0, vpd_data[1]);
5640 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5642 kfree(vpd_data);
5643 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5647 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5648 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5649 * @eeprom : pointer to the user level structure provided by ethtool,
5650 * containing all relevant information.
5651 * @data_buf : user defined value to be written into Eeprom.
5652 * Description: Reads the values stored in the Eeprom at given offset
5653 * for a given length. Stores these values int the input argument data
5654 * buffer 'data_buf' and returns these to the caller (ethtool.)
5655 * Return value:
5656 * int 0 on success
5659 static int s2io_ethtool_geeprom(struct net_device *dev,
5660 struct ethtool_eeprom *eeprom, u8 * data_buf)
5662 u32 i, valid;
5663 u64 data;
5664 struct s2io_nic *sp = dev->priv;
5666 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5668 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5669 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5671 for (i = 0; i < eeprom->len; i += 4) {
5672 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5673 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5674 return -EFAULT;
5676 valid = INV(data);
5677 memcpy((data_buf + i), &valid, 4);
5679 return 0;
5683 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5684 * @sp : private member of the device structure, which is a pointer to the
5685 * s2io_nic structure.
5686 * @eeprom : pointer to the user level structure provided by ethtool,
5687 * containing all relevant information.
5688 * @data_buf ; user defined value to be written into Eeprom.
5689 * Description:
5690 * Tries to write the user provided value in the Eeprom, at the offset
5691 * given by the user.
5692 * Return value:
5693 * 0 on success, -EFAULT on failure.
5696 static int s2io_ethtool_seeprom(struct net_device *dev,
5697 struct ethtool_eeprom *eeprom,
5698 u8 * data_buf)
5700 int len = eeprom->len, cnt = 0;
5701 u64 valid = 0, data;
5702 struct s2io_nic *sp = dev->priv;
5704 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5705 DBG_PRINT(ERR_DBG,
5706 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5707 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5708 eeprom->magic);
5709 return -EFAULT;
5712 while (len) {
5713 data = (u32) data_buf[cnt] & 0x000000FF;
5714 if (data) {
5715 valid = (u32) (data << 24);
5716 } else
5717 valid = data;
5719 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5720 DBG_PRINT(ERR_DBG,
5721 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5722 DBG_PRINT(ERR_DBG,
5723 "write into the specified offset\n");
5724 return -EFAULT;
5726 cnt++;
5727 len--;
5730 return 0;
5734 * s2io_register_test - reads and writes into all clock domains.
5735 * @sp : private member of the device structure, which is a pointer to the
5736 * s2io_nic structure.
5737 * @data : variable that returns the result of each of the test conducted b
5738 * by the driver.
5739 * Description:
5740 * Read and write into all clock domains. The NIC has 3 clock domains,
5741 * see that registers in all the three regions are accessible.
5742 * Return value:
5743 * 0 on success.
5746 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5748 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5749 u64 val64 = 0, exp_val;
5750 int fail = 0;
5752 val64 = readq(&bar0->pif_rd_swapper_fb);
5753 if (val64 != 0x123456789abcdefULL) {
5754 fail = 1;
5755 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5758 val64 = readq(&bar0->rmac_pause_cfg);
5759 if (val64 != 0xc000ffff00000000ULL) {
5760 fail = 1;
5761 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5764 val64 = readq(&bar0->rx_queue_cfg);
5765 if (sp->device_type == XFRAME_II_DEVICE)
5766 exp_val = 0x0404040404040404ULL;
5767 else
5768 exp_val = 0x0808080808080808ULL;
5769 if (val64 != exp_val) {
5770 fail = 1;
5771 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5774 val64 = readq(&bar0->xgxs_efifo_cfg);
5775 if (val64 != 0x000000001923141EULL) {
5776 fail = 1;
5777 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5780 val64 = 0x5A5A5A5A5A5A5A5AULL;
5781 writeq(val64, &bar0->xmsi_data);
5782 val64 = readq(&bar0->xmsi_data);
5783 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5784 fail = 1;
5785 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5788 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5789 writeq(val64, &bar0->xmsi_data);
5790 val64 = readq(&bar0->xmsi_data);
5791 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5792 fail = 1;
5793 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5796 *data = fail;
5797 return fail;
5801 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5802 * @sp : private member of the device structure, which is a pointer to the
5803 * s2io_nic structure.
5804 * @data:variable that returns the result of each of the test conducted by
5805 * the driver.
5806 * Description:
5807 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5808 * register.
5809 * Return value:
5810 * 0 on success.
5813 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5815 int fail = 0;
5816 u64 ret_data, org_4F0, org_7F0;
5817 u8 saved_4F0 = 0, saved_7F0 = 0;
5818 struct net_device *dev = sp->dev;
5820 /* Test Write Error at offset 0 */
5821 /* Note that SPI interface allows write access to all areas
5822 * of EEPROM. Hence doing all negative testing only for Xframe I.
5824 if (sp->device_type == XFRAME_I_DEVICE)
5825 if (!write_eeprom(sp, 0, 0, 3))
5826 fail = 1;
5828 /* Save current values at offsets 0x4F0 and 0x7F0 */
5829 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5830 saved_4F0 = 1;
5831 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5832 saved_7F0 = 1;
5834 /* Test Write at offset 4f0 */
5835 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5836 fail = 1;
5837 if (read_eeprom(sp, 0x4F0, &ret_data))
5838 fail = 1;
5840 if (ret_data != 0x012345) {
5841 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5842 "Data written %llx Data read %llx\n",
5843 dev->name, (unsigned long long)0x12345,
5844 (unsigned long long)ret_data);
5845 fail = 1;
5848 /* Reset the EEPROM data go FFFF */
5849 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5851 /* Test Write Request Error at offset 0x7c */
5852 if (sp->device_type == XFRAME_I_DEVICE)
5853 if (!write_eeprom(sp, 0x07C, 0, 3))
5854 fail = 1;
5856 /* Test Write Request at offset 0x7f0 */
5857 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5858 fail = 1;
5859 if (read_eeprom(sp, 0x7F0, &ret_data))
5860 fail = 1;
5862 if (ret_data != 0x012345) {
5863 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5864 "Data written %llx Data read %llx\n",
5865 dev->name, (unsigned long long)0x12345,
5866 (unsigned long long)ret_data);
5867 fail = 1;
5870 /* Reset the EEPROM data go FFFF */
5871 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5873 if (sp->device_type == XFRAME_I_DEVICE) {
5874 /* Test Write Error at offset 0x80 */
5875 if (!write_eeprom(sp, 0x080, 0, 3))
5876 fail = 1;
5878 /* Test Write Error at offset 0xfc */
5879 if (!write_eeprom(sp, 0x0FC, 0, 3))
5880 fail = 1;
5882 /* Test Write Error at offset 0x100 */
5883 if (!write_eeprom(sp, 0x100, 0, 3))
5884 fail = 1;
5886 /* Test Write Error at offset 4ec */
5887 if (!write_eeprom(sp, 0x4EC, 0, 3))
5888 fail = 1;
5891 /* Restore values at offsets 0x4F0 and 0x7F0 */
5892 if (saved_4F0)
5893 write_eeprom(sp, 0x4F0, org_4F0, 3);
5894 if (saved_7F0)
5895 write_eeprom(sp, 0x7F0, org_7F0, 3);
5897 *data = fail;
5898 return fail;
5902 * s2io_bist_test - invokes the MemBist test of the card .
5903 * @sp : private member of the device structure, which is a pointer to the
5904 * s2io_nic structure.
5905 * @data:variable that returns the result of each of the test conducted by
5906 * the driver.
5907 * Description:
5908 * This invokes the MemBist test of the card. We give around
5909 * 2 secs time for the Test to complete. If it's still not complete
5910 * within this peiod, we consider that the test failed.
5911 * Return value:
5912 * 0 on success and -1 on failure.
5915 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5917 u8 bist = 0;
5918 int cnt = 0, ret = -1;
5920 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5921 bist |= PCI_BIST_START;
5922 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5924 while (cnt < 20) {
5925 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5926 if (!(bist & PCI_BIST_START)) {
5927 *data = (bist & PCI_BIST_CODE_MASK);
5928 ret = 0;
5929 break;
5931 msleep(100);
5932 cnt++;
5935 return ret;
5939 * s2io-link_test - verifies the link state of the nic
5940 * @sp ; private member of the device structure, which is a pointer to the
5941 * s2io_nic structure.
5942 * @data: variable that returns the result of each of the test conducted by
5943 * the driver.
5944 * Description:
5945 * The function verifies the link state of the NIC and updates the input
5946 * argument 'data' appropriately.
5947 * Return value:
5948 * 0 on success.
5951 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5953 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5954 u64 val64;
5956 val64 = readq(&bar0->adapter_status);
5957 if(!(LINK_IS_UP(val64)))
5958 *data = 1;
5959 else
5960 *data = 0;
5962 return *data;
5966 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5967 * @sp - private member of the device structure, which is a pointer to the
5968 * s2io_nic structure.
5969 * @data - variable that returns the result of each of the test
5970 * conducted by the driver.
5971 * Description:
5972 * This is one of the offline test that tests the read and write
5973 * access to the RldRam chip on the NIC.
5974 * Return value:
5975 * 0 on success.
5978 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5980 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5981 u64 val64;
5982 int cnt, iteration = 0, test_fail = 0;
5984 val64 = readq(&bar0->adapter_control);
5985 val64 &= ~ADAPTER_ECC_EN;
5986 writeq(val64, &bar0->adapter_control);
5988 val64 = readq(&bar0->mc_rldram_test_ctrl);
5989 val64 |= MC_RLDRAM_TEST_MODE;
5990 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5992 val64 = readq(&bar0->mc_rldram_mrs);
5993 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5994 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5996 val64 |= MC_RLDRAM_MRS_ENABLE;
5997 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5999 while (iteration < 2) {
6000 val64 = 0x55555555aaaa0000ULL;
6001 if (iteration == 1) {
6002 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6004 writeq(val64, &bar0->mc_rldram_test_d0);
6006 val64 = 0xaaaa5a5555550000ULL;
6007 if (iteration == 1) {
6008 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6010 writeq(val64, &bar0->mc_rldram_test_d1);
6012 val64 = 0x55aaaaaaaa5a0000ULL;
6013 if (iteration == 1) {
6014 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6016 writeq(val64, &bar0->mc_rldram_test_d2);
6018 val64 = (u64) (0x0000003ffffe0100ULL);
6019 writeq(val64, &bar0->mc_rldram_test_add);
6021 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6022 MC_RLDRAM_TEST_GO;
6023 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6025 for (cnt = 0; cnt < 5; cnt++) {
6026 val64 = readq(&bar0->mc_rldram_test_ctrl);
6027 if (val64 & MC_RLDRAM_TEST_DONE)
6028 break;
6029 msleep(200);
6032 if (cnt == 5)
6033 break;
6035 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6036 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6038 for (cnt = 0; cnt < 5; cnt++) {
6039 val64 = readq(&bar0->mc_rldram_test_ctrl);
6040 if (val64 & MC_RLDRAM_TEST_DONE)
6041 break;
6042 msleep(500);
6045 if (cnt == 5)
6046 break;
6048 val64 = readq(&bar0->mc_rldram_test_ctrl);
6049 if (!(val64 & MC_RLDRAM_TEST_PASS))
6050 test_fail = 1;
6052 iteration++;
6055 *data = test_fail;
6057 /* Bring the adapter out of test mode */
6058 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6060 return test_fail;
6064 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6065 * @sp : private member of the device structure, which is a pointer to the
6066 * s2io_nic structure.
6067 * @ethtest : pointer to a ethtool command specific structure that will be
6068 * returned to the user.
6069 * @data : variable that returns the result of each of the test
6070 * conducted by the driver.
6071 * Description:
6072 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6073 * the health of the card.
6074 * Return value:
6075 * void
6078 static void s2io_ethtool_test(struct net_device *dev,
6079 struct ethtool_test *ethtest,
6080 uint64_t * data)
6082 struct s2io_nic *sp = dev->priv;
6083 int orig_state = netif_running(sp->dev);
6085 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6086 /* Offline Tests. */
6087 if (orig_state)
6088 s2io_close(sp->dev);
6090 if (s2io_register_test(sp, &data[0]))
6091 ethtest->flags |= ETH_TEST_FL_FAILED;
6093 s2io_reset(sp);
6095 if (s2io_rldram_test(sp, &data[3]))
6096 ethtest->flags |= ETH_TEST_FL_FAILED;
6098 s2io_reset(sp);
6100 if (s2io_eeprom_test(sp, &data[1]))
6101 ethtest->flags |= ETH_TEST_FL_FAILED;
6103 if (s2io_bist_test(sp, &data[4]))
6104 ethtest->flags |= ETH_TEST_FL_FAILED;
6106 if (orig_state)
6107 s2io_open(sp->dev);
6109 data[2] = 0;
6110 } else {
6111 /* Online Tests. */
6112 if (!orig_state) {
6113 DBG_PRINT(ERR_DBG,
6114 "%s: is not up, cannot run test\n",
6115 dev->name);
6116 data[0] = -1;
6117 data[1] = -1;
6118 data[2] = -1;
6119 data[3] = -1;
6120 data[4] = -1;
6123 if (s2io_link_test(sp, &data[2]))
6124 ethtest->flags |= ETH_TEST_FL_FAILED;
6126 data[0] = 0;
6127 data[1] = 0;
6128 data[3] = 0;
6129 data[4] = 0;
6133 static void s2io_get_ethtool_stats(struct net_device *dev,
6134 struct ethtool_stats *estats,
6135 u64 * tmp_stats)
6137 int i = 0, k;
6138 struct s2io_nic *sp = dev->priv;
6139 struct stat_block *stat_info = sp->mac_control.stats_info;
6141 s2io_updt_stats(sp);
6142 tmp_stats[i++] =
6143 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6144 le32_to_cpu(stat_info->tmac_frms);
6145 tmp_stats[i++] =
6146 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6147 le32_to_cpu(stat_info->tmac_data_octets);
6148 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6149 tmp_stats[i++] =
6150 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6151 le32_to_cpu(stat_info->tmac_mcst_frms);
6152 tmp_stats[i++] =
6153 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6154 le32_to_cpu(stat_info->tmac_bcst_frms);
6155 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6156 tmp_stats[i++] =
6157 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6158 le32_to_cpu(stat_info->tmac_ttl_octets);
6159 tmp_stats[i++] =
6160 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6161 le32_to_cpu(stat_info->tmac_ucst_frms);
6162 tmp_stats[i++] =
6163 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6164 le32_to_cpu(stat_info->tmac_nucst_frms);
6165 tmp_stats[i++] =
6166 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6167 le32_to_cpu(stat_info->tmac_any_err_frms);
6168 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6169 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6170 tmp_stats[i++] =
6171 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6172 le32_to_cpu(stat_info->tmac_vld_ip);
6173 tmp_stats[i++] =
6174 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6175 le32_to_cpu(stat_info->tmac_drop_ip);
6176 tmp_stats[i++] =
6177 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6178 le32_to_cpu(stat_info->tmac_icmp);
6179 tmp_stats[i++] =
6180 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6181 le32_to_cpu(stat_info->tmac_rst_tcp);
6182 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6183 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6184 le32_to_cpu(stat_info->tmac_udp);
6185 tmp_stats[i++] =
6186 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6187 le32_to_cpu(stat_info->rmac_vld_frms);
6188 tmp_stats[i++] =
6189 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6190 le32_to_cpu(stat_info->rmac_data_octets);
6191 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6192 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6193 tmp_stats[i++] =
6194 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6195 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6196 tmp_stats[i++] =
6197 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6198 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6199 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6200 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6201 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6202 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6203 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6204 tmp_stats[i++] =
6205 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6206 le32_to_cpu(stat_info->rmac_ttl_octets);
6207 tmp_stats[i++] =
6208 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6209 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6210 tmp_stats[i++] =
6211 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6212 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6213 tmp_stats[i++] =
6214 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6215 le32_to_cpu(stat_info->rmac_discarded_frms);
6216 tmp_stats[i++] =
6217 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6218 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6219 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6220 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6221 tmp_stats[i++] =
6222 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6223 le32_to_cpu(stat_info->rmac_usized_frms);
6224 tmp_stats[i++] =
6225 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6226 le32_to_cpu(stat_info->rmac_osized_frms);
6227 tmp_stats[i++] =
6228 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6229 le32_to_cpu(stat_info->rmac_frag_frms);
6230 tmp_stats[i++] =
6231 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6232 le32_to_cpu(stat_info->rmac_jabber_frms);
6233 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6234 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6235 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6236 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6237 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6238 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6239 tmp_stats[i++] =
6240 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6241 le32_to_cpu(stat_info->rmac_ip);
6242 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6243 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6244 tmp_stats[i++] =
6245 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6246 le32_to_cpu(stat_info->rmac_drop_ip);
6247 tmp_stats[i++] =
6248 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6249 le32_to_cpu(stat_info->rmac_icmp);
6250 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6251 tmp_stats[i++] =
6252 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6253 le32_to_cpu(stat_info->rmac_udp);
6254 tmp_stats[i++] =
6255 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6256 le32_to_cpu(stat_info->rmac_err_drp_udp);
6257 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6258 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6259 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6260 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6261 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6262 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6263 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6264 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6265 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6266 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6267 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6268 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6269 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6270 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6271 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6272 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6273 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6274 tmp_stats[i++] =
6275 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6276 le32_to_cpu(stat_info->rmac_pause_cnt);
6277 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6278 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6279 tmp_stats[i++] =
6280 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6281 le32_to_cpu(stat_info->rmac_accepted_ip);
6282 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6283 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6284 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6285 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6286 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6287 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6288 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6289 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6290 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6291 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6292 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6293 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6294 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6295 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6296 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6297 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6298 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6299 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6300 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6302 /* Enhanced statistics exist only for Hercules */
6303 if(sp->device_type == XFRAME_II_DEVICE) {
6304 tmp_stats[i++] =
6305 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6306 tmp_stats[i++] =
6307 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6308 tmp_stats[i++] =
6309 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6310 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6311 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6312 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6313 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6314 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6315 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6316 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6317 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6318 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6319 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6320 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6321 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6322 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6325 tmp_stats[i++] = 0;
6326 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6327 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6328 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6329 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6330 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6331 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6332 for (k = 0; k < MAX_RX_RINGS; k++)
6333 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6334 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6335 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6336 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6337 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6338 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6339 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6340 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6341 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6342 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6343 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6344 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6345 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6346 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6347 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6348 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6349 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6350 if (stat_info->sw_stat.num_aggregations) {
6351 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6352 int count = 0;
6354 * Since 64-bit divide does not work on all platforms,
6355 * do repeated subtraction.
6357 while (tmp >= stat_info->sw_stat.num_aggregations) {
6358 tmp -= stat_info->sw_stat.num_aggregations;
6359 count++;
6361 tmp_stats[i++] = count;
6363 else
6364 tmp_stats[i++] = 0;
6365 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6366 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6367 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6368 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6369 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6370 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6371 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6372 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6373 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6375 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6376 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6377 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6378 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6379 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6381 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6382 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6383 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6384 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6385 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6386 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6387 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6388 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6389 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6390 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6391 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6392 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6393 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6394 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6395 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6396 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6397 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6398 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6399 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6400 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6401 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6402 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6403 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6404 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6405 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6406 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6409 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6411 return (XENA_REG_SPACE);
6415 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6417 struct s2io_nic *sp = dev->priv;
6419 return (sp->rx_csum);
6422 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6424 struct s2io_nic *sp = dev->priv;
6426 if (data)
6427 sp->rx_csum = 1;
6428 else
6429 sp->rx_csum = 0;
6431 return 0;
6434 static int s2io_get_eeprom_len(struct net_device *dev)
6436 return (XENA_EEPROM_SPACE);
6439 static int s2io_get_sset_count(struct net_device *dev, int sset)
6441 struct s2io_nic *sp = dev->priv;
6443 switch (sset) {
6444 case ETH_SS_TEST:
6445 return S2IO_TEST_LEN;
6446 case ETH_SS_STATS:
6447 switch(sp->device_type) {
6448 case XFRAME_I_DEVICE:
6449 return XFRAME_I_STAT_LEN;
6450 case XFRAME_II_DEVICE:
6451 return XFRAME_II_STAT_LEN;
6452 default:
6453 return 0;
6455 default:
6456 return -EOPNOTSUPP;
6460 static void s2io_ethtool_get_strings(struct net_device *dev,
6461 u32 stringset, u8 * data)
6463 int stat_size = 0;
6464 struct s2io_nic *sp = dev->priv;
6466 switch (stringset) {
6467 case ETH_SS_TEST:
6468 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6469 break;
6470 case ETH_SS_STATS:
6471 stat_size = sizeof(ethtool_xena_stats_keys);
6472 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6473 if(sp->device_type == XFRAME_II_DEVICE) {
6474 memcpy(data + stat_size,
6475 &ethtool_enhanced_stats_keys,
6476 sizeof(ethtool_enhanced_stats_keys));
6477 stat_size += sizeof(ethtool_enhanced_stats_keys);
6480 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6481 sizeof(ethtool_driver_stats_keys));
6485 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6487 if (data)
6488 dev->features |= NETIF_F_IP_CSUM;
6489 else
6490 dev->features &= ~NETIF_F_IP_CSUM;
6492 return 0;
6495 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6497 return (dev->features & NETIF_F_TSO) != 0;
6499 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6501 if (data)
6502 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6503 else
6504 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6506 return 0;
6509 static const struct ethtool_ops netdev_ethtool_ops = {
6510 .get_settings = s2io_ethtool_gset,
6511 .set_settings = s2io_ethtool_sset,
6512 .get_drvinfo = s2io_ethtool_gdrvinfo,
6513 .get_regs_len = s2io_ethtool_get_regs_len,
6514 .get_regs = s2io_ethtool_gregs,
6515 .get_link = ethtool_op_get_link,
6516 .get_eeprom_len = s2io_get_eeprom_len,
6517 .get_eeprom = s2io_ethtool_geeprom,
6518 .set_eeprom = s2io_ethtool_seeprom,
6519 .get_ringparam = s2io_ethtool_gringparam,
6520 .get_pauseparam = s2io_ethtool_getpause_data,
6521 .set_pauseparam = s2io_ethtool_setpause_data,
6522 .get_rx_csum = s2io_ethtool_get_rx_csum,
6523 .set_rx_csum = s2io_ethtool_set_rx_csum,
6524 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6525 .set_sg = ethtool_op_set_sg,
6526 .get_tso = s2io_ethtool_op_get_tso,
6527 .set_tso = s2io_ethtool_op_set_tso,
6528 .set_ufo = ethtool_op_set_ufo,
6529 .self_test = s2io_ethtool_test,
6530 .get_strings = s2io_ethtool_get_strings,
6531 .phys_id = s2io_ethtool_idnic,
6532 .get_ethtool_stats = s2io_get_ethtool_stats,
6533 .get_sset_count = s2io_get_sset_count,
6537 * s2io_ioctl - Entry point for the Ioctl
6538 * @dev : Device pointer.
6539 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6540 * a proprietary structure used to pass information to the driver.
6541 * @cmd : This is used to distinguish between the different commands that
6542 * can be passed to the IOCTL functions.
6543 * Description:
6544 * Currently there are no special functionality supported in IOCTL, hence
6545 * function always return EOPNOTSUPPORTED
6548 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6550 return -EOPNOTSUPP;
6554 * s2io_change_mtu - entry point to change MTU size for the device.
6555 * @dev : device pointer.
6556 * @new_mtu : the new MTU size for the device.
6557 * Description: A driver entry point to change MTU size for the device.
6558 * Before changing the MTU the device must be stopped.
6559 * Return value:
6560 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6561 * file on failure.
6564 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6566 struct s2io_nic *sp = dev->priv;
6567 int ret = 0;
6569 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6570 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6571 dev->name);
6572 return -EPERM;
6575 dev->mtu = new_mtu;
6576 if (netif_running(dev)) {
6577 s2io_card_down(sp);
6578 netif_stop_queue(dev);
6579 ret = s2io_card_up(sp);
6580 if (ret) {
6581 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6582 __FUNCTION__);
6583 return ret;
6585 if (netif_queue_stopped(dev))
6586 netif_wake_queue(dev);
6587 } else { /* Device is down */
6588 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6589 u64 val64 = new_mtu;
6591 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6594 return ret;
6598 * s2io_tasklet - Bottom half of the ISR.
6599 * @dev_adr : address of the device structure in dma_addr_t format.
6600 * Description:
6601 * This is the tasklet or the bottom half of the ISR. This is
6602 * an extension of the ISR which is scheduled by the scheduler to be run
6603 * when the load on the CPU is low. All low priority tasks of the ISR can
6604 * be pushed into the tasklet. For now the tasklet is used only to
6605 * replenish the Rx buffers in the Rx buffer descriptors.
6606 * Return value:
6607 * void.
6610 static void s2io_tasklet(unsigned long dev_addr)
6612 struct net_device *dev = (struct net_device *) dev_addr;
6613 struct s2io_nic *sp = dev->priv;
6614 int i, ret;
6615 struct mac_info *mac_control;
6616 struct config_param *config;
6618 mac_control = &sp->mac_control;
6619 config = &sp->config;
6621 if (!TASKLET_IN_USE) {
6622 for (i = 0; i < config->rx_ring_num; i++) {
6623 ret = fill_rx_buffers(sp, i);
6624 if (ret == -ENOMEM) {
6625 DBG_PRINT(INFO_DBG, "%s: Out of ",
6626 dev->name);
6627 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6628 break;
6629 } else if (ret == -EFILL) {
6630 DBG_PRINT(INFO_DBG,
6631 "%s: Rx Ring %d is full\n",
6632 dev->name, i);
6633 break;
6636 clear_bit(0, (&sp->tasklet_status));
6641 * s2io_set_link - Set the LInk status
6642 * @data: long pointer to device private structue
6643 * Description: Sets the link status for the adapter
6646 static void s2io_set_link(struct work_struct *work)
6648 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6649 struct net_device *dev = nic->dev;
6650 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6651 register u64 val64;
6652 u16 subid;
6654 rtnl_lock();
6656 if (!netif_running(dev))
6657 goto out_unlock;
6659 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6660 /* The card is being reset, no point doing anything */
6661 goto out_unlock;
6664 subid = nic->pdev->subsystem_device;
6665 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6667 * Allow a small delay for the NICs self initiated
6668 * cleanup to complete.
6670 msleep(100);
6673 val64 = readq(&bar0->adapter_status);
6674 if (LINK_IS_UP(val64)) {
6675 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6676 if (verify_xena_quiescence(nic)) {
6677 val64 = readq(&bar0->adapter_control);
6678 val64 |= ADAPTER_CNTL_EN;
6679 writeq(val64, &bar0->adapter_control);
6680 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6681 nic->device_type, subid)) {
6682 val64 = readq(&bar0->gpio_control);
6683 val64 |= GPIO_CTRL_GPIO_0;
6684 writeq(val64, &bar0->gpio_control);
6685 val64 = readq(&bar0->gpio_control);
6686 } else {
6687 val64 |= ADAPTER_LED_ON;
6688 writeq(val64, &bar0->adapter_control);
6690 nic->device_enabled_once = TRUE;
6691 } else {
6692 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6693 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6694 netif_stop_queue(dev);
6697 val64 = readq(&bar0->adapter_control);
6698 val64 |= ADAPTER_LED_ON;
6699 writeq(val64, &bar0->adapter_control);
6700 s2io_link(nic, LINK_UP);
6701 } else {
6702 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6703 subid)) {
6704 val64 = readq(&bar0->gpio_control);
6705 val64 &= ~GPIO_CTRL_GPIO_0;
6706 writeq(val64, &bar0->gpio_control);
6707 val64 = readq(&bar0->gpio_control);
6709 /* turn off LED */
6710 val64 = readq(&bar0->adapter_control);
6711 val64 = val64 &(~ADAPTER_LED_ON);
6712 writeq(val64, &bar0->adapter_control);
6713 s2io_link(nic, LINK_DOWN);
6715 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6717 out_unlock:
6718 rtnl_unlock();
6721 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6722 struct buffAdd *ba,
6723 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6724 u64 *temp2, int size)
6726 struct net_device *dev = sp->dev;
6727 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6729 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6730 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6731 /* allocate skb */
6732 if (*skb) {
6733 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6735 * As Rx frame are not going to be processed,
6736 * using same mapped address for the Rxd
6737 * buffer pointer
6739 rxdp1->Buffer0_ptr = *temp0;
6740 } else {
6741 *skb = dev_alloc_skb(size);
6742 if (!(*skb)) {
6743 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6744 DBG_PRINT(INFO_DBG, "memory to allocate ");
6745 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6746 sp->mac_control.stats_info->sw_stat. \
6747 mem_alloc_fail_cnt++;
6748 return -ENOMEM ;
6750 sp->mac_control.stats_info->sw_stat.mem_allocated
6751 += (*skb)->truesize;
6752 /* storing the mapped addr in a temp variable
6753 * such it will be used for next rxd whose
6754 * Host Control is NULL
6756 rxdp1->Buffer0_ptr = *temp0 =
6757 pci_map_single( sp->pdev, (*skb)->data,
6758 size - NET_IP_ALIGN,
6759 PCI_DMA_FROMDEVICE);
6760 if( (rxdp1->Buffer0_ptr == 0) ||
6761 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6762 goto memalloc_failed;
6764 rxdp->Host_Control = (unsigned long) (*skb);
6766 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6767 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6768 /* Two buffer Mode */
6769 if (*skb) {
6770 rxdp3->Buffer2_ptr = *temp2;
6771 rxdp3->Buffer0_ptr = *temp0;
6772 rxdp3->Buffer1_ptr = *temp1;
6773 } else {
6774 *skb = dev_alloc_skb(size);
6775 if (!(*skb)) {
6776 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6777 DBG_PRINT(INFO_DBG, "memory to allocate ");
6778 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6779 sp->mac_control.stats_info->sw_stat. \
6780 mem_alloc_fail_cnt++;
6781 return -ENOMEM;
6783 sp->mac_control.stats_info->sw_stat.mem_allocated
6784 += (*skb)->truesize;
6785 rxdp3->Buffer2_ptr = *temp2 =
6786 pci_map_single(sp->pdev, (*skb)->data,
6787 dev->mtu + 4,
6788 PCI_DMA_FROMDEVICE);
6789 if( (rxdp3->Buffer2_ptr == 0) ||
6790 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6791 goto memalloc_failed;
6793 rxdp3->Buffer0_ptr = *temp0 =
6794 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6795 PCI_DMA_FROMDEVICE);
6796 if( (rxdp3->Buffer0_ptr == 0) ||
6797 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6798 pci_unmap_single (sp->pdev,
6799 (dma_addr_t)rxdp3->Buffer2_ptr,
6800 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6801 goto memalloc_failed;
6803 rxdp->Host_Control = (unsigned long) (*skb);
6805 /* Buffer-1 will be dummy buffer not used */
6806 rxdp3->Buffer1_ptr = *temp1 =
6807 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6808 PCI_DMA_FROMDEVICE);
6809 if( (rxdp3->Buffer1_ptr == 0) ||
6810 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6811 pci_unmap_single (sp->pdev,
6812 (dma_addr_t)rxdp3->Buffer0_ptr,
6813 BUF0_LEN, PCI_DMA_FROMDEVICE);
6814 pci_unmap_single (sp->pdev,
6815 (dma_addr_t)rxdp3->Buffer2_ptr,
6816 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6817 goto memalloc_failed;
6821 return 0;
6822 memalloc_failed:
6823 stats->pci_map_fail_cnt++;
6824 stats->mem_freed += (*skb)->truesize;
6825 dev_kfree_skb(*skb);
6826 return -ENOMEM;
6829 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6830 int size)
6832 struct net_device *dev = sp->dev;
6833 if (sp->rxd_mode == RXD_MODE_1) {
6834 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6835 } else if (sp->rxd_mode == RXD_MODE_3B) {
6836 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6837 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6838 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6842 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6844 int i, j, k, blk_cnt = 0, size;
6845 struct mac_info * mac_control = &sp->mac_control;
6846 struct config_param *config = &sp->config;
6847 struct net_device *dev = sp->dev;
6848 struct RxD_t *rxdp = NULL;
6849 struct sk_buff *skb = NULL;
6850 struct buffAdd *ba = NULL;
6851 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6853 /* Calculate the size based on ring mode */
6854 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6855 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6856 if (sp->rxd_mode == RXD_MODE_1)
6857 size += NET_IP_ALIGN;
6858 else if (sp->rxd_mode == RXD_MODE_3B)
6859 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6861 for (i = 0; i < config->rx_ring_num; i++) {
6862 blk_cnt = config->rx_cfg[i].num_rxd /
6863 (rxd_count[sp->rxd_mode] +1);
6865 for (j = 0; j < blk_cnt; j++) {
6866 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6867 rxdp = mac_control->rings[i].
6868 rx_blocks[j].rxds[k].virt_addr;
6869 if(sp->rxd_mode == RXD_MODE_3B)
6870 ba = &mac_control->rings[i].ba[j][k];
6871 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6872 &skb,(u64 *)&temp0_64,
6873 (u64 *)&temp1_64,
6874 (u64 *)&temp2_64,
6875 size) == ENOMEM) {
6876 return 0;
6879 set_rxd_buffer_size(sp, rxdp, size);
6880 wmb();
6881 /* flip the Ownership bit to Hardware */
6882 rxdp->Control_1 |= RXD_OWN_XENA;
6886 return 0;
6890 static int s2io_add_isr(struct s2io_nic * sp)
6892 int ret = 0;
6893 struct net_device *dev = sp->dev;
6894 int err = 0;
6896 if (sp->config.intr_type == MSI_X)
6897 ret = s2io_enable_msi_x(sp);
6898 if (ret) {
6899 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6900 sp->config.intr_type = INTA;
6903 /* Store the values of the MSIX table in the struct s2io_nic structure */
6904 store_xmsi_data(sp);
6906 /* After proper initialization of H/W, register ISR */
6907 if (sp->config.intr_type == MSI_X) {
6908 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6910 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6911 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6912 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6913 dev->name, i);
6914 err = request_irq(sp->entries[i].vector,
6915 s2io_msix_fifo_handle, 0, sp->desc[i],
6916 sp->s2io_entries[i].arg);
6917 /* If either data or addr is zero print it */
6918 if(!(sp->msix_info[i].addr &&
6919 sp->msix_info[i].data)) {
6920 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6921 "Data:0x%lx\n",sp->desc[i],
6922 (unsigned long long)
6923 sp->msix_info[i].addr,
6924 (unsigned long)
6925 ntohl(sp->msix_info[i].data));
6926 } else {
6927 msix_tx_cnt++;
6929 } else {
6930 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6931 dev->name, i);
6932 err = request_irq(sp->entries[i].vector,
6933 s2io_msix_ring_handle, 0, sp->desc[i],
6934 sp->s2io_entries[i].arg);
6935 /* If either data or addr is zero print it */
6936 if(!(sp->msix_info[i].addr &&
6937 sp->msix_info[i].data)) {
6938 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6939 "Data:0x%lx\n",sp->desc[i],
6940 (unsigned long long)
6941 sp->msix_info[i].addr,
6942 (unsigned long)
6943 ntohl(sp->msix_info[i].data));
6944 } else {
6945 msix_rx_cnt++;
6948 if (err) {
6949 remove_msix_isr(sp);
6950 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6951 "failed\n", dev->name, i);
6952 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6953 dev->name);
6954 sp->config.intr_type = INTA;
6955 break;
6957 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6959 if (!err) {
6960 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6961 msix_tx_cnt);
6962 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6963 msix_rx_cnt);
6966 if (sp->config.intr_type == INTA) {
6967 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6968 sp->name, dev);
6969 if (err) {
6970 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6971 dev->name);
6972 return -1;
6975 return 0;
6977 static void s2io_rem_isr(struct s2io_nic * sp)
6979 if (sp->config.intr_type == MSI_X)
6980 remove_msix_isr(sp);
6981 else
6982 remove_inta_isr(sp);
6985 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6987 int cnt = 0;
6988 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6989 unsigned long flags;
6990 register u64 val64 = 0;
6991 struct config_param *config;
6992 config = &sp->config;
6994 if (!is_s2io_card_up(sp))
6995 return;
6997 del_timer_sync(&sp->alarm_timer);
6998 /* If s2io_set_link task is executing, wait till it completes. */
6999 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7000 msleep(50);
7002 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7004 /* Disable napi */
7005 if (config->napi)
7006 napi_disable(&sp->napi);
7008 /* disable Tx and Rx traffic on the NIC */
7009 if (do_io)
7010 stop_nic(sp);
7012 s2io_rem_isr(sp);
7014 /* Kill tasklet. */
7015 tasklet_kill(&sp->task);
7017 /* Check if the device is Quiescent and then Reset the NIC */
7018 while(do_io) {
7019 /* As per the HW requirement we need to replenish the
7020 * receive buffer to avoid the ring bump. Since there is
7021 * no intention of processing the Rx frame at this pointwe are
7022 * just settting the ownership bit of rxd in Each Rx
7023 * ring to HW and set the appropriate buffer size
7024 * based on the ring mode
7026 rxd_owner_bit_reset(sp);
7028 val64 = readq(&bar0->adapter_status);
7029 if (verify_xena_quiescence(sp)) {
7030 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7031 break;
7034 msleep(50);
7035 cnt++;
7036 if (cnt == 10) {
7037 DBG_PRINT(ERR_DBG,
7038 "s2io_close:Device not Quiescent ");
7039 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7040 (unsigned long long) val64);
7041 break;
7044 if (do_io)
7045 s2io_reset(sp);
7047 /* Free all Tx buffers */
7048 free_tx_buffers(sp);
7050 /* Free all Rx buffers */
7051 spin_lock_irqsave(&sp->rx_lock, flags);
7052 free_rx_buffers(sp);
7053 spin_unlock_irqrestore(&sp->rx_lock, flags);
7055 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7058 static void s2io_card_down(struct s2io_nic * sp)
7060 do_s2io_card_down(sp, 1);
7063 static int s2io_card_up(struct s2io_nic * sp)
7065 int i, ret = 0;
7066 struct mac_info *mac_control;
7067 struct config_param *config;
7068 struct net_device *dev = (struct net_device *) sp->dev;
7069 u16 interruptible;
7071 /* Initialize the H/W I/O registers */
7072 ret = init_nic(sp);
7073 if (ret != 0) {
7074 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7075 dev->name);
7076 if (ret != -EIO)
7077 s2io_reset(sp);
7078 return ret;
7082 * Initializing the Rx buffers. For now we are considering only 1
7083 * Rx ring and initializing buffers into 30 Rx blocks
7085 mac_control = &sp->mac_control;
7086 config = &sp->config;
7088 for (i = 0; i < config->rx_ring_num; i++) {
7089 if ((ret = fill_rx_buffers(sp, i))) {
7090 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7091 dev->name);
7092 s2io_reset(sp);
7093 free_rx_buffers(sp);
7094 return -ENOMEM;
7096 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7097 atomic_read(&sp->rx_bufs_left[i]));
7100 /* Initialise napi */
7101 if (config->napi)
7102 napi_enable(&sp->napi);
7104 /* Maintain the state prior to the open */
7105 if (sp->promisc_flg)
7106 sp->promisc_flg = 0;
7107 if (sp->m_cast_flg) {
7108 sp->m_cast_flg = 0;
7109 sp->all_multi_pos= 0;
7112 /* Setting its receive mode */
7113 s2io_set_multicast(dev);
7115 if (sp->lro) {
7116 /* Initialize max aggregatable pkts per session based on MTU */
7117 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7118 /* Check if we can use(if specified) user provided value */
7119 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7120 sp->lro_max_aggr_per_sess = lro_max_pkts;
7123 /* Enable Rx Traffic and interrupts on the NIC */
7124 if (start_nic(sp)) {
7125 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7126 s2io_reset(sp);
7127 free_rx_buffers(sp);
7128 return -ENODEV;
7131 /* Add interrupt service routine */
7132 if (s2io_add_isr(sp) != 0) {
7133 if (sp->config.intr_type == MSI_X)
7134 s2io_rem_isr(sp);
7135 s2io_reset(sp);
7136 free_rx_buffers(sp);
7137 return -ENODEV;
7140 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7142 /* Enable tasklet for the device */
7143 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7145 /* Enable select interrupts */
7146 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7147 if (sp->config.intr_type != INTA)
7148 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7149 else {
7150 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7151 interruptible |= TX_PIC_INTR;
7152 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7155 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7156 return 0;
7160 * s2io_restart_nic - Resets the NIC.
7161 * @data : long pointer to the device private structure
7162 * Description:
7163 * This function is scheduled to be run by the s2io_tx_watchdog
7164 * function after 0.5 secs to reset the NIC. The idea is to reduce
7165 * the run time of the watch dog routine which is run holding a
7166 * spin lock.
7169 static void s2io_restart_nic(struct work_struct *work)
7171 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7172 struct net_device *dev = sp->dev;
7174 rtnl_lock();
7176 if (!netif_running(dev))
7177 goto out_unlock;
7179 s2io_card_down(sp);
7180 if (s2io_card_up(sp)) {
7181 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7182 dev->name);
7184 netif_wake_queue(dev);
7185 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7186 dev->name);
7187 out_unlock:
7188 rtnl_unlock();
7192 * s2io_tx_watchdog - Watchdog for transmit side.
7193 * @dev : Pointer to net device structure
7194 * Description:
7195 * This function is triggered if the Tx Queue is stopped
7196 * for a pre-defined amount of time when the Interface is still up.
7197 * If the Interface is jammed in such a situation, the hardware is
7198 * reset (by s2io_close) and restarted again (by s2io_open) to
7199 * overcome any problem that might have been caused in the hardware.
7200 * Return value:
7201 * void
7204 static void s2io_tx_watchdog(struct net_device *dev)
7206 struct s2io_nic *sp = dev->priv;
7208 if (netif_carrier_ok(dev)) {
7209 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7210 schedule_work(&sp->rst_timer_task);
7211 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7216 * rx_osm_handler - To perform some OS related operations on SKB.
7217 * @sp: private member of the device structure,pointer to s2io_nic structure.
7218 * @skb : the socket buffer pointer.
7219 * @len : length of the packet
7220 * @cksum : FCS checksum of the frame.
7221 * @ring_no : the ring from which this RxD was extracted.
7222 * Description:
7223 * This function is called by the Rx interrupt serivce routine to perform
7224 * some OS related operations on the SKB before passing it to the upper
7225 * layers. It mainly checks if the checksum is OK, if so adds it to the
7226 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7227 * to the upper layer. If the checksum is wrong, it increments the Rx
7228 * packet error count, frees the SKB and returns error.
7229 * Return value:
7230 * SUCCESS on success and -1 on failure.
7232 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7234 struct s2io_nic *sp = ring_data->nic;
7235 struct net_device *dev = (struct net_device *) sp->dev;
7236 struct sk_buff *skb = (struct sk_buff *)
7237 ((unsigned long) rxdp->Host_Control);
7238 int ring_no = ring_data->ring_no;
7239 u16 l3_csum, l4_csum;
7240 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7241 struct lro *lro;
7242 u8 err_mask;
7244 skb->dev = dev;
7246 if (err) {
7247 /* Check for parity error */
7248 if (err & 0x1) {
7249 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7251 err_mask = err >> 48;
7252 switch(err_mask) {
7253 case 1:
7254 sp->mac_control.stats_info->sw_stat.
7255 rx_parity_err_cnt++;
7256 break;
7258 case 2:
7259 sp->mac_control.stats_info->sw_stat.
7260 rx_abort_cnt++;
7261 break;
7263 case 3:
7264 sp->mac_control.stats_info->sw_stat.
7265 rx_parity_abort_cnt++;
7266 break;
7268 case 4:
7269 sp->mac_control.stats_info->sw_stat.
7270 rx_rda_fail_cnt++;
7271 break;
7273 case 5:
7274 sp->mac_control.stats_info->sw_stat.
7275 rx_unkn_prot_cnt++;
7276 break;
7278 case 6:
7279 sp->mac_control.stats_info->sw_stat.
7280 rx_fcs_err_cnt++;
7281 break;
7283 case 7:
7284 sp->mac_control.stats_info->sw_stat.
7285 rx_buf_size_err_cnt++;
7286 break;
7288 case 8:
7289 sp->mac_control.stats_info->sw_stat.
7290 rx_rxd_corrupt_cnt++;
7291 break;
7293 case 15:
7294 sp->mac_control.stats_info->sw_stat.
7295 rx_unkn_err_cnt++;
7296 break;
7299 * Drop the packet if bad transfer code. Exception being
7300 * 0x5, which could be due to unsupported IPv6 extension header.
7301 * In this case, we let stack handle the packet.
7302 * Note that in this case, since checksum will be incorrect,
7303 * stack will validate the same.
7305 if (err_mask != 0x5) {
7306 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7307 dev->name, err_mask);
7308 sp->stats.rx_crc_errors++;
7309 sp->mac_control.stats_info->sw_stat.mem_freed
7310 += skb->truesize;
7311 dev_kfree_skb(skb);
7312 atomic_dec(&sp->rx_bufs_left[ring_no]);
7313 rxdp->Host_Control = 0;
7314 return 0;
7318 /* Updating statistics */
7319 sp->stats.rx_packets++;
7320 rxdp->Host_Control = 0;
7321 if (sp->rxd_mode == RXD_MODE_1) {
7322 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7324 sp->stats.rx_bytes += len;
7325 skb_put(skb, len);
7327 } else if (sp->rxd_mode == RXD_MODE_3B) {
7328 int get_block = ring_data->rx_curr_get_info.block_index;
7329 int get_off = ring_data->rx_curr_get_info.offset;
7330 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7331 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7332 unsigned char *buff = skb_push(skb, buf0_len);
7334 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7335 sp->stats.rx_bytes += buf0_len + buf2_len;
7336 memcpy(buff, ba->ba_0, buf0_len);
7337 skb_put(skb, buf2_len);
7340 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7341 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7342 (sp->rx_csum)) {
7343 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7344 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7345 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7347 * NIC verifies if the Checksum of the received
7348 * frame is Ok or not and accordingly returns
7349 * a flag in the RxD.
7351 skb->ip_summed = CHECKSUM_UNNECESSARY;
7352 if (sp->lro) {
7353 u32 tcp_len;
7354 u8 *tcp;
7355 int ret = 0;
7357 ret = s2io_club_tcp_session(skb->data, &tcp,
7358 &tcp_len, &lro,
7359 rxdp, sp);
7360 switch (ret) {
7361 case 3: /* Begin anew */
7362 lro->parent = skb;
7363 goto aggregate;
7364 case 1: /* Aggregate */
7366 lro_append_pkt(sp, lro,
7367 skb, tcp_len);
7368 goto aggregate;
7370 case 4: /* Flush session */
7372 lro_append_pkt(sp, lro,
7373 skb, tcp_len);
7374 queue_rx_frame(lro->parent);
7375 clear_lro_session(lro);
7376 sp->mac_control.stats_info->
7377 sw_stat.flush_max_pkts++;
7378 goto aggregate;
7380 case 2: /* Flush both */
7381 lro->parent->data_len =
7382 lro->frags_len;
7383 sp->mac_control.stats_info->
7384 sw_stat.sending_both++;
7385 queue_rx_frame(lro->parent);
7386 clear_lro_session(lro);
7387 goto send_up;
7388 case 0: /* sessions exceeded */
7389 case -1: /* non-TCP or not
7390 * L2 aggregatable
7392 case 5: /*
7393 * First pkt in session not
7394 * L3/L4 aggregatable
7396 break;
7397 default:
7398 DBG_PRINT(ERR_DBG,
7399 "%s: Samadhana!!\n",
7400 __FUNCTION__);
7401 BUG();
7404 } else {
7406 * Packet with erroneous checksum, let the
7407 * upper layers deal with it.
7409 skb->ip_summed = CHECKSUM_NONE;
7411 } else {
7412 skb->ip_summed = CHECKSUM_NONE;
7414 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7415 if (!sp->lro) {
7416 skb->protocol = eth_type_trans(skb, dev);
7417 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7418 vlan_strip_flag)) {
7419 /* Queueing the vlan frame to the upper layer */
7420 if (napi)
7421 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7422 RXD_GET_VLAN_TAG(rxdp->Control_2));
7423 else
7424 vlan_hwaccel_rx(skb, sp->vlgrp,
7425 RXD_GET_VLAN_TAG(rxdp->Control_2));
7426 } else {
7427 if (napi)
7428 netif_receive_skb(skb);
7429 else
7430 netif_rx(skb);
7432 } else {
7433 send_up:
7434 queue_rx_frame(skb);
7436 dev->last_rx = jiffies;
7437 aggregate:
7438 atomic_dec(&sp->rx_bufs_left[ring_no]);
7439 return SUCCESS;
7443 * s2io_link - stops/starts the Tx queue.
7444 * @sp : private member of the device structure, which is a pointer to the
7445 * s2io_nic structure.
7446 * @link : inidicates whether link is UP/DOWN.
7447 * Description:
7448 * This function stops/starts the Tx queue depending on whether the link
7449 * status of the NIC is is down or up. This is called by the Alarm
7450 * interrupt handler whenever a link change interrupt comes up.
7451 * Return value:
7452 * void.
7455 static void s2io_link(struct s2io_nic * sp, int link)
7457 struct net_device *dev = (struct net_device *) sp->dev;
7459 if (link != sp->last_link_state) {
7460 init_tti(sp, link);
7461 if (link == LINK_DOWN) {
7462 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7463 netif_carrier_off(dev);
7464 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7465 sp->mac_control.stats_info->sw_stat.link_up_time =
7466 jiffies - sp->start_time;
7467 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7468 } else {
7469 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7470 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7471 sp->mac_control.stats_info->sw_stat.link_down_time =
7472 jiffies - sp->start_time;
7473 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7474 netif_carrier_on(dev);
7477 sp->last_link_state = link;
7478 sp->start_time = jiffies;
7482 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7483 * @sp : private member of the device structure, which is a pointer to the
7484 * s2io_nic structure.
7485 * Description:
7486 * This function initializes a few of the PCI and PCI-X configuration registers
7487 * with recommended values.
7488 * Return value:
7489 * void
7492 static void s2io_init_pci(struct s2io_nic * sp)
7494 u16 pci_cmd = 0, pcix_cmd = 0;
7496 /* Enable Data Parity Error Recovery in PCI-X command register. */
7497 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7498 &(pcix_cmd));
7499 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7500 (pcix_cmd | 1));
7501 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7502 &(pcix_cmd));
7504 /* Set the PErr Response bit in PCI command register. */
7505 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7506 pci_write_config_word(sp->pdev, PCI_COMMAND,
7507 (pci_cmd | PCI_COMMAND_PARITY));
7508 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7511 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7513 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7514 (tx_fifo_num < FIFO_DEFAULT_NUM)) {
7515 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7516 "(%d) not supported\n", tx_fifo_num);
7517 tx_fifo_num =
7518 ((tx_fifo_num > MAX_TX_FIFOS)? MAX_TX_FIFOS :
7519 ((tx_fifo_num < FIFO_DEFAULT_NUM) ? FIFO_DEFAULT_NUM :
7520 tx_fifo_num));
7521 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7522 DBG_PRINT(ERR_DBG, "tx fifos\n");
7525 if ( rx_ring_num > 8) {
7526 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7527 "supported\n");
7528 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7529 rx_ring_num = 8;
7531 if (*dev_intr_type != INTA)
7532 napi = 0;
7534 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7535 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7536 "Defaulting to INTA\n");
7537 *dev_intr_type = INTA;
7540 if ((*dev_intr_type == MSI_X) &&
7541 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7542 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7543 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7544 "Defaulting to INTA\n");
7545 *dev_intr_type = INTA;
7548 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7549 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7550 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7551 rx_ring_mode = 1;
7553 return SUCCESS;
7557 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7558 * or Traffic class respectively.
7559 * @nic: device private variable
7560 * Description: The function configures the receive steering to
7561 * desired receive ring.
7562 * Return Value: SUCCESS on success and
7563 * '-1' on failure (endian settings incorrect).
7565 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7567 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7568 register u64 val64 = 0;
7570 if (ds_codepoint > 63)
7571 return FAILURE;
7573 val64 = RTS_DS_MEM_DATA(ring);
7574 writeq(val64, &bar0->rts_ds_mem_data);
7576 val64 = RTS_DS_MEM_CTRL_WE |
7577 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7578 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7580 writeq(val64, &bar0->rts_ds_mem_ctrl);
7582 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7583 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7584 S2IO_BIT_RESET);
7588 * s2io_init_nic - Initialization of the adapter .
7589 * @pdev : structure containing the PCI related information of the device.
7590 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7591 * Description:
7592 * The function initializes an adapter identified by the pci_dec structure.
7593 * All OS related initialization including memory and device structure and
7594 * initlaization of the device private variable is done. Also the swapper
7595 * control register is initialized to enable read and write into the I/O
7596 * registers of the device.
7597 * Return value:
7598 * returns 0 on success and negative on failure.
7601 static int __devinit
7602 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7604 struct s2io_nic *sp;
7605 struct net_device *dev;
7606 int i, j, ret;
7607 int dma_flag = FALSE;
7608 u32 mac_up, mac_down;
7609 u64 val64 = 0, tmp64 = 0;
7610 struct XENA_dev_config __iomem *bar0 = NULL;
7611 u16 subid;
7612 struct mac_info *mac_control;
7613 struct config_param *config;
7614 int mode;
7615 u8 dev_intr_type = intr_type;
7616 DECLARE_MAC_BUF(mac);
7618 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7619 return ret;
7621 if ((ret = pci_enable_device(pdev))) {
7622 DBG_PRINT(ERR_DBG,
7623 "s2io_init_nic: pci_enable_device failed\n");
7624 return ret;
7627 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7628 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7629 dma_flag = TRUE;
7630 if (pci_set_consistent_dma_mask
7631 (pdev, DMA_64BIT_MASK)) {
7632 DBG_PRINT(ERR_DBG,
7633 "Unable to obtain 64bit DMA for \
7634 consistent allocations\n");
7635 pci_disable_device(pdev);
7636 return -ENOMEM;
7638 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7639 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7640 } else {
7641 pci_disable_device(pdev);
7642 return -ENOMEM;
7644 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7645 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7646 pci_disable_device(pdev);
7647 return -ENODEV;
7650 dev = alloc_etherdev(sizeof(struct s2io_nic));
7651 if (dev == NULL) {
7652 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7653 pci_disable_device(pdev);
7654 pci_release_regions(pdev);
7655 return -ENODEV;
7658 pci_set_master(pdev);
7659 pci_set_drvdata(pdev, dev);
7660 SET_NETDEV_DEV(dev, &pdev->dev);
7662 /* Private member variable initialized to s2io NIC structure */
7663 sp = dev->priv;
7664 memset(sp, 0, sizeof(struct s2io_nic));
7665 sp->dev = dev;
7666 sp->pdev = pdev;
7667 sp->high_dma_flag = dma_flag;
7668 sp->device_enabled_once = FALSE;
7669 if (rx_ring_mode == 1)
7670 sp->rxd_mode = RXD_MODE_1;
7671 if (rx_ring_mode == 2)
7672 sp->rxd_mode = RXD_MODE_3B;
7674 sp->config.intr_type = dev_intr_type;
7676 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7677 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7678 sp->device_type = XFRAME_II_DEVICE;
7679 else
7680 sp->device_type = XFRAME_I_DEVICE;
7682 sp->lro = lro_enable;
7684 /* Initialize some PCI/PCI-X fields of the NIC. */
7685 s2io_init_pci(sp);
7688 * Setting the device configuration parameters.
7689 * Most of these parameters can be specified by the user during
7690 * module insertion as they are module loadable parameters. If
7691 * these parameters are not not specified during load time, they
7692 * are initialized with default values.
7694 mac_control = &sp->mac_control;
7695 config = &sp->config;
7697 config->napi = napi;
7699 /* Tx side parameters. */
7700 config->tx_fifo_num = tx_fifo_num;
7701 for (i = 0; i < MAX_TX_FIFOS; i++) {
7702 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7703 config->tx_cfg[i].fifo_priority = i;
7706 /* mapping the QoS priority to the configured fifos */
7707 for (i = 0; i < MAX_TX_FIFOS; i++)
7708 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7710 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7711 for (i = 0; i < config->tx_fifo_num; i++) {
7712 config->tx_cfg[i].f_no_snoop =
7713 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7714 if (config->tx_cfg[i].fifo_len < 65) {
7715 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7716 break;
7719 /* + 2 because one Txd for skb->data and one Txd for UFO */
7720 config->max_txds = MAX_SKB_FRAGS + 2;
7722 /* Rx side parameters. */
7723 config->rx_ring_num = rx_ring_num;
7724 for (i = 0; i < MAX_RX_RINGS; i++) {
7725 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7726 (rxd_count[sp->rxd_mode] + 1);
7727 config->rx_cfg[i].ring_priority = i;
7730 for (i = 0; i < rx_ring_num; i++) {
7731 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7732 config->rx_cfg[i].f_no_snoop =
7733 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7736 /* Setting Mac Control parameters */
7737 mac_control->rmac_pause_time = rmac_pause_time;
7738 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7739 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7742 /* Initialize Ring buffer parameters. */
7743 for (i = 0; i < config->rx_ring_num; i++)
7744 atomic_set(&sp->rx_bufs_left[i], 0);
7746 /* initialize the shared memory used by the NIC and the host */
7747 if (init_shared_mem(sp)) {
7748 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7749 dev->name);
7750 ret = -ENOMEM;
7751 goto mem_alloc_failed;
7754 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7755 pci_resource_len(pdev, 0));
7756 if (!sp->bar0) {
7757 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7758 dev->name);
7759 ret = -ENOMEM;
7760 goto bar0_remap_failed;
7763 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7764 pci_resource_len(pdev, 2));
7765 if (!sp->bar1) {
7766 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7767 dev->name);
7768 ret = -ENOMEM;
7769 goto bar1_remap_failed;
7772 dev->irq = pdev->irq;
7773 dev->base_addr = (unsigned long) sp->bar0;
7775 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7776 for (j = 0; j < MAX_TX_FIFOS; j++) {
7777 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7778 (sp->bar1 + (j * 0x00020000));
7781 /* Driver entry points */
7782 dev->open = &s2io_open;
7783 dev->stop = &s2io_close;
7784 dev->hard_start_xmit = &s2io_xmit;
7785 dev->get_stats = &s2io_get_stats;
7786 dev->set_multicast_list = &s2io_set_multicast;
7787 dev->do_ioctl = &s2io_ioctl;
7788 dev->set_mac_address = &s2io_set_mac_addr;
7789 dev->change_mtu = &s2io_change_mtu;
7790 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7791 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7792 dev->vlan_rx_register = s2io_vlan_rx_register;
7795 * will use eth_mac_addr() for dev->set_mac_address
7796 * mac address will be set every time dev->open() is called
7798 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7800 #ifdef CONFIG_NET_POLL_CONTROLLER
7801 dev->poll_controller = s2io_netpoll;
7802 #endif
7804 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7805 if (sp->high_dma_flag == TRUE)
7806 dev->features |= NETIF_F_HIGHDMA;
7807 dev->features |= NETIF_F_TSO;
7808 dev->features |= NETIF_F_TSO6;
7809 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7810 dev->features |= NETIF_F_UFO;
7811 dev->features |= NETIF_F_HW_CSUM;
7814 dev->tx_timeout = &s2io_tx_watchdog;
7815 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7816 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7817 INIT_WORK(&sp->set_link_task, s2io_set_link);
7819 pci_save_state(sp->pdev);
7821 /* Setting swapper control on the NIC, for proper reset operation */
7822 if (s2io_set_swapper(sp)) {
7823 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7824 dev->name);
7825 ret = -EAGAIN;
7826 goto set_swap_failed;
7829 /* Verify if the Herc works on the slot its placed into */
7830 if (sp->device_type & XFRAME_II_DEVICE) {
7831 mode = s2io_verify_pci_mode(sp);
7832 if (mode < 0) {
7833 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7834 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7835 ret = -EBADSLT;
7836 goto set_swap_failed;
7840 /* Not needed for Herc */
7841 if (sp->device_type & XFRAME_I_DEVICE) {
7843 * Fix for all "FFs" MAC address problems observed on
7844 * Alpha platforms
7846 fix_mac_address(sp);
7847 s2io_reset(sp);
7851 * MAC address initialization.
7852 * For now only one mac address will be read and used.
7854 bar0 = sp->bar0;
7855 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7856 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7857 writeq(val64, &bar0->rmac_addr_cmd_mem);
7858 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7859 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7860 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7861 mac_down = (u32) tmp64;
7862 mac_up = (u32) (tmp64 >> 32);
7864 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7865 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7866 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7867 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7868 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7869 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7871 /* Set the factory defined MAC address initially */
7872 dev->addr_len = ETH_ALEN;
7873 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7874 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7876 /* initialize number of multicast & unicast MAC entries variables */
7877 if (sp->device_type == XFRAME_I_DEVICE) {
7878 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7879 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7880 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7881 } else if (sp->device_type == XFRAME_II_DEVICE) {
7882 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7883 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7884 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7887 /* store mac addresses from CAM to s2io_nic structure */
7888 do_s2io_store_unicast_mc(sp);
7890 /* Store the values of the MSIX table in the s2io_nic structure */
7891 store_xmsi_data(sp);
7892 /* reset Nic and bring it to known state */
7893 s2io_reset(sp);
7896 * Initialize the tasklet status and link state flags
7897 * and the card state parameter
7899 sp->tasklet_status = 0;
7900 sp->state = 0;
7902 /* Initialize spinlocks */
7903 for (i = 0; i < sp->config.tx_fifo_num; i++)
7904 spin_lock_init(&mac_control->fifos[i].tx_lock);
7906 if (!napi)
7907 spin_lock_init(&sp->put_lock);
7908 spin_lock_init(&sp->rx_lock);
7911 * SXE-002: Configure link and activity LED to init state
7912 * on driver load.
7914 subid = sp->pdev->subsystem_device;
7915 if ((subid & 0xFF) >= 0x07) {
7916 val64 = readq(&bar0->gpio_control);
7917 val64 |= 0x0000800000000000ULL;
7918 writeq(val64, &bar0->gpio_control);
7919 val64 = 0x0411040400000000ULL;
7920 writeq(val64, (void __iomem *) bar0 + 0x2700);
7921 val64 = readq(&bar0->gpio_control);
7924 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7926 if (register_netdev(dev)) {
7927 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7928 ret = -ENODEV;
7929 goto register_failed;
7931 s2io_vpd_read(sp);
7932 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7933 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7934 sp->product_name, pdev->revision);
7935 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7936 s2io_driver_version);
7937 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7938 dev->name, print_mac(mac, dev->dev_addr));
7939 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7940 if (sp->device_type & XFRAME_II_DEVICE) {
7941 mode = s2io_print_pci_mode(sp);
7942 if (mode < 0) {
7943 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7944 ret = -EBADSLT;
7945 unregister_netdev(dev);
7946 goto set_swap_failed;
7949 switch(sp->rxd_mode) {
7950 case RXD_MODE_1:
7951 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7952 dev->name);
7953 break;
7954 case RXD_MODE_3B:
7955 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7956 dev->name);
7957 break;
7960 if (napi)
7961 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7962 switch(sp->config.intr_type) {
7963 case INTA:
7964 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7965 break;
7966 case MSI_X:
7967 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7968 break;
7970 if (sp->lro)
7971 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7972 dev->name);
7973 if (ufo)
7974 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7975 " enabled\n", dev->name);
7976 /* Initialize device name */
7977 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7980 * Make Link state as off at this point, when the Link change
7981 * interrupt comes the state will be automatically changed to
7982 * the right state.
7984 netif_carrier_off(dev);
7986 return 0;
7988 register_failed:
7989 set_swap_failed:
7990 iounmap(sp->bar1);
7991 bar1_remap_failed:
7992 iounmap(sp->bar0);
7993 bar0_remap_failed:
7994 mem_alloc_failed:
7995 free_shared_mem(sp);
7996 pci_disable_device(pdev);
7997 pci_release_regions(pdev);
7998 pci_set_drvdata(pdev, NULL);
7999 free_netdev(dev);
8001 return ret;
8005 * s2io_rem_nic - Free the PCI device
8006 * @pdev: structure containing the PCI related information of the device.
8007 * Description: This function is called by the Pci subsystem to release a
8008 * PCI device and free up all resource held up by the device. This could
8009 * be in response to a Hot plug event or when the driver is to be removed
8010 * from memory.
8013 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8015 struct net_device *dev =
8016 (struct net_device *) pci_get_drvdata(pdev);
8017 struct s2io_nic *sp;
8019 if (dev == NULL) {
8020 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8021 return;
8024 flush_scheduled_work();
8026 sp = dev->priv;
8027 unregister_netdev(dev);
8029 free_shared_mem(sp);
8030 iounmap(sp->bar0);
8031 iounmap(sp->bar1);
8032 pci_release_regions(pdev);
8033 pci_set_drvdata(pdev, NULL);
8034 free_netdev(dev);
8035 pci_disable_device(pdev);
8039 * s2io_starter - Entry point for the driver
8040 * Description: This function is the entry point for the driver. It verifies
8041 * the module loadable parameters and initializes PCI configuration space.
8044 static int __init s2io_starter(void)
8046 return pci_register_driver(&s2io_driver);
8050 * s2io_closer - Cleanup routine for the driver
8051 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8054 static __exit void s2io_closer(void)
8056 pci_unregister_driver(&s2io_driver);
8057 DBG_PRINT(INIT_DBG, "cleanup done\n");
8060 module_init(s2io_starter);
8061 module_exit(s2io_closer);
8063 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8064 struct tcphdr **tcp, struct RxD_t *rxdp)
8066 int ip_off;
8067 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8069 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8070 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8071 __FUNCTION__);
8072 return -1;
8075 /* TODO:
8076 * By default the VLAN field in the MAC is stripped by the card, if this
8077 * feature is turned off in rx_pa_cfg register, then the ip_off field
8078 * has to be shifted by a further 2 bytes
8080 switch (l2_type) {
8081 case 0: /* DIX type */
8082 case 4: /* DIX type with VLAN */
8083 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8084 break;
8085 /* LLC, SNAP etc are considered non-mergeable */
8086 default:
8087 return -1;
8090 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8091 ip_len = (u8)((*ip)->ihl);
8092 ip_len <<= 2;
8093 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8095 return 0;
8098 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8099 struct tcphdr *tcp)
8101 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8102 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8103 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8104 return -1;
8105 return 0;
8108 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8110 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8113 static void initiate_new_session(struct lro *lro, u8 *l2h,
8114 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
8116 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8117 lro->l2h = l2h;
8118 lro->iph = ip;
8119 lro->tcph = tcp;
8120 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8121 lro->tcp_ack = ntohl(tcp->ack_seq);
8122 lro->sg_num = 1;
8123 lro->total_len = ntohs(ip->tot_len);
8124 lro->frags_len = 0;
8126 * check if we saw TCP timestamp. Other consistency checks have
8127 * already been done.
8129 if (tcp->doff == 8) {
8130 u32 *ptr;
8131 ptr = (u32 *)(tcp+1);
8132 lro->saw_ts = 1;
8133 lro->cur_tsval = *(ptr+1);
8134 lro->cur_tsecr = *(ptr+2);
8136 lro->in_use = 1;
8139 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8141 struct iphdr *ip = lro->iph;
8142 struct tcphdr *tcp = lro->tcph;
8143 __sum16 nchk;
8144 struct stat_block *statinfo = sp->mac_control.stats_info;
8145 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8147 /* Update L3 header */
8148 ip->tot_len = htons(lro->total_len);
8149 ip->check = 0;
8150 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8151 ip->check = nchk;
8153 /* Update L4 header */
8154 tcp->ack_seq = lro->tcp_ack;
8155 tcp->window = lro->window;
8157 /* Update tsecr field if this session has timestamps enabled */
8158 if (lro->saw_ts) {
8159 u32 *ptr = (u32 *)(tcp + 1);
8160 *(ptr+2) = lro->cur_tsecr;
8163 /* Update counters required for calculation of
8164 * average no. of packets aggregated.
8166 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8167 statinfo->sw_stat.num_aggregations++;
8170 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8171 struct tcphdr *tcp, u32 l4_pyld)
8173 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8174 lro->total_len += l4_pyld;
8175 lro->frags_len += l4_pyld;
8176 lro->tcp_next_seq += l4_pyld;
8177 lro->sg_num++;
8179 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8180 lro->tcp_ack = tcp->ack_seq;
8181 lro->window = tcp->window;
8183 if (lro->saw_ts) {
8184 u32 *ptr;
8185 /* Update tsecr and tsval from this packet */
8186 ptr = (u32 *) (tcp + 1);
8187 lro->cur_tsval = *(ptr + 1);
8188 lro->cur_tsecr = *(ptr + 2);
8192 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8193 struct tcphdr *tcp, u32 tcp_pyld_len)
8195 u8 *ptr;
8197 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8199 if (!tcp_pyld_len) {
8200 /* Runt frame or a pure ack */
8201 return -1;
8204 if (ip->ihl != 5) /* IP has options */
8205 return -1;
8207 /* If we see CE codepoint in IP header, packet is not mergeable */
8208 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8209 return -1;
8211 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8212 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8213 tcp->ece || tcp->cwr || !tcp->ack) {
8215 * Currently recognize only the ack control word and
8216 * any other control field being set would result in
8217 * flushing the LRO session
8219 return -1;
8223 * Allow only one TCP timestamp option. Don't aggregate if
8224 * any other options are detected.
8226 if (tcp->doff != 5 && tcp->doff != 8)
8227 return -1;
8229 if (tcp->doff == 8) {
8230 ptr = (u8 *)(tcp + 1);
8231 while (*ptr == TCPOPT_NOP)
8232 ptr++;
8233 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8234 return -1;
8236 /* Ensure timestamp value increases monotonically */
8237 if (l_lro)
8238 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8239 return -1;
8241 /* timestamp echo reply should be non-zero */
8242 if (*((u32 *)(ptr+6)) == 0)
8243 return -1;
8246 return 0;
8249 static int
8250 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8251 struct RxD_t *rxdp, struct s2io_nic *sp)
8253 struct iphdr *ip;
8254 struct tcphdr *tcph;
8255 int ret = 0, i;
8257 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8258 rxdp))) {
8259 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8260 ip->saddr, ip->daddr);
8261 } else {
8262 return ret;
8265 tcph = (struct tcphdr *)*tcp;
8266 *tcp_len = get_l4_pyld_length(ip, tcph);
8267 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8268 struct lro *l_lro = &sp->lro0_n[i];
8269 if (l_lro->in_use) {
8270 if (check_for_socket_match(l_lro, ip, tcph))
8271 continue;
8272 /* Sock pair matched */
8273 *lro = l_lro;
8275 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8276 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8277 "0x%x, actual 0x%x\n", __FUNCTION__,
8278 (*lro)->tcp_next_seq,
8279 ntohl(tcph->seq));
8281 sp->mac_control.stats_info->
8282 sw_stat.outof_sequence_pkts++;
8283 ret = 2;
8284 break;
8287 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8288 ret = 1; /* Aggregate */
8289 else
8290 ret = 2; /* Flush both */
8291 break;
8295 if (ret == 0) {
8296 /* Before searching for available LRO objects,
8297 * check if the pkt is L3/L4 aggregatable. If not
8298 * don't create new LRO session. Just send this
8299 * packet up.
8301 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8302 return 5;
8305 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8306 struct lro *l_lro = &sp->lro0_n[i];
8307 if (!(l_lro->in_use)) {
8308 *lro = l_lro;
8309 ret = 3; /* Begin anew */
8310 break;
8315 if (ret == 0) { /* sessions exceeded */
8316 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8317 __FUNCTION__);
8318 *lro = NULL;
8319 return ret;
8322 switch (ret) {
8323 case 3:
8324 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8325 break;
8326 case 2:
8327 update_L3L4_header(sp, *lro);
8328 break;
8329 case 1:
8330 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8331 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8332 update_L3L4_header(sp, *lro);
8333 ret = 4; /* Flush the LRO */
8335 break;
8336 default:
8337 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8338 __FUNCTION__);
8339 break;
8342 return ret;
8345 static void clear_lro_session(struct lro *lro)
8347 static u16 lro_struct_size = sizeof(struct lro);
8349 memset(lro, 0, lro_struct_size);
8352 static void queue_rx_frame(struct sk_buff *skb)
8354 struct net_device *dev = skb->dev;
8356 skb->protocol = eth_type_trans(skb, dev);
8357 if (napi)
8358 netif_receive_skb(skb);
8359 else
8360 netif_rx(skb);
8363 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8364 struct sk_buff *skb,
8365 u32 tcp_len)
8367 struct sk_buff *first = lro->parent;
8369 first->len += tcp_len;
8370 first->data_len = lro->frags_len;
8371 skb_pull(skb, (skb->len - tcp_len));
8372 if (skb_shinfo(first)->frag_list)
8373 lro->last_frag->next = skb;
8374 else
8375 skb_shinfo(first)->frag_list = skb;
8376 first->truesize += skb->truesize;
8377 lro->last_frag = skb;
8378 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8379 return;
8383 * s2io_io_error_detected - called when PCI error is detected
8384 * @pdev: Pointer to PCI device
8385 * @state: The current pci connection state
8387 * This function is called after a PCI bus error affecting
8388 * this device has been detected.
8390 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8391 pci_channel_state_t state)
8393 struct net_device *netdev = pci_get_drvdata(pdev);
8394 struct s2io_nic *sp = netdev->priv;
8396 netif_device_detach(netdev);
8398 if (netif_running(netdev)) {
8399 /* Bring down the card, while avoiding PCI I/O */
8400 do_s2io_card_down(sp, 0);
8402 pci_disable_device(pdev);
8404 return PCI_ERS_RESULT_NEED_RESET;
8408 * s2io_io_slot_reset - called after the pci bus has been reset.
8409 * @pdev: Pointer to PCI device
8411 * Restart the card from scratch, as if from a cold-boot.
8412 * At this point, the card has exprienced a hard reset,
8413 * followed by fixups by BIOS, and has its config space
8414 * set up identically to what it was at cold boot.
8416 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8418 struct net_device *netdev = pci_get_drvdata(pdev);
8419 struct s2io_nic *sp = netdev->priv;
8421 if (pci_enable_device(pdev)) {
8422 printk(KERN_ERR "s2io: "
8423 "Cannot re-enable PCI device after reset.\n");
8424 return PCI_ERS_RESULT_DISCONNECT;
8427 pci_set_master(pdev);
8428 s2io_reset(sp);
8430 return PCI_ERS_RESULT_RECOVERED;
8434 * s2io_io_resume - called when traffic can start flowing again.
8435 * @pdev: Pointer to PCI device
8437 * This callback is called when the error recovery driver tells
8438 * us that its OK to resume normal operation.
8440 static void s2io_io_resume(struct pci_dev *pdev)
8442 struct net_device *netdev = pci_get_drvdata(pdev);
8443 struct s2io_nic *sp = netdev->priv;
8445 if (netif_running(netdev)) {
8446 if (s2io_card_up(sp)) {
8447 printk(KERN_ERR "s2io: "
8448 "Can't bring device back up after reset.\n");
8449 return;
8452 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8453 s2io_card_down(sp);
8454 printk(KERN_ERR "s2io: "
8455 "Can't resetore mac addr after reset.\n");
8456 return;
8460 netif_device_attach(netdev);
8461 netif_wake_queue(netdev);