x86: prepare for the unification of the cpa code
[wrt350n-kernel.git] / kernel / time / ntp.c
blobe64efaf957e8485b4d233412a69fdf45a1225691
1 /*
2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
25 unsigned long tick_nsec; /* ACTHZ period (nsec) */
26 static u64 tick_length, tick_length_base;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state = TIME_OK; /* clock synchronization status */
37 int time_status = STA_UNSYNC; /* clock status bits */
38 static s64 time_offset; /* time adjustment (ns) */
39 static long time_constant = 2; /* pll time constant */
40 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
41 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
42 long time_freq; /* frequency offset (scaled ppm)*/
43 static long time_reftime; /* time at last adjustment (s) */
44 long time_adjust;
46 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
47 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
48 (s64)CLOCK_TICK_RATE)
50 static void ntp_update_frequency(void)
52 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
53 << TICK_LENGTH_SHIFT;
54 second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
55 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
57 tick_length_base = second_length;
59 do_div(second_length, HZ);
60 tick_nsec = second_length >> TICK_LENGTH_SHIFT;
62 do_div(tick_length_base, NTP_INTERVAL_FREQ);
65 /**
66 * ntp_clear - Clears the NTP state variables
68 * Must be called while holding a write on the xtime_lock
70 void ntp_clear(void)
72 time_adjust = 0; /* stop active adjtime() */
73 time_status |= STA_UNSYNC;
74 time_maxerror = NTP_PHASE_LIMIT;
75 time_esterror = NTP_PHASE_LIMIT;
77 ntp_update_frequency();
79 tick_length = tick_length_base;
80 time_offset = 0;
84 * this routine handles the overflow of the microsecond field
86 * The tricky bits of code to handle the accurate clock support
87 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
88 * They were originally developed for SUN and DEC kernels.
89 * All the kudos should go to Dave for this stuff.
91 void second_overflow(void)
93 long time_adj;
95 /* Bump the maxerror field */
96 time_maxerror += MAXFREQ >> SHIFT_USEC;
97 if (time_maxerror > NTP_PHASE_LIMIT) {
98 time_maxerror = NTP_PHASE_LIMIT;
99 time_status |= STA_UNSYNC;
103 * Leap second processing. If in leap-insert state at the end of the
104 * day, the system clock is set back one second; if in leap-delete
105 * state, the system clock is set ahead one second. The microtime()
106 * routine or external clock driver will insure that reported time is
107 * always monotonic. The ugly divides should be replaced.
109 switch (time_state) {
110 case TIME_OK:
111 if (time_status & STA_INS)
112 time_state = TIME_INS;
113 else if (time_status & STA_DEL)
114 time_state = TIME_DEL;
115 break;
116 case TIME_INS:
117 if (xtime.tv_sec % 86400 == 0) {
118 xtime.tv_sec--;
119 wall_to_monotonic.tv_sec++;
120 time_state = TIME_OOP;
121 printk(KERN_NOTICE "Clock: inserting leap second "
122 "23:59:60 UTC\n");
124 break;
125 case TIME_DEL:
126 if ((xtime.tv_sec + 1) % 86400 == 0) {
127 xtime.tv_sec++;
128 wall_to_monotonic.tv_sec--;
129 time_state = TIME_WAIT;
130 printk(KERN_NOTICE "Clock: deleting leap second "
131 "23:59:59 UTC\n");
133 break;
134 case TIME_OOP:
135 time_state = TIME_WAIT;
136 break;
137 case TIME_WAIT:
138 if (!(time_status & (STA_INS | STA_DEL)))
139 time_state = TIME_OK;
143 * Compute the phase adjustment for the next second. The offset is
144 * reduced by a fixed factor times the time constant.
146 tick_length = tick_length_base;
147 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
148 time_offset -= time_adj;
149 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
151 if (unlikely(time_adjust)) {
152 if (time_adjust > MAX_TICKADJ) {
153 time_adjust -= MAX_TICKADJ;
154 tick_length += MAX_TICKADJ_SCALED;
155 } else if (time_adjust < -MAX_TICKADJ) {
156 time_adjust += MAX_TICKADJ;
157 tick_length -= MAX_TICKADJ_SCALED;
158 } else {
159 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
160 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
161 time_adjust = 0;
167 * Return how long ticks are at the moment, that is, how much time
168 * update_wall_time_one_tick will add to xtime next time we call it
169 * (assuming no calls to do_adjtimex in the meantime).
170 * The return value is in fixed-point nanoseconds shifted by the
171 * specified number of bits to the right of the binary point.
172 * This function has no side-effects.
174 u64 current_tick_length(void)
176 return tick_length;
179 #ifdef CONFIG_GENERIC_CMOS_UPDATE
181 /* Disable the cmos update - used by virtualization and embedded */
182 int no_sync_cmos_clock __read_mostly;
184 static void sync_cmos_clock(unsigned long dummy);
186 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
188 static void sync_cmos_clock(unsigned long dummy)
190 struct timespec now, next;
191 int fail = 1;
194 * If we have an externally synchronized Linux clock, then update
195 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
196 * called as close as possible to 500 ms before the new second starts.
197 * This code is run on a timer. If the clock is set, that timer
198 * may not expire at the correct time. Thus, we adjust...
200 if (!ntp_synced())
202 * Not synced, exit, do not restart a timer (if one is
203 * running, let it run out).
205 return;
207 getnstimeofday(&now);
208 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
209 fail = update_persistent_clock(now);
211 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
212 if (next.tv_nsec <= 0)
213 next.tv_nsec += NSEC_PER_SEC;
215 if (!fail)
216 next.tv_sec = 659;
217 else
218 next.tv_sec = 0;
220 if (next.tv_nsec >= NSEC_PER_SEC) {
221 next.tv_sec++;
222 next.tv_nsec -= NSEC_PER_SEC;
224 mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
227 static void notify_cmos_timer(void)
229 if (!no_sync_cmos_clock)
230 mod_timer(&sync_cmos_timer, jiffies + 1);
233 #else
234 static inline void notify_cmos_timer(void) { }
235 #endif
237 /* adjtimex mainly allows reading (and writing, if superuser) of
238 * kernel time-keeping variables. used by xntpd.
240 int do_adjtimex(struct timex *txc)
242 long mtemp, save_adjust, rem;
243 s64 freq_adj, temp64;
244 int result;
246 /* In order to modify anything, you gotta be super-user! */
247 if (txc->modes && !capable(CAP_SYS_TIME))
248 return -EPERM;
250 /* Now we validate the data before disabling interrupts */
252 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
253 /* singleshot must not be used with any other mode bits */
254 if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
255 txc->modes != ADJ_OFFSET_SS_READ)
256 return -EINVAL;
259 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
260 /* adjustment Offset limited to +- .512 seconds */
261 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
262 return -EINVAL;
264 /* if the quartz is off by more than 10% something is VERY wrong ! */
265 if (txc->modes & ADJ_TICK)
266 if (txc->tick < 900000/USER_HZ ||
267 txc->tick > 1100000/USER_HZ)
268 return -EINVAL;
270 write_seqlock_irq(&xtime_lock);
271 result = time_state; /* mostly `TIME_OK' */
273 /* Save for later - semantics of adjtime is to return old value */
274 save_adjust = time_adjust;
276 #if 0 /* STA_CLOCKERR is never set yet */
277 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
278 #endif
279 /* If there are input parameters, then process them */
280 if (txc->modes)
282 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
283 time_status = (txc->status & ~STA_RONLY) |
284 (time_status & STA_RONLY);
286 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
287 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
288 result = -EINVAL;
289 goto leave;
291 time_freq = ((s64)txc->freq * NSEC_PER_USEC)
292 >> (SHIFT_USEC - SHIFT_NSEC);
295 if (txc->modes & ADJ_MAXERROR) {
296 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
297 result = -EINVAL;
298 goto leave;
300 time_maxerror = txc->maxerror;
303 if (txc->modes & ADJ_ESTERROR) {
304 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
305 result = -EINVAL;
306 goto leave;
308 time_esterror = txc->esterror;
311 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
312 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
313 result = -EINVAL;
314 goto leave;
316 time_constant = min(txc->constant + 4, (long)MAXTC);
319 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
320 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
321 /* adjtime() is independent from ntp_adjtime() */
322 time_adjust = txc->offset;
324 else if (time_status & STA_PLL) {
325 time_offset = txc->offset * NSEC_PER_USEC;
328 * Scale the phase adjustment and
329 * clamp to the operating range.
331 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
332 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
335 * Select whether the frequency is to be controlled
336 * and in which mode (PLL or FLL). Clamp to the operating
337 * range. Ugly multiply/divide should be replaced someday.
340 if (time_status & STA_FREQHOLD || time_reftime == 0)
341 time_reftime = xtime.tv_sec;
342 mtemp = xtime.tv_sec - time_reftime;
343 time_reftime = xtime.tv_sec;
345 freq_adj = time_offset * mtemp;
346 freq_adj = shift_right(freq_adj, time_constant * 2 +
347 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
348 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
349 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
350 if (time_offset < 0) {
351 temp64 = -temp64;
352 do_div(temp64, mtemp);
353 freq_adj -= temp64;
354 } else {
355 do_div(temp64, mtemp);
356 freq_adj += temp64;
359 freq_adj += time_freq;
360 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
361 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
362 time_offset = div_long_long_rem_signed(time_offset,
363 NTP_INTERVAL_FREQ,
364 &rem);
365 time_offset <<= SHIFT_UPDATE;
366 } /* STA_PLL */
367 } /* txc->modes & ADJ_OFFSET */
368 if (txc->modes & ADJ_TICK)
369 tick_usec = txc->tick;
371 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
372 ntp_update_frequency();
373 } /* txc->modes */
374 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
375 result = TIME_ERROR;
377 if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
378 (txc->modes == ADJ_OFFSET_SS_READ))
379 txc->offset = save_adjust;
380 else
381 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
382 NTP_INTERVAL_FREQ / 1000;
383 txc->freq = (time_freq / NSEC_PER_USEC) <<
384 (SHIFT_USEC - SHIFT_NSEC);
385 txc->maxerror = time_maxerror;
386 txc->esterror = time_esterror;
387 txc->status = time_status;
388 txc->constant = time_constant;
389 txc->precision = 1;
390 txc->tolerance = MAXFREQ;
391 txc->tick = tick_usec;
393 /* PPS is not implemented, so these are zero */
394 txc->ppsfreq = 0;
395 txc->jitter = 0;
396 txc->shift = 0;
397 txc->stabil = 0;
398 txc->jitcnt = 0;
399 txc->calcnt = 0;
400 txc->errcnt = 0;
401 txc->stbcnt = 0;
402 write_sequnlock_irq(&xtime_lock);
403 do_gettimeofday(&txc->time);
404 notify_cmos_timer();
405 return(result);