x86: disable BTS ptrace extensions for now
[wrt350n-kernel.git] / kernel / sched_fair.c
blobc8e6492c5925f0dea503d48d04b9a12a6f0ade51
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 return cfs_rq->rq;
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
105 return container_of(cfs_rq, struct rq, cfs);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct *task_of(struct sched_entity *se)
114 return container_of(se, struct task_struct, se);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
128 return min_vruntime;
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
137 return min_vruntime;
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->vruntime - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
157 * Find the right place in the rbtree:
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
178 if (leftmost)
179 cfs_rq->rb_leftmost = &se->run_node;
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
185 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
195 return cfs_rq->rb_leftmost;
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
205 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
207 if (!last)
208 return NULL;
210 return rb_entry(last, struct sched_entity, run_node);
213 /**************************************************************
214 * Scheduling class statistics methods:
217 #ifdef CONFIG_SCHED_DEBUG
218 int sched_nr_latency_handler(struct ctl_table *table, int write,
219 struct file *filp, void __user *buffer, size_t *lenp,
220 loff_t *ppos)
222 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
224 if (ret || !write)
225 return ret;
227 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
228 sysctl_sched_min_granularity);
230 return 0;
232 #endif
235 * The idea is to set a period in which each task runs once.
237 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
238 * this period because otherwise the slices get too small.
240 * p = (nr <= nl) ? l : l*nr/nl
242 static u64 __sched_period(unsigned long nr_running)
244 u64 period = sysctl_sched_latency;
245 unsigned long nr_latency = sched_nr_latency;
247 if (unlikely(nr_running > nr_latency)) {
248 period = sysctl_sched_min_granularity;
249 period *= nr_running;
252 return period;
256 * We calculate the wall-time slice from the period by taking a part
257 * proportional to the weight.
259 * s = p*w/rw
261 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
263 u64 slice = __sched_period(cfs_rq->nr_running);
265 slice *= se->load.weight;
266 do_div(slice, cfs_rq->load.weight);
268 return slice;
272 * We calculate the vruntime slice.
274 * vs = s/w = p/rw
276 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
278 u64 vslice = __sched_period(nr_running);
280 vslice *= NICE_0_LOAD;
281 do_div(vslice, rq_weight);
283 return vslice;
286 static u64 sched_vslice(struct cfs_rq *cfs_rq)
288 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
291 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
293 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
294 cfs_rq->nr_running + 1);
298 * Update the current task's runtime statistics. Skip current tasks that
299 * are not in our scheduling class.
301 static inline void
302 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
303 unsigned long delta_exec)
305 unsigned long delta_exec_weighted;
306 u64 vruntime;
308 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
310 curr->sum_exec_runtime += delta_exec;
311 schedstat_add(cfs_rq, exec_clock, delta_exec);
312 delta_exec_weighted = delta_exec;
313 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
314 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
315 &curr->load);
317 curr->vruntime += delta_exec_weighted;
320 * maintain cfs_rq->min_vruntime to be a monotonic increasing
321 * value tracking the leftmost vruntime in the tree.
323 if (first_fair(cfs_rq)) {
324 vruntime = min_vruntime(curr->vruntime,
325 __pick_next_entity(cfs_rq)->vruntime);
326 } else
327 vruntime = curr->vruntime;
329 cfs_rq->min_vruntime =
330 max_vruntime(cfs_rq->min_vruntime, vruntime);
333 static void update_curr(struct cfs_rq *cfs_rq)
335 struct sched_entity *curr = cfs_rq->curr;
336 u64 now = rq_of(cfs_rq)->clock;
337 unsigned long delta_exec;
339 if (unlikely(!curr))
340 return;
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
347 delta_exec = (unsigned long)(now - curr->exec_start);
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
355 cpuacct_charge(curtask, delta_exec);
359 static inline void
360 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
366 * Task is being enqueued - update stats:
368 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
374 if (se != cfs_rq->curr)
375 update_stats_wait_start(cfs_rq, se);
378 static void
379 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
386 schedstat_set(se->wait_start, 0);
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
401 * We are picking a new current task - update its stats:
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 * We are starting a new run period:
409 se->exec_start = rq_of(cfs_rq)->clock;
412 /**************************************************
413 * Scheduling class queueing methods:
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437 struct task_struct *tsk = task_of(se);
439 if ((s64)delta < 0)
440 delta = 0;
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
448 account_scheduler_latency(tsk, delta >> 10, 1);
450 if (se->block_start) {
451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
452 struct task_struct *tsk = task_of(se);
454 if ((s64)delta < 0)
455 delta = 0;
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
473 account_scheduler_latency(tsk, delta >> 10, 0);
475 #endif
478 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
480 #ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
483 if (d < 0)
484 d = -d;
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488 #endif
491 static void
492 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
494 u64 vruntime;
496 vruntime = cfs_rq->min_vruntime;
498 if (sched_feat(TREE_AVG)) {
499 struct sched_entity *last = __pick_last_entity(cfs_rq);
500 if (last) {
501 vruntime += last->vruntime;
502 vruntime >>= 1;
504 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
505 vruntime += sched_vslice(cfs_rq)/2;
508 * The 'current' period is already promised to the current tasks,
509 * however the extra weight of the new task will slow them down a
510 * little, place the new task so that it fits in the slot that
511 * stays open at the end.
513 if (initial && sched_feat(START_DEBIT))
514 vruntime += sched_vslice_add(cfs_rq, se);
516 if (!initial) {
517 /* sleeps upto a single latency don't count. */
518 if (sched_feat(NEW_FAIR_SLEEPERS))
519 vruntime -= sysctl_sched_latency;
521 /* ensure we never gain time by being placed backwards. */
522 vruntime = max_vruntime(se->vruntime, vruntime);
525 se->vruntime = vruntime;
528 static void
529 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
532 * Update run-time statistics of the 'current'.
534 update_curr(cfs_rq);
536 if (wakeup) {
537 place_entity(cfs_rq, se, 0);
538 enqueue_sleeper(cfs_rq, se);
541 update_stats_enqueue(cfs_rq, se);
542 check_spread(cfs_rq, se);
543 if (se != cfs_rq->curr)
544 __enqueue_entity(cfs_rq, se);
545 account_entity_enqueue(cfs_rq, se);
548 static void
549 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
552 * Update run-time statistics of the 'current'.
554 update_curr(cfs_rq);
556 update_stats_dequeue(cfs_rq, se);
557 if (sleep) {
558 #ifdef CONFIG_SCHEDSTATS
559 if (entity_is_task(se)) {
560 struct task_struct *tsk = task_of(se);
562 if (tsk->state & TASK_INTERRUPTIBLE)
563 se->sleep_start = rq_of(cfs_rq)->clock;
564 if (tsk->state & TASK_UNINTERRUPTIBLE)
565 se->block_start = rq_of(cfs_rq)->clock;
567 #endif
570 if (se != cfs_rq->curr)
571 __dequeue_entity(cfs_rq, se);
572 account_entity_dequeue(cfs_rq, se);
576 * Preempt the current task with a newly woken task if needed:
578 static void
579 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
581 unsigned long ideal_runtime, delta_exec;
583 ideal_runtime = sched_slice(cfs_rq, curr);
584 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
585 if (delta_exec > ideal_runtime)
586 resched_task(rq_of(cfs_rq)->curr);
589 static void
590 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 /* 'current' is not kept within the tree. */
593 if (se->on_rq) {
595 * Any task has to be enqueued before it get to execute on
596 * a CPU. So account for the time it spent waiting on the
597 * runqueue.
599 update_stats_wait_end(cfs_rq, se);
600 __dequeue_entity(cfs_rq, se);
603 update_stats_curr_start(cfs_rq, se);
604 cfs_rq->curr = se;
605 #ifdef CONFIG_SCHEDSTATS
607 * Track our maximum slice length, if the CPU's load is at
608 * least twice that of our own weight (i.e. dont track it
609 * when there are only lesser-weight tasks around):
611 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
612 se->slice_max = max(se->slice_max,
613 se->sum_exec_runtime - se->prev_sum_exec_runtime);
615 #endif
616 se->prev_sum_exec_runtime = se->sum_exec_runtime;
619 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
621 struct sched_entity *se = NULL;
623 if (first_fair(cfs_rq)) {
624 se = __pick_next_entity(cfs_rq);
625 set_next_entity(cfs_rq, se);
628 return se;
631 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
634 * If still on the runqueue then deactivate_task()
635 * was not called and update_curr() has to be done:
637 if (prev->on_rq)
638 update_curr(cfs_rq);
640 check_spread(cfs_rq, prev);
641 if (prev->on_rq) {
642 update_stats_wait_start(cfs_rq, prev);
643 /* Put 'current' back into the tree. */
644 __enqueue_entity(cfs_rq, prev);
646 cfs_rq->curr = NULL;
649 static void
650 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
653 * Update run-time statistics of the 'current'.
655 update_curr(cfs_rq);
657 #ifdef CONFIG_SCHED_HRTICK
659 * queued ticks are scheduled to match the slice, so don't bother
660 * validating it and just reschedule.
662 if (queued)
663 return resched_task(rq_of(cfs_rq)->curr);
665 * don't let the period tick interfere with the hrtick preemption
667 if (!sched_feat(DOUBLE_TICK) &&
668 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
669 return;
670 #endif
672 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
673 check_preempt_tick(cfs_rq, curr);
676 /**************************************************
677 * CFS operations on tasks:
680 #ifdef CONFIG_FAIR_GROUP_SCHED
682 /* Walk up scheduling entities hierarchy */
683 #define for_each_sched_entity(se) \
684 for (; se; se = se->parent)
686 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
688 return p->se.cfs_rq;
691 /* runqueue on which this entity is (to be) queued */
692 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
694 return se->cfs_rq;
697 /* runqueue "owned" by this group */
698 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
700 return grp->my_q;
703 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
704 * another cpu ('this_cpu')
706 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
708 return cfs_rq->tg->cfs_rq[this_cpu];
711 /* Iterate thr' all leaf cfs_rq's on a runqueue */
712 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
713 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
715 /* Do the two (enqueued) entities belong to the same group ? */
716 static inline int
717 is_same_group(struct sched_entity *se, struct sched_entity *pse)
719 if (se->cfs_rq == pse->cfs_rq)
720 return 1;
722 return 0;
725 static inline struct sched_entity *parent_entity(struct sched_entity *se)
727 return se->parent;
730 #define GROUP_IMBALANCE_PCT 20
732 #else /* CONFIG_FAIR_GROUP_SCHED */
734 #define for_each_sched_entity(se) \
735 for (; se; se = NULL)
737 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
739 return &task_rq(p)->cfs;
742 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
744 struct task_struct *p = task_of(se);
745 struct rq *rq = task_rq(p);
747 return &rq->cfs;
750 /* runqueue "owned" by this group */
751 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
753 return NULL;
756 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
758 return &cpu_rq(this_cpu)->cfs;
761 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
762 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
764 static inline int
765 is_same_group(struct sched_entity *se, struct sched_entity *pse)
767 return 1;
770 static inline struct sched_entity *parent_entity(struct sched_entity *se)
772 return NULL;
775 #endif /* CONFIG_FAIR_GROUP_SCHED */
777 #ifdef CONFIG_SCHED_HRTICK
778 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
780 int requeue = rq->curr == p;
781 struct sched_entity *se = &p->se;
782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 WARN_ON(task_rq(p) != rq);
786 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
787 u64 slice = sched_slice(cfs_rq, se);
788 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
789 s64 delta = slice - ran;
791 if (delta < 0) {
792 if (rq->curr == p)
793 resched_task(p);
794 return;
798 * Don't schedule slices shorter than 10000ns, that just
799 * doesn't make sense. Rely on vruntime for fairness.
801 if (!requeue)
802 delta = max(10000LL, delta);
804 hrtick_start(rq, delta, requeue);
807 #else
808 static inline void
809 hrtick_start_fair(struct rq *rq, struct task_struct *p)
812 #endif
815 * The enqueue_task method is called before nr_running is
816 * increased. Here we update the fair scheduling stats and
817 * then put the task into the rbtree:
819 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
821 struct cfs_rq *cfs_rq;
822 struct sched_entity *se = &p->se,
823 *topse = NULL; /* Highest schedulable entity */
824 int incload = 1;
826 for_each_sched_entity(se) {
827 topse = se;
828 if (se->on_rq) {
829 incload = 0;
830 break;
832 cfs_rq = cfs_rq_of(se);
833 enqueue_entity(cfs_rq, se, wakeup);
834 wakeup = 1;
836 /* Increment cpu load if we just enqueued the first task of a group on
837 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
838 * at the highest grouping level.
840 if (incload)
841 inc_cpu_load(rq, topse->load.weight);
843 hrtick_start_fair(rq, rq->curr);
847 * The dequeue_task method is called before nr_running is
848 * decreased. We remove the task from the rbtree and
849 * update the fair scheduling stats:
851 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
853 struct cfs_rq *cfs_rq;
854 struct sched_entity *se = &p->se,
855 *topse = NULL; /* Highest schedulable entity */
856 int decload = 1;
858 for_each_sched_entity(se) {
859 topse = se;
860 cfs_rq = cfs_rq_of(se);
861 dequeue_entity(cfs_rq, se, sleep);
862 /* Don't dequeue parent if it has other entities besides us */
863 if (cfs_rq->load.weight) {
864 if (parent_entity(se))
865 decload = 0;
866 break;
868 sleep = 1;
870 /* Decrement cpu load if we just dequeued the last task of a group on
871 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
872 * at the highest grouping level.
874 if (decload)
875 dec_cpu_load(rq, topse->load.weight);
877 hrtick_start_fair(rq, rq->curr);
881 * sched_yield() support is very simple - we dequeue and enqueue.
883 * If compat_yield is turned on then we requeue to the end of the tree.
885 static void yield_task_fair(struct rq *rq)
887 struct task_struct *curr = rq->curr;
888 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
889 struct sched_entity *rightmost, *se = &curr->se;
892 * Are we the only task in the tree?
894 if (unlikely(cfs_rq->nr_running == 1))
895 return;
897 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
898 __update_rq_clock(rq);
900 * Update run-time statistics of the 'current'.
902 update_curr(cfs_rq);
904 return;
907 * Find the rightmost entry in the rbtree:
909 rightmost = __pick_last_entity(cfs_rq);
911 * Already in the rightmost position?
913 if (unlikely(rightmost->vruntime < se->vruntime))
914 return;
917 * Minimally necessary key value to be last in the tree:
918 * Upon rescheduling, sched_class::put_prev_task() will place
919 * 'current' within the tree based on its new key value.
921 se->vruntime = rightmost->vruntime + 1;
925 * wake_idle() will wake a task on an idle cpu if task->cpu is
926 * not idle and an idle cpu is available. The span of cpus to
927 * search starts with cpus closest then further out as needed,
928 * so we always favor a closer, idle cpu.
930 * Returns the CPU we should wake onto.
932 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
933 static int wake_idle(int cpu, struct task_struct *p)
935 cpumask_t tmp;
936 struct sched_domain *sd;
937 int i;
940 * If it is idle, then it is the best cpu to run this task.
942 * This cpu is also the best, if it has more than one task already.
943 * Siblings must be also busy(in most cases) as they didn't already
944 * pickup the extra load from this cpu and hence we need not check
945 * sibling runqueue info. This will avoid the checks and cache miss
946 * penalities associated with that.
948 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
949 return cpu;
951 for_each_domain(cpu, sd) {
952 if (sd->flags & SD_WAKE_IDLE) {
953 cpus_and(tmp, sd->span, p->cpus_allowed);
954 for_each_cpu_mask(i, tmp) {
955 if (idle_cpu(i)) {
956 if (i != task_cpu(p)) {
957 schedstat_inc(p,
958 se.nr_wakeups_idle);
960 return i;
963 } else {
964 break;
967 return cpu;
969 #else
970 static inline int wake_idle(int cpu, struct task_struct *p)
972 return cpu;
974 #endif
976 #ifdef CONFIG_SMP
977 static int select_task_rq_fair(struct task_struct *p, int sync)
979 int cpu, this_cpu;
980 struct rq *rq;
981 struct sched_domain *sd, *this_sd = NULL;
982 int new_cpu;
984 cpu = task_cpu(p);
985 rq = task_rq(p);
986 this_cpu = smp_processor_id();
987 new_cpu = cpu;
989 if (cpu == this_cpu)
990 goto out_set_cpu;
992 for_each_domain(this_cpu, sd) {
993 if (cpu_isset(cpu, sd->span)) {
994 this_sd = sd;
995 break;
999 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1000 goto out_set_cpu;
1003 * Check for affine wakeup and passive balancing possibilities.
1005 if (this_sd) {
1006 int idx = this_sd->wake_idx;
1007 unsigned int imbalance;
1008 unsigned long load, this_load;
1010 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1012 load = source_load(cpu, idx);
1013 this_load = target_load(this_cpu, idx);
1015 new_cpu = this_cpu; /* Wake to this CPU if we can */
1017 if (this_sd->flags & SD_WAKE_AFFINE) {
1018 unsigned long tl = this_load;
1019 unsigned long tl_per_task;
1022 * Attract cache-cold tasks on sync wakeups:
1024 if (sync && !task_hot(p, rq->clock, this_sd))
1025 goto out_set_cpu;
1027 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1028 tl_per_task = cpu_avg_load_per_task(this_cpu);
1031 * If sync wakeup then subtract the (maximum possible)
1032 * effect of the currently running task from the load
1033 * of the current CPU:
1035 if (sync)
1036 tl -= current->se.load.weight;
1038 if ((tl <= load &&
1039 tl + target_load(cpu, idx) <= tl_per_task) ||
1040 100*(tl + p->se.load.weight) <= imbalance*load) {
1042 * This domain has SD_WAKE_AFFINE and
1043 * p is cache cold in this domain, and
1044 * there is no bad imbalance.
1046 schedstat_inc(this_sd, ttwu_move_affine);
1047 schedstat_inc(p, se.nr_wakeups_affine);
1048 goto out_set_cpu;
1053 * Start passive balancing when half the imbalance_pct
1054 * limit is reached.
1056 if (this_sd->flags & SD_WAKE_BALANCE) {
1057 if (imbalance*this_load <= 100*load) {
1058 schedstat_inc(this_sd, ttwu_move_balance);
1059 schedstat_inc(p, se.nr_wakeups_passive);
1060 goto out_set_cpu;
1065 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1066 out_set_cpu:
1067 return wake_idle(new_cpu, p);
1069 #endif /* CONFIG_SMP */
1073 * Preempt the current task with a newly woken task if needed:
1075 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1077 struct task_struct *curr = rq->curr;
1078 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1079 struct sched_entity *se = &curr->se, *pse = &p->se;
1080 unsigned long gran;
1082 if (unlikely(rt_prio(p->prio))) {
1083 update_rq_clock(rq);
1084 update_curr(cfs_rq);
1085 resched_task(curr);
1086 return;
1089 * Batch tasks do not preempt (their preemption is driven by
1090 * the tick):
1092 if (unlikely(p->policy == SCHED_BATCH))
1093 return;
1095 if (!sched_feat(WAKEUP_PREEMPT))
1096 return;
1098 while (!is_same_group(se, pse)) {
1099 se = parent_entity(se);
1100 pse = parent_entity(pse);
1103 gran = sysctl_sched_wakeup_granularity;
1105 * More easily preempt - nice tasks, while not making
1106 * it harder for + nice tasks.
1108 if (unlikely(se->load.weight > NICE_0_LOAD))
1109 gran = calc_delta_fair(gran, &se->load);
1111 if (pse->vruntime + gran < se->vruntime)
1112 resched_task(curr);
1115 static struct task_struct *pick_next_task_fair(struct rq *rq)
1117 struct task_struct *p;
1118 struct cfs_rq *cfs_rq = &rq->cfs;
1119 struct sched_entity *se;
1121 if (unlikely(!cfs_rq->nr_running))
1122 return NULL;
1124 do {
1125 se = pick_next_entity(cfs_rq);
1126 cfs_rq = group_cfs_rq(se);
1127 } while (cfs_rq);
1129 p = task_of(se);
1130 hrtick_start_fair(rq, p);
1132 return p;
1136 * Account for a descheduled task:
1138 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1140 struct sched_entity *se = &prev->se;
1141 struct cfs_rq *cfs_rq;
1143 for_each_sched_entity(se) {
1144 cfs_rq = cfs_rq_of(se);
1145 put_prev_entity(cfs_rq, se);
1149 #ifdef CONFIG_SMP
1150 /**************************************************
1151 * Fair scheduling class load-balancing methods:
1155 * Load-balancing iterator. Note: while the runqueue stays locked
1156 * during the whole iteration, the current task might be
1157 * dequeued so the iterator has to be dequeue-safe. Here we
1158 * achieve that by always pre-iterating before returning
1159 * the current task:
1161 static struct task_struct *
1162 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1164 struct task_struct *p;
1166 if (!curr)
1167 return NULL;
1169 p = rb_entry(curr, struct task_struct, se.run_node);
1170 cfs_rq->rb_load_balance_curr = rb_next(curr);
1172 return p;
1175 static struct task_struct *load_balance_start_fair(void *arg)
1177 struct cfs_rq *cfs_rq = arg;
1179 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1182 static struct task_struct *load_balance_next_fair(void *arg)
1184 struct cfs_rq *cfs_rq = arg;
1186 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1189 static unsigned long
1190 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1191 unsigned long max_load_move,
1192 struct sched_domain *sd, enum cpu_idle_type idle,
1193 int *all_pinned, int *this_best_prio)
1195 struct cfs_rq *busy_cfs_rq;
1196 long rem_load_move = max_load_move;
1197 struct rq_iterator cfs_rq_iterator;
1198 unsigned long load_moved;
1200 cfs_rq_iterator.start = load_balance_start_fair;
1201 cfs_rq_iterator.next = load_balance_next_fair;
1203 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1204 #ifdef CONFIG_FAIR_GROUP_SCHED
1205 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1206 unsigned long maxload, task_load, group_weight;
1207 unsigned long thisload, per_task_load;
1208 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1210 task_load = busy_cfs_rq->load.weight;
1211 group_weight = se->load.weight;
1214 * 'group_weight' is contributed by tasks of total weight
1215 * 'task_load'. To move 'rem_load_move' worth of weight only,
1216 * we need to move a maximum task load of:
1218 * maxload = (remload / group_weight) * task_load;
1220 maxload = (rem_load_move * task_load) / group_weight;
1222 if (!maxload || !task_load)
1223 continue;
1225 per_task_load = task_load / busy_cfs_rq->nr_running;
1227 * balance_tasks will try to forcibly move atleast one task if
1228 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1229 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1231 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1232 continue;
1234 /* Disable priority-based load balance */
1235 *this_best_prio = 0;
1236 thisload = this_cfs_rq->load.weight;
1237 #else
1238 # define maxload rem_load_move
1239 #endif
1241 * pass busy_cfs_rq argument into
1242 * load_balance_[start|next]_fair iterators
1244 cfs_rq_iterator.arg = busy_cfs_rq;
1245 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1246 maxload, sd, idle, all_pinned,
1247 this_best_prio,
1248 &cfs_rq_iterator);
1250 #ifdef CONFIG_FAIR_GROUP_SCHED
1252 * load_moved holds the task load that was moved. The
1253 * effective (group) weight moved would be:
1254 * load_moved_eff = load_moved/task_load * group_weight;
1256 load_moved = (group_weight * load_moved) / task_load;
1258 /* Adjust shares on both cpus to reflect load_moved */
1259 group_weight -= load_moved;
1260 set_se_shares(se, group_weight);
1262 se = busy_cfs_rq->tg->se[this_cpu];
1263 if (!thisload)
1264 group_weight = load_moved;
1265 else
1266 group_weight = se->load.weight + load_moved;
1267 set_se_shares(se, group_weight);
1268 #endif
1270 rem_load_move -= load_moved;
1272 if (rem_load_move <= 0)
1273 break;
1276 return max_load_move - rem_load_move;
1279 static int
1280 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1281 struct sched_domain *sd, enum cpu_idle_type idle)
1283 struct cfs_rq *busy_cfs_rq;
1284 struct rq_iterator cfs_rq_iterator;
1286 cfs_rq_iterator.start = load_balance_start_fair;
1287 cfs_rq_iterator.next = load_balance_next_fair;
1289 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1291 * pass busy_cfs_rq argument into
1292 * load_balance_[start|next]_fair iterators
1294 cfs_rq_iterator.arg = busy_cfs_rq;
1295 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1296 &cfs_rq_iterator))
1297 return 1;
1300 return 0;
1302 #endif
1305 * scheduler tick hitting a task of our scheduling class:
1307 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1309 struct cfs_rq *cfs_rq;
1310 struct sched_entity *se = &curr->se;
1312 for_each_sched_entity(se) {
1313 cfs_rq = cfs_rq_of(se);
1314 entity_tick(cfs_rq, se, queued);
1318 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1321 * Share the fairness runtime between parent and child, thus the
1322 * total amount of pressure for CPU stays equal - new tasks
1323 * get a chance to run but frequent forkers are not allowed to
1324 * monopolize the CPU. Note: the parent runqueue is locked,
1325 * the child is not running yet.
1327 static void task_new_fair(struct rq *rq, struct task_struct *p)
1329 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1330 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1331 int this_cpu = smp_processor_id();
1333 sched_info_queued(p);
1335 update_curr(cfs_rq);
1336 place_entity(cfs_rq, se, 1);
1338 /* 'curr' will be NULL if the child belongs to a different group */
1339 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1340 curr && curr->vruntime < se->vruntime) {
1342 * Upon rescheduling, sched_class::put_prev_task() will place
1343 * 'current' within the tree based on its new key value.
1345 swap(curr->vruntime, se->vruntime);
1348 enqueue_task_fair(rq, p, 0);
1349 resched_task(rq->curr);
1353 * Priority of the task has changed. Check to see if we preempt
1354 * the current task.
1356 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1357 int oldprio, int running)
1360 * Reschedule if we are currently running on this runqueue and
1361 * our priority decreased, or if we are not currently running on
1362 * this runqueue and our priority is higher than the current's
1364 if (running) {
1365 if (p->prio > oldprio)
1366 resched_task(rq->curr);
1367 } else
1368 check_preempt_curr(rq, p);
1372 * We switched to the sched_fair class.
1374 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1375 int running)
1378 * We were most likely switched from sched_rt, so
1379 * kick off the schedule if running, otherwise just see
1380 * if we can still preempt the current task.
1382 if (running)
1383 resched_task(rq->curr);
1384 else
1385 check_preempt_curr(rq, p);
1388 /* Account for a task changing its policy or group.
1390 * This routine is mostly called to set cfs_rq->curr field when a task
1391 * migrates between groups/classes.
1393 static void set_curr_task_fair(struct rq *rq)
1395 struct sched_entity *se = &rq->curr->se;
1397 for_each_sched_entity(se)
1398 set_next_entity(cfs_rq_of(se), se);
1402 * All the scheduling class methods:
1404 static const struct sched_class fair_sched_class = {
1405 .next = &idle_sched_class,
1406 .enqueue_task = enqueue_task_fair,
1407 .dequeue_task = dequeue_task_fair,
1408 .yield_task = yield_task_fair,
1409 #ifdef CONFIG_SMP
1410 .select_task_rq = select_task_rq_fair,
1411 #endif /* CONFIG_SMP */
1413 .check_preempt_curr = check_preempt_wakeup,
1415 .pick_next_task = pick_next_task_fair,
1416 .put_prev_task = put_prev_task_fair,
1418 #ifdef CONFIG_SMP
1419 .load_balance = load_balance_fair,
1420 .move_one_task = move_one_task_fair,
1421 #endif
1423 .set_curr_task = set_curr_task_fair,
1424 .task_tick = task_tick_fair,
1425 .task_new = task_new_fair,
1427 .prio_changed = prio_changed_fair,
1428 .switched_to = switched_to_fair,
1431 #ifdef CONFIG_SCHED_DEBUG
1432 static void print_cfs_stats(struct seq_file *m, int cpu)
1434 struct cfs_rq *cfs_rq;
1436 #ifdef CONFIG_FAIR_GROUP_SCHED
1437 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1438 #endif
1439 rcu_read_lock();
1440 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1441 print_cfs_rq(m, cpu, cfs_rq);
1442 rcu_read_unlock();
1444 #endif