2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
25 unsigned long tick_nsec
; /* ACTHZ period (nsec) */
26 static u64 tick_length
, tick_length_base
;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state
= TIME_OK
; /* clock synchronization status */
37 int time_status
= STA_UNSYNC
; /* clock status bits */
38 static s64 time_offset
; /* time adjustment (ns) */
39 static long time_constant
= 2; /* pll time constant */
40 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
41 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
42 long time_freq
; /* frequency offset (scaled ppm)*/
43 static long time_reftime
; /* time at last adjustment (s) */
46 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
47 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
50 static void ntp_update_frequency(void)
52 u64 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
54 second_length
+= (s64
)CLOCK_TICK_ADJUST
<< TICK_LENGTH_SHIFT
;
55 second_length
+= (s64
)time_freq
<< (TICK_LENGTH_SHIFT
- SHIFT_NSEC
);
57 tick_length_base
= second_length
;
59 do_div(second_length
, HZ
);
60 tick_nsec
= second_length
>> TICK_LENGTH_SHIFT
;
62 do_div(tick_length_base
, NTP_INTERVAL_FREQ
);
66 * ntp_clear - Clears the NTP state variables
68 * Must be called while holding a write on the xtime_lock
72 time_adjust
= 0; /* stop active adjtime() */
73 time_status
|= STA_UNSYNC
;
74 time_maxerror
= NTP_PHASE_LIMIT
;
75 time_esterror
= NTP_PHASE_LIMIT
;
77 ntp_update_frequency();
79 tick_length
= tick_length_base
;
84 * this routine handles the overflow of the microsecond field
86 * The tricky bits of code to handle the accurate clock support
87 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
88 * They were originally developed for SUN and DEC kernels.
89 * All the kudos should go to Dave for this stuff.
91 void second_overflow(void)
95 /* Bump the maxerror field */
96 time_maxerror
+= MAXFREQ
>> SHIFT_USEC
;
97 if (time_maxerror
> NTP_PHASE_LIMIT
) {
98 time_maxerror
= NTP_PHASE_LIMIT
;
99 time_status
|= STA_UNSYNC
;
103 * Leap second processing. If in leap-insert state at the end of the
104 * day, the system clock is set back one second; if in leap-delete
105 * state, the system clock is set ahead one second. The microtime()
106 * routine or external clock driver will insure that reported time is
107 * always monotonic. The ugly divides should be replaced.
109 switch (time_state
) {
111 if (time_status
& STA_INS
)
112 time_state
= TIME_INS
;
113 else if (time_status
& STA_DEL
)
114 time_state
= TIME_DEL
;
117 if (xtime
.tv_sec
% 86400 == 0) {
119 wall_to_monotonic
.tv_sec
++;
120 time_state
= TIME_OOP
;
121 printk(KERN_NOTICE
"Clock: inserting leap second "
126 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
128 wall_to_monotonic
.tv_sec
--;
129 time_state
= TIME_WAIT
;
130 printk(KERN_NOTICE
"Clock: deleting leap second "
135 time_state
= TIME_WAIT
;
138 if (!(time_status
& (STA_INS
| STA_DEL
)))
139 time_state
= TIME_OK
;
143 * Compute the phase adjustment for the next second. The offset is
144 * reduced by a fixed factor times the time constant.
146 tick_length
= tick_length_base
;
147 time_adj
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
148 time_offset
-= time_adj
;
149 tick_length
+= (s64
)time_adj
<< (TICK_LENGTH_SHIFT
- SHIFT_UPDATE
);
151 if (unlikely(time_adjust
)) {
152 if (time_adjust
> MAX_TICKADJ
) {
153 time_adjust
-= MAX_TICKADJ
;
154 tick_length
+= MAX_TICKADJ_SCALED
;
155 } else if (time_adjust
< -MAX_TICKADJ
) {
156 time_adjust
+= MAX_TICKADJ
;
157 tick_length
-= MAX_TICKADJ_SCALED
;
159 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/
160 NTP_INTERVAL_FREQ
) << TICK_LENGTH_SHIFT
;
167 * Return how long ticks are at the moment, that is, how much time
168 * update_wall_time_one_tick will add to xtime next time we call it
169 * (assuming no calls to do_adjtimex in the meantime).
170 * The return value is in fixed-point nanoseconds shifted by the
171 * specified number of bits to the right of the binary point.
172 * This function has no side-effects.
174 u64
current_tick_length(void)
179 #ifdef CONFIG_GENERIC_CMOS_UPDATE
181 /* Disable the cmos update - used by virtualization and embedded */
182 int no_sync_cmos_clock __read_mostly
;
184 static void sync_cmos_clock(unsigned long dummy
);
186 static DEFINE_TIMER(sync_cmos_timer
, sync_cmos_clock
, 0, 0);
188 static void sync_cmos_clock(unsigned long dummy
)
190 struct timespec now
, next
;
194 * If we have an externally synchronized Linux clock, then update
195 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
196 * called as close as possible to 500 ms before the new second starts.
197 * This code is run on a timer. If the clock is set, that timer
198 * may not expire at the correct time. Thus, we adjust...
202 * Not synced, exit, do not restart a timer (if one is
203 * running, let it run out).
207 getnstimeofday(&now
);
208 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
209 fail
= update_persistent_clock(now
);
211 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
;
212 if (next
.tv_nsec
<= 0)
213 next
.tv_nsec
+= NSEC_PER_SEC
;
220 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
222 next
.tv_nsec
-= NSEC_PER_SEC
;
224 mod_timer(&sync_cmos_timer
, jiffies
+ timespec_to_jiffies(&next
));
227 static void notify_cmos_timer(void)
229 if (!no_sync_cmos_clock
)
230 mod_timer(&sync_cmos_timer
, jiffies
+ 1);
234 static inline void notify_cmos_timer(void) { }
237 /* adjtimex mainly allows reading (and writing, if superuser) of
238 * kernel time-keeping variables. used by xntpd.
240 int do_adjtimex(struct timex
*txc
)
242 long mtemp
, save_adjust
, rem
;
243 s64 freq_adj
, temp64
;
246 /* In order to modify anything, you gotta be super-user! */
247 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
250 /* Now we validate the data before disabling interrupts */
252 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
) {
253 /* singleshot must not be used with any other mode bits */
254 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&&
255 txc
->modes
!= ADJ_OFFSET_SS_READ
)
259 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
260 /* adjustment Offset limited to +- .512 seconds */
261 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
264 /* if the quartz is off by more than 10% something is VERY wrong ! */
265 if (txc
->modes
& ADJ_TICK
)
266 if (txc
->tick
< 900000/USER_HZ
||
267 txc
->tick
> 1100000/USER_HZ
)
270 write_seqlock_irq(&xtime_lock
);
271 result
= time_state
; /* mostly `TIME_OK' */
273 /* Save for later - semantics of adjtime is to return old value */
274 save_adjust
= time_adjust
;
276 #if 0 /* STA_CLOCKERR is never set yet */
277 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
279 /* If there are input parameters, then process them */
282 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
283 time_status
= (txc
->status
& ~STA_RONLY
) |
284 (time_status
& STA_RONLY
);
286 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
287 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
291 time_freq
= ((s64
)txc
->freq
* NSEC_PER_USEC
)
292 >> (SHIFT_USEC
- SHIFT_NSEC
);
295 if (txc
->modes
& ADJ_MAXERROR
) {
296 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
300 time_maxerror
= txc
->maxerror
;
303 if (txc
->modes
& ADJ_ESTERROR
) {
304 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
308 time_esterror
= txc
->esterror
;
311 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
312 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
316 time_constant
= min(txc
->constant
+ 4, (long)MAXTC
);
319 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
320 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
321 /* adjtime() is independent from ntp_adjtime() */
322 time_adjust
= txc
->offset
;
324 else if (time_status
& STA_PLL
) {
325 time_offset
= txc
->offset
* NSEC_PER_USEC
;
328 * Scale the phase adjustment and
329 * clamp to the operating range.
331 time_offset
= min(time_offset
, (s64
)MAXPHASE
* NSEC_PER_USEC
);
332 time_offset
= max(time_offset
, (s64
)-MAXPHASE
* NSEC_PER_USEC
);
335 * Select whether the frequency is to be controlled
336 * and in which mode (PLL or FLL). Clamp to the operating
337 * range. Ugly multiply/divide should be replaced someday.
340 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
341 time_reftime
= xtime
.tv_sec
;
342 mtemp
= xtime
.tv_sec
- time_reftime
;
343 time_reftime
= xtime
.tv_sec
;
345 freq_adj
= time_offset
* mtemp
;
346 freq_adj
= shift_right(freq_adj
, time_constant
* 2 +
347 (SHIFT_PLL
+ 2) * 2 - SHIFT_NSEC
);
348 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
349 temp64
= time_offset
<< (SHIFT_NSEC
- SHIFT_FLL
);
350 if (time_offset
< 0) {
352 do_div(temp64
, mtemp
);
355 do_div(temp64
, mtemp
);
359 freq_adj
+= time_freq
;
360 freq_adj
= min(freq_adj
, (s64
)MAXFREQ_NSEC
);
361 time_freq
= max(freq_adj
, (s64
)-MAXFREQ_NSEC
);
362 time_offset
= div_long_long_rem_signed(time_offset
,
365 time_offset
<<= SHIFT_UPDATE
;
367 } /* txc->modes & ADJ_OFFSET */
368 if (txc
->modes
& ADJ_TICK
)
369 tick_usec
= txc
->tick
;
371 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
372 ntp_update_frequency();
374 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0)
377 if ((txc
->modes
== ADJ_OFFSET_SINGLESHOT
) ||
378 (txc
->modes
== ADJ_OFFSET_SS_READ
))
379 txc
->offset
= save_adjust
;
381 txc
->offset
= ((long)shift_right(time_offset
, SHIFT_UPDATE
)) *
382 NTP_INTERVAL_FREQ
/ 1000;
383 txc
->freq
= (time_freq
/ NSEC_PER_USEC
) <<
384 (SHIFT_USEC
- SHIFT_NSEC
);
385 txc
->maxerror
= time_maxerror
;
386 txc
->esterror
= time_esterror
;
387 txc
->status
= time_status
;
388 txc
->constant
= time_constant
;
390 txc
->tolerance
= MAXFREQ
;
391 txc
->tick
= tick_usec
;
393 /* PPS is not implemented, so these are zero */
402 write_sequnlock_irq(&xtime_lock
);
403 do_gettimeofday(&txc
->time
);