2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa
= 0;
93 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
97 module_param(ata_probe_timeout
, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
100 int libata_noacpi
= 1;
101 module_param_named(noacpi
, libata_noacpi
, int, 0444);
102 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION
);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
125 fis
[0] = 0x27; /* Register - Host to Device FIS */
126 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis
[2] = tf
->command
;
129 fis
[3] = tf
->feature
;
136 fis
[8] = tf
->hob_lbal
;
137 fis
[9] = tf
->hob_lbam
;
138 fis
[10] = tf
->hob_lbah
;
139 fis
[11] = tf
->hob_feature
;
142 fis
[13] = tf
->hob_nsect
;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
165 tf
->command
= fis
[2]; /* status */
166 tf
->feature
= fis
[3]; /* error */
173 tf
->hob_lbal
= fis
[8];
174 tf
->hob_lbam
= fis
[9];
175 tf
->hob_lbah
= fis
[10];
178 tf
->hob_nsect
= fis
[13];
181 static const u8 ata_rw_cmds
[] = {
185 ATA_CMD_READ_MULTI_EXT
,
186 ATA_CMD_WRITE_MULTI_EXT
,
190 ATA_CMD_WRITE_MULTI_FUA_EXT
,
194 ATA_CMD_PIO_READ_EXT
,
195 ATA_CMD_PIO_WRITE_EXT
,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
222 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
226 int index
, fua
, lba48
, write
;
228 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
229 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
230 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
232 if (dev
->flags
& ATA_DFLAG_PIO
) {
233 tf
->protocol
= ATA_PROT_PIO
;
234 index
= dev
->multi_count
? 0 : 8;
235 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
236 /* Unable to use DMA due to host limitation */
237 tf
->protocol
= ATA_PROT_PIO
;
238 index
= dev
->multi_count
? 0 : 8;
240 tf
->protocol
= ATA_PROT_DMA
;
244 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
265 * Block address read from @tf.
267 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
271 if (tf
->flags
& ATA_TFLAG_LBA
) {
272 if (tf
->flags
& ATA_TFLAG_LBA48
) {
273 block
|= (u64
)tf
->hob_lbah
<< 40;
274 block
|= (u64
)tf
->hob_lbam
<< 32;
275 block
|= tf
->hob_lbal
<< 24;
277 block
|= (tf
->device
& 0xf) << 24;
279 block
|= tf
->lbah
<< 16;
280 block
|= tf
->lbam
<< 8;
285 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
286 head
= tf
->device
& 0xf;
289 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
316 u64 block
, u32 n_block
, unsigned int tf_flags
,
319 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
320 tf
->flags
|= tf_flags
;
322 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
324 if (!lba_48_ok(block
, n_block
))
327 tf
->protocol
= ATA_PROT_NCQ
;
328 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
330 if (tf
->flags
& ATA_TFLAG_WRITE
)
331 tf
->command
= ATA_CMD_FPDMA_WRITE
;
333 tf
->command
= ATA_CMD_FPDMA_READ
;
335 tf
->nsect
= tag
<< 3;
336 tf
->hob_feature
= (n_block
>> 8) & 0xff;
337 tf
->feature
= n_block
& 0xff;
339 tf
->hob_lbah
= (block
>> 40) & 0xff;
340 tf
->hob_lbam
= (block
>> 32) & 0xff;
341 tf
->hob_lbal
= (block
>> 24) & 0xff;
342 tf
->lbah
= (block
>> 16) & 0xff;
343 tf
->lbam
= (block
>> 8) & 0xff;
344 tf
->lbal
= block
& 0xff;
347 if (tf
->flags
& ATA_TFLAG_FUA
)
348 tf
->device
|= 1 << 7;
349 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
350 tf
->flags
|= ATA_TFLAG_LBA
;
352 if (lba_28_ok(block
, n_block
)) {
354 tf
->device
|= (block
>> 24) & 0xf;
355 } else if (lba_48_ok(block
, n_block
)) {
356 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
360 tf
->flags
|= ATA_TFLAG_LBA48
;
362 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
364 tf
->hob_lbah
= (block
>> 40) & 0xff;
365 tf
->hob_lbam
= (block
>> 32) & 0xff;
366 tf
->hob_lbal
= (block
>> 24) & 0xff;
368 /* request too large even for LBA48 */
371 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
374 tf
->nsect
= n_block
& 0xff;
376 tf
->lbah
= (block
>> 16) & 0xff;
377 tf
->lbam
= (block
>> 8) & 0xff;
378 tf
->lbal
= block
& 0xff;
380 tf
->device
|= ATA_LBA
;
383 u32 sect
, head
, cyl
, track
;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block
, n_block
))
389 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
392 /* Convert LBA to CHS */
393 track
= (u32
)block
/ dev
->sectors
;
394 cyl
= track
/ dev
->heads
;
395 head
= track
% dev
->heads
;
396 sect
= (u32
)block
% dev
->sectors
+ 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32
)block
, track
, cyl
, head
, sect
);
401 /* Check whether the converted CHS can fit.
405 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
408 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
434 unsigned int mwdma_mask
,
435 unsigned int udma_mask
)
437 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
438 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
439 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask
,
453 unsigned int *pio_mask
,
454 unsigned int *mwdma_mask
,
455 unsigned int *udma_mask
)
458 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
460 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
462 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
465 static const struct ata_xfer_ent
{
469 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
470 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
471 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
486 * Matching XFER_* value, 0 if no match found.
488 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
490 int highbit
= fls(xfer_mask
) - 1;
491 const struct ata_xfer_ent
*ent
;
493 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
494 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
495 return ent
->base
+ highbit
- ent
->shift
;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
513 const struct ata_xfer_ent
*ent
;
515 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
516 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
517 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
535 const struct ata_xfer_ent
*ent
;
537 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
538 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask
)
559 static const char * const xfer_mode_str
[] = {
583 highbit
= fls(xfer_mask
) - 1;
584 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
585 return xfer_mode_str
[highbit
];
589 static const char *sata_spd_string(unsigned int spd
)
591 static const char * const spd_str
[] = {
596 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
598 return spd_str
[spd
- 1];
601 void ata_dev_disable(struct ata_device
*dev
)
603 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
604 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
605 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
629 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
631 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
634 ap
->ops
->dev_select(ap
, device
);
636 iowrite8(0x55, ioaddr
->nsect_addr
);
637 iowrite8(0xaa, ioaddr
->lbal_addr
);
639 iowrite8(0xaa, ioaddr
->nsect_addr
);
640 iowrite8(0x55, ioaddr
->lbal_addr
);
642 iowrite8(0x55, ioaddr
->nsect_addr
);
643 iowrite8(0xaa, ioaddr
->lbal_addr
);
645 nsect
= ioread8(ioaddr
->nsect_addr
);
646 lbal
= ioread8(ioaddr
->lbal_addr
);
648 if ((nsect
== 0x55) && (lbal
== 0xaa))
649 return 1; /* we found a device */
651 return 0; /* nothing found */
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
670 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
677 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
678 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
683 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
684 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI
;
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN
;
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
716 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
718 struct ata_taskfile tf
;
722 ap
->ops
->dev_select(ap
, device
);
724 memset(&tf
, 0, sizeof(tf
));
726 ap
->ops
->tf_read(ap
, &tf
);
731 /* see if device passed diags: if master then continue and warn later */
732 if (err
== 0 && device
== 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
737 else if ((device
== 0) && (err
== 0x81))
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf
);
745 if (class == ATA_DEV_UNKNOWN
)
747 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
767 void ata_id_string(const u16
*id
, unsigned char *s
,
768 unsigned int ofs
, unsigned int len
)
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
800 void ata_id_c_string(const u16
*id
, unsigned char *s
,
801 unsigned int ofs
, unsigned int len
)
807 ata_id_string(id
, s
, ofs
, len
- 1);
809 p
= s
+ strnlen(s
, len
- 1);
810 while (p
> s
&& p
[-1] == ' ')
815 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
819 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
820 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
821 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
822 sectors
|= (tf
->lbah
& 0xff) << 16;
823 sectors
|= (tf
->lbam
& 0xff) << 8;
824 sectors
|= (tf
->lbal
& 0xff);
829 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
833 sectors
|= (tf
->device
& 0x0f) << 24;
834 sectors
|= (tf
->lbah
& 0xff) << 16;
835 sectors
|= (tf
->lbam
& 0xff) << 8;
836 sectors
|= (tf
->lbal
& 0xff);
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
849 static u64
ata_read_native_max_address_ext(struct ata_device
*dev
)
852 struct ata_taskfile tf
;
854 ata_tf_init(dev
, &tf
);
856 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
857 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
858 tf
.protocol
|= ATA_PROT_NODATA
;
861 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
865 return ata_tf_to_lba48(&tf
);
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
876 static u64
ata_read_native_max_address(struct ata_device
*dev
)
879 struct ata_taskfile tf
;
881 ata_tf_init(dev
, &tf
);
883 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
884 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
885 tf
.protocol
|= ATA_PROT_NODATA
;
888 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
892 return ata_tf_to_lba(&tf
);
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
904 static u64
ata_set_native_max_address_ext(struct ata_device
*dev
, u64 new_sectors
)
907 struct ata_taskfile tf
;
911 ata_tf_init(dev
, &tf
);
913 tf
.command
= ATA_CMD_SET_MAX_EXT
;
914 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
915 tf
.protocol
|= ATA_PROT_NODATA
;
918 tf
.lbal
= (new_sectors
>> 0) & 0xff;
919 tf
.lbam
= (new_sectors
>> 8) & 0xff;
920 tf
.lbah
= (new_sectors
>> 16) & 0xff;
922 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
923 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
924 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
926 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
930 return ata_tf_to_lba48(&tf
);
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
942 static u64
ata_set_native_max_address(struct ata_device
*dev
, u64 new_sectors
)
945 struct ata_taskfile tf
;
949 ata_tf_init(dev
, &tf
);
951 tf
.command
= ATA_CMD_SET_MAX
;
952 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
953 tf
.protocol
|= ATA_PROT_NODATA
;
955 tf
.lbal
= (new_sectors
>> 0) & 0xff;
956 tf
.lbam
= (new_sectors
>> 8) & 0xff;
957 tf
.lbah
= (new_sectors
>> 16) & 0xff;
958 tf
.device
|= ((new_sectors
>> 24) & 0x0f) | 0x40;
960 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
964 return ata_tf_to_lba(&tf
);
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
976 static u64
ata_hpa_resize(struct ata_device
*dev
)
978 u64 sectors
= dev
->n_sectors
;
981 if (ata_id_has_lba48(dev
->id
))
982 hpa_sectors
= ata_read_native_max_address_ext(dev
);
984 hpa_sectors
= ata_read_native_max_address(dev
);
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev
, KERN_INFO
, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__
, (long long)sectors
, (long long)hpa_sectors
);
991 if (hpa_sectors
> sectors
) {
992 ata_dev_printk(dev
, KERN_INFO
,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors
, (long long)hpa_sectors
);
998 if (ata_ignore_hpa
) {
999 if (ata_id_has_lba48(dev
->id
))
1000 hpa_sectors
= ata_set_native_max_address_ext(dev
, hpa_sectors
);
1002 hpa_sectors
= ata_set_native_max_address(dev
,
1006 ata_dev_printk(dev
, KERN_INFO
, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors
);
1016 static u64
ata_id_n_sectors(const u16
*id
)
1018 if (ata_id_has_lba(id
)) {
1019 if (ata_id_has_lba48(id
))
1020 return ata_id_u64(id
, 100);
1022 return ata_id_u32(id
, 60);
1024 if (ata_id_current_chs_valid(id
))
1025 return ata_id_u32(id
, 57);
1027 return id
[1] * id
[3] * id
[6];
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1046 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
1051 /* Pack the DMA modes */
1052 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
1053 if (dev
->id
[53] & 0x04)
1054 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
1056 /* Select the mode in use */
1057 mode
= ata_xfer_mask2mode(mask
);
1060 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
1061 ata_mode_string(mask
));
1063 /* SWDMA perhaps ? */
1065 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
1068 /* Configure the device reporting */
1069 dev
->xfer_mode
= mode
;
1070 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1078 * This function performs no actual function.
1080 * May be used as the dev_select() entry in ata_port_operations.
1085 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1099 * May be used as the dev_select() entry in ata_port_operations.
1105 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
1110 tmp
= ATA_DEVICE_OBS
;
1112 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1114 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1115 ata_pause(ap
); /* needed; also flushes, for mmio */
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1137 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1138 unsigned int wait
, unsigned int can_sleep
)
1140 if (ata_msg_probe(ap
))
1141 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device
, wait
);
1147 ap
->ops
->dev_select(ap
, device
);
1150 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1167 static inline void ata_dump_id(const u16
*id
)
1169 DPRINTK("49==0x%04x "
1179 DPRINTK("80==0x%04x "
1189 DPRINTK("88==0x%04x "
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1202 * FIXME: pre IDE drive timing (do we care ?).
1210 static unsigned int ata_id_xfermask(const u16
*id
)
1212 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1216 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1224 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1225 if (mode
< 5) /* Valid PIO range */
1226 pio_mask
= (2 << mode
) - 1;
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1238 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1240 if (ata_id_is_cfa(id
)) {
1242 * Process compact flash extended modes
1244 int pio
= id
[163] & 0x7;
1245 int dma
= (id
[163] >> 3) & 7;
1248 pio_mask
|= (1 << 5);
1250 pio_mask
|= (1 << 6);
1252 mwdma_mask
|= (1 << 3);
1254 mwdma_mask
|= (1 << 4);
1258 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1259 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1261 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * Inherited from caller.
1283 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1284 unsigned long delay
)
1288 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1291 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1292 ap
->port_task_data
= data
;
1294 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1296 /* rc == 0 means that another user is using port task */
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1308 * Kernel thread context (may sleep)
1310 void ata_port_flush_task(struct ata_port
*ap
)
1312 unsigned long flags
;
1316 spin_lock_irqsave(ap
->lock
, flags
);
1317 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1318 spin_unlock_irqrestore(ap
->lock
, flags
);
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap
->port_task
.work
); /* akpm: seems unneeded */
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1328 if (!cancel_delayed_work(&ap
->port_task
)) {
1329 if (ata_msg_ctl(ap
))
1330 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1332 cancel_work_sync(&ap
->port_task
.work
);
1335 spin_lock_irqsave(ap
->lock
, flags
);
1336 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1337 spin_unlock_irqrestore(ap
->lock
, flags
);
1339 if (ata_msg_ctl(ap
))
1340 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1343 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1345 struct completion
*waiting
= qc
->private_data
;
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1366 * None. Should be called with kernel context, might sleep.
1369 * Zero on success, AC_ERR_* mask on failure
1371 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1372 struct ata_taskfile
*tf
, const u8
*cdb
,
1373 int dma_dir
, struct scatterlist
*sg
,
1374 unsigned int n_elem
)
1376 struct ata_port
*ap
= dev
->ap
;
1377 u8 command
= tf
->command
;
1378 struct ata_queued_cmd
*qc
;
1379 unsigned int tag
, preempted_tag
;
1380 u32 preempted_sactive
, preempted_qc_active
;
1381 DECLARE_COMPLETION_ONSTACK(wait
);
1382 unsigned long flags
;
1383 unsigned int err_mask
;
1386 spin_lock_irqsave(ap
->lock
, flags
);
1388 /* no internal command while frozen */
1389 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1390 spin_unlock_irqrestore(ap
->lock
, flags
);
1391 return AC_ERR_SYSTEM
;
1394 /* initialize internal qc */
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1401 if (ap
->ops
->error_handler
)
1402 tag
= ATA_TAG_INTERNAL
;
1406 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1408 qc
= __ata_qc_from_tag(ap
, tag
);
1416 preempted_tag
= ap
->active_tag
;
1417 preempted_sactive
= ap
->sactive
;
1418 preempted_qc_active
= ap
->qc_active
;
1419 ap
->active_tag
= ATA_TAG_POISON
;
1423 /* prepare & issue qc */
1426 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1427 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1428 qc
->dma_dir
= dma_dir
;
1429 if (dma_dir
!= DMA_NONE
) {
1430 unsigned int i
, buflen
= 0;
1432 for (i
= 0; i
< n_elem
; i
++)
1433 buflen
+= sg
[i
].length
;
1435 ata_sg_init(qc
, sg
, n_elem
);
1436 qc
->nbytes
= buflen
;
1439 qc
->private_data
= &wait
;
1440 qc
->complete_fn
= ata_qc_complete_internal
;
1444 spin_unlock_irqrestore(ap
->lock
, flags
);
1446 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1448 ata_port_flush_task(ap
);
1451 spin_lock_irqsave(ap
->lock
, flags
);
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1458 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1459 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1461 if (ap
->ops
->error_handler
)
1462 ata_port_freeze(ap
);
1464 ata_qc_complete(qc
);
1466 if (ata_msg_warn(ap
))
1467 ata_dev_printk(dev
, KERN_WARNING
,
1468 "qc timeout (cmd 0x%x)\n", command
);
1471 spin_unlock_irqrestore(ap
->lock
, flags
);
1474 /* do post_internal_cmd */
1475 if (ap
->ops
->post_internal_cmd
)
1476 ap
->ops
->post_internal_cmd(qc
);
1478 /* perform minimal error analysis */
1479 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1480 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1481 qc
->err_mask
|= AC_ERR_DEV
;
1484 qc
->err_mask
|= AC_ERR_OTHER
;
1486 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1487 qc
->err_mask
&= ~AC_ERR_OTHER
;
1491 spin_lock_irqsave(ap
->lock
, flags
);
1493 *tf
= qc
->result_tf
;
1494 err_mask
= qc
->err_mask
;
1497 ap
->active_tag
= preempted_tag
;
1498 ap
->sactive
= preempted_sactive
;
1499 ap
->qc_active
= preempted_qc_active
;
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1510 * Kill the following code as soon as those drivers are fixed.
1512 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1513 err_mask
|= AC_ERR_SYSTEM
;
1517 spin_unlock_irqrestore(ap
->lock
, flags
);
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1535 * None. Should be called with kernel context, might sleep.
1538 * Zero on success, AC_ERR_* mask on failure
1540 unsigned ata_exec_internal(struct ata_device
*dev
,
1541 struct ata_taskfile
*tf
, const u8
*cdb
,
1542 int dma_dir
, void *buf
, unsigned int buflen
)
1544 struct scatterlist
*psg
= NULL
, sg
;
1545 unsigned int n_elem
= 0;
1547 if (dma_dir
!= DMA_NONE
) {
1549 sg_init_one(&sg
, buf
, buflen
);
1554 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1566 * Kernel thread context (may sleep).
1569 * Zero on success, AC_ERR_* mask on failure
1571 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1573 struct ata_taskfile tf
;
1575 ata_tf_init(dev
, &tf
);
1578 tf
.flags
|= ATA_TFLAG_DEVICE
;
1579 tf
.protocol
= ATA_PROT_NODATA
;
1581 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1585 * ata_pio_need_iordy - check if iordy needed
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1592 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1598 /* PIO3 and higher it is mandatory */
1599 if (adev
->pio_mode
> XFER_PIO_2
)
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev
->id
))
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1615 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1619 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio
> 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO
;
1625 return 7 << ATA_SHIFT_PIO
;
1628 return 3 << ATA_SHIFT_PIO
;
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1644 * Kernel thread context (may sleep)
1647 * 0 on success, -errno otherwise.
1649 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1650 unsigned int flags
, u16
*id
)
1652 struct ata_port
*ap
= dev
->ap
;
1653 unsigned int class = *p_class
;
1654 struct ata_taskfile tf
;
1655 unsigned int err_mask
= 0;
1657 int may_fallback
= 1, tried_spinup
= 0;
1660 if (ata_msg_ctl(ap
))
1661 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1663 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1665 ata_tf_init(dev
, &tf
);
1669 tf
.command
= ATA_CMD_ID_ATA
;
1672 tf
.command
= ATA_CMD_ID_ATAPI
;
1676 reason
= "unsupported class";
1680 tf
.protocol
= ATA_PROT_PIO
;
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1685 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1690 tf
.flags
|= ATA_TFLAG_POLLING
;
1692 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1693 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1695 if (err_mask
& AC_ERR_NODEV_HINT
) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap
->print_id
, dev
->devno
);
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1706 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1709 if (class == ATA_DEV_ATA
)
1710 class = ATA_DEV_ATAPI
;
1712 class = ATA_DEV_ATA
;
1717 reason
= "I/O error";
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1726 swap_buf_le16(id
, ATA_ID_WORDS
);
1730 reason
= "device reports illegal type";
1732 if (class == ATA_DEV_ATA
) {
1733 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1736 if (ata_id_is_ata(id
))
1740 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1747 ata_tf_init(dev
, &tf
);
1748 tf
.command
= ATA_CMD_SET_FEATURES
;
1749 tf
.feature
= SETFEATURES_SPINUP
;
1750 tf
.protocol
= ATA_PROT_NODATA
;
1751 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1752 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1755 reason
= "SPINUP failed";
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1762 if (id
[2] == 0x37c8)
1766 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1771 * INITIALIZE DEVICE PARAMETERS
1773 * Some drives were very specific about that exact sequence.
1775 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1776 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1779 reason
= "INIT_DEV_PARAMS failed";
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1786 flags
&= ~ATA_READID_POSTRESET
;
1796 if (ata_msg_warn(ap
))
1797 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1802 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1804 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1807 static void ata_dev_config_ncq(struct ata_device
*dev
,
1808 char *desc
, size_t desc_sz
)
1810 struct ata_port
*ap
= dev
->ap
;
1811 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1813 if (!ata_id_has_ncq(dev
->id
)) {
1817 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1818 snprintf(desc
, desc_sz
, "NCQ (not used)");
1821 if (ap
->flags
& ATA_FLAG_NCQ
) {
1822 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1823 dev
->flags
|= ATA_DFLAG_NCQ
;
1826 if (hdepth
>= ddepth
)
1827 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1829 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1840 * Kernel thread context (may sleep)
1843 * 0 on success, -errno otherwise
1845 int ata_dev_configure(struct ata_device
*dev
)
1847 struct ata_port
*ap
= dev
->ap
;
1848 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1849 const u16
*id
= dev
->id
;
1850 unsigned int xfer_mask
;
1851 char revbuf
[7]; /* XYZ-99\0 */
1852 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1853 char modelbuf
[ATA_ID_PROD_LEN
+1];
1856 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1857 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1862 if (ata_msg_probe(ap
))
1863 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1866 rc
= ata_acpi_push_id(dev
);
1868 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap
);
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap
))
1877 ata_dev_printk(dev
, KERN_DEBUG
,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1881 id
[49], id
[82], id
[83], id
[84],
1882 id
[85], id
[86], id
[87], id
[88]);
1884 /* initialize to-be-configured parameters */
1885 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1886 dev
->max_sectors
= 0;
1894 * common ATA, ATAPI feature tests
1897 /* find max transfer mode; for printk only */
1898 xfer_mask
= ata_id_xfermask(id
);
1900 if (ata_msg_probe(ap
))
1903 /* ATA-specific feature tests */
1904 if (dev
->class == ATA_DEV_ATA
) {
1905 if (ata_id_is_cfa(id
)) {
1906 if (id
[162] & 1) /* CPRM may make this media unusable */
1907 ata_dev_printk(dev
, KERN_WARNING
,
1908 "supports DRM functions and may "
1909 "not be fully accessable.\n");
1910 snprintf(revbuf
, 7, "CFA");
1913 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1915 dev
->n_sectors
= ata_id_n_sectors(id
);
1917 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1918 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1921 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1924 if (dev
->id
[59] & 0x100)
1925 dev
->multi_count
= dev
->id
[59] & 0xff;
1927 if (ata_id_has_lba(id
)) {
1928 const char *lba_desc
;
1932 dev
->flags
|= ATA_DFLAG_LBA
;
1933 if (ata_id_has_lba48(id
)) {
1934 dev
->flags
|= ATA_DFLAG_LBA48
;
1937 if (dev
->n_sectors
>= (1UL << 28) &&
1938 ata_id_has_flush_ext(id
))
1939 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1942 if (ata_id_hpa_enabled(dev
->id
))
1943 dev
->n_sectors
= ata_hpa_resize(dev
);
1946 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap
) && print_info
) {
1950 ata_dev_printk(dev
, KERN_INFO
,
1951 "%s: %s, %s, max %s\n",
1952 revbuf
, modelbuf
, fwrevbuf
,
1953 ata_mode_string(xfer_mask
));
1954 ata_dev_printk(dev
, KERN_INFO
,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev
->n_sectors
,
1957 dev
->multi_count
, lba_desc
, ncq_desc
);
1962 /* Default translation */
1963 dev
->cylinders
= id
[1];
1965 dev
->sectors
= id
[6];
1967 if (ata_id_current_chs_valid(id
)) {
1968 /* Current CHS translation is valid. */
1969 dev
->cylinders
= id
[54];
1970 dev
->heads
= id
[55];
1971 dev
->sectors
= id
[56];
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap
) && print_info
) {
1976 ata_dev_printk(dev
, KERN_INFO
,
1977 "%s: %s, %s, max %s\n",
1978 revbuf
, modelbuf
, fwrevbuf
,
1979 ata_mode_string(xfer_mask
));
1980 ata_dev_printk(dev
, KERN_INFO
,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev
->n_sectors
,
1983 dev
->multi_count
, dev
->cylinders
,
1984 dev
->heads
, dev
->sectors
);
1991 /* ATAPI-specific feature tests */
1992 else if (dev
->class == ATA_DEV_ATAPI
) {
1993 char *cdb_intr_string
= "";
1995 rc
= atapi_cdb_len(id
);
1996 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1997 if (ata_msg_warn(ap
))
1998 ata_dev_printk(dev
, KERN_WARNING
,
1999 "unsupported CDB len\n");
2003 dev
->cdb_len
= (unsigned int) rc
;
2005 if (ata_id_cdb_intr(dev
->id
)) {
2006 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2007 cdb_intr_string
= ", CDB intr";
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap
) && print_info
)
2012 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
2013 ata_mode_string(xfer_mask
),
2017 /* determine max_sectors */
2018 dev
->max_sectors
= ATA_MAX_SECTORS
;
2019 if (dev
->flags
& ATA_DFLAG_LBA48
)
2020 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2022 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2023 /* Let the user know. We don't want to disallow opens for
2024 rescue purposes, or in case the vendor is just a blithering
2027 ata_dev_printk(dev
, KERN_WARNING
,
2028 "Drive reports diagnostics failure. This may indicate a drive\n");
2029 ata_dev_printk(dev
, KERN_WARNING
,
2030 "fault or invalid emulation. Contact drive vendor for information.\n");
2034 /* limit bridge transfers to udma5, 200 sectors */
2035 if (ata_dev_knobble(dev
)) {
2036 if (ata_msg_drv(ap
) && print_info
)
2037 ata_dev_printk(dev
, KERN_INFO
,
2038 "applying bridge limits\n");
2039 dev
->udma_mask
&= ATA_UDMA5
;
2040 dev
->max_sectors
= ATA_MAX_SECTORS
;
2043 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_MAX_SEC_128
)
2044 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2047 /* limit ATAPI DMA to R/W commands only */
2048 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_DMA_RW_ONLY
)
2049 dev
->horkage
|= ATA_HORKAGE_DMA_RW_ONLY
;
2051 if (ap
->ops
->dev_config
)
2052 ap
->ops
->dev_config(dev
);
2054 if (ata_msg_probe(ap
))
2055 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__
, ata_chk_status(ap
));
2060 if (ata_msg_probe(ap
))
2061 ata_dev_printk(dev
, KERN_DEBUG
,
2062 "%s: EXIT, err\n", __FUNCTION__
);
2067 * ata_cable_40wire - return 40 wire cable type
2070 * Helper method for drivers which want to hardwire 40 wire cable
2074 int ata_cable_40wire(struct ata_port
*ap
)
2076 return ATA_CBL_PATA40
;
2080 * ata_cable_80wire - return 80 wire cable type
2083 * Helper method for drivers which want to hardwire 80 wire cable
2087 int ata_cable_80wire(struct ata_port
*ap
)
2089 return ATA_CBL_PATA80
;
2093 * ata_cable_unknown - return unknown PATA cable.
2096 * Helper method for drivers which have no PATA cable detection.
2099 int ata_cable_unknown(struct ata_port
*ap
)
2101 return ATA_CBL_PATA_UNK
;
2105 * ata_cable_sata - return SATA cable type
2108 * Helper method for drivers which have SATA cables
2111 int ata_cable_sata(struct ata_port
*ap
)
2113 return ATA_CBL_SATA
;
2117 * ata_bus_probe - Reset and probe ATA bus
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2125 * PCI/etc. bus probe sem.
2128 * Zero on success, negative errno otherwise.
2131 int ata_bus_probe(struct ata_port
*ap
)
2133 unsigned int classes
[ATA_MAX_DEVICES
];
2134 int tries
[ATA_MAX_DEVICES
];
2136 struct ata_device
*dev
;
2140 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2141 tries
[i
] = ATA_PROBE_MAX_TRIES
;
2144 /* reset and determine device classes */
2145 ap
->ops
->phy_reset(ap
);
2147 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2148 dev
= &ap
->device
[i
];
2150 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2151 dev
->class != ATA_DEV_UNKNOWN
)
2152 classes
[dev
->devno
] = dev
->class;
2154 classes
[dev
->devno
] = ATA_DEV_NONE
;
2156 dev
->class = ATA_DEV_UNKNOWN
;
2161 /* after the reset the device state is PIO 0 and the controller
2162 state is undefined. Record the mode */
2164 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2165 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
2167 /* read IDENTIFY page and configure devices. We have to do the identify
2168 specific sequence bass-ackwards so that PDIAG- is released by
2171 for (i
= ATA_MAX_DEVICES
- 1; i
>= 0; i
--) {
2172 dev
= &ap
->device
[i
];
2175 dev
->class = classes
[i
];
2177 if (!ata_dev_enabled(dev
))
2180 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2186 /* Now ask for the cable type as PDIAG- should have been released */
2187 if (ap
->ops
->cable_detect
)
2188 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2190 /* After the identify sequence we can now set up the devices. We do
2191 this in the normal order so that the user doesn't get confused */
2193 for(i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2194 dev
= &ap
->device
[i
];
2195 if (!ata_dev_enabled(dev
))
2198 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2199 rc
= ata_dev_configure(dev
);
2200 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2205 /* configure transfer mode */
2206 rc
= ata_set_mode(ap
, &dev
);
2210 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2211 if (ata_dev_enabled(&ap
->device
[i
]))
2214 /* no device present, disable port */
2215 ata_port_disable(ap
);
2216 ap
->ops
->port_disable(ap
);
2220 tries
[dev
->devno
]--;
2224 /* eeek, something went very wrong, give up */
2225 tries
[dev
->devno
] = 0;
2229 /* give it just one more chance */
2230 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2232 if (tries
[dev
->devno
] == 1) {
2233 /* This is the last chance, better to slow
2234 * down than lose it.
2236 sata_down_spd_limit(ap
);
2237 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2241 if (!tries
[dev
->devno
])
2242 ata_dev_disable(dev
);
2248 * ata_port_probe - Mark port as enabled
2249 * @ap: Port for which we indicate enablement
2251 * Modify @ap data structure such that the system
2252 * thinks that the entire port is enabled.
2254 * LOCKING: host lock, or some other form of
2258 void ata_port_probe(struct ata_port
*ap
)
2260 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2264 * sata_print_link_status - Print SATA link status
2265 * @ap: SATA port to printk link status about
2267 * This function prints link speed and status of a SATA link.
2272 void sata_print_link_status(struct ata_port
*ap
)
2274 u32 sstatus
, scontrol
, tmp
;
2276 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
2278 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
2280 if (ata_port_online(ap
)) {
2281 tmp
= (sstatus
>> 4) & 0xf;
2282 ata_port_printk(ap
, KERN_INFO
,
2283 "SATA link up %s (SStatus %X SControl %X)\n",
2284 sata_spd_string(tmp
), sstatus
, scontrol
);
2286 ata_port_printk(ap
, KERN_INFO
,
2287 "SATA link down (SStatus %X SControl %X)\n",
2293 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2294 * @ap: SATA port associated with target SATA PHY.
2296 * This function issues commands to standard SATA Sxxx
2297 * PHY registers, to wake up the phy (and device), and
2298 * clear any reset condition.
2301 * PCI/etc. bus probe sem.
2304 void __sata_phy_reset(struct ata_port
*ap
)
2307 unsigned long timeout
= jiffies
+ (HZ
* 5);
2309 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
2310 /* issue phy wake/reset */
2311 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2312 /* Couldn't find anything in SATA I/II specs, but
2313 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 /* phy wake/clear reset */
2317 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2319 /* wait for phy to become ready, if necessary */
2322 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2323 if ((sstatus
& 0xf) != 1)
2325 } while (time_before(jiffies
, timeout
));
2327 /* print link status */
2328 sata_print_link_status(ap
);
2330 /* TODO: phy layer with polling, timeouts, etc. */
2331 if (!ata_port_offline(ap
))
2334 ata_port_disable(ap
);
2336 if (ap
->flags
& ATA_FLAG_DISABLED
)
2339 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2340 ata_port_disable(ap
);
2344 ap
->cbl
= ATA_CBL_SATA
;
2348 * sata_phy_reset - Reset SATA bus.
2349 * @ap: SATA port associated with target SATA PHY.
2351 * This function resets the SATA bus, and then probes
2352 * the bus for devices.
2355 * PCI/etc. bus probe sem.
2358 void sata_phy_reset(struct ata_port
*ap
)
2360 __sata_phy_reset(ap
);
2361 if (ap
->flags
& ATA_FLAG_DISABLED
)
2367 * ata_dev_pair - return other device on cable
2370 * Obtain the other device on the same cable, or if none is
2371 * present NULL is returned
2374 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2376 struct ata_port
*ap
= adev
->ap
;
2377 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2378 if (!ata_dev_enabled(pair
))
2384 * ata_port_disable - Disable port.
2385 * @ap: Port to be disabled.
2387 * Modify @ap data structure such that the system
2388 * thinks that the entire port is disabled, and should
2389 * never attempt to probe or communicate with devices
2392 * LOCKING: host lock, or some other form of
2396 void ata_port_disable(struct ata_port
*ap
)
2398 ap
->device
[0].class = ATA_DEV_NONE
;
2399 ap
->device
[1].class = ATA_DEV_NONE
;
2400 ap
->flags
|= ATA_FLAG_DISABLED
;
2404 * sata_down_spd_limit - adjust SATA spd limit downward
2405 * @ap: Port to adjust SATA spd limit for
2407 * Adjust SATA spd limit of @ap downward. Note that this
2408 * function only adjusts the limit. The change must be applied
2409 * using sata_set_spd().
2412 * Inherited from caller.
2415 * 0 on success, negative errno on failure
2417 int sata_down_spd_limit(struct ata_port
*ap
)
2419 u32 sstatus
, spd
, mask
;
2422 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2426 mask
= ap
->sata_spd_limit
;
2429 highbit
= fls(mask
) - 1;
2430 mask
&= ~(1 << highbit
);
2432 spd
= (sstatus
>> 4) & 0xf;
2436 mask
&= (1 << spd
) - 1;
2440 ap
->sata_spd_limit
= mask
;
2442 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2443 sata_spd_string(fls(mask
)));
2448 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2452 if (ap
->sata_spd_limit
== UINT_MAX
)
2455 limit
= fls(ap
->sata_spd_limit
);
2457 spd
= (*scontrol
>> 4) & 0xf;
2458 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2460 return spd
!= limit
;
2464 * sata_set_spd_needed - is SATA spd configuration needed
2465 * @ap: Port in question
2467 * Test whether the spd limit in SControl matches
2468 * @ap->sata_spd_limit. This function is used to determine
2469 * whether hardreset is necessary to apply SATA spd
2473 * Inherited from caller.
2476 * 1 if SATA spd configuration is needed, 0 otherwise.
2478 int sata_set_spd_needed(struct ata_port
*ap
)
2482 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2485 return __sata_set_spd_needed(ap
, &scontrol
);
2489 * sata_set_spd - set SATA spd according to spd limit
2490 * @ap: Port to set SATA spd for
2492 * Set SATA spd of @ap according to sata_spd_limit.
2495 * Inherited from caller.
2498 * 0 if spd doesn't need to be changed, 1 if spd has been
2499 * changed. Negative errno if SCR registers are inaccessible.
2501 int sata_set_spd(struct ata_port
*ap
)
2506 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2509 if (!__sata_set_spd_needed(ap
, &scontrol
))
2512 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2519 * This mode timing computation functionality is ported over from
2520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2525 * for UDMA6, which is currently supported only by Maxtor drives.
2527 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2530 static const struct ata_timing ata_timing
[] = {
2532 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2533 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2534 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2535 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2537 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2538 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2539 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2540 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2541 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2543 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2545 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2546 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2547 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2549 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2550 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2551 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2553 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2554 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2555 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2556 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2558 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2559 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2560 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2562 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2567 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2568 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2570 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2572 q
->setup
= EZ(t
->setup
* 1000, T
);
2573 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2574 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2575 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2576 q
->active
= EZ(t
->active
* 1000, T
);
2577 q
->recover
= EZ(t
->recover
* 1000, T
);
2578 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2579 q
->udma
= EZ(t
->udma
* 1000, UT
);
2582 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2583 struct ata_timing
*m
, unsigned int what
)
2585 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2586 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2587 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2588 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2589 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2590 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2591 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2592 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2595 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2597 const struct ata_timing
*t
;
2599 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2600 if (t
->mode
== 0xFF)
2605 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2606 struct ata_timing
*t
, int T
, int UT
)
2608 const struct ata_timing
*s
;
2609 struct ata_timing p
;
2615 if (!(s
= ata_timing_find_mode(speed
)))
2618 memcpy(t
, s
, sizeof(*s
));
2621 * If the drive is an EIDE drive, it can tell us it needs extended
2622 * PIO/MW_DMA cycle timing.
2625 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2626 memset(&p
, 0, sizeof(p
));
2627 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2628 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2629 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2630 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2631 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2633 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2637 * Convert the timing to bus clock counts.
2640 ata_timing_quantize(t
, t
, T
, UT
);
2643 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2644 * S.M.A.R.T * and some other commands. We have to ensure that the
2645 * DMA cycle timing is slower/equal than the fastest PIO timing.
2648 if (speed
> XFER_PIO_6
) {
2649 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2650 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2654 * Lengthen active & recovery time so that cycle time is correct.
2657 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2658 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2659 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2662 if (t
->active
+ t
->recover
< t
->cycle
) {
2663 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2664 t
->recover
= t
->cycle
- t
->active
;
2667 /* In a few cases quantisation may produce enough errors to
2668 leave t->cycle too low for the sum of active and recovery
2669 if so we must correct this */
2670 if (t
->active
+ t
->recover
> t
->cycle
)
2671 t
->cycle
= t
->active
+ t
->recover
;
2677 * ata_down_xfermask_limit - adjust dev xfer masks downward
2678 * @dev: Device to adjust xfer masks
2679 * @sel: ATA_DNXFER_* selector
2681 * Adjust xfer masks of @dev downward. Note that this function
2682 * does not apply the change. Invoking ata_set_mode() afterwards
2683 * will apply the limit.
2686 * Inherited from caller.
2689 * 0 on success, negative errno on failure
2691 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2694 unsigned int orig_mask
, xfer_mask
;
2695 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2698 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2699 sel
&= ~ATA_DNXFER_QUIET
;
2701 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2704 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2707 case ATA_DNXFER_PIO
:
2708 highbit
= fls(pio_mask
) - 1;
2709 pio_mask
&= ~(1 << highbit
);
2712 case ATA_DNXFER_DMA
:
2714 highbit
= fls(udma_mask
) - 1;
2715 udma_mask
&= ~(1 << highbit
);
2718 } else if (mwdma_mask
) {
2719 highbit
= fls(mwdma_mask
) - 1;
2720 mwdma_mask
&= ~(1 << highbit
);
2726 case ATA_DNXFER_40C
:
2727 udma_mask
&= ATA_UDMA_MASK_40C
;
2730 case ATA_DNXFER_FORCE_PIO0
:
2732 case ATA_DNXFER_FORCE_PIO
:
2741 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2743 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2747 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2748 snprintf(buf
, sizeof(buf
), "%s:%s",
2749 ata_mode_string(xfer_mask
),
2750 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2752 snprintf(buf
, sizeof(buf
), "%s",
2753 ata_mode_string(xfer_mask
));
2755 ata_dev_printk(dev
, KERN_WARNING
,
2756 "limiting speed to %s\n", buf
);
2759 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2765 static int ata_dev_set_mode(struct ata_device
*dev
)
2767 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2768 unsigned int err_mask
;
2771 dev
->flags
&= ~ATA_DFLAG_PIO
;
2772 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2773 dev
->flags
|= ATA_DFLAG_PIO
;
2775 err_mask
= ata_dev_set_xfermode(dev
);
2776 /* Old CFA may refuse this command, which is just fine */
2777 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2778 err_mask
&= ~AC_ERR_DEV
;
2781 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2782 "(err_mask=0x%x)\n", err_mask
);
2786 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2787 rc
= ata_dev_revalidate(dev
, 0);
2788 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2792 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2793 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2795 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2796 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2801 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2802 * @ap: port on which timings will be programmed
2803 * @r_failed_dev: out paramter for failed device
2805 * Standard implementation of the function used to tune and set
2806 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2807 * ata_dev_set_mode() fails, pointer to the failing device is
2808 * returned in @r_failed_dev.
2811 * PCI/etc. bus probe sem.
2814 * 0 on success, negative errno otherwise
2817 int ata_do_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2819 struct ata_device
*dev
;
2820 int i
, rc
= 0, used_dma
= 0, found
= 0;
2823 /* step 1: calculate xfer_mask */
2824 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2825 unsigned int pio_mask
, dma_mask
;
2827 dev
= &ap
->device
[i
];
2829 if (!ata_dev_enabled(dev
))
2832 ata_dev_xfermask(dev
);
2834 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2835 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2836 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2837 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2846 /* step 2: always set host PIO timings */
2847 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2848 dev
= &ap
->device
[i
];
2849 if (!ata_dev_enabled(dev
))
2852 if (!dev
->pio_mode
) {
2853 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2858 dev
->xfer_mode
= dev
->pio_mode
;
2859 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2860 if (ap
->ops
->set_piomode
)
2861 ap
->ops
->set_piomode(ap
, dev
);
2864 /* step 3: set host DMA timings */
2865 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2866 dev
= &ap
->device
[i
];
2868 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2871 dev
->xfer_mode
= dev
->dma_mode
;
2872 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2873 if (ap
->ops
->set_dmamode
)
2874 ap
->ops
->set_dmamode(ap
, dev
);
2877 /* step 4: update devices' xfer mode */
2878 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2879 dev
= &ap
->device
[i
];
2881 /* don't update suspended devices' xfer mode */
2882 if (!ata_dev_enabled(dev
))
2885 rc
= ata_dev_set_mode(dev
);
2890 /* Record simplex status. If we selected DMA then the other
2891 * host channels are not permitted to do so.
2893 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2894 ap
->host
->simplex_claimed
= ap
;
2898 *r_failed_dev
= dev
;
2903 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2904 * @ap: port on which timings will be programmed
2905 * @r_failed_dev: out paramter for failed device
2907 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2908 * ata_set_mode() fails, pointer to the failing device is
2909 * returned in @r_failed_dev.
2912 * PCI/etc. bus probe sem.
2915 * 0 on success, negative errno otherwise
2917 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2919 /* has private set_mode? */
2920 if (ap
->ops
->set_mode
)
2921 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2922 return ata_do_set_mode(ap
, r_failed_dev
);
2926 * ata_tf_to_host - issue ATA taskfile to host controller
2927 * @ap: port to which command is being issued
2928 * @tf: ATA taskfile register set
2930 * Issues ATA taskfile register set to ATA host controller,
2931 * with proper synchronization with interrupt handler and
2935 * spin_lock_irqsave(host lock)
2938 static inline void ata_tf_to_host(struct ata_port
*ap
,
2939 const struct ata_taskfile
*tf
)
2941 ap
->ops
->tf_load(ap
, tf
);
2942 ap
->ops
->exec_command(ap
, tf
);
2946 * ata_busy_sleep - sleep until BSY clears, or timeout
2947 * @ap: port containing status register to be polled
2948 * @tmout_pat: impatience timeout
2949 * @tmout: overall timeout
2951 * Sleep until ATA Status register bit BSY clears,
2952 * or a timeout occurs.
2955 * Kernel thread context (may sleep).
2958 * 0 on success, -errno otherwise.
2960 int ata_busy_sleep(struct ata_port
*ap
,
2961 unsigned long tmout_pat
, unsigned long tmout
)
2963 unsigned long timer_start
, timeout
;
2966 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2967 timer_start
= jiffies
;
2968 timeout
= timer_start
+ tmout_pat
;
2969 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2970 time_before(jiffies
, timeout
)) {
2972 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2975 if (status
!= 0xff && (status
& ATA_BUSY
))
2976 ata_port_printk(ap
, KERN_WARNING
,
2977 "port is slow to respond, please be patient "
2978 "(Status 0x%x)\n", status
);
2980 timeout
= timer_start
+ tmout
;
2981 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2982 time_before(jiffies
, timeout
)) {
2984 status
= ata_chk_status(ap
);
2990 if (status
& ATA_BUSY
) {
2991 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2992 "(%lu secs, Status 0x%x)\n",
2993 tmout
/ HZ
, status
);
3001 * ata_wait_ready - sleep until BSY clears, or timeout
3002 * @ap: port containing status register to be polled
3003 * @deadline: deadline jiffies for the operation
3005 * Sleep until ATA Status register bit BSY clears, or timeout
3009 * Kernel thread context (may sleep).
3012 * 0 on success, -errno otherwise.
3014 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3016 unsigned long start
= jiffies
;
3020 u8 status
= ata_chk_status(ap
);
3021 unsigned long now
= jiffies
;
3023 if (!(status
& ATA_BUSY
))
3027 if (time_after(now
, deadline
))
3030 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3031 (deadline
- now
> 3 * HZ
)) {
3032 ata_port_printk(ap
, KERN_WARNING
,
3033 "port is slow to respond, please be patient "
3034 "(Status 0x%x)\n", status
);
3042 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3043 unsigned long deadline
)
3045 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3046 unsigned int dev0
= devmask
& (1 << 0);
3047 unsigned int dev1
= devmask
& (1 << 1);
3050 /* if device 0 was found in ata_devchk, wait for its
3054 rc
= ata_wait_ready(ap
, deadline
);
3062 /* if device 1 was found in ata_devchk, wait for
3063 * register access, then wait for BSY to clear
3068 ap
->ops
->dev_select(ap
, 1);
3069 nsect
= ioread8(ioaddr
->nsect_addr
);
3070 lbal
= ioread8(ioaddr
->lbal_addr
);
3071 if ((nsect
== 1) && (lbal
== 1))
3073 if (time_after(jiffies
, deadline
))
3075 msleep(50); /* give drive a breather */
3078 rc
= ata_wait_ready(ap
, deadline
);
3086 /* is all this really necessary? */
3087 ap
->ops
->dev_select(ap
, 0);
3089 ap
->ops
->dev_select(ap
, 1);
3091 ap
->ops
->dev_select(ap
, 0);
3096 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3097 unsigned long deadline
)
3099 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3101 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3103 /* software reset. causes dev0 to be selected */
3104 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
3122 /* Before we perform post reset processing we want to see if
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3126 if (ata_check_status(ap
) == 0xFF)
3129 return ata_bus_post_reset(ap
, devmask
, deadline
);
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3145 * PCI/etc. bus probe sem.
3146 * Obtains host lock.
3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
3152 void ata_bus_reset(struct ata_port
*ap
)
3154 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3155 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3157 unsigned int dev0
, dev1
= 0, devmask
= 0;
3160 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3162 /* determine if device 0/1 are present */
3163 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3166 dev0
= ata_devchk(ap
, 0);
3168 dev1
= ata_devchk(ap
, 1);
3172 devmask
|= (1 << 0);
3174 devmask
|= (1 << 1);
3176 /* select device 0 again */
3177 ap
->ops
->dev_select(ap
, 0);
3179 /* issue bus reset */
3180 if (ap
->flags
& ATA_FLAG_SRST
) {
3181 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3182 if (rc
&& rc
!= -ENODEV
)
3187 * determine by signature whether we have ATA or ATAPI devices
3189 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
3190 if ((slave_possible
) && (err
!= 0x81))
3191 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
3193 /* re-enable interrupts */
3194 ap
->ops
->irq_on(ap
);
3196 /* is double-select really necessary? */
3197 if (ap
->device
[1].class != ATA_DEV_NONE
)
3198 ap
->ops
->dev_select(ap
, 1);
3199 if (ap
->device
[0].class != ATA_DEV_NONE
)
3200 ap
->ops
->dev_select(ap
, 0);
3202 /* if no devices were detected, disable this port */
3203 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
3204 (ap
->device
[1].class == ATA_DEV_NONE
))
3207 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
3209 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3216 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3217 ap
->ops
->port_disable(ap
);
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
3226 * @deadline: deadline jiffies for the operation
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
3233 * until timeout then returns 0 if DET is stable at 1.
3235 * @timeout is further limited by @deadline. The sooner of the
3239 * Kernel thread context (may sleep)
3242 * 0 on success, -errno on failure.
3244 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
,
3245 unsigned long deadline
)
3247 unsigned long interval_msec
= params
[0];
3248 unsigned long duration
= msecs_to_jiffies(params
[1]);
3249 unsigned long last_jiffies
, t
;
3253 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3254 if (time_before(t
, deadline
))
3257 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3262 last_jiffies
= jiffies
;
3265 msleep(interval_msec
);
3266 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3272 if (cur
== 1 && time_before(jiffies
, deadline
))
3274 if (time_after(jiffies
, last_jiffies
+ duration
))
3279 /* unstable, start over */
3281 last_jiffies
= jiffies
;
3283 /* check deadline */
3284 if (time_after(jiffies
, deadline
))
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
3293 * @deadline: deadline jiffies for the operation
3295 * Resume SATA phy of @ap and debounce it.
3298 * Kernel thread context (may sleep)
3301 * 0 on success, -errno on failure.
3303 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
,
3304 unsigned long deadline
)
3309 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3312 scontrol
= (scontrol
& 0x0f0) | 0x300;
3314 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3322 return sata_phy_debounce(ap
, params
, deadline
);
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
3328 * @deadline: deadline jiffies for the operation
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
3337 * Kernel thread context (may sleep)
3340 * 0 on success, -errno otherwise.
3342 int ata_std_prereset(struct ata_port
*ap
, unsigned long deadline
)
3344 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3345 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3348 /* handle link resume */
3349 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3350 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
3351 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3357 /* if SATA, resume phy */
3358 if (ap
->cbl
== ATA_CBL_SATA
) {
3359 rc
= sata_phy_resume(ap
, timing
, deadline
);
3360 /* whine about phy resume failure but proceed */
3361 if (rc
&& rc
!= -EOPNOTSUPP
)
3362 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
3363 "link for reset (errno=%d)\n", rc
);
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3369 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
)) {
3370 rc
= ata_wait_ready(ap
, deadline
);
3372 ata_port_printk(ap
, KERN_WARNING
, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc
);
3374 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
3384 * @classes: resulting classes of attached devices
3385 * @deadline: deadline jiffies for the operation
3387 * Reset host port using ATA SRST.
3390 * Kernel thread context (may sleep)
3393 * 0 on success, -errno otherwise.
3395 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
,
3396 unsigned long deadline
)
3398 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3399 unsigned int devmask
= 0;
3405 if (ata_port_offline(ap
)) {
3406 classes
[0] = ATA_DEV_NONE
;
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap
, 0))
3412 devmask
|= (1 << 0);
3413 if (slave_possible
&& ata_devchk(ap
, 1))
3414 devmask
|= (1 << 1);
3416 /* select device 0 again */
3417 ap
->ops
->dev_select(ap
, 0);
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3421 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(ap
))) {
3424 ata_port_printk(ap
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3430 if (slave_possible
&& err
!= 0x81)
3431 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3439 * sata_port_hardreset - reset port via SATA phy reset
3440 * @ap: port to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3444 * SATA phy-reset host port using DET bits of SControl register.
3447 * Kernel thread context (may sleep)
3450 * 0 on success, -errno otherwise.
3452 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
,
3453 unsigned long deadline
)
3460 if (sata_set_spd_needed(ap
)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3466 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3469 scontrol
= (scontrol
& 0x0f0) | 0x304;
3471 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3477 /* issue phy wake/reset */
3478 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3481 scontrol
= (scontrol
& 0x0f0) | 0x301;
3483 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3491 /* bring phy back */
3492 rc
= sata_phy_resume(ap
, timing
, deadline
);
3494 DPRINTK("EXIT, rc=%d\n", rc
);
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3508 * Kernel thread context (may sleep)
3511 * 0 on success, -errno otherwise.
3513 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class,
3514 unsigned long deadline
)
3516 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3522 rc
= sata_port_hardreset(ap
, timing
, deadline
);
3524 ata_port_printk(ap
, KERN_ERR
,
3525 "COMRESET failed (errno=%d)\n", rc
);
3529 /* TODO: phy layer with polling, timeouts, etc. */
3530 if (ata_port_offline(ap
)) {
3531 *class = ATA_DEV_NONE
;
3532 DPRINTK("EXIT, link offline\n");
3536 /* wait a while before checking status, see SRST for more info */
3539 rc
= ata_wait_ready(ap
, deadline
);
3540 /* link occupied, -ENODEV too is an error */
3542 ata_port_printk(ap
, KERN_ERR
,
3543 "COMRESET failed (errno=%d)\n", rc
);
3547 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3549 *class = ata_dev_try_classify(ap
, 0, NULL
);
3551 DPRINTK("EXIT, class=%u\n", *class);
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
3565 * Kernel thread context (may sleep)
3567 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3573 /* print link status */
3574 sata_print_link_status(ap
);
3577 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3578 sata_scr_write(ap
, SCR_ERROR
, serror
);
3580 /* re-enable interrupts */
3581 if (!ap
->ops
->error_handler
)
3582 ap
->ops
->irq_on(ap
);
3584 /* is double-select really necessary? */
3585 if (classes
[0] != ATA_DEV_NONE
)
3586 ap
->ops
->dev_select(ap
, 1);
3587 if (classes
[1] != ATA_DEV_NONE
)
3588 ap
->ops
->dev_select(ap
, 0);
3590 /* bail out if no device is present */
3591 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3592 DPRINTK("EXIT, no device\n");
3596 /* set up device control */
3597 if (ap
->ioaddr
.ctl_addr
)
3598 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3604 * ata_dev_same_device - Determine whether new ID matches configured device
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3619 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3622 const u16
*old_id
= dev
->id
;
3623 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3624 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3626 if (dev
->class != new_class
) {
3627 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3628 dev
->class, new_class
);
3632 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3633 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3634 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3635 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3637 if (strcmp(model
[0], model
[1])) {
3638 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3639 "'%s' != '%s'\n", model
[0], model
[1]);
3643 if (strcmp(serial
[0], serial
[1])) {
3644 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3645 "'%s' != '%s'\n", serial
[0], serial
[1]);
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @adev: target ATA device
3655 * @readid_flags: read ID flags
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3661 * Kernel thread context (may sleep)
3664 * 0 on success, negative errno otherwise
3666 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3668 unsigned int class = dev
->class;
3669 u16
*id
= (void *)dev
->ap
->sector_buf
;
3673 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3677 /* is the device still there? */
3678 if (!ata_dev_same_device(dev
, class, id
))
3681 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3694 * Kernel thread context (may sleep)
3697 * 0 on success, negative errno otherwise
3699 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3701 u64 n_sectors
= dev
->n_sectors
;
3704 if (!ata_dev_enabled(dev
))
3708 rc
= ata_dev_reread_id(dev
, readid_flags
);
3712 /* configure device according to the new ID */
3713 rc
= ata_dev_configure(dev
);
3717 /* verify n_sectors hasn't changed */
3718 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= n_sectors
) {
3719 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3721 (unsigned long long)n_sectors
,
3722 (unsigned long long)dev
->n_sectors
);
3730 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3734 struct ata_blacklist_entry
{
3735 const char *model_num
;
3736 const char *model_rev
;
3737 unsigned long horkage
;
3740 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3743 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3744 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3745 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3746 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3749 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3750 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3751 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3752 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3753 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3754 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3755 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3756 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3757 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3758 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3759 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3760 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3762 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3763 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3764 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3765 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3766 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3767 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3769 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3771 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
3773 /* Weird ATAPI devices */
3774 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
|
3775 ATA_HORKAGE_DMA_RW_ONLY
},
3777 /* Devices we expect to fail diagnostics */
3779 /* Devices where NCQ should be avoided */
3781 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3786 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3787 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3788 /* Blacklist entries taken from Silicon Image 3124/3132
3789 Windows driver .inf file - also several Linux problem reports */
3790 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3791 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3792 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3794 /* Devices with NCQ limits */
3800 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3802 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3803 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3804 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3806 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3807 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3809 while (ad
->model_num
) {
3810 if (!strcmp(ad
->model_num
, model_num
)) {
3811 if (ad
->model_rev
== NULL
)
3813 if (!strcmp(ad
->model_rev
, model_rev
))
3821 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3823 /* We don't support polling DMA.
3824 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3825 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3827 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3828 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3830 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3834 * ata_dev_xfermask - Compute supported xfermask of the given device
3835 * @dev: Device to compute xfermask for
3837 * Compute supported xfermask of @dev and store it in
3838 * dev->*_mask. This function is responsible for applying all
3839 * known limits including host controller limits, device
3845 static void ata_dev_xfermask(struct ata_device
*dev
)
3847 struct ata_port
*ap
= dev
->ap
;
3848 struct ata_host
*host
= ap
->host
;
3849 unsigned long xfer_mask
;
3851 /* controller modes available */
3852 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3853 ap
->mwdma_mask
, ap
->udma_mask
);
3855 /* drive modes available */
3856 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3857 dev
->mwdma_mask
, dev
->udma_mask
);
3858 xfer_mask
&= ata_id_xfermask(dev
->id
);
3861 * CFA Advanced TrueIDE timings are not allowed on a shared
3864 if (ata_dev_pair(dev
)) {
3865 /* No PIO5 or PIO6 */
3866 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3867 /* No MWDMA3 or MWDMA 4 */
3868 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3871 if (ata_dma_blacklisted(dev
)) {
3872 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3873 ata_dev_printk(dev
, KERN_WARNING
,
3874 "device is on DMA blacklist, disabling DMA\n");
3877 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
3878 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
3879 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3880 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3881 "other device, disabling DMA\n");
3884 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
3885 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
3887 if (ap
->ops
->mode_filter
)
3888 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
3890 /* Apply cable rule here. Don't apply it early because when
3891 * we handle hot plug the cable type can itself change.
3892 * Check this last so that we know if the transfer rate was
3893 * solely limited by the cable.
3894 * Unknown or 80 wire cables reported host side are checked
3895 * drive side as well. Cases where we know a 40wire cable
3896 * is used safely for 80 are not checked here.
3898 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
3899 /* UDMA/44 or higher would be available */
3900 if((ap
->cbl
== ATA_CBL_PATA40
) ||
3901 (ata_drive_40wire(dev
->id
) &&
3902 (ap
->cbl
== ATA_CBL_PATA_UNK
||
3903 ap
->cbl
== ATA_CBL_PATA80
))) {
3904 ata_dev_printk(dev
, KERN_WARNING
,
3905 "limited to UDMA/33 due to 40-wire cable\n");
3906 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3909 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3910 &dev
->mwdma_mask
, &dev
->udma_mask
);
3914 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3915 * @dev: Device to which command will be sent
3917 * Issue SET FEATURES - XFER MODE command to device @dev
3921 * PCI/etc. bus probe sem.
3924 * 0 on success, AC_ERR_* mask otherwise.
3927 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3929 struct ata_taskfile tf
;
3930 unsigned int err_mask
;
3932 /* set up set-features taskfile */
3933 DPRINTK("set features - xfer mode\n");
3935 ata_tf_init(dev
, &tf
);
3936 tf
.command
= ATA_CMD_SET_FEATURES
;
3937 tf
.feature
= SETFEATURES_XFER
;
3938 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3939 tf
.protocol
= ATA_PROT_NODATA
;
3940 tf
.nsect
= dev
->xfer_mode
;
3942 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3949 * ata_dev_init_params - Issue INIT DEV PARAMS command
3950 * @dev: Device to which command will be sent
3951 * @heads: Number of heads (taskfile parameter)
3952 * @sectors: Number of sectors (taskfile parameter)
3955 * Kernel thread context (may sleep)
3958 * 0 on success, AC_ERR_* mask otherwise.
3960 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3961 u16 heads
, u16 sectors
)
3963 struct ata_taskfile tf
;
3964 unsigned int err_mask
;
3966 /* Number of sectors per track 1-255. Number of heads 1-16 */
3967 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3968 return AC_ERR_INVALID
;
3970 /* set up init dev params taskfile */
3971 DPRINTK("init dev params \n");
3973 ata_tf_init(dev
, &tf
);
3974 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3975 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3976 tf
.protocol
= ATA_PROT_NODATA
;
3978 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3980 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3982 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3987 * ata_sg_clean - Unmap DMA memory associated with command
3988 * @qc: Command containing DMA memory to be released
3990 * Unmap all mapped DMA memory associated with this command.
3993 * spin_lock_irqsave(host lock)
3995 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3997 struct ata_port
*ap
= qc
->ap
;
3998 struct scatterlist
*sg
= qc
->__sg
;
3999 int dir
= qc
->dma_dir
;
4000 void *pad_buf
= NULL
;
4002 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
4003 WARN_ON(sg
== NULL
);
4005 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
4006 WARN_ON(qc
->n_elem
> 1);
4008 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4010 /* if we padded the buffer out to 32-bit bound, and data
4011 * xfer direction is from-device, we must copy from the
4012 * pad buffer back into the supplied buffer
4014 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4015 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4017 if (qc
->flags
& ATA_QCFLAG_SG
) {
4019 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4020 /* restore last sg */
4021 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
4023 struct scatterlist
*psg
= &qc
->pad_sgent
;
4024 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4025 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
4026 kunmap_atomic(addr
, KM_IRQ0
);
4030 dma_unmap_single(ap
->dev
,
4031 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
4034 sg
->length
+= qc
->pad_len
;
4036 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4037 pad_buf
, qc
->pad_len
);
4040 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4045 * ata_fill_sg - Fill PCI IDE PRD table
4046 * @qc: Metadata associated with taskfile to be transferred
4048 * Fill PCI IDE PRD (scatter-gather) table with segments
4049 * associated with the current disk command.
4052 * spin_lock_irqsave(host lock)
4055 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4057 struct ata_port
*ap
= qc
->ap
;
4058 struct scatterlist
*sg
;
4061 WARN_ON(qc
->__sg
== NULL
);
4062 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
4065 ata_for_each_sg(sg
, qc
) {
4069 /* determine if physical DMA addr spans 64K boundary.
4070 * Note h/w doesn't support 64-bit, so we unconditionally
4071 * truncate dma_addr_t to u32.
4073 addr
= (u32
) sg_dma_address(sg
);
4074 sg_len
= sg_dma_len(sg
);
4077 offset
= addr
& 0xffff;
4079 if ((offset
+ sg_len
) > 0x10000)
4080 len
= 0x10000 - offset
;
4082 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
4083 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
4084 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
4093 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4096 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4097 * @qc: Metadata associated with taskfile to check
4099 * Allow low-level driver to filter ATA PACKET commands, returning
4100 * a status indicating whether or not it is OK to use DMA for the
4101 * supplied PACKET command.
4104 * spin_lock_irqsave(host lock)
4106 * RETURNS: 0 when ATAPI DMA can be used
4109 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4111 struct ata_port
*ap
= qc
->ap
;
4112 int rc
= 0; /* Assume ATAPI DMA is OK by default */
4114 /* some drives can only do ATAPI DMA on read/write */
4115 if (unlikely(qc
->dev
->horkage
& ATA_HORKAGE_DMA_RW_ONLY
)) {
4116 struct scsi_cmnd
*cmd
= qc
->scsicmd
;
4117 u8
*scsicmd
= cmd
->cmnd
;
4119 switch (scsicmd
[0]) {
4126 /* atapi dma maybe ok */
4129 /* turn off atapi dma */
4134 if (ap
->ops
->check_atapi_dma
)
4135 rc
= ap
->ops
->check_atapi_dma(qc
);
4140 * ata_qc_prep - Prepare taskfile for submission
4141 * @qc: Metadata associated with taskfile to be prepared
4143 * Prepare ATA taskfile for submission.
4146 * spin_lock_irqsave(host lock)
4148 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4150 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4156 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4159 * ata_sg_init_one - Associate command with memory buffer
4160 * @qc: Command to be associated
4161 * @buf: Memory buffer
4162 * @buflen: Length of memory buffer, in bytes.
4164 * Initialize the data-related elements of queued_cmd @qc
4165 * to point to a single memory buffer, @buf of byte length @buflen.
4168 * spin_lock_irqsave(host lock)
4171 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
4173 qc
->flags
|= ATA_QCFLAG_SINGLE
;
4175 qc
->__sg
= &qc
->sgent
;
4177 qc
->orig_n_elem
= 1;
4179 qc
->nbytes
= buflen
;
4181 sg_init_one(&qc
->sgent
, buf
, buflen
);
4185 * ata_sg_init - Associate command with scatter-gather table.
4186 * @qc: Command to be associated
4187 * @sg: Scatter-gather table.
4188 * @n_elem: Number of elements in s/g table.
4190 * Initialize the data-related elements of queued_cmd @qc
4191 * to point to a scatter-gather table @sg, containing @n_elem
4195 * spin_lock_irqsave(host lock)
4198 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4199 unsigned int n_elem
)
4201 qc
->flags
|= ATA_QCFLAG_SG
;
4203 qc
->n_elem
= n_elem
;
4204 qc
->orig_n_elem
= n_elem
;
4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209 * @qc: Command with memory buffer to be mapped.
4211 * DMA-map the memory buffer associated with queued_cmd @qc.
4214 * spin_lock_irqsave(host lock)
4217 * Zero on success, negative on error.
4220 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
4222 struct ata_port
*ap
= qc
->ap
;
4223 int dir
= qc
->dma_dir
;
4224 struct scatterlist
*sg
= qc
->__sg
;
4225 dma_addr_t dma_address
;
4228 /* we must lengthen transfers to end on a 32-bit boundary */
4229 qc
->pad_len
= sg
->length
& 3;
4231 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4232 struct scatterlist
*psg
= &qc
->pad_sgent
;
4234 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4236 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4238 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4239 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4242 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4243 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4245 sg
->length
-= qc
->pad_len
;
4246 if (sg
->length
== 0)
4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 sg
->length
, qc
->pad_len
);
4258 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
4260 if (dma_mapping_error(dma_address
)) {
4262 sg
->length
+= qc
->pad_len
;
4266 sg_dma_address(sg
) = dma_address
;
4267 sg_dma_len(sg
) = sg
->length
;
4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
4271 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278 * @qc: Command with scatter-gather table to be mapped.
4280 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4283 * spin_lock_irqsave(host lock)
4286 * Zero on success, negative on error.
4290 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4292 struct ata_port
*ap
= qc
->ap
;
4293 struct scatterlist
*sg
= qc
->__sg
;
4294 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
4295 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
4297 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4298 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
4300 /* we must lengthen transfers to end on a 32-bit boundary */
4301 qc
->pad_len
= lsg
->length
& 3;
4303 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4304 struct scatterlist
*psg
= &qc
->pad_sgent
;
4305 unsigned int offset
;
4307 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4309 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4312 * psg->page/offset are used to copy to-be-written
4313 * data in this function or read data in ata_sg_clean.
4315 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4316 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
4317 psg
->offset
= offset_in_page(offset
);
4319 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4320 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4321 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4322 kunmap_atomic(addr
, KM_IRQ0
);
4325 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4326 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4328 lsg
->length
-= qc
->pad_len
;
4329 if (lsg
->length
== 0)
4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
4336 pre_n_elem
= qc
->n_elem
;
4337 if (trim_sg
&& pre_n_elem
)
4346 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
4348 /* restore last sg */
4349 lsg
->length
+= qc
->pad_len
;
4353 DPRINTK("%d sg elements mapped\n", n_elem
);
4356 qc
->n_elem
= n_elem
;
4362 * swap_buf_le16 - swap halves of 16-bit words in place
4363 * @buf: Buffer to swap
4364 * @buf_words: Number of 16-bit words in buffer.
4366 * Swap halves of 16-bit words if needed to convert from
4367 * little-endian byte order to native cpu byte order, or
4371 * Inherited from caller.
4373 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4378 for (i
= 0; i
< buf_words
; i
++)
4379 buf
[i
] = le16_to_cpu(buf
[i
]);
4380 #endif /* __BIG_ENDIAN */
4384 * ata_data_xfer - Transfer data by PIO
4385 * @adev: device to target
4387 * @buflen: buffer length
4388 * @write_data: read/write
4390 * Transfer data from/to the device data register by PIO.
4393 * Inherited from caller.
4395 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
4396 unsigned int buflen
, int write_data
)
4398 struct ata_port
*ap
= adev
->ap
;
4399 unsigned int words
= buflen
>> 1;
4401 /* Transfer multiple of 2 bytes */
4403 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4405 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4407 /* Transfer trailing 1 byte, if any. */
4408 if (unlikely(buflen
& 0x01)) {
4409 u16 align_buf
[1] = { 0 };
4410 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4413 memcpy(align_buf
, trailing_buf
, 1);
4414 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
4416 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
4417 memcpy(trailing_buf
, align_buf
, 1);
4423 * ata_data_xfer_noirq - Transfer data by PIO
4424 * @adev: device to target
4426 * @buflen: buffer length
4427 * @write_data: read/write
4429 * Transfer data from/to the device data register by PIO. Do the
4430 * transfer with interrupts disabled.
4433 * Inherited from caller.
4435 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4436 unsigned int buflen
, int write_data
)
4438 unsigned long flags
;
4439 local_irq_save(flags
);
4440 ata_data_xfer(adev
, buf
, buflen
, write_data
);
4441 local_irq_restore(flags
);
4446 * ata_pio_sector - Transfer a sector of data.
4447 * @qc: Command on going
4449 * Transfer qc->sect_size bytes of data from/to the ATA device.
4452 * Inherited from caller.
4455 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4457 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4458 struct scatterlist
*sg
= qc
->__sg
;
4459 struct ata_port
*ap
= qc
->ap
;
4461 unsigned int offset
;
4464 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
4465 ap
->hsm_task_state
= HSM_ST_LAST
;
4467 page
= sg
[qc
->cursg
].page
;
4468 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
4470 /* get the current page and offset */
4471 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4472 offset
%= PAGE_SIZE
;
4474 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4476 if (PageHighMem(page
)) {
4477 unsigned long flags
;
4479 /* FIXME: use a bounce buffer */
4480 local_irq_save(flags
);
4481 buf
= kmap_atomic(page
, KM_IRQ0
);
4483 /* do the actual data transfer */
4484 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4486 kunmap_atomic(buf
, KM_IRQ0
);
4487 local_irq_restore(flags
);
4489 buf
= page_address(page
);
4490 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4493 qc
->curbytes
+= qc
->sect_size
;
4494 qc
->cursg_ofs
+= qc
->sect_size
;
4496 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4503 * ata_pio_sectors - Transfer one or many sectors.
4504 * @qc: Command on going
4506 * Transfer one or many sectors of data from/to the
4507 * ATA device for the DRQ request.
4510 * Inherited from caller.
4513 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4515 if (is_multi_taskfile(&qc
->tf
)) {
4516 /* READ/WRITE MULTIPLE */
4519 WARN_ON(qc
->dev
->multi_count
== 0);
4521 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
4522 qc
->dev
->multi_count
);
4530 * atapi_send_cdb - Write CDB bytes to hardware
4531 * @ap: Port to which ATAPI device is attached.
4532 * @qc: Taskfile currently active
4534 * When device has indicated its readiness to accept
4535 * a CDB, this function is called. Send the CDB.
4541 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4544 DPRINTK("send cdb\n");
4545 WARN_ON(qc
->dev
->cdb_len
< 12);
4547 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4548 ata_altstatus(ap
); /* flush */
4550 switch (qc
->tf
.protocol
) {
4551 case ATA_PROT_ATAPI
:
4552 ap
->hsm_task_state
= HSM_ST
;
4554 case ATA_PROT_ATAPI_NODATA
:
4555 ap
->hsm_task_state
= HSM_ST_LAST
;
4557 case ATA_PROT_ATAPI_DMA
:
4558 ap
->hsm_task_state
= HSM_ST_LAST
;
4559 /* initiate bmdma */
4560 ap
->ops
->bmdma_start(qc
);
4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567 * @qc: Command on going
4568 * @bytes: number of bytes
4570 * Transfer Transfer data from/to the ATAPI device.
4573 * Inherited from caller.
4577 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4579 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4580 struct scatterlist
*sg
= qc
->__sg
;
4581 struct ata_port
*ap
= qc
->ap
;
4584 unsigned int offset
, count
;
4586 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4587 ap
->hsm_task_state
= HSM_ST_LAST
;
4590 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4592 * The end of qc->sg is reached and the device expects
4593 * more data to transfer. In order not to overrun qc->sg
4594 * and fulfill length specified in the byte count register,
4595 * - for read case, discard trailing data from the device
4596 * - for write case, padding zero data to the device
4598 u16 pad_buf
[1] = { 0 };
4599 unsigned int words
= bytes
>> 1;
4602 if (words
) /* warning if bytes > 1 */
4603 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4604 "%u bytes trailing data\n", bytes
);
4606 for (i
= 0; i
< words
; i
++)
4607 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4609 ap
->hsm_task_state
= HSM_ST_LAST
;
4613 sg
= &qc
->__sg
[qc
->cursg
];
4616 offset
= sg
->offset
+ qc
->cursg_ofs
;
4618 /* get the current page and offset */
4619 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4620 offset
%= PAGE_SIZE
;
4622 /* don't overrun current sg */
4623 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4625 /* don't cross page boundaries */
4626 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4628 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4630 if (PageHighMem(page
)) {
4631 unsigned long flags
;
4633 /* FIXME: use bounce buffer */
4634 local_irq_save(flags
);
4635 buf
= kmap_atomic(page
, KM_IRQ0
);
4637 /* do the actual data transfer */
4638 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4640 kunmap_atomic(buf
, KM_IRQ0
);
4641 local_irq_restore(flags
);
4643 buf
= page_address(page
);
4644 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4648 qc
->curbytes
+= count
;
4649 qc
->cursg_ofs
+= count
;
4651 if (qc
->cursg_ofs
== sg
->length
) {
4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662 * @qc: Command on going
4664 * Transfer Transfer data from/to the ATAPI device.
4667 * Inherited from caller.
4670 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4672 struct ata_port
*ap
= qc
->ap
;
4673 struct ata_device
*dev
= qc
->dev
;
4674 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4675 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4677 /* Abuse qc->result_tf for temp storage of intermediate TF
4678 * here to save some kernel stack usage.
4679 * For normal completion, qc->result_tf is not relevant. For
4680 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 * So, the correctness of qc->result_tf is not affected.
4683 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4684 ireason
= qc
->result_tf
.nsect
;
4685 bc_lo
= qc
->result_tf
.lbam
;
4686 bc_hi
= qc
->result_tf
.lbah
;
4687 bytes
= (bc_hi
<< 8) | bc_lo
;
4689 /* shall be cleared to zero, indicating xfer of data */
4690 if (ireason
& (1 << 0))
4693 /* make sure transfer direction matches expected */
4694 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4695 if (do_write
!= i_write
)
4698 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4700 __atapi_pio_bytes(qc
, bytes
);
4705 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4706 qc
->err_mask
|= AC_ERR_HSM
;
4707 ap
->hsm_task_state
= HSM_ST_ERR
;
4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712 * @ap: the target ata_port
4716 * 1 if ok in workqueue, 0 otherwise.
4719 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4721 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4724 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4725 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4726 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4729 if (is_atapi_taskfile(&qc
->tf
) &&
4730 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4738 * ata_hsm_qc_complete - finish a qc running on standard HSM
4739 * @qc: Command to complete
4740 * @in_wq: 1 if called from workqueue, 0 otherwise
4742 * Finish @qc which is running on standard HSM.
4745 * If @in_wq is zero, spin_lock_irqsave(host lock).
4746 * Otherwise, none on entry and grabs host lock.
4748 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4750 struct ata_port
*ap
= qc
->ap
;
4751 unsigned long flags
;
4753 if (ap
->ops
->error_handler
) {
4755 spin_lock_irqsave(ap
->lock
, flags
);
4757 /* EH might have kicked in while host lock is
4760 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4762 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4763 ap
->ops
->irq_on(ap
);
4764 ata_qc_complete(qc
);
4766 ata_port_freeze(ap
);
4769 spin_unlock_irqrestore(ap
->lock
, flags
);
4771 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4772 ata_qc_complete(qc
);
4774 ata_port_freeze(ap
);
4778 spin_lock_irqsave(ap
->lock
, flags
);
4779 ap
->ops
->irq_on(ap
);
4780 ata_qc_complete(qc
);
4781 spin_unlock_irqrestore(ap
->lock
, flags
);
4783 ata_qc_complete(qc
);
4786 ata_altstatus(ap
); /* flush */
4790 * ata_hsm_move - move the HSM to the next state.
4791 * @ap: the target ata_port
4793 * @status: current device status
4794 * @in_wq: 1 if called from workqueue, 0 otherwise
4797 * 1 when poll next status needed, 0 otherwise.
4799 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4800 u8 status
, int in_wq
)
4802 unsigned long flags
= 0;
4805 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4807 /* Make sure ata_qc_issue_prot() does not throw things
4808 * like DMA polling into the workqueue. Notice that
4809 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4811 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4814 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4815 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4817 switch (ap
->hsm_task_state
) {
4819 /* Send first data block or PACKET CDB */
4821 /* If polling, we will stay in the work queue after
4822 * sending the data. Otherwise, interrupt handler
4823 * takes over after sending the data.
4825 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4827 /* check device status */
4828 if (unlikely((status
& ATA_DRQ
) == 0)) {
4829 /* handle BSY=0, DRQ=0 as error */
4830 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4831 /* device stops HSM for abort/error */
4832 qc
->err_mask
|= AC_ERR_DEV
;
4834 /* HSM violation. Let EH handle this */
4835 qc
->err_mask
|= AC_ERR_HSM
;
4837 ap
->hsm_task_state
= HSM_ST_ERR
;
4841 /* Device should not ask for data transfer (DRQ=1)
4842 * when it finds something wrong.
4843 * We ignore DRQ here and stop the HSM by
4844 * changing hsm_task_state to HSM_ST_ERR and
4845 * let the EH abort the command or reset the device.
4847 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4848 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4849 "error, dev_stat 0x%X\n", status
);
4850 qc
->err_mask
|= AC_ERR_HSM
;
4851 ap
->hsm_task_state
= HSM_ST_ERR
;
4855 /* Send the CDB (atapi) or the first data block (ata pio out).
4856 * During the state transition, interrupt handler shouldn't
4857 * be invoked before the data transfer is complete and
4858 * hsm_task_state is changed. Hence, the following locking.
4861 spin_lock_irqsave(ap
->lock
, flags
);
4863 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4864 /* PIO data out protocol.
4865 * send first data block.
4868 /* ata_pio_sectors() might change the state
4869 * to HSM_ST_LAST. so, the state is changed here
4870 * before ata_pio_sectors().
4872 ap
->hsm_task_state
= HSM_ST
;
4873 ata_pio_sectors(qc
);
4874 ata_altstatus(ap
); /* flush */
4877 atapi_send_cdb(ap
, qc
);
4880 spin_unlock_irqrestore(ap
->lock
, flags
);
4882 /* if polling, ata_pio_task() handles the rest.
4883 * otherwise, interrupt handler takes over from here.
4888 /* complete command or read/write the data register */
4889 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4890 /* ATAPI PIO protocol */
4891 if ((status
& ATA_DRQ
) == 0) {
4892 /* No more data to transfer or device error.
4893 * Device error will be tagged in HSM_ST_LAST.
4895 ap
->hsm_task_state
= HSM_ST_LAST
;
4899 /* Device should not ask for data transfer (DRQ=1)
4900 * when it finds something wrong.
4901 * We ignore DRQ here and stop the HSM by
4902 * changing hsm_task_state to HSM_ST_ERR and
4903 * let the EH abort the command or reset the device.
4905 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4906 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4907 "device error, dev_stat 0x%X\n",
4909 qc
->err_mask
|= AC_ERR_HSM
;
4910 ap
->hsm_task_state
= HSM_ST_ERR
;
4914 atapi_pio_bytes(qc
);
4916 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4917 /* bad ireason reported by device */
4921 /* ATA PIO protocol */
4922 if (unlikely((status
& ATA_DRQ
) == 0)) {
4923 /* handle BSY=0, DRQ=0 as error */
4924 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4925 /* device stops HSM for abort/error */
4926 qc
->err_mask
|= AC_ERR_DEV
;
4928 /* HSM violation. Let EH handle this.
4929 * Phantom devices also trigger this
4930 * condition. Mark hint.
4932 qc
->err_mask
|= AC_ERR_HSM
|
4935 ap
->hsm_task_state
= HSM_ST_ERR
;
4939 /* For PIO reads, some devices may ask for
4940 * data transfer (DRQ=1) alone with ERR=1.
4941 * We respect DRQ here and transfer one
4942 * block of junk data before changing the
4943 * hsm_task_state to HSM_ST_ERR.
4945 * For PIO writes, ERR=1 DRQ=1 doesn't make
4946 * sense since the data block has been
4947 * transferred to the device.
4949 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4950 /* data might be corrputed */
4951 qc
->err_mask
|= AC_ERR_DEV
;
4953 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4954 ata_pio_sectors(qc
);
4956 status
= ata_wait_idle(ap
);
4959 if (status
& (ATA_BUSY
| ATA_DRQ
))
4960 qc
->err_mask
|= AC_ERR_HSM
;
4962 /* ata_pio_sectors() might change the
4963 * state to HSM_ST_LAST. so, the state
4964 * is changed after ata_pio_sectors().
4966 ap
->hsm_task_state
= HSM_ST_ERR
;
4970 ata_pio_sectors(qc
);
4972 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4973 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4976 status
= ata_wait_idle(ap
);
4981 ata_altstatus(ap
); /* flush */
4986 if (unlikely(!ata_ok(status
))) {
4987 qc
->err_mask
|= __ac_err_mask(status
);
4988 ap
->hsm_task_state
= HSM_ST_ERR
;
4992 /* no more data to transfer */
4993 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4994 ap
->print_id
, qc
->dev
->devno
, status
);
4996 WARN_ON(qc
->err_mask
);
4998 ap
->hsm_task_state
= HSM_ST_IDLE
;
5000 /* complete taskfile transaction */
5001 ata_hsm_qc_complete(qc
, in_wq
);
5007 /* make sure qc->err_mask is available to
5008 * know what's wrong and recover
5010 WARN_ON(qc
->err_mask
== 0);
5012 ap
->hsm_task_state
= HSM_ST_IDLE
;
5014 /* complete taskfile transaction */
5015 ata_hsm_qc_complete(qc
, in_wq
);
5027 static void ata_pio_task(struct work_struct
*work
)
5029 struct ata_port
*ap
=
5030 container_of(work
, struct ata_port
, port_task
.work
);
5031 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5036 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5039 * This is purely heuristic. This is a fast path.
5040 * Sometimes when we enter, BSY will be cleared in
5041 * a chk-status or two. If not, the drive is probably seeking
5042 * or something. Snooze for a couple msecs, then
5043 * chk-status again. If still busy, queue delayed work.
5045 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5046 if (status
& ATA_BUSY
) {
5048 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5049 if (status
& ATA_BUSY
) {
5050 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
5056 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5058 /* another command or interrupt handler
5059 * may be running at this point.
5066 * ata_qc_new - Request an available ATA command, for queueing
5067 * @ap: Port associated with device @dev
5068 * @dev: Device from whom we request an available command structure
5074 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5076 struct ata_queued_cmd
*qc
= NULL
;
5079 /* no command while frozen */
5080 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5083 /* the last tag is reserved for internal command. */
5084 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5085 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5086 qc
= __ata_qc_from_tag(ap
, i
);
5097 * ata_qc_new_init - Request an available ATA command, and initialize it
5098 * @dev: Device from whom we request an available command structure
5104 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5106 struct ata_port
*ap
= dev
->ap
;
5107 struct ata_queued_cmd
*qc
;
5109 qc
= ata_qc_new(ap
);
5122 * ata_qc_free - free unused ata_queued_cmd
5123 * @qc: Command to complete
5125 * Designed to free unused ata_queued_cmd object
5126 * in case something prevents using it.
5129 * spin_lock_irqsave(host lock)
5131 void ata_qc_free(struct ata_queued_cmd
*qc
)
5133 struct ata_port
*ap
= qc
->ap
;
5136 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5140 if (likely(ata_tag_valid(tag
))) {
5141 qc
->tag
= ATA_TAG_POISON
;
5142 clear_bit(tag
, &ap
->qc_allocated
);
5146 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5148 struct ata_port
*ap
= qc
->ap
;
5150 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5151 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5153 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5156 /* command should be marked inactive atomically with qc completion */
5157 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
5158 ap
->sactive
&= ~(1 << qc
->tag
);
5160 ap
->active_tag
= ATA_TAG_POISON
;
5162 /* atapi: mark qc as inactive to prevent the interrupt handler
5163 * from completing the command twice later, before the error handler
5164 * is called. (when rc != 0 and atapi request sense is needed)
5166 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5167 ap
->qc_active
&= ~(1 << qc
->tag
);
5169 /* call completion callback */
5170 qc
->complete_fn(qc
);
5173 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5175 struct ata_port
*ap
= qc
->ap
;
5177 qc
->result_tf
.flags
= qc
->tf
.flags
;
5178 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5182 * ata_qc_complete - Complete an active ATA command
5183 * @qc: Command to complete
5184 * @err_mask: ATA Status register contents
5186 * Indicate to the mid and upper layers that an ATA
5187 * command has completed, with either an ok or not-ok status.
5190 * spin_lock_irqsave(host lock)
5192 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5194 struct ata_port
*ap
= qc
->ap
;
5196 /* XXX: New EH and old EH use different mechanisms to
5197 * synchronize EH with regular execution path.
5199 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5200 * Normal execution path is responsible for not accessing a
5201 * failed qc. libata core enforces the rule by returning NULL
5202 * from ata_qc_from_tag() for failed qcs.
5204 * Old EH depends on ata_qc_complete() nullifying completion
5205 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5206 * not synchronize with interrupt handler. Only PIO task is
5209 if (ap
->ops
->error_handler
) {
5210 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5212 if (unlikely(qc
->err_mask
))
5213 qc
->flags
|= ATA_QCFLAG_FAILED
;
5215 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5216 if (!ata_tag_internal(qc
->tag
)) {
5217 /* always fill result TF for failed qc */
5219 ata_qc_schedule_eh(qc
);
5224 /* read result TF if requested */
5225 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5228 __ata_qc_complete(qc
);
5230 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5233 /* read result TF if failed or requested */
5234 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5237 __ata_qc_complete(qc
);
5242 * ata_qc_complete_multiple - Complete multiple qcs successfully
5243 * @ap: port in question
5244 * @qc_active: new qc_active mask
5245 * @finish_qc: LLDD callback invoked before completing a qc
5247 * Complete in-flight commands. This functions is meant to be
5248 * called from low-level driver's interrupt routine to complete
5249 * requests normally. ap->qc_active and @qc_active is compared
5250 * and commands are completed accordingly.
5253 * spin_lock_irqsave(host lock)
5256 * Number of completed commands on success, -errno otherwise.
5258 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5259 void (*finish_qc
)(struct ata_queued_cmd
*))
5265 done_mask
= ap
->qc_active
^ qc_active
;
5267 if (unlikely(done_mask
& qc_active
)) {
5268 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5269 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5273 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5274 struct ata_queued_cmd
*qc
;
5276 if (!(done_mask
& (1 << i
)))
5279 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5282 ata_qc_complete(qc
);
5290 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
5292 struct ata_port
*ap
= qc
->ap
;
5294 switch (qc
->tf
.protocol
) {
5297 case ATA_PROT_ATAPI_DMA
:
5300 case ATA_PROT_ATAPI
:
5302 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
5315 * ata_qc_issue - issue taskfile to device
5316 * @qc: command to issue to device
5318 * Prepare an ATA command to submission to device.
5319 * This includes mapping the data into a DMA-able
5320 * area, filling in the S/G table, and finally
5321 * writing the taskfile to hardware, starting the command.
5324 * spin_lock_irqsave(host lock)
5326 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5328 struct ata_port
*ap
= qc
->ap
;
5330 /* Make sure only one non-NCQ command is outstanding. The
5331 * check is skipped for old EH because it reuses active qc to
5332 * request ATAPI sense.
5334 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
5336 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5337 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
5338 ap
->sactive
|= 1 << qc
->tag
;
5340 WARN_ON(ap
->sactive
);
5341 ap
->active_tag
= qc
->tag
;
5344 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5345 ap
->qc_active
|= 1 << qc
->tag
;
5347 if (ata_should_dma_map(qc
)) {
5348 if (qc
->flags
& ATA_QCFLAG_SG
) {
5349 if (ata_sg_setup(qc
))
5351 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
5352 if (ata_sg_setup_one(qc
))
5356 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5359 ap
->ops
->qc_prep(qc
);
5361 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5362 if (unlikely(qc
->err_mask
))
5367 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5368 qc
->err_mask
|= AC_ERR_SYSTEM
;
5370 ata_qc_complete(qc
);
5374 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5375 * @qc: command to issue to device
5377 * Using various libata functions and hooks, this function
5378 * starts an ATA command. ATA commands are grouped into
5379 * classes called "protocols", and issuing each type of protocol
5380 * is slightly different.
5382 * May be used as the qc_issue() entry in ata_port_operations.
5385 * spin_lock_irqsave(host lock)
5388 * Zero on success, AC_ERR_* mask on failure
5391 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
5393 struct ata_port
*ap
= qc
->ap
;
5395 /* Use polling pio if the LLD doesn't handle
5396 * interrupt driven pio and atapi CDB interrupt.
5398 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
5399 switch (qc
->tf
.protocol
) {
5401 case ATA_PROT_NODATA
:
5402 case ATA_PROT_ATAPI
:
5403 case ATA_PROT_ATAPI_NODATA
:
5404 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5406 case ATA_PROT_ATAPI_DMA
:
5407 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
5408 /* see ata_dma_blacklisted() */
5416 /* Some controllers show flaky interrupt behavior after
5417 * setting xfer mode. Use polling instead.
5419 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
5420 qc
->tf
.feature
== SETFEATURES_XFER
) &&
5421 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
5422 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5424 /* select the device */
5425 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5427 /* start the command */
5428 switch (qc
->tf
.protocol
) {
5429 case ATA_PROT_NODATA
:
5430 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5431 ata_qc_set_polling(qc
);
5433 ata_tf_to_host(ap
, &qc
->tf
);
5434 ap
->hsm_task_state
= HSM_ST_LAST
;
5436 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5437 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5442 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5444 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5445 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5446 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5447 ap
->hsm_task_state
= HSM_ST_LAST
;
5451 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5452 ata_qc_set_polling(qc
);
5454 ata_tf_to_host(ap
, &qc
->tf
);
5456 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5457 /* PIO data out protocol */
5458 ap
->hsm_task_state
= HSM_ST_FIRST
;
5459 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5461 /* always send first data block using
5462 * the ata_pio_task() codepath.
5465 /* PIO data in protocol */
5466 ap
->hsm_task_state
= HSM_ST
;
5468 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5469 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5478 case ATA_PROT_ATAPI
:
5479 case ATA_PROT_ATAPI_NODATA
:
5480 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5481 ata_qc_set_polling(qc
);
5483 ata_tf_to_host(ap
, &qc
->tf
);
5485 ap
->hsm_task_state
= HSM_ST_FIRST
;
5487 /* send cdb by polling if no cdb interrupt */
5488 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5489 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5490 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5493 case ATA_PROT_ATAPI_DMA
:
5494 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5496 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5497 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5498 ap
->hsm_task_state
= HSM_ST_FIRST
;
5500 /* send cdb by polling if no cdb interrupt */
5501 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5502 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5507 return AC_ERR_SYSTEM
;
5514 * ata_host_intr - Handle host interrupt for given (port, task)
5515 * @ap: Port on which interrupt arrived (possibly...)
5516 * @qc: Taskfile currently active in engine
5518 * Handle host interrupt for given queued command. Currently,
5519 * only DMA interrupts are handled. All other commands are
5520 * handled via polling with interrupts disabled (nIEN bit).
5523 * spin_lock_irqsave(host lock)
5526 * One if interrupt was handled, zero if not (shared irq).
5529 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5530 struct ata_queued_cmd
*qc
)
5532 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5533 u8 status
, host_stat
= 0;
5535 VPRINTK("ata%u: protocol %d task_state %d\n",
5536 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5538 /* Check whether we are expecting interrupt in this state */
5539 switch (ap
->hsm_task_state
) {
5541 /* Some pre-ATAPI-4 devices assert INTRQ
5542 * at this state when ready to receive CDB.
5545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5546 * The flag was turned on only for atapi devices.
5547 * No need to check is_atapi_taskfile(&qc->tf) again.
5549 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5553 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5554 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5555 /* check status of DMA engine */
5556 host_stat
= ap
->ops
->bmdma_status(ap
);
5557 VPRINTK("ata%u: host_stat 0x%X\n",
5558 ap
->print_id
, host_stat
);
5560 /* if it's not our irq... */
5561 if (!(host_stat
& ATA_DMA_INTR
))
5564 /* before we do anything else, clear DMA-Start bit */
5565 ap
->ops
->bmdma_stop(qc
);
5567 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5568 /* error when transfering data to/from memory */
5569 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5570 ap
->hsm_task_state
= HSM_ST_ERR
;
5580 /* check altstatus */
5581 status
= ata_altstatus(ap
);
5582 if (status
& ATA_BUSY
)
5585 /* check main status, clearing INTRQ */
5586 status
= ata_chk_status(ap
);
5587 if (unlikely(status
& ATA_BUSY
))
5590 /* ack bmdma irq events */
5591 ap
->ops
->irq_clear(ap
);
5593 ata_hsm_move(ap
, qc
, status
, 0);
5595 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5596 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5597 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5599 return 1; /* irq handled */
5602 ap
->stats
.idle_irq
++;
5605 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5606 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5607 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5611 return 0; /* irq not handled */
5615 * ata_interrupt - Default ATA host interrupt handler
5616 * @irq: irq line (unused)
5617 * @dev_instance: pointer to our ata_host information structure
5619 * Default interrupt handler for PCI IDE devices. Calls
5620 * ata_host_intr() for each port that is not disabled.
5623 * Obtains host lock during operation.
5626 * IRQ_NONE or IRQ_HANDLED.
5629 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5631 struct ata_host
*host
= dev_instance
;
5633 unsigned int handled
= 0;
5634 unsigned long flags
;
5636 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5637 spin_lock_irqsave(&host
->lock
, flags
);
5639 for (i
= 0; i
< host
->n_ports
; i
++) {
5640 struct ata_port
*ap
;
5642 ap
= host
->ports
[i
];
5644 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5645 struct ata_queued_cmd
*qc
;
5647 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5648 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5649 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5650 handled
|= ata_host_intr(ap
, qc
);
5654 spin_unlock_irqrestore(&host
->lock
, flags
);
5656 return IRQ_RETVAL(handled
);
5660 * sata_scr_valid - test whether SCRs are accessible
5661 * @ap: ATA port to test SCR accessibility for
5663 * Test whether SCRs are accessible for @ap.
5669 * 1 if SCRs are accessible, 0 otherwise.
5671 int sata_scr_valid(struct ata_port
*ap
)
5673 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5677 * sata_scr_read - read SCR register of the specified port
5678 * @ap: ATA port to read SCR for
5680 * @val: Place to store read value
5682 * Read SCR register @reg of @ap into *@val. This function is
5683 * guaranteed to succeed if the cable type of the port is SATA
5684 * and the port implements ->scr_read.
5690 * 0 on success, negative errno on failure.
5692 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5694 if (sata_scr_valid(ap
)) {
5695 *val
= ap
->ops
->scr_read(ap
, reg
);
5702 * sata_scr_write - write SCR register of the specified port
5703 * @ap: ATA port to write SCR for
5704 * @reg: SCR to write
5705 * @val: value to write
5707 * Write @val to SCR register @reg of @ap. This function is
5708 * guaranteed to succeed if the cable type of the port is SATA
5709 * and the port implements ->scr_read.
5715 * 0 on success, negative errno on failure.
5717 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5719 if (sata_scr_valid(ap
)) {
5720 ap
->ops
->scr_write(ap
, reg
, val
);
5727 * sata_scr_write_flush - write SCR register of the specified port and flush
5728 * @ap: ATA port to write SCR for
5729 * @reg: SCR to write
5730 * @val: value to write
5732 * This function is identical to sata_scr_write() except that this
5733 * function performs flush after writing to the register.
5739 * 0 on success, negative errno on failure.
5741 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5743 if (sata_scr_valid(ap
)) {
5744 ap
->ops
->scr_write(ap
, reg
, val
);
5745 ap
->ops
->scr_read(ap
, reg
);
5752 * ata_port_online - test whether the given port is online
5753 * @ap: ATA port to test
5755 * Test whether @ap is online. Note that this function returns 0
5756 * if online status of @ap cannot be obtained, so
5757 * ata_port_online(ap) != !ata_port_offline(ap).
5763 * 1 if the port online status is available and online.
5765 int ata_port_online(struct ata_port
*ap
)
5769 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5775 * ata_port_offline - test whether the given port is offline
5776 * @ap: ATA port to test
5778 * Test whether @ap is offline. Note that this function returns
5779 * 0 if offline status of @ap cannot be obtained, so
5780 * ata_port_online(ap) != !ata_port_offline(ap).
5786 * 1 if the port offline status is available and offline.
5788 int ata_port_offline(struct ata_port
*ap
)
5792 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5797 int ata_flush_cache(struct ata_device
*dev
)
5799 unsigned int err_mask
;
5802 if (!ata_try_flush_cache(dev
))
5805 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5806 cmd
= ATA_CMD_FLUSH_EXT
;
5808 cmd
= ATA_CMD_FLUSH
;
5810 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5812 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5820 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5821 unsigned int action
, unsigned int ehi_flags
,
5824 unsigned long flags
;
5827 for (i
= 0; i
< host
->n_ports
; i
++) {
5828 struct ata_port
*ap
= host
->ports
[i
];
5830 /* Previous resume operation might still be in
5831 * progress. Wait for PM_PENDING to clear.
5833 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5834 ata_port_wait_eh(ap
);
5835 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5838 /* request PM ops to EH */
5839 spin_lock_irqsave(ap
->lock
, flags
);
5844 ap
->pm_result
= &rc
;
5847 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5848 ap
->eh_info
.action
|= action
;
5849 ap
->eh_info
.flags
|= ehi_flags
;
5851 ata_port_schedule_eh(ap
);
5853 spin_unlock_irqrestore(ap
->lock
, flags
);
5855 /* wait and check result */
5857 ata_port_wait_eh(ap
);
5858 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5868 * ata_host_suspend - suspend host
5869 * @host: host to suspend
5872 * Suspend @host. Actual operation is performed by EH. This
5873 * function requests EH to perform PM operations and waits for EH
5877 * Kernel thread context (may sleep).
5880 * 0 on success, -errno on failure.
5882 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5886 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5888 host
->dev
->power
.power_state
= mesg
;
5893 * ata_host_resume - resume host
5894 * @host: host to resume
5896 * Resume @host. Actual operation is performed by EH. This
5897 * function requests EH to perform PM operations and returns.
5898 * Note that all resume operations are performed parallely.
5901 * Kernel thread context (may sleep).
5903 void ata_host_resume(struct ata_host
*host
)
5905 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5906 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5907 host
->dev
->power
.power_state
= PMSG_ON
;
5912 * ata_port_start - Set port up for dma.
5913 * @ap: Port to initialize
5915 * Called just after data structures for each port are
5916 * initialized. Allocates space for PRD table.
5918 * May be used as the port_start() entry in ata_port_operations.
5921 * Inherited from caller.
5923 int ata_port_start(struct ata_port
*ap
)
5925 struct device
*dev
= ap
->dev
;
5928 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5933 rc
= ata_pad_alloc(ap
, dev
);
5937 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5938 (unsigned long long)ap
->prd_dma
);
5943 * ata_dev_init - Initialize an ata_device structure
5944 * @dev: Device structure to initialize
5946 * Initialize @dev in preparation for probing.
5949 * Inherited from caller.
5951 void ata_dev_init(struct ata_device
*dev
)
5953 struct ata_port
*ap
= dev
->ap
;
5954 unsigned long flags
;
5956 /* SATA spd limit is bound to the first device */
5957 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5959 /* High bits of dev->flags are used to record warm plug
5960 * requests which occur asynchronously. Synchronize using
5963 spin_lock_irqsave(ap
->lock
, flags
);
5964 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5965 spin_unlock_irqrestore(ap
->lock
, flags
);
5967 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5968 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5969 dev
->pio_mask
= UINT_MAX
;
5970 dev
->mwdma_mask
= UINT_MAX
;
5971 dev
->udma_mask
= UINT_MAX
;
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
5978 * Allocate and initialize basic ATA port resources.
5981 * Allocate ATA port on success, NULL on failure.
5984 * Inherited from calling layer (may sleep).
5986 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5988 struct ata_port
*ap
;
5993 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5997 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5998 ap
->lock
= &host
->lock
;
5999 ap
->flags
= ATA_FLAG_DISABLED
;
6001 ap
->ctl
= ATA_DEVCTL_OBS
;
6003 ap
->dev
= host
->dev
;
6005 ap
->hw_sata_spd_limit
= UINT_MAX
;
6006 ap
->active_tag
= ATA_TAG_POISON
;
6007 ap
->last_ctl
= 0xFF;
6009 #if defined(ATA_VERBOSE_DEBUG)
6010 /* turn on all debugging levels */
6011 ap
->msg_enable
= 0x00FF;
6012 #elif defined(ATA_DEBUG)
6013 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6015 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6018 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
6019 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6020 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6021 INIT_LIST_HEAD(&ap
->eh_done_q
);
6022 init_waitqueue_head(&ap
->eh_wait_q
);
6024 ap
->cbl
= ATA_CBL_NONE
;
6026 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6027 struct ata_device
*dev
= &ap
->device
[i
];
6034 ap
->stats
.unhandled_irq
= 1;
6035 ap
->stats
.idle_irq
= 1;
6040 static void ata_host_release(struct device
*gendev
, void *res
)
6042 struct ata_host
*host
= dev_get_drvdata(gendev
);
6045 for (i
= 0; i
< host
->n_ports
; i
++) {
6046 struct ata_port
*ap
= host
->ports
[i
];
6051 if ((host
->flags
& ATA_HOST_STARTED
) && ap
->ops
->port_stop
)
6052 ap
->ops
->port_stop(ap
);
6055 if ((host
->flags
& ATA_HOST_STARTED
) && host
->ops
->host_stop
)
6056 host
->ops
->host_stop(host
);
6058 for (i
= 0; i
< host
->n_ports
; i
++) {
6059 struct ata_port
*ap
= host
->ports
[i
];
6065 scsi_host_put(ap
->scsi_host
);
6068 host
->ports
[i
] = NULL
;
6071 dev_set_drvdata(gendev
, NULL
);
6075 * ata_host_alloc - allocate and init basic ATA host resources
6076 * @dev: generic device this host is associated with
6077 * @max_ports: maximum number of ATA ports associated with this host
6079 * Allocate and initialize basic ATA host resources. LLD calls
6080 * this function to allocate a host, initializes it fully and
6081 * attaches it using ata_host_register().
6083 * @max_ports ports are allocated and host->n_ports is
6084 * initialized to @max_ports. The caller is allowed to decrease
6085 * host->n_ports before calling ata_host_register(). The unused
6086 * ports will be automatically freed on registration.
6089 * Allocate ATA host on success, NULL on failure.
6092 * Inherited from calling layer (may sleep).
6094 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6096 struct ata_host
*host
;
6102 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6105 /* alloc a container for our list of ATA ports (buses) */
6106 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6107 /* alloc a container for our list of ATA ports (buses) */
6108 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6112 devres_add(dev
, host
);
6113 dev_set_drvdata(dev
, host
);
6115 spin_lock_init(&host
->lock
);
6117 host
->n_ports
= max_ports
;
6119 /* allocate ports bound to this host */
6120 for (i
= 0; i
< max_ports
; i
++) {
6121 struct ata_port
*ap
;
6123 ap
= ata_port_alloc(host
);
6128 host
->ports
[i
] = ap
;
6131 devres_remove_group(dev
, NULL
);
6135 devres_release_group(dev
, NULL
);
6140 * ata_host_alloc_pinfo - alloc host and init with port_info array
6141 * @dev: generic device this host is associated with
6142 * @ppi: array of ATA port_info to initialize host with
6143 * @n_ports: number of ATA ports attached to this host
6145 * Allocate ATA host and initialize with info from @ppi. If NULL
6146 * terminated, @ppi may contain fewer entries than @n_ports. The
6147 * last entry will be used for the remaining ports.
6150 * Allocate ATA host on success, NULL on failure.
6153 * Inherited from calling layer (may sleep).
6155 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6156 const struct ata_port_info
* const * ppi
,
6159 const struct ata_port_info
*pi
;
6160 struct ata_host
*host
;
6163 host
= ata_host_alloc(dev
, n_ports
);
6167 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6168 struct ata_port
*ap
= host
->ports
[i
];
6173 ap
->pio_mask
= pi
->pio_mask
;
6174 ap
->mwdma_mask
= pi
->mwdma_mask
;
6175 ap
->udma_mask
= pi
->udma_mask
;
6176 ap
->flags
|= pi
->flags
;
6177 ap
->ops
= pi
->port_ops
;
6179 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6180 host
->ops
= pi
->port_ops
;
6181 if (!host
->private_data
&& pi
->private_data
)
6182 host
->private_data
= pi
->private_data
;
6189 * ata_host_start - start and freeze ports of an ATA host
6190 * @host: ATA host to start ports for
6192 * Start and then freeze ports of @host. Started status is
6193 * recorded in host->flags, so this function can be called
6194 * multiple times. Ports are guaranteed to get started only
6195 * once. If host->ops isn't initialized yet, its set to the
6196 * first non-dummy port ops.
6199 * Inherited from calling layer (may sleep).
6202 * 0 if all ports are started successfully, -errno otherwise.
6204 int ata_host_start(struct ata_host
*host
)
6208 if (host
->flags
& ATA_HOST_STARTED
)
6211 for (i
= 0; i
< host
->n_ports
; i
++) {
6212 struct ata_port
*ap
= host
->ports
[i
];
6214 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6215 host
->ops
= ap
->ops
;
6217 if (ap
->ops
->port_start
) {
6218 rc
= ap
->ops
->port_start(ap
);
6220 ata_port_printk(ap
, KERN_ERR
, "failed to "
6221 "start port (errno=%d)\n", rc
);
6226 ata_eh_freeze_port(ap
);
6229 host
->flags
|= ATA_HOST_STARTED
;
6234 struct ata_port
*ap
= host
->ports
[i
];
6236 if (ap
->ops
->port_stop
)
6237 ap
->ops
->port_stop(ap
);
6243 * ata_sas_host_init - Initialize a host struct
6244 * @host: host to initialize
6245 * @dev: device host is attached to
6246 * @flags: host flags
6250 * PCI/etc. bus probe sem.
6253 /* KILLME - the only user left is ipr */
6254 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6255 unsigned long flags
, const struct ata_port_operations
*ops
)
6257 spin_lock_init(&host
->lock
);
6259 host
->flags
= flags
;
6264 * ata_host_register - register initialized ATA host
6265 * @host: ATA host to register
6266 * @sht: template for SCSI host
6268 * Register initialized ATA host. @host is allocated using
6269 * ata_host_alloc() and fully initialized by LLD. This function
6270 * starts ports, registers @host with ATA and SCSI layers and
6271 * probe registered devices.
6274 * Inherited from calling layer (may sleep).
6277 * 0 on success, -errno otherwise.
6279 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6283 /* host must have been started */
6284 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6285 dev_printk(KERN_ERR
, host
->dev
,
6286 "BUG: trying to register unstarted host\n");
6291 /* Blow away unused ports. This happens when LLD can't
6292 * determine the exact number of ports to allocate at
6295 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6296 kfree(host
->ports
[i
]);
6298 /* give ports names and add SCSI hosts */
6299 for (i
= 0; i
< host
->n_ports
; i
++)
6300 host
->ports
[i
]->print_id
= ata_print_id
++;
6302 rc
= ata_scsi_add_hosts(host
, sht
);
6306 /* set cable, sata_spd_limit and report */
6307 for (i
= 0; i
< host
->n_ports
; i
++) {
6308 struct ata_port
*ap
= host
->ports
[i
];
6311 unsigned long xfer_mask
;
6313 /* set SATA cable type if still unset */
6314 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6315 ap
->cbl
= ATA_CBL_SATA
;
6317 /* init sata_spd_limit to the current value */
6318 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
6319 int spd
= (scontrol
>> 4) & 0xf;
6320 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6322 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
6324 /* report the secondary IRQ for second channel legacy */
6325 irq_line
= host
->irq
;
6326 if (i
== 1 && host
->irq2
)
6327 irq_line
= host
->irq2
;
6329 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6332 /* print per-port info to dmesg */
6333 if (!ata_port_is_dummy(ap
))
6334 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
6335 "ctl 0x%p bmdma 0x%p irq %d\n",
6336 ap
->cbl
== ATA_CBL_SATA
? 'S' : 'P',
6337 ata_mode_string(xfer_mask
),
6338 ap
->ioaddr
.cmd_addr
,
6339 ap
->ioaddr
.ctl_addr
,
6340 ap
->ioaddr
.bmdma_addr
,
6343 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6346 /* perform each probe synchronously */
6347 DPRINTK("probe begin\n");
6348 for (i
= 0; i
< host
->n_ports
; i
++) {
6349 struct ata_port
*ap
= host
->ports
[i
];
6353 if (ap
->ops
->error_handler
) {
6354 struct ata_eh_info
*ehi
= &ap
->eh_info
;
6355 unsigned long flags
;
6359 /* kick EH for boot probing */
6360 spin_lock_irqsave(ap
->lock
, flags
);
6362 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
6363 ehi
->action
|= ATA_EH_SOFTRESET
;
6364 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6366 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6367 ap
->pflags
|= ATA_PFLAG_LOADING
;
6368 ata_port_schedule_eh(ap
);
6370 spin_unlock_irqrestore(ap
->lock
, flags
);
6372 /* wait for EH to finish */
6373 ata_port_wait_eh(ap
);
6375 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6376 rc
= ata_bus_probe(ap
);
6377 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6380 /* FIXME: do something useful here?
6381 * Current libata behavior will
6382 * tear down everything when
6383 * the module is removed
6384 * or the h/w is unplugged.
6390 /* probes are done, now scan each port's disk(s) */
6391 DPRINTK("host probe begin\n");
6392 for (i
= 0; i
< host
->n_ports
; i
++) {
6393 struct ata_port
*ap
= host
->ports
[i
];
6395 ata_scsi_scan_host(ap
);
6402 * ata_host_activate - start host, request IRQ and register it
6403 * @host: target ATA host
6404 * @irq: IRQ to request
6405 * @irq_handler: irq_handler used when requesting IRQ
6406 * @irq_flags: irq_flags used when requesting IRQ
6407 * @sht: scsi_host_template to use when registering the host
6409 * After allocating an ATA host and initializing it, most libata
6410 * LLDs perform three steps to activate the host - start host,
6411 * request IRQ and register it. This helper takes necessasry
6412 * arguments and performs the three steps in one go.
6415 * Inherited from calling layer (may sleep).
6418 * 0 on success, -errno otherwise.
6420 int ata_host_activate(struct ata_host
*host
, int irq
,
6421 irq_handler_t irq_handler
, unsigned long irq_flags
,
6422 struct scsi_host_template
*sht
)
6426 rc
= ata_host_start(host
);
6430 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6431 dev_driver_string(host
->dev
), host
);
6435 rc
= ata_host_register(host
, sht
);
6436 /* if failed, just free the IRQ and leave ports alone */
6438 devm_free_irq(host
->dev
, irq
, host
);
6444 * ata_port_detach - Detach ATA port in prepration of device removal
6445 * @ap: ATA port to be detached
6447 * Detach all ATA devices and the associated SCSI devices of @ap;
6448 * then, remove the associated SCSI host. @ap is guaranteed to
6449 * be quiescent on return from this function.
6452 * Kernel thread context (may sleep).
6454 void ata_port_detach(struct ata_port
*ap
)
6456 unsigned long flags
;
6459 if (!ap
->ops
->error_handler
)
6462 /* tell EH we're leaving & flush EH */
6463 spin_lock_irqsave(ap
->lock
, flags
);
6464 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6465 spin_unlock_irqrestore(ap
->lock
, flags
);
6467 ata_port_wait_eh(ap
);
6469 /* EH is now guaranteed to see UNLOADING, so no new device
6470 * will be attached. Disable all existing devices.
6472 spin_lock_irqsave(ap
->lock
, flags
);
6474 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6475 ata_dev_disable(&ap
->device
[i
]);
6477 spin_unlock_irqrestore(ap
->lock
, flags
);
6479 /* Final freeze & EH. All in-flight commands are aborted. EH
6480 * will be skipped and retrials will be terminated with bad
6483 spin_lock_irqsave(ap
->lock
, flags
);
6484 ata_port_freeze(ap
); /* won't be thawed */
6485 spin_unlock_irqrestore(ap
->lock
, flags
);
6487 ata_port_wait_eh(ap
);
6489 /* Flush hotplug task. The sequence is similar to
6490 * ata_port_flush_task().
6492 cancel_work_sync(&ap
->hotplug_task
.work
); /* akpm: why? */
6493 cancel_delayed_work(&ap
->hotplug_task
);
6494 cancel_work_sync(&ap
->hotplug_task
.work
);
6497 /* remove the associated SCSI host */
6498 scsi_remove_host(ap
->scsi_host
);
6502 * ata_host_detach - Detach all ports of an ATA host
6503 * @host: Host to detach
6505 * Detach all ports of @host.
6508 * Kernel thread context (may sleep).
6510 void ata_host_detach(struct ata_host
*host
)
6514 for (i
= 0; i
< host
->n_ports
; i
++)
6515 ata_port_detach(host
->ports
[i
]);
6519 * ata_std_ports - initialize ioaddr with standard port offsets.
6520 * @ioaddr: IO address structure to be initialized
6522 * Utility function which initializes data_addr, error_addr,
6523 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6524 * device_addr, status_addr, and command_addr to standard offsets
6525 * relative to cmd_addr.
6527 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6530 void ata_std_ports(struct ata_ioports
*ioaddr
)
6532 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6533 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6534 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6535 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6536 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6537 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6538 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6539 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6540 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6541 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6548 * ata_pci_remove_one - PCI layer callback for device removal
6549 * @pdev: PCI device that was removed
6551 * PCI layer indicates to libata via this hook that hot-unplug or
6552 * module unload event has occurred. Detach all ports. Resource
6553 * release is handled via devres.
6556 * Inherited from PCI layer (may sleep).
6558 void ata_pci_remove_one(struct pci_dev
*pdev
)
6560 struct device
*dev
= pci_dev_to_dev(pdev
);
6561 struct ata_host
*host
= dev_get_drvdata(dev
);
6563 ata_host_detach(host
);
6566 /* move to PCI subsystem */
6567 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6569 unsigned long tmp
= 0;
6571 switch (bits
->width
) {
6574 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6580 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6586 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6597 return (tmp
== bits
->val
) ? 1 : 0;
6601 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6603 pci_save_state(pdev
);
6604 pci_disable_device(pdev
);
6606 if (mesg
.event
== PM_EVENT_SUSPEND
)
6607 pci_set_power_state(pdev
, PCI_D3hot
);
6610 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6614 pci_set_power_state(pdev
, PCI_D0
);
6615 pci_restore_state(pdev
);
6617 rc
= pcim_enable_device(pdev
);
6619 dev_printk(KERN_ERR
, &pdev
->dev
,
6620 "failed to enable device after resume (%d)\n", rc
);
6624 pci_set_master(pdev
);
6628 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6630 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6633 rc
= ata_host_suspend(host
, mesg
);
6637 ata_pci_device_do_suspend(pdev
, mesg
);
6642 int ata_pci_device_resume(struct pci_dev
*pdev
)
6644 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6647 rc
= ata_pci_device_do_resume(pdev
);
6649 ata_host_resume(host
);
6652 #endif /* CONFIG_PM */
6654 #endif /* CONFIG_PCI */
6657 static int __init
ata_init(void)
6659 ata_probe_timeout
*= HZ
;
6660 ata_wq
= create_workqueue("ata");
6664 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6666 destroy_workqueue(ata_wq
);
6670 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6674 static void __exit
ata_exit(void)
6676 destroy_workqueue(ata_wq
);
6677 destroy_workqueue(ata_aux_wq
);
6680 subsys_initcall(ata_init
);
6681 module_exit(ata_exit
);
6683 static unsigned long ratelimit_time
;
6684 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6686 int ata_ratelimit(void)
6689 unsigned long flags
;
6691 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6693 if (time_after(jiffies
, ratelimit_time
)) {
6695 ratelimit_time
= jiffies
+ (HZ
/5);
6699 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6705 * ata_wait_register - wait until register value changes
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
6709 * @interval_msec: polling interval in milliseconds
6710 * @timeout_msec: timeout in milliseconds
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6716 * (*@reg & mask) != val
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6722 * Kernel thread context (may sleep)
6725 * The final register value.
6727 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6728 unsigned long interval_msec
,
6729 unsigned long timeout_msec
)
6731 unsigned long timeout
;
6734 tmp
= ioread32(reg
);
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6740 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6742 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6743 msleep(interval_msec
);
6744 tmp
= ioread32(reg
);
6753 static void ata_dummy_noret(struct ata_port
*ap
) { }
6754 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6755 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6757 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6762 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6764 return AC_ERR_SYSTEM
;
6767 const struct ata_port_operations ata_dummy_port_ops
= {
6768 .port_disable
= ata_port_disable
,
6769 .check_status
= ata_dummy_check_status
,
6770 .check_altstatus
= ata_dummy_check_status
,
6771 .dev_select
= ata_noop_dev_select
,
6772 .qc_prep
= ata_noop_qc_prep
,
6773 .qc_issue
= ata_dummy_qc_issue
,
6774 .freeze
= ata_dummy_noret
,
6775 .thaw
= ata_dummy_noret
,
6776 .error_handler
= ata_dummy_noret
,
6777 .post_internal_cmd
= ata_dummy_qc_noret
,
6778 .irq_clear
= ata_dummy_noret
,
6779 .port_start
= ata_dummy_ret0
,
6780 .port_stop
= ata_dummy_noret
,
6783 const struct ata_port_info ata_dummy_port_info
= {
6784 .port_ops
= &ata_dummy_port_ops
,
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6794 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6795 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6796 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6797 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6798 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6799 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6800 EXPORT_SYMBOL_GPL(ata_std_ports
);
6801 EXPORT_SYMBOL_GPL(ata_host_init
);
6802 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6803 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6804 EXPORT_SYMBOL_GPL(ata_host_start
);
6805 EXPORT_SYMBOL_GPL(ata_host_register
);
6806 EXPORT_SYMBOL_GPL(ata_host_activate
);
6807 EXPORT_SYMBOL_GPL(ata_host_detach
);
6808 EXPORT_SYMBOL_GPL(ata_sg_init
);
6809 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6810 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6811 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6812 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6813 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6814 EXPORT_SYMBOL_GPL(ata_tf_load
);
6815 EXPORT_SYMBOL_GPL(ata_tf_read
);
6816 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6817 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6818 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6819 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6820 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6821 EXPORT_SYMBOL_GPL(ata_check_status
);
6822 EXPORT_SYMBOL_GPL(ata_altstatus
);
6823 EXPORT_SYMBOL_GPL(ata_exec_command
);
6824 EXPORT_SYMBOL_GPL(ata_port_start
);
6825 EXPORT_SYMBOL_GPL(ata_interrupt
);
6826 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6827 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6828 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6829 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6830 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6837 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6838 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6839 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6840 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6841 EXPORT_SYMBOL_GPL(ata_port_probe
);
6842 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6843 EXPORT_SYMBOL_GPL(sata_set_spd
);
6844 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6845 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6846 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6847 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6848 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6849 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6850 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6851 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6852 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6853 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6854 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6855 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6856 EXPORT_SYMBOL_GPL(ata_port_disable
);
6857 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6858 EXPORT_SYMBOL_GPL(ata_wait_register
);
6859 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6860 EXPORT_SYMBOL_GPL(ata_wait_ready
);
6861 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6862 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6863 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6864 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6866 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6867 EXPORT_SYMBOL_GPL(ata_host_intr
);
6868 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6869 EXPORT_SYMBOL_GPL(sata_scr_read
);
6870 EXPORT_SYMBOL_GPL(sata_scr_write
);
6871 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6872 EXPORT_SYMBOL_GPL(ata_port_online
);
6873 EXPORT_SYMBOL_GPL(ata_port_offline
);
6875 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6876 EXPORT_SYMBOL_GPL(ata_host_resume
);
6877 #endif /* CONFIG_PM */
6878 EXPORT_SYMBOL_GPL(ata_id_string
);
6879 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6880 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6881 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6882 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6884 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6885 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6886 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6889 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6890 EXPORT_SYMBOL_GPL(ata_pci_init_native_host
);
6891 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
6892 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host
);
6893 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6894 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6896 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6897 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6898 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6899 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6900 #endif /* CONFIG_PM */
6901 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6902 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6903 #endif /* CONFIG_PCI */
6905 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6906 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6907 EXPORT_SYMBOL_GPL(ata_port_abort
);
6908 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6909 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6910 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6911 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6912 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6913 EXPORT_SYMBOL_GPL(ata_do_eh
);
6914 EXPORT_SYMBOL_GPL(ata_irq_on
);
6915 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6916 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6917 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6918 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
6920 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6921 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6922 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6923 EXPORT_SYMBOL_GPL(ata_cable_sata
);