2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timex.h>
14 #include <linux/jiffies.h>
15 #include <linux/hrtimer.h>
17 #include <asm/div64.h>
18 #include <asm/timex.h>
21 * Timekeeping variables
23 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
24 unsigned long tick_nsec
; /* ACTHZ period (nsec) */
25 static u64 tick_length
, tick_length_base
;
27 #define MAX_TICKADJ 500 /* microsecs */
28 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
29 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
32 * phase-lock loop variables
34 /* TIME_ERROR prevents overwriting the CMOS clock */
35 static int time_state
= TIME_OK
; /* clock synchronization status */
36 int time_status
= STA_UNSYNC
; /* clock status bits */
37 static s64 time_offset
; /* time adjustment (ns) */
38 static long time_constant
= 2; /* pll time constant */
39 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
40 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
41 long time_freq
; /* frequency offset (scaled ppm)*/
42 static long time_reftime
; /* time at last adjustment (s) */
45 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
46 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
49 static void ntp_update_frequency(void)
51 u64 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
53 second_length
+= (s64
)CLOCK_TICK_ADJUST
<< TICK_LENGTH_SHIFT
;
54 second_length
+= (s64
)time_freq
<< (TICK_LENGTH_SHIFT
- SHIFT_NSEC
);
56 tick_length_base
= second_length
;
58 do_div(second_length
, HZ
);
59 tick_nsec
= second_length
>> TICK_LENGTH_SHIFT
;
61 do_div(tick_length_base
, NTP_INTERVAL_FREQ
);
65 * ntp_clear - Clears the NTP state variables
67 * Must be called while holding a write on the xtime_lock
71 time_adjust
= 0; /* stop active adjtime() */
72 time_status
|= STA_UNSYNC
;
73 time_maxerror
= NTP_PHASE_LIMIT
;
74 time_esterror
= NTP_PHASE_LIMIT
;
76 ntp_update_frequency();
78 tick_length
= tick_length_base
;
83 * this routine handles the overflow of the microsecond field
85 * The tricky bits of code to handle the accurate clock support
86 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
87 * They were originally developed for SUN and DEC kernels.
88 * All the kudos should go to Dave for this stuff.
90 void second_overflow(void)
94 /* Bump the maxerror field */
95 time_maxerror
+= MAXFREQ
>> SHIFT_USEC
;
96 if (time_maxerror
> NTP_PHASE_LIMIT
) {
97 time_maxerror
= NTP_PHASE_LIMIT
;
98 time_status
|= STA_UNSYNC
;
102 * Leap second processing. If in leap-insert state at the end of the
103 * day, the system clock is set back one second; if in leap-delete
104 * state, the system clock is set ahead one second. The microtime()
105 * routine or external clock driver will insure that reported time is
106 * always monotonic. The ugly divides should be replaced.
108 switch (time_state
) {
110 if (time_status
& STA_INS
)
111 time_state
= TIME_INS
;
112 else if (time_status
& STA_DEL
)
113 time_state
= TIME_DEL
;
116 if (xtime
.tv_sec
% 86400 == 0) {
118 wall_to_monotonic
.tv_sec
++;
120 * The timer interpolator will make time change
121 * gradually instead of an immediate jump by one second
123 time_interpolator_update(-NSEC_PER_SEC
);
124 time_state
= TIME_OOP
;
126 printk(KERN_NOTICE
"Clock: inserting leap second "
131 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
133 wall_to_monotonic
.tv_sec
--;
135 * Use of time interpolator for a gradual change of
138 time_interpolator_update(NSEC_PER_SEC
);
139 time_state
= TIME_WAIT
;
141 printk(KERN_NOTICE
"Clock: deleting leap second "
146 time_state
= TIME_WAIT
;
149 if (!(time_status
& (STA_INS
| STA_DEL
)))
150 time_state
= TIME_OK
;
154 * Compute the phase adjustment for the next second. The offset is
155 * reduced by a fixed factor times the time constant.
157 tick_length
= tick_length_base
;
158 time_adj
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
159 time_offset
-= time_adj
;
160 tick_length
+= (s64
)time_adj
<< (TICK_LENGTH_SHIFT
- SHIFT_UPDATE
);
162 if (unlikely(time_adjust
)) {
163 if (time_adjust
> MAX_TICKADJ
) {
164 time_adjust
-= MAX_TICKADJ
;
165 tick_length
+= MAX_TICKADJ_SCALED
;
166 } else if (time_adjust
< -MAX_TICKADJ
) {
167 time_adjust
+= MAX_TICKADJ
;
168 tick_length
-= MAX_TICKADJ_SCALED
;
170 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/
171 NTP_INTERVAL_FREQ
) << TICK_LENGTH_SHIFT
;
178 * Return how long ticks are at the moment, that is, how much time
179 * update_wall_time_one_tick will add to xtime next time we call it
180 * (assuming no calls to do_adjtimex in the meantime).
181 * The return value is in fixed-point nanoseconds shifted by the
182 * specified number of bits to the right of the binary point.
183 * This function has no side-effects.
185 u64
current_tick_length(void)
191 void __attribute__ ((weak
)) notify_arch_cmos_timer(void)
196 /* adjtimex mainly allows reading (and writing, if superuser) of
197 * kernel time-keeping variables. used by xntpd.
199 int do_adjtimex(struct timex
*txc
)
201 long mtemp
, save_adjust
, rem
;
202 s64 freq_adj
, temp64
;
205 /* In order to modify anything, you gotta be super-user! */
206 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
209 /* Now we validate the data before disabling interrupts */
211 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
)
212 /* singleshot must not be used with any other mode bits */
213 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
)
216 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
217 /* adjustment Offset limited to +- .512 seconds */
218 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
221 /* if the quartz is off by more than 10% something is VERY wrong ! */
222 if (txc
->modes
& ADJ_TICK
)
223 if (txc
->tick
< 900000/USER_HZ
||
224 txc
->tick
> 1100000/USER_HZ
)
227 write_seqlock_irq(&xtime_lock
);
228 result
= time_state
; /* mostly `TIME_OK' */
230 /* Save for later - semantics of adjtime is to return old value */
231 save_adjust
= time_adjust
;
233 #if 0 /* STA_CLOCKERR is never set yet */
234 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
236 /* If there are input parameters, then process them */
239 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
240 time_status
= (txc
->status
& ~STA_RONLY
) |
241 (time_status
& STA_RONLY
);
243 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
244 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
248 time_freq
= ((s64
)txc
->freq
* NSEC_PER_USEC
)
249 >> (SHIFT_USEC
- SHIFT_NSEC
);
252 if (txc
->modes
& ADJ_MAXERROR
) {
253 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
257 time_maxerror
= txc
->maxerror
;
260 if (txc
->modes
& ADJ_ESTERROR
) {
261 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
265 time_esterror
= txc
->esterror
;
268 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
269 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
273 time_constant
= min(txc
->constant
+ 4, (long)MAXTC
);
276 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
277 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
278 /* adjtime() is independent from ntp_adjtime() */
279 time_adjust
= txc
->offset
;
281 else if (time_status
& STA_PLL
) {
282 time_offset
= txc
->offset
* NSEC_PER_USEC
;
285 * Scale the phase adjustment and
286 * clamp to the operating range.
288 time_offset
= min(time_offset
, (s64
)MAXPHASE
* NSEC_PER_USEC
);
289 time_offset
= max(time_offset
, (s64
)-MAXPHASE
* NSEC_PER_USEC
);
292 * Select whether the frequency is to be controlled
293 * and in which mode (PLL or FLL). Clamp to the operating
294 * range. Ugly multiply/divide should be replaced someday.
297 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
298 time_reftime
= xtime
.tv_sec
;
299 mtemp
= xtime
.tv_sec
- time_reftime
;
300 time_reftime
= xtime
.tv_sec
;
302 freq_adj
= time_offset
* mtemp
;
303 freq_adj
= shift_right(freq_adj
, time_constant
* 2 +
304 (SHIFT_PLL
+ 2) * 2 - SHIFT_NSEC
);
305 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
306 temp64
= time_offset
<< (SHIFT_NSEC
- SHIFT_FLL
);
307 if (time_offset
< 0) {
309 do_div(temp64
, mtemp
);
312 do_div(temp64
, mtemp
);
316 freq_adj
+= time_freq
;
317 freq_adj
= min(freq_adj
, (s64
)MAXFREQ_NSEC
);
318 time_freq
= max(freq_adj
, (s64
)-MAXFREQ_NSEC
);
319 time_offset
= div_long_long_rem_signed(time_offset
,
322 time_offset
<<= SHIFT_UPDATE
;
324 } /* txc->modes & ADJ_OFFSET */
325 if (txc
->modes
& ADJ_TICK
)
326 tick_usec
= txc
->tick
;
328 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
329 ntp_update_frequency();
331 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0)
334 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
)
335 txc
->offset
= save_adjust
;
337 txc
->offset
= ((long)shift_right(time_offset
, SHIFT_UPDATE
)) *
338 NTP_INTERVAL_FREQ
/ 1000;
339 txc
->freq
= (time_freq
/ NSEC_PER_USEC
) <<
340 (SHIFT_USEC
- SHIFT_NSEC
);
341 txc
->maxerror
= time_maxerror
;
342 txc
->esterror
= time_esterror
;
343 txc
->status
= time_status
;
344 txc
->constant
= time_constant
;
346 txc
->tolerance
= MAXFREQ
;
347 txc
->tick
= tick_usec
;
349 /* PPS is not implemented, so these are zero */
358 write_sequnlock_irq(&xtime_lock
);
359 do_gettimeofday(&txc
->time
);
360 notify_arch_cmos_timer();