x86: support gbpages in pagetable dump
[wrt350n-kernel.git] / kernel / sched_fair.c
blob6c091d6e159d01fb23c0dd786495c533cb005c5b
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 return cfs_rq->rq;
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
105 return container_of(cfs_rq, struct rq, cfs);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct *task_of(struct sched_entity *se)
114 return container_of(se, struct task_struct, se);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
128 return min_vruntime;
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
137 return min_vruntime;
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->vruntime - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
157 * Find the right place in the rbtree:
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
178 if (leftmost)
179 cfs_rq->rb_leftmost = &se->run_node;
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
185 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
195 return cfs_rq->rb_leftmost;
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
215 return se;
218 /**************************************************************
219 * Scheduling class statistics methods:
222 #ifdef CONFIG_SCHED_DEBUG
223 int sched_nr_latency_handler(struct ctl_table *table, int write,
224 struct file *filp, void __user *buffer, size_t *lenp,
225 loff_t *ppos)
227 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
229 if (ret || !write)
230 return ret;
232 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
233 sysctl_sched_min_granularity);
235 return 0;
237 #endif
240 * The idea is to set a period in which each task runs once.
242 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
243 * this period because otherwise the slices get too small.
245 * p = (nr <= nl) ? l : l*nr/nl
247 static u64 __sched_period(unsigned long nr_running)
249 u64 period = sysctl_sched_latency;
250 unsigned long nr_latency = sched_nr_latency;
252 if (unlikely(nr_running > nr_latency)) {
253 period = sysctl_sched_min_granularity;
254 period *= nr_running;
257 return period;
261 * We calculate the wall-time slice from the period by taking a part
262 * proportional to the weight.
264 * s = p*w/rw
266 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
268 u64 slice = __sched_period(cfs_rq->nr_running);
270 slice *= se->load.weight;
271 do_div(slice, cfs_rq->load.weight);
273 return slice;
277 * We calculate the vruntime slice.
279 * vs = s/w = p/rw
281 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
283 u64 vslice = __sched_period(nr_running);
285 vslice *= NICE_0_LOAD;
286 do_div(vslice, rq_weight);
288 return vslice;
291 static u64 sched_vslice(struct cfs_rq *cfs_rq)
293 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
296 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
298 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
299 cfs_rq->nr_running + 1);
303 * Update the current task's runtime statistics. Skip current tasks that
304 * are not in our scheduling class.
306 static inline void
307 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
308 unsigned long delta_exec)
310 unsigned long delta_exec_weighted;
311 u64 vruntime;
313 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
315 curr->sum_exec_runtime += delta_exec;
316 schedstat_add(cfs_rq, exec_clock, delta_exec);
317 delta_exec_weighted = delta_exec;
318 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
319 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
320 &curr->load);
322 curr->vruntime += delta_exec_weighted;
325 * maintain cfs_rq->min_vruntime to be a monotonic increasing
326 * value tracking the leftmost vruntime in the tree.
328 if (first_fair(cfs_rq)) {
329 vruntime = min_vruntime(curr->vruntime,
330 __pick_next_entity(cfs_rq)->vruntime);
331 } else
332 vruntime = curr->vruntime;
334 cfs_rq->min_vruntime =
335 max_vruntime(cfs_rq->min_vruntime, vruntime);
338 static void update_curr(struct cfs_rq *cfs_rq)
340 struct sched_entity *curr = cfs_rq->curr;
341 u64 now = rq_of(cfs_rq)->clock;
342 unsigned long delta_exec;
344 if (unlikely(!curr))
345 return;
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
352 delta_exec = (unsigned long)(now - curr->exec_start);
354 __update_curr(cfs_rq, curr, delta_exec);
355 curr->exec_start = now;
357 if (entity_is_task(curr)) {
358 struct task_struct *curtask = task_of(curr);
360 cpuacct_charge(curtask, delta_exec);
364 static inline void
365 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
371 * Task is being enqueued - update stats:
373 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
379 if (se != cfs_rq->curr)
380 update_stats_wait_start(cfs_rq, se);
383 static void
384 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
386 schedstat_set(se->wait_max, max(se->wait_max,
387 rq_of(cfs_rq)->clock - se->wait_start));
388 schedstat_set(se->wait_count, se->wait_count + 1);
389 schedstat_set(se->wait_sum, se->wait_sum +
390 rq_of(cfs_rq)->clock - se->wait_start);
391 schedstat_set(se->wait_start, 0);
394 static inline void
395 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
398 * Mark the end of the wait period if dequeueing a
399 * waiting task:
401 if (se != cfs_rq->curr)
402 update_stats_wait_end(cfs_rq, se);
406 * We are picking a new current task - update its stats:
408 static inline void
409 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 * We are starting a new run period:
414 se->exec_start = rq_of(cfs_rq)->clock;
417 /**************************************************
418 * Scheduling class queueing methods:
421 static void
422 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
424 update_load_add(&cfs_rq->load, se->load.weight);
425 cfs_rq->nr_running++;
426 se->on_rq = 1;
429 static void
430 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
432 update_load_sub(&cfs_rq->load, se->load.weight);
433 cfs_rq->nr_running--;
434 se->on_rq = 0;
437 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
439 #ifdef CONFIG_SCHEDSTATS
440 if (se->sleep_start) {
441 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
442 struct task_struct *tsk = task_of(se);
444 if ((s64)delta < 0)
445 delta = 0;
447 if (unlikely(delta > se->sleep_max))
448 se->sleep_max = delta;
450 se->sleep_start = 0;
451 se->sum_sleep_runtime += delta;
453 account_scheduler_latency(tsk, delta >> 10, 1);
455 if (se->block_start) {
456 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
457 struct task_struct *tsk = task_of(se);
459 if ((s64)delta < 0)
460 delta = 0;
462 if (unlikely(delta > se->block_max))
463 se->block_max = delta;
465 se->block_start = 0;
466 se->sum_sleep_runtime += delta;
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
473 if (unlikely(prof_on == SLEEP_PROFILING)) {
475 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
476 delta >> 20);
478 account_scheduler_latency(tsk, delta >> 10, 0);
480 #endif
483 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
485 #ifdef CONFIG_SCHED_DEBUG
486 s64 d = se->vruntime - cfs_rq->min_vruntime;
488 if (d < 0)
489 d = -d;
491 if (d > 3*sysctl_sched_latency)
492 schedstat_inc(cfs_rq, nr_spread_over);
493 #endif
496 static void
497 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
499 u64 vruntime;
501 vruntime = cfs_rq->min_vruntime;
503 if (sched_feat(TREE_AVG)) {
504 struct sched_entity *last = __pick_last_entity(cfs_rq);
505 if (last) {
506 vruntime += last->vruntime;
507 vruntime >>= 1;
509 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
510 vruntime += sched_vslice(cfs_rq)/2;
513 * The 'current' period is already promised to the current tasks,
514 * however the extra weight of the new task will slow them down a
515 * little, place the new task so that it fits in the slot that
516 * stays open at the end.
518 if (initial && sched_feat(START_DEBIT))
519 vruntime += sched_vslice_add(cfs_rq, se);
521 if (!initial) {
522 /* sleeps upto a single latency don't count. */
523 if (sched_feat(NEW_FAIR_SLEEPERS))
524 vruntime -= sysctl_sched_latency;
526 /* ensure we never gain time by being placed backwards. */
527 vruntime = max_vruntime(se->vruntime, vruntime);
530 se->vruntime = vruntime;
533 static void
534 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
537 * Update run-time statistics of the 'current'.
539 update_curr(cfs_rq);
541 if (wakeup) {
542 place_entity(cfs_rq, se, 0);
543 enqueue_sleeper(cfs_rq, se);
546 update_stats_enqueue(cfs_rq, se);
547 check_spread(cfs_rq, se);
548 if (se != cfs_rq->curr)
549 __enqueue_entity(cfs_rq, se);
550 account_entity_enqueue(cfs_rq, se);
553 static void
554 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
557 * Update run-time statistics of the 'current'.
559 update_curr(cfs_rq);
561 update_stats_dequeue(cfs_rq, se);
562 if (sleep) {
563 #ifdef CONFIG_SCHEDSTATS
564 if (entity_is_task(se)) {
565 struct task_struct *tsk = task_of(se);
567 if (tsk->state & TASK_INTERRUPTIBLE)
568 se->sleep_start = rq_of(cfs_rq)->clock;
569 if (tsk->state & TASK_UNINTERRUPTIBLE)
570 se->block_start = rq_of(cfs_rq)->clock;
572 #endif
575 if (se != cfs_rq->curr)
576 __dequeue_entity(cfs_rq, se);
577 account_entity_dequeue(cfs_rq, se);
581 * Preempt the current task with a newly woken task if needed:
583 static void
584 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
586 unsigned long ideal_runtime, delta_exec;
588 ideal_runtime = sched_slice(cfs_rq, curr);
589 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
590 if (delta_exec > ideal_runtime)
591 resched_task(rq_of(cfs_rq)->curr);
594 static void
595 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597 /* 'current' is not kept within the tree. */
598 if (se->on_rq) {
600 * Any task has to be enqueued before it get to execute on
601 * a CPU. So account for the time it spent waiting on the
602 * runqueue.
604 update_stats_wait_end(cfs_rq, se);
605 __dequeue_entity(cfs_rq, se);
608 update_stats_curr_start(cfs_rq, se);
609 cfs_rq->curr = se;
610 #ifdef CONFIG_SCHEDSTATS
612 * Track our maximum slice length, if the CPU's load is at
613 * least twice that of our own weight (i.e. dont track it
614 * when there are only lesser-weight tasks around):
616 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
617 se->slice_max = max(se->slice_max,
618 se->sum_exec_runtime - se->prev_sum_exec_runtime);
620 #endif
621 se->prev_sum_exec_runtime = se->sum_exec_runtime;
624 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
626 struct sched_entity *se = NULL;
628 if (first_fair(cfs_rq)) {
629 se = __pick_next_entity(cfs_rq);
630 set_next_entity(cfs_rq, se);
633 return se;
636 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
639 * If still on the runqueue then deactivate_task()
640 * was not called and update_curr() has to be done:
642 if (prev->on_rq)
643 update_curr(cfs_rq);
645 check_spread(cfs_rq, prev);
646 if (prev->on_rq) {
647 update_stats_wait_start(cfs_rq, prev);
648 /* Put 'current' back into the tree. */
649 __enqueue_entity(cfs_rq, prev);
651 cfs_rq->curr = NULL;
654 static void
655 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
658 * Update run-time statistics of the 'current'.
660 update_curr(cfs_rq);
662 #ifdef CONFIG_SCHED_HRTICK
664 * queued ticks are scheduled to match the slice, so don't bother
665 * validating it and just reschedule.
667 if (queued)
668 return resched_task(rq_of(cfs_rq)->curr);
670 * don't let the period tick interfere with the hrtick preemption
672 if (!sched_feat(DOUBLE_TICK) &&
673 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
674 return;
675 #endif
677 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
678 check_preempt_tick(cfs_rq, curr);
681 /**************************************************
682 * CFS operations on tasks:
685 #ifdef CONFIG_FAIR_GROUP_SCHED
687 /* Walk up scheduling entities hierarchy */
688 #define for_each_sched_entity(se) \
689 for (; se; se = se->parent)
691 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
693 return p->se.cfs_rq;
696 /* runqueue on which this entity is (to be) queued */
697 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
699 return se->cfs_rq;
702 /* runqueue "owned" by this group */
703 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
705 return grp->my_q;
708 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
709 * another cpu ('this_cpu')
711 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
713 return cfs_rq->tg->cfs_rq[this_cpu];
716 /* Iterate thr' all leaf cfs_rq's on a runqueue */
717 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
718 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
720 /* Do the two (enqueued) entities belong to the same group ? */
721 static inline int
722 is_same_group(struct sched_entity *se, struct sched_entity *pse)
724 if (se->cfs_rq == pse->cfs_rq)
725 return 1;
727 return 0;
730 static inline struct sched_entity *parent_entity(struct sched_entity *se)
732 return se->parent;
735 #define GROUP_IMBALANCE_PCT 20
737 #else /* CONFIG_FAIR_GROUP_SCHED */
739 #define for_each_sched_entity(se) \
740 for (; se; se = NULL)
742 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
744 return &task_rq(p)->cfs;
747 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
749 struct task_struct *p = task_of(se);
750 struct rq *rq = task_rq(p);
752 return &rq->cfs;
755 /* runqueue "owned" by this group */
756 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
758 return NULL;
761 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
763 return &cpu_rq(this_cpu)->cfs;
766 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
767 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
769 static inline int
770 is_same_group(struct sched_entity *se, struct sched_entity *pse)
772 return 1;
775 static inline struct sched_entity *parent_entity(struct sched_entity *se)
777 return NULL;
780 #endif /* CONFIG_FAIR_GROUP_SCHED */
782 #ifdef CONFIG_SCHED_HRTICK
783 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
785 int requeue = rq->curr == p;
786 struct sched_entity *se = &p->se;
787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
789 WARN_ON(task_rq(p) != rq);
791 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
792 u64 slice = sched_slice(cfs_rq, se);
793 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
794 s64 delta = slice - ran;
796 if (delta < 0) {
797 if (rq->curr == p)
798 resched_task(p);
799 return;
803 * Don't schedule slices shorter than 10000ns, that just
804 * doesn't make sense. Rely on vruntime for fairness.
806 if (!requeue)
807 delta = max(10000LL, delta);
809 hrtick_start(rq, delta, requeue);
812 #else
813 static inline void
814 hrtick_start_fair(struct rq *rq, struct task_struct *p)
817 #endif
820 * The enqueue_task method is called before nr_running is
821 * increased. Here we update the fair scheduling stats and
822 * then put the task into the rbtree:
824 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
826 struct cfs_rq *cfs_rq;
827 struct sched_entity *se = &p->se,
828 *topse = NULL; /* Highest schedulable entity */
829 int incload = 1;
831 for_each_sched_entity(se) {
832 topse = se;
833 if (se->on_rq) {
834 incload = 0;
835 break;
837 cfs_rq = cfs_rq_of(se);
838 enqueue_entity(cfs_rq, se, wakeup);
839 wakeup = 1;
841 /* Increment cpu load if we just enqueued the first task of a group on
842 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
843 * at the highest grouping level.
845 if (incload)
846 inc_cpu_load(rq, topse->load.weight);
848 hrtick_start_fair(rq, rq->curr);
852 * The dequeue_task method is called before nr_running is
853 * decreased. We remove the task from the rbtree and
854 * update the fair scheduling stats:
856 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
858 struct cfs_rq *cfs_rq;
859 struct sched_entity *se = &p->se,
860 *topse = NULL; /* Highest schedulable entity */
861 int decload = 1;
863 for_each_sched_entity(se) {
864 topse = se;
865 cfs_rq = cfs_rq_of(se);
866 dequeue_entity(cfs_rq, se, sleep);
867 /* Don't dequeue parent if it has other entities besides us */
868 if (cfs_rq->load.weight) {
869 if (parent_entity(se))
870 decload = 0;
871 break;
873 sleep = 1;
875 /* Decrement cpu load if we just dequeued the last task of a group on
876 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
877 * at the highest grouping level.
879 if (decload)
880 dec_cpu_load(rq, topse->load.weight);
882 hrtick_start_fair(rq, rq->curr);
886 * sched_yield() support is very simple - we dequeue and enqueue.
888 * If compat_yield is turned on then we requeue to the end of the tree.
890 static void yield_task_fair(struct rq *rq)
892 struct task_struct *curr = rq->curr;
893 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
894 struct sched_entity *rightmost, *se = &curr->se;
897 * Are we the only task in the tree?
899 if (unlikely(cfs_rq->nr_running == 1))
900 return;
902 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
903 __update_rq_clock(rq);
905 * Update run-time statistics of the 'current'.
907 update_curr(cfs_rq);
909 return;
912 * Find the rightmost entry in the rbtree:
914 rightmost = __pick_last_entity(cfs_rq);
916 * Already in the rightmost position?
918 if (unlikely(rightmost->vruntime < se->vruntime))
919 return;
922 * Minimally necessary key value to be last in the tree:
923 * Upon rescheduling, sched_class::put_prev_task() will place
924 * 'current' within the tree based on its new key value.
926 se->vruntime = rightmost->vruntime + 1;
930 * wake_idle() will wake a task on an idle cpu if task->cpu is
931 * not idle and an idle cpu is available. The span of cpus to
932 * search starts with cpus closest then further out as needed,
933 * so we always favor a closer, idle cpu.
935 * Returns the CPU we should wake onto.
937 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
938 static int wake_idle(int cpu, struct task_struct *p)
940 cpumask_t tmp;
941 struct sched_domain *sd;
942 int i;
945 * If it is idle, then it is the best cpu to run this task.
947 * This cpu is also the best, if it has more than one task already.
948 * Siblings must be also busy(in most cases) as they didn't already
949 * pickup the extra load from this cpu and hence we need not check
950 * sibling runqueue info. This will avoid the checks and cache miss
951 * penalities associated with that.
953 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
954 return cpu;
956 for_each_domain(cpu, sd) {
957 if (sd->flags & SD_WAKE_IDLE) {
958 cpus_and(tmp, sd->span, p->cpus_allowed);
959 for_each_cpu_mask(i, tmp) {
960 if (idle_cpu(i)) {
961 if (i != task_cpu(p)) {
962 schedstat_inc(p,
963 se.nr_wakeups_idle);
965 return i;
968 } else {
969 break;
972 return cpu;
974 #else
975 static inline int wake_idle(int cpu, struct task_struct *p)
977 return cpu;
979 #endif
981 #ifdef CONFIG_SMP
982 static int select_task_rq_fair(struct task_struct *p, int sync)
984 int cpu, this_cpu;
985 struct rq *rq;
986 struct sched_domain *sd, *this_sd = NULL;
987 int new_cpu;
989 cpu = task_cpu(p);
990 rq = task_rq(p);
991 this_cpu = smp_processor_id();
992 new_cpu = cpu;
994 if (cpu == this_cpu)
995 goto out_set_cpu;
997 for_each_domain(this_cpu, sd) {
998 if (cpu_isset(cpu, sd->span)) {
999 this_sd = sd;
1000 break;
1004 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1005 goto out_set_cpu;
1008 * Check for affine wakeup and passive balancing possibilities.
1010 if (this_sd) {
1011 int idx = this_sd->wake_idx;
1012 unsigned int imbalance;
1013 unsigned long load, this_load;
1015 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1017 load = source_load(cpu, idx);
1018 this_load = target_load(this_cpu, idx);
1020 new_cpu = this_cpu; /* Wake to this CPU if we can */
1022 if (this_sd->flags & SD_WAKE_AFFINE) {
1023 unsigned long tl = this_load;
1024 unsigned long tl_per_task;
1027 * Attract cache-cold tasks on sync wakeups:
1029 if (sync && !task_hot(p, rq->clock, this_sd))
1030 goto out_set_cpu;
1032 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1033 tl_per_task = cpu_avg_load_per_task(this_cpu);
1036 * If sync wakeup then subtract the (maximum possible)
1037 * effect of the currently running task from the load
1038 * of the current CPU:
1040 if (sync)
1041 tl -= current->se.load.weight;
1043 if ((tl <= load &&
1044 tl + target_load(cpu, idx) <= tl_per_task) ||
1045 100*(tl + p->se.load.weight) <= imbalance*load) {
1047 * This domain has SD_WAKE_AFFINE and
1048 * p is cache cold in this domain, and
1049 * there is no bad imbalance.
1051 schedstat_inc(this_sd, ttwu_move_affine);
1052 schedstat_inc(p, se.nr_wakeups_affine);
1053 goto out_set_cpu;
1058 * Start passive balancing when half the imbalance_pct
1059 * limit is reached.
1061 if (this_sd->flags & SD_WAKE_BALANCE) {
1062 if (imbalance*this_load <= 100*load) {
1063 schedstat_inc(this_sd, ttwu_move_balance);
1064 schedstat_inc(p, se.nr_wakeups_passive);
1065 goto out_set_cpu;
1070 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1071 out_set_cpu:
1072 return wake_idle(new_cpu, p);
1074 #endif /* CONFIG_SMP */
1078 * Preempt the current task with a newly woken task if needed:
1080 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1082 struct task_struct *curr = rq->curr;
1083 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1084 struct sched_entity *se = &curr->se, *pse = &p->se;
1085 unsigned long gran;
1087 if (unlikely(rt_prio(p->prio))) {
1088 update_rq_clock(rq);
1089 update_curr(cfs_rq);
1090 resched_task(curr);
1091 return;
1094 * Batch tasks do not preempt (their preemption is driven by
1095 * the tick):
1097 if (unlikely(p->policy == SCHED_BATCH))
1098 return;
1100 if (!sched_feat(WAKEUP_PREEMPT))
1101 return;
1103 while (!is_same_group(se, pse)) {
1104 se = parent_entity(se);
1105 pse = parent_entity(pse);
1108 gran = sysctl_sched_wakeup_granularity;
1110 * More easily preempt - nice tasks, while not making
1111 * it harder for + nice tasks.
1113 if (unlikely(se->load.weight > NICE_0_LOAD))
1114 gran = calc_delta_fair(gran, &se->load);
1116 if (pse->vruntime + gran < se->vruntime)
1117 resched_task(curr);
1120 static struct task_struct *pick_next_task_fair(struct rq *rq)
1122 struct task_struct *p;
1123 struct cfs_rq *cfs_rq = &rq->cfs;
1124 struct sched_entity *se;
1126 if (unlikely(!cfs_rq->nr_running))
1127 return NULL;
1129 do {
1130 se = pick_next_entity(cfs_rq);
1131 cfs_rq = group_cfs_rq(se);
1132 } while (cfs_rq);
1134 p = task_of(se);
1135 hrtick_start_fair(rq, p);
1137 return p;
1141 * Account for a descheduled task:
1143 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1145 struct sched_entity *se = &prev->se;
1146 struct cfs_rq *cfs_rq;
1148 for_each_sched_entity(se) {
1149 cfs_rq = cfs_rq_of(se);
1150 put_prev_entity(cfs_rq, se);
1154 #ifdef CONFIG_SMP
1155 /**************************************************
1156 * Fair scheduling class load-balancing methods:
1160 * Load-balancing iterator. Note: while the runqueue stays locked
1161 * during the whole iteration, the current task might be
1162 * dequeued so the iterator has to be dequeue-safe. Here we
1163 * achieve that by always pre-iterating before returning
1164 * the current task:
1166 static struct task_struct *
1167 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1169 struct task_struct *p;
1171 if (!curr)
1172 return NULL;
1174 p = rb_entry(curr, struct task_struct, se.run_node);
1175 cfs_rq->rb_load_balance_curr = rb_next(curr);
1177 return p;
1180 static struct task_struct *load_balance_start_fair(void *arg)
1182 struct cfs_rq *cfs_rq = arg;
1184 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1187 static struct task_struct *load_balance_next_fair(void *arg)
1189 struct cfs_rq *cfs_rq = arg;
1191 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1194 static unsigned long
1195 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1196 unsigned long max_load_move,
1197 struct sched_domain *sd, enum cpu_idle_type idle,
1198 int *all_pinned, int *this_best_prio)
1200 struct cfs_rq *busy_cfs_rq;
1201 long rem_load_move = max_load_move;
1202 struct rq_iterator cfs_rq_iterator;
1203 unsigned long load_moved;
1205 cfs_rq_iterator.start = load_balance_start_fair;
1206 cfs_rq_iterator.next = load_balance_next_fair;
1208 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1209 #ifdef CONFIG_FAIR_GROUP_SCHED
1210 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1211 unsigned long maxload, task_load, group_weight;
1212 unsigned long thisload, per_task_load;
1213 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1215 task_load = busy_cfs_rq->load.weight;
1216 group_weight = se->load.weight;
1219 * 'group_weight' is contributed by tasks of total weight
1220 * 'task_load'. To move 'rem_load_move' worth of weight only,
1221 * we need to move a maximum task load of:
1223 * maxload = (remload / group_weight) * task_load;
1225 maxload = (rem_load_move * task_load) / group_weight;
1227 if (!maxload || !task_load)
1228 continue;
1230 per_task_load = task_load / busy_cfs_rq->nr_running;
1232 * balance_tasks will try to forcibly move atleast one task if
1233 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1234 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1236 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1237 continue;
1239 /* Disable priority-based load balance */
1240 *this_best_prio = 0;
1241 thisload = this_cfs_rq->load.weight;
1242 #else
1243 # define maxload rem_load_move
1244 #endif
1246 * pass busy_cfs_rq argument into
1247 * load_balance_[start|next]_fair iterators
1249 cfs_rq_iterator.arg = busy_cfs_rq;
1250 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1251 maxload, sd, idle, all_pinned,
1252 this_best_prio,
1253 &cfs_rq_iterator);
1255 #ifdef CONFIG_FAIR_GROUP_SCHED
1257 * load_moved holds the task load that was moved. The
1258 * effective (group) weight moved would be:
1259 * load_moved_eff = load_moved/task_load * group_weight;
1261 load_moved = (group_weight * load_moved) / task_load;
1263 /* Adjust shares on both cpus to reflect load_moved */
1264 group_weight -= load_moved;
1265 set_se_shares(se, group_weight);
1267 se = busy_cfs_rq->tg->se[this_cpu];
1268 if (!thisload)
1269 group_weight = load_moved;
1270 else
1271 group_weight = se->load.weight + load_moved;
1272 set_se_shares(se, group_weight);
1273 #endif
1275 rem_load_move -= load_moved;
1277 if (rem_load_move <= 0)
1278 break;
1281 return max_load_move - rem_load_move;
1284 static int
1285 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1286 struct sched_domain *sd, enum cpu_idle_type idle)
1288 struct cfs_rq *busy_cfs_rq;
1289 struct rq_iterator cfs_rq_iterator;
1291 cfs_rq_iterator.start = load_balance_start_fair;
1292 cfs_rq_iterator.next = load_balance_next_fair;
1294 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1296 * pass busy_cfs_rq argument into
1297 * load_balance_[start|next]_fair iterators
1299 cfs_rq_iterator.arg = busy_cfs_rq;
1300 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1301 &cfs_rq_iterator))
1302 return 1;
1305 return 0;
1307 #endif
1310 * scheduler tick hitting a task of our scheduling class:
1312 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1314 struct cfs_rq *cfs_rq;
1315 struct sched_entity *se = &curr->se;
1317 for_each_sched_entity(se) {
1318 cfs_rq = cfs_rq_of(se);
1319 entity_tick(cfs_rq, se, queued);
1323 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1326 * Share the fairness runtime between parent and child, thus the
1327 * total amount of pressure for CPU stays equal - new tasks
1328 * get a chance to run but frequent forkers are not allowed to
1329 * monopolize the CPU. Note: the parent runqueue is locked,
1330 * the child is not running yet.
1332 static void task_new_fair(struct rq *rq, struct task_struct *p)
1334 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1335 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1336 int this_cpu = smp_processor_id();
1338 sched_info_queued(p);
1340 update_curr(cfs_rq);
1341 place_entity(cfs_rq, se, 1);
1343 /* 'curr' will be NULL if the child belongs to a different group */
1344 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1345 curr && curr->vruntime < se->vruntime) {
1347 * Upon rescheduling, sched_class::put_prev_task() will place
1348 * 'current' within the tree based on its new key value.
1350 swap(curr->vruntime, se->vruntime);
1353 enqueue_task_fair(rq, p, 0);
1354 resched_task(rq->curr);
1358 * Priority of the task has changed. Check to see if we preempt
1359 * the current task.
1361 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1362 int oldprio, int running)
1365 * Reschedule if we are currently running on this runqueue and
1366 * our priority decreased, or if we are not currently running on
1367 * this runqueue and our priority is higher than the current's
1369 if (running) {
1370 if (p->prio > oldprio)
1371 resched_task(rq->curr);
1372 } else
1373 check_preempt_curr(rq, p);
1377 * We switched to the sched_fair class.
1379 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1380 int running)
1383 * We were most likely switched from sched_rt, so
1384 * kick off the schedule if running, otherwise just see
1385 * if we can still preempt the current task.
1387 if (running)
1388 resched_task(rq->curr);
1389 else
1390 check_preempt_curr(rq, p);
1393 /* Account for a task changing its policy or group.
1395 * This routine is mostly called to set cfs_rq->curr field when a task
1396 * migrates between groups/classes.
1398 static void set_curr_task_fair(struct rq *rq)
1400 struct sched_entity *se = &rq->curr->se;
1402 for_each_sched_entity(se)
1403 set_next_entity(cfs_rq_of(se), se);
1407 * All the scheduling class methods:
1409 static const struct sched_class fair_sched_class = {
1410 .next = &idle_sched_class,
1411 .enqueue_task = enqueue_task_fair,
1412 .dequeue_task = dequeue_task_fair,
1413 .yield_task = yield_task_fair,
1414 #ifdef CONFIG_SMP
1415 .select_task_rq = select_task_rq_fair,
1416 #endif /* CONFIG_SMP */
1418 .check_preempt_curr = check_preempt_wakeup,
1420 .pick_next_task = pick_next_task_fair,
1421 .put_prev_task = put_prev_task_fair,
1423 #ifdef CONFIG_SMP
1424 .load_balance = load_balance_fair,
1425 .move_one_task = move_one_task_fair,
1426 #endif
1428 .set_curr_task = set_curr_task_fair,
1429 .task_tick = task_tick_fair,
1430 .task_new = task_new_fair,
1432 .prio_changed = prio_changed_fair,
1433 .switched_to = switched_to_fair,
1436 #ifdef CONFIG_SCHED_DEBUG
1437 static void print_cfs_stats(struct seq_file *m, int cpu)
1439 struct cfs_rq *cfs_rq;
1441 #ifdef CONFIG_FAIR_GROUP_SCHED
1442 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1443 #endif
1444 rcu_read_lock();
1445 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1446 print_cfs_rq(m, cpu, cfs_rq);
1447 rcu_read_unlock();
1449 #endif