4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr
;
68 EXPORT_SYMBOL(max_mapnr
);
69 EXPORT_SYMBOL(mem_map
);
72 unsigned long num_physpages
;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 EXPORT_SYMBOL(num_physpages
);
83 EXPORT_SYMBOL(high_memory
);
86 * Randomize the address space (stacks, mmaps, brk, etc.).
88 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
89 * as ancient (libc5 based) binaries can segfault. )
91 int randomize_va_space __read_mostly
=
92 #ifdef CONFIG_COMPAT_BRK
98 static int __init
disable_randmaps(char *s
)
100 randomize_va_space
= 0;
103 __setup("norandmaps", disable_randmaps
);
107 * If a p?d_bad entry is found while walking page tables, report
108 * the error, before resetting entry to p?d_none. Usually (but
109 * very seldom) called out from the p?d_none_or_clear_bad macros.
112 void pgd_clear_bad(pgd_t
*pgd
)
118 void pud_clear_bad(pud_t
*pud
)
124 void pmd_clear_bad(pmd_t
*pmd
)
131 * Note: this doesn't free the actual pages themselves. That
132 * has been handled earlier when unmapping all the memory regions.
134 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
136 struct page
*page
= pmd_page(*pmd
);
138 pte_lock_deinit(page
);
139 pte_free_tlb(tlb
, page
);
140 dec_zone_page_state(page
, NR_PAGETABLE
);
144 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
145 unsigned long addr
, unsigned long end
,
146 unsigned long floor
, unsigned long ceiling
)
153 pmd
= pmd_offset(pud
, addr
);
155 next
= pmd_addr_end(addr
, end
);
156 if (pmd_none_or_clear_bad(pmd
))
158 free_pte_range(tlb
, pmd
);
159 } while (pmd
++, addr
= next
, addr
!= end
);
169 if (end
- 1 > ceiling
- 1)
172 pmd
= pmd_offset(pud
, start
);
174 pmd_free_tlb(tlb
, pmd
);
177 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
178 unsigned long addr
, unsigned long end
,
179 unsigned long floor
, unsigned long ceiling
)
186 pud
= pud_offset(pgd
, addr
);
188 next
= pud_addr_end(addr
, end
);
189 if (pud_none_or_clear_bad(pud
))
191 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
192 } while (pud
++, addr
= next
, addr
!= end
);
198 ceiling
&= PGDIR_MASK
;
202 if (end
- 1 > ceiling
- 1)
205 pud
= pud_offset(pgd
, start
);
207 pud_free_tlb(tlb
, pud
);
211 * This function frees user-level page tables of a process.
213 * Must be called with pagetable lock held.
215 void free_pgd_range(struct mmu_gather
**tlb
,
216 unsigned long addr
, unsigned long end
,
217 unsigned long floor
, unsigned long ceiling
)
224 * The next few lines have given us lots of grief...
226 * Why are we testing PMD* at this top level? Because often
227 * there will be no work to do at all, and we'd prefer not to
228 * go all the way down to the bottom just to discover that.
230 * Why all these "- 1"s? Because 0 represents both the bottom
231 * of the address space and the top of it (using -1 for the
232 * top wouldn't help much: the masks would do the wrong thing).
233 * The rule is that addr 0 and floor 0 refer to the bottom of
234 * the address space, but end 0 and ceiling 0 refer to the top
235 * Comparisons need to use "end - 1" and "ceiling - 1" (though
236 * that end 0 case should be mythical).
238 * Wherever addr is brought up or ceiling brought down, we must
239 * be careful to reject "the opposite 0" before it confuses the
240 * subsequent tests. But what about where end is brought down
241 * by PMD_SIZE below? no, end can't go down to 0 there.
243 * Whereas we round start (addr) and ceiling down, by different
244 * masks at different levels, in order to test whether a table
245 * now has no other vmas using it, so can be freed, we don't
246 * bother to round floor or end up - the tests don't need that.
260 if (end
- 1 > ceiling
- 1)
266 pgd
= pgd_offset((*tlb
)->mm
, addr
);
268 next
= pgd_addr_end(addr
, end
);
269 if (pgd_none_or_clear_bad(pgd
))
271 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
272 } while (pgd
++, addr
= next
, addr
!= end
);
275 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
276 unsigned long floor
, unsigned long ceiling
)
279 struct vm_area_struct
*next
= vma
->vm_next
;
280 unsigned long addr
= vma
->vm_start
;
283 * Hide vma from rmap and vmtruncate before freeing pgtables
285 anon_vma_unlink(vma
);
286 unlink_file_vma(vma
);
288 if (is_vm_hugetlb_page(vma
)) {
289 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
290 floor
, next
? next
->vm_start
: ceiling
);
293 * Optimization: gather nearby vmas into one call down
295 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
296 && !is_vm_hugetlb_page(next
)) {
299 anon_vma_unlink(vma
);
300 unlink_file_vma(vma
);
302 free_pgd_range(tlb
, addr
, vma
->vm_end
,
303 floor
, next
? next
->vm_start
: ceiling
);
309 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
311 struct page
*new = pte_alloc_one(mm
, address
);
316 spin_lock(&mm
->page_table_lock
);
317 if (pmd_present(*pmd
)) { /* Another has populated it */
318 pte_lock_deinit(new);
322 inc_zone_page_state(new, NR_PAGETABLE
);
323 pmd_populate(mm
, pmd
, new);
325 spin_unlock(&mm
->page_table_lock
);
329 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
331 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
335 spin_lock(&init_mm
.page_table_lock
);
336 if (pmd_present(*pmd
)) /* Another has populated it */
337 pte_free_kernel(&init_mm
, new);
339 pmd_populate_kernel(&init_mm
, pmd
, new);
340 spin_unlock(&init_mm
.page_table_lock
);
344 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
347 add_mm_counter(mm
, file_rss
, file_rss
);
349 add_mm_counter(mm
, anon_rss
, anon_rss
);
353 * This function is called to print an error when a bad pte
354 * is found. For example, we might have a PFN-mapped pte in
355 * a region that doesn't allow it.
357 * The calling function must still handle the error.
359 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
361 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
362 "vm_flags = %lx, vaddr = %lx\n",
363 (long long)pte_val(pte
),
364 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
365 vma
->vm_flags
, vaddr
);
369 static inline int is_cow_mapping(unsigned int flags
)
371 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
375 * This function gets the "struct page" associated with a pte.
377 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
378 * will have each page table entry just pointing to a raw page frame
379 * number, and as far as the VM layer is concerned, those do not have
380 * pages associated with them - even if the PFN might point to memory
381 * that otherwise is perfectly fine and has a "struct page".
383 * The way we recognize those mappings is through the rules set up
384 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
385 * and the vm_pgoff will point to the first PFN mapped: thus every
386 * page that is a raw mapping will always honor the rule
388 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
390 * and if that isn't true, the page has been COW'ed (in which case it
391 * _does_ have a "struct page" associated with it even if it is in a
394 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
396 unsigned long pfn
= pte_pfn(pte
);
398 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
399 unsigned long off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
400 if (pfn
== vma
->vm_pgoff
+ off
)
402 if (!is_cow_mapping(vma
->vm_flags
))
406 #ifdef CONFIG_DEBUG_VM
408 * Add some anal sanity checks for now. Eventually,
409 * we should just do "return pfn_to_page(pfn)", but
410 * in the meantime we check that we get a valid pfn,
411 * and that the resulting page looks ok.
413 if (unlikely(!pfn_valid(pfn
))) {
414 print_bad_pte(vma
, pte
, addr
);
420 * NOTE! We still have PageReserved() pages in the page
423 * The PAGE_ZERO() pages and various VDSO mappings can
424 * cause them to exist.
426 return pfn_to_page(pfn
);
430 * copy one vm_area from one task to the other. Assumes the page tables
431 * already present in the new task to be cleared in the whole range
432 * covered by this vma.
436 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
437 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
438 unsigned long addr
, int *rss
)
440 unsigned long vm_flags
= vma
->vm_flags
;
441 pte_t pte
= *src_pte
;
444 /* pte contains position in swap or file, so copy. */
445 if (unlikely(!pte_present(pte
))) {
446 if (!pte_file(pte
)) {
447 swp_entry_t entry
= pte_to_swp_entry(pte
);
449 swap_duplicate(entry
);
450 /* make sure dst_mm is on swapoff's mmlist. */
451 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
452 spin_lock(&mmlist_lock
);
453 if (list_empty(&dst_mm
->mmlist
))
454 list_add(&dst_mm
->mmlist
,
456 spin_unlock(&mmlist_lock
);
458 if (is_write_migration_entry(entry
) &&
459 is_cow_mapping(vm_flags
)) {
461 * COW mappings require pages in both parent
462 * and child to be set to read.
464 make_migration_entry_read(&entry
);
465 pte
= swp_entry_to_pte(entry
);
466 set_pte_at(src_mm
, addr
, src_pte
, pte
);
473 * If it's a COW mapping, write protect it both
474 * in the parent and the child
476 if (is_cow_mapping(vm_flags
)) {
477 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
478 pte
= pte_wrprotect(pte
);
482 * If it's a shared mapping, mark it clean in
485 if (vm_flags
& VM_SHARED
)
486 pte
= pte_mkclean(pte
);
487 pte
= pte_mkold(pte
);
489 page
= vm_normal_page(vma
, addr
, pte
);
492 page_dup_rmap(page
, vma
, addr
);
493 rss
[!!PageAnon(page
)]++;
497 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
500 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
501 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
502 unsigned long addr
, unsigned long end
)
504 pte_t
*src_pte
, *dst_pte
;
505 spinlock_t
*src_ptl
, *dst_ptl
;
511 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
514 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
515 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
516 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
517 arch_enter_lazy_mmu_mode();
521 * We are holding two locks at this point - either of them
522 * could generate latencies in another task on another CPU.
524 if (progress
>= 32) {
526 if (need_resched() ||
527 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
530 if (pte_none(*src_pte
)) {
534 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
536 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
538 arch_leave_lazy_mmu_mode();
539 spin_unlock(src_ptl
);
540 pte_unmap_nested(src_pte
- 1);
541 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
542 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
549 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
550 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
551 unsigned long addr
, unsigned long end
)
553 pmd_t
*src_pmd
, *dst_pmd
;
556 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
559 src_pmd
= pmd_offset(src_pud
, addr
);
561 next
= pmd_addr_end(addr
, end
);
562 if (pmd_none_or_clear_bad(src_pmd
))
564 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
567 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
571 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
572 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
573 unsigned long addr
, unsigned long end
)
575 pud_t
*src_pud
, *dst_pud
;
578 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
581 src_pud
= pud_offset(src_pgd
, addr
);
583 next
= pud_addr_end(addr
, end
);
584 if (pud_none_or_clear_bad(src_pud
))
586 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
589 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
593 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
594 struct vm_area_struct
*vma
)
596 pgd_t
*src_pgd
, *dst_pgd
;
598 unsigned long addr
= vma
->vm_start
;
599 unsigned long end
= vma
->vm_end
;
602 * Don't copy ptes where a page fault will fill them correctly.
603 * Fork becomes much lighter when there are big shared or private
604 * readonly mappings. The tradeoff is that copy_page_range is more
605 * efficient than faulting.
607 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
612 if (is_vm_hugetlb_page(vma
))
613 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
615 dst_pgd
= pgd_offset(dst_mm
, addr
);
616 src_pgd
= pgd_offset(src_mm
, addr
);
618 next
= pgd_addr_end(addr
, end
);
619 if (pgd_none_or_clear_bad(src_pgd
))
621 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
624 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
628 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
629 struct vm_area_struct
*vma
, pmd_t
*pmd
,
630 unsigned long addr
, unsigned long end
,
631 long *zap_work
, struct zap_details
*details
)
633 struct mm_struct
*mm
= tlb
->mm
;
639 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
640 arch_enter_lazy_mmu_mode();
643 if (pte_none(ptent
)) {
648 (*zap_work
) -= PAGE_SIZE
;
650 if (pte_present(ptent
)) {
653 page
= vm_normal_page(vma
, addr
, ptent
);
654 if (unlikely(details
) && page
) {
656 * unmap_shared_mapping_pages() wants to
657 * invalidate cache without truncating:
658 * unmap shared but keep private pages.
660 if (details
->check_mapping
&&
661 details
->check_mapping
!= page
->mapping
)
664 * Each page->index must be checked when
665 * invalidating or truncating nonlinear.
667 if (details
->nonlinear_vma
&&
668 (page
->index
< details
->first_index
||
669 page
->index
> details
->last_index
))
672 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
674 tlb_remove_tlb_entry(tlb
, pte
, addr
);
677 if (unlikely(details
) && details
->nonlinear_vma
678 && linear_page_index(details
->nonlinear_vma
,
679 addr
) != page
->index
)
680 set_pte_at(mm
, addr
, pte
,
681 pgoff_to_pte(page
->index
));
685 if (pte_dirty(ptent
))
686 set_page_dirty(page
);
687 if (pte_young(ptent
))
688 SetPageReferenced(page
);
691 page_remove_rmap(page
, vma
);
692 tlb_remove_page(tlb
, page
);
696 * If details->check_mapping, we leave swap entries;
697 * if details->nonlinear_vma, we leave file entries.
699 if (unlikely(details
))
701 if (!pte_file(ptent
))
702 free_swap_and_cache(pte_to_swp_entry(ptent
));
703 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
704 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
706 add_mm_rss(mm
, file_rss
, anon_rss
);
707 arch_leave_lazy_mmu_mode();
708 pte_unmap_unlock(pte
- 1, ptl
);
713 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
714 struct vm_area_struct
*vma
, pud_t
*pud
,
715 unsigned long addr
, unsigned long end
,
716 long *zap_work
, struct zap_details
*details
)
721 pmd
= pmd_offset(pud
, addr
);
723 next
= pmd_addr_end(addr
, end
);
724 if (pmd_none_or_clear_bad(pmd
)) {
728 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
730 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
735 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
736 struct vm_area_struct
*vma
, pgd_t
*pgd
,
737 unsigned long addr
, unsigned long end
,
738 long *zap_work
, struct zap_details
*details
)
743 pud
= pud_offset(pgd
, addr
);
745 next
= pud_addr_end(addr
, end
);
746 if (pud_none_or_clear_bad(pud
)) {
750 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
752 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
757 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
758 struct vm_area_struct
*vma
,
759 unsigned long addr
, unsigned long end
,
760 long *zap_work
, struct zap_details
*details
)
765 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
769 tlb_start_vma(tlb
, vma
);
770 pgd
= pgd_offset(vma
->vm_mm
, addr
);
772 next
= pgd_addr_end(addr
, end
);
773 if (pgd_none_or_clear_bad(pgd
)) {
777 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
779 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
780 tlb_end_vma(tlb
, vma
);
785 #ifdef CONFIG_PREEMPT
786 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
788 /* No preempt: go for improved straight-line efficiency */
789 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
793 * unmap_vmas - unmap a range of memory covered by a list of vma's
794 * @tlbp: address of the caller's struct mmu_gather
795 * @vma: the starting vma
796 * @start_addr: virtual address at which to start unmapping
797 * @end_addr: virtual address at which to end unmapping
798 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
799 * @details: details of nonlinear truncation or shared cache invalidation
801 * Returns the end address of the unmapping (restart addr if interrupted).
803 * Unmap all pages in the vma list.
805 * We aim to not hold locks for too long (for scheduling latency reasons).
806 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
807 * return the ending mmu_gather to the caller.
809 * Only addresses between `start' and `end' will be unmapped.
811 * The VMA list must be sorted in ascending virtual address order.
813 * unmap_vmas() assumes that the caller will flush the whole unmapped address
814 * range after unmap_vmas() returns. So the only responsibility here is to
815 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
816 * drops the lock and schedules.
818 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
819 struct vm_area_struct
*vma
, unsigned long start_addr
,
820 unsigned long end_addr
, unsigned long *nr_accounted
,
821 struct zap_details
*details
)
823 long zap_work
= ZAP_BLOCK_SIZE
;
824 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
825 int tlb_start_valid
= 0;
826 unsigned long start
= start_addr
;
827 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
828 int fullmm
= (*tlbp
)->fullmm
;
830 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
833 start
= max(vma
->vm_start
, start_addr
);
834 if (start
>= vma
->vm_end
)
836 end
= min(vma
->vm_end
, end_addr
);
837 if (end
<= vma
->vm_start
)
840 if (vma
->vm_flags
& VM_ACCOUNT
)
841 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
843 while (start
!= end
) {
844 if (!tlb_start_valid
) {
849 if (unlikely(is_vm_hugetlb_page(vma
))) {
850 unmap_hugepage_range(vma
, start
, end
);
851 zap_work
-= (end
- start
) /
852 (HPAGE_SIZE
/ PAGE_SIZE
);
855 start
= unmap_page_range(*tlbp
, vma
,
856 start
, end
, &zap_work
, details
);
859 BUG_ON(start
!= end
);
863 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
865 if (need_resched() ||
866 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
874 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
876 zap_work
= ZAP_BLOCK_SIZE
;
880 return start
; /* which is now the end (or restart) address */
884 * zap_page_range - remove user pages in a given range
885 * @vma: vm_area_struct holding the applicable pages
886 * @address: starting address of pages to zap
887 * @size: number of bytes to zap
888 * @details: details of nonlinear truncation or shared cache invalidation
890 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
891 unsigned long size
, struct zap_details
*details
)
893 struct mm_struct
*mm
= vma
->vm_mm
;
894 struct mmu_gather
*tlb
;
895 unsigned long end
= address
+ size
;
896 unsigned long nr_accounted
= 0;
899 tlb
= tlb_gather_mmu(mm
, 0);
900 update_hiwater_rss(mm
);
901 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
903 tlb_finish_mmu(tlb
, address
, end
);
908 * Do a quick page-table lookup for a single page.
910 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
919 struct mm_struct
*mm
= vma
->vm_mm
;
921 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
923 BUG_ON(flags
& FOLL_GET
);
928 pgd
= pgd_offset(mm
, address
);
929 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
932 pud
= pud_offset(pgd
, address
);
933 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
936 pmd
= pmd_offset(pud
, address
);
937 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
940 if (pmd_huge(*pmd
)) {
941 BUG_ON(flags
& FOLL_GET
);
942 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
946 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
951 if (!pte_present(pte
))
953 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
955 page
= vm_normal_page(vma
, address
, pte
);
959 if (flags
& FOLL_GET
)
961 if (flags
& FOLL_TOUCH
) {
962 if ((flags
& FOLL_WRITE
) &&
963 !pte_dirty(pte
) && !PageDirty(page
))
964 set_page_dirty(page
);
965 mark_page_accessed(page
);
968 pte_unmap_unlock(ptep
, ptl
);
974 * When core dumping an enormous anonymous area that nobody
975 * has touched so far, we don't want to allocate page tables.
977 if (flags
& FOLL_ANON
) {
979 if (flags
& FOLL_GET
)
981 BUG_ON(flags
& FOLL_WRITE
);
986 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
987 unsigned long start
, int len
, int write
, int force
,
988 struct page
**pages
, struct vm_area_struct
**vmas
)
991 unsigned int vm_flags
;
994 * Require read or write permissions.
995 * If 'force' is set, we only require the "MAY" flags.
997 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
998 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1002 struct vm_area_struct
*vma
;
1003 unsigned int foll_flags
;
1005 vma
= find_extend_vma(mm
, start
);
1006 if (!vma
&& in_gate_area(tsk
, start
)) {
1007 unsigned long pg
= start
& PAGE_MASK
;
1008 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1013 if (write
) /* user gate pages are read-only */
1014 return i
? : -EFAULT
;
1016 pgd
= pgd_offset_k(pg
);
1018 pgd
= pgd_offset_gate(mm
, pg
);
1019 BUG_ON(pgd_none(*pgd
));
1020 pud
= pud_offset(pgd
, pg
);
1021 BUG_ON(pud_none(*pud
));
1022 pmd
= pmd_offset(pud
, pg
);
1024 return i
? : -EFAULT
;
1025 pte
= pte_offset_map(pmd
, pg
);
1026 if (pte_none(*pte
)) {
1028 return i
? : -EFAULT
;
1031 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1045 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1046 || !(vm_flags
& vma
->vm_flags
))
1047 return i
? : -EFAULT
;
1049 if (is_vm_hugetlb_page(vma
)) {
1050 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1051 &start
, &len
, i
, write
);
1055 foll_flags
= FOLL_TOUCH
;
1057 foll_flags
|= FOLL_GET
;
1058 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1059 (!vma
->vm_ops
|| (!vma
->vm_ops
->nopage
&&
1060 !vma
->vm_ops
->fault
)))
1061 foll_flags
|= FOLL_ANON
;
1067 * If tsk is ooming, cut off its access to large memory
1068 * allocations. It has a pending SIGKILL, but it can't
1069 * be processed until returning to user space.
1071 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1075 foll_flags
|= FOLL_WRITE
;
1078 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1080 ret
= handle_mm_fault(mm
, vma
, start
,
1081 foll_flags
& FOLL_WRITE
);
1082 if (ret
& VM_FAULT_ERROR
) {
1083 if (ret
& VM_FAULT_OOM
)
1084 return i
? i
: -ENOMEM
;
1085 else if (ret
& VM_FAULT_SIGBUS
)
1086 return i
? i
: -EFAULT
;
1089 if (ret
& VM_FAULT_MAJOR
)
1095 * The VM_FAULT_WRITE bit tells us that
1096 * do_wp_page has broken COW when necessary,
1097 * even if maybe_mkwrite decided not to set
1098 * pte_write. We can thus safely do subsequent
1099 * page lookups as if they were reads.
1101 if (ret
& VM_FAULT_WRITE
)
1102 foll_flags
&= ~FOLL_WRITE
;
1109 flush_anon_page(vma
, page
, start
);
1110 flush_dcache_page(page
);
1117 } while (len
&& start
< vma
->vm_end
);
1121 EXPORT_SYMBOL(get_user_pages
);
1123 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1126 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1127 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1129 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1131 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1137 * This is the old fallback for page remapping.
1139 * For historical reasons, it only allows reserved pages. Only
1140 * old drivers should use this, and they needed to mark their
1141 * pages reserved for the old functions anyway.
1143 static int insert_page(struct mm_struct
*mm
, unsigned long addr
, struct page
*page
, pgprot_t prot
)
1153 flush_dcache_page(page
);
1154 pte
= get_locked_pte(mm
, addr
, &ptl
);
1158 if (!pte_none(*pte
))
1161 /* Ok, finally just insert the thing.. */
1163 inc_mm_counter(mm
, file_rss
);
1164 page_add_file_rmap(page
);
1165 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1169 pte_unmap_unlock(pte
, ptl
);
1175 * vm_insert_page - insert single page into user vma
1176 * @vma: user vma to map to
1177 * @addr: target user address of this page
1178 * @page: source kernel page
1180 * This allows drivers to insert individual pages they've allocated
1183 * The page has to be a nice clean _individual_ kernel allocation.
1184 * If you allocate a compound page, you need to have marked it as
1185 * such (__GFP_COMP), or manually just split the page up yourself
1186 * (see split_page()).
1188 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1189 * took an arbitrary page protection parameter. This doesn't allow
1190 * that. Your vma protection will have to be set up correctly, which
1191 * means that if you want a shared writable mapping, you'd better
1192 * ask for a shared writable mapping!
1194 * The page does not need to be reserved.
1196 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
, struct page
*page
)
1198 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1200 if (!page_count(page
))
1202 vma
->vm_flags
|= VM_INSERTPAGE
;
1203 return insert_page(vma
->vm_mm
, addr
, page
, vma
->vm_page_prot
);
1205 EXPORT_SYMBOL(vm_insert_page
);
1208 * vm_insert_pfn - insert single pfn into user vma
1209 * @vma: user vma to map to
1210 * @addr: target user address of this page
1211 * @pfn: source kernel pfn
1213 * Similar to vm_inert_page, this allows drivers to insert individual pages
1214 * they've allocated into a user vma. Same comments apply.
1216 * This function should only be called from a vm_ops->fault handler, and
1217 * in that case the handler should return NULL.
1219 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1222 struct mm_struct
*mm
= vma
->vm_mm
;
1227 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
1228 BUG_ON(is_cow_mapping(vma
->vm_flags
));
1231 pte
= get_locked_pte(mm
, addr
, &ptl
);
1235 if (!pte_none(*pte
))
1238 /* Ok, finally just insert the thing.. */
1239 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
1240 set_pte_at(mm
, addr
, pte
, entry
);
1241 update_mmu_cache(vma
, addr
, entry
);
1245 pte_unmap_unlock(pte
, ptl
);
1250 EXPORT_SYMBOL(vm_insert_pfn
);
1253 * maps a range of physical memory into the requested pages. the old
1254 * mappings are removed. any references to nonexistent pages results
1255 * in null mappings (currently treated as "copy-on-access")
1257 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1258 unsigned long addr
, unsigned long end
,
1259 unsigned long pfn
, pgprot_t prot
)
1264 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1267 arch_enter_lazy_mmu_mode();
1269 BUG_ON(!pte_none(*pte
));
1270 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1272 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1273 arch_leave_lazy_mmu_mode();
1274 pte_unmap_unlock(pte
- 1, ptl
);
1278 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1279 unsigned long addr
, unsigned long end
,
1280 unsigned long pfn
, pgprot_t prot
)
1285 pfn
-= addr
>> PAGE_SHIFT
;
1286 pmd
= pmd_alloc(mm
, pud
, addr
);
1290 next
= pmd_addr_end(addr
, end
);
1291 if (remap_pte_range(mm
, pmd
, addr
, next
,
1292 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1294 } while (pmd
++, addr
= next
, addr
!= end
);
1298 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1299 unsigned long addr
, unsigned long end
,
1300 unsigned long pfn
, pgprot_t prot
)
1305 pfn
-= addr
>> PAGE_SHIFT
;
1306 pud
= pud_alloc(mm
, pgd
, addr
);
1310 next
= pud_addr_end(addr
, end
);
1311 if (remap_pmd_range(mm
, pud
, addr
, next
,
1312 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1314 } while (pud
++, addr
= next
, addr
!= end
);
1319 * remap_pfn_range - remap kernel memory to userspace
1320 * @vma: user vma to map to
1321 * @addr: target user address to start at
1322 * @pfn: physical address of kernel memory
1323 * @size: size of map area
1324 * @prot: page protection flags for this mapping
1326 * Note: this is only safe if the mm semaphore is held when called.
1328 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1329 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1333 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1334 struct mm_struct
*mm
= vma
->vm_mm
;
1338 * Physically remapped pages are special. Tell the
1339 * rest of the world about it:
1340 * VM_IO tells people not to look at these pages
1341 * (accesses can have side effects).
1342 * VM_RESERVED is specified all over the place, because
1343 * in 2.4 it kept swapout's vma scan off this vma; but
1344 * in 2.6 the LRU scan won't even find its pages, so this
1345 * flag means no more than count its pages in reserved_vm,
1346 * and omit it from core dump, even when VM_IO turned off.
1347 * VM_PFNMAP tells the core MM that the base pages are just
1348 * raw PFN mappings, and do not have a "struct page" associated
1351 * There's a horrible special case to handle copy-on-write
1352 * behaviour that some programs depend on. We mark the "original"
1353 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1355 if (is_cow_mapping(vma
->vm_flags
)) {
1356 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1358 vma
->vm_pgoff
= pfn
;
1361 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1363 BUG_ON(addr
>= end
);
1364 pfn
-= addr
>> PAGE_SHIFT
;
1365 pgd
= pgd_offset(mm
, addr
);
1366 flush_cache_range(vma
, addr
, end
);
1368 next
= pgd_addr_end(addr
, end
);
1369 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1370 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1373 } while (pgd
++, addr
= next
, addr
!= end
);
1376 EXPORT_SYMBOL(remap_pfn_range
);
1378 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1379 unsigned long addr
, unsigned long end
,
1380 pte_fn_t fn
, void *data
)
1384 struct page
*pmd_page
;
1385 spinlock_t
*uninitialized_var(ptl
);
1387 pte
= (mm
== &init_mm
) ?
1388 pte_alloc_kernel(pmd
, addr
) :
1389 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1393 BUG_ON(pmd_huge(*pmd
));
1395 pmd_page
= pmd_page(*pmd
);
1398 err
= fn(pte
, pmd_page
, addr
, data
);
1401 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1404 pte_unmap_unlock(pte
-1, ptl
);
1408 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1409 unsigned long addr
, unsigned long end
,
1410 pte_fn_t fn
, void *data
)
1416 pmd
= pmd_alloc(mm
, pud
, addr
);
1420 next
= pmd_addr_end(addr
, end
);
1421 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1424 } while (pmd
++, addr
= next
, addr
!= end
);
1428 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1429 unsigned long addr
, unsigned long end
,
1430 pte_fn_t fn
, void *data
)
1436 pud
= pud_alloc(mm
, pgd
, addr
);
1440 next
= pud_addr_end(addr
, end
);
1441 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1444 } while (pud
++, addr
= next
, addr
!= end
);
1449 * Scan a region of virtual memory, filling in page tables as necessary
1450 * and calling a provided function on each leaf page table.
1452 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1453 unsigned long size
, pte_fn_t fn
, void *data
)
1457 unsigned long end
= addr
+ size
;
1460 BUG_ON(addr
>= end
);
1461 pgd
= pgd_offset(mm
, addr
);
1463 next
= pgd_addr_end(addr
, end
);
1464 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1467 } while (pgd
++, addr
= next
, addr
!= end
);
1470 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1473 * handle_pte_fault chooses page fault handler according to an entry
1474 * which was read non-atomically. Before making any commitment, on
1475 * those architectures or configurations (e.g. i386 with PAE) which
1476 * might give a mix of unmatched parts, do_swap_page and do_file_page
1477 * must check under lock before unmapping the pte and proceeding
1478 * (but do_wp_page is only called after already making such a check;
1479 * and do_anonymous_page and do_no_page can safely check later on).
1481 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1482 pte_t
*page_table
, pte_t orig_pte
)
1485 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1486 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1487 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1489 same
= pte_same(*page_table
, orig_pte
);
1493 pte_unmap(page_table
);
1498 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1499 * servicing faults for write access. In the normal case, do always want
1500 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1501 * that do not have writing enabled, when used by access_process_vm.
1503 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1505 if (likely(vma
->vm_flags
& VM_WRITE
))
1506 pte
= pte_mkwrite(pte
);
1510 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1513 * If the source page was a PFN mapping, we don't have
1514 * a "struct page" for it. We do a best-effort copy by
1515 * just copying from the original user address. If that
1516 * fails, we just zero-fill it. Live with it.
1518 if (unlikely(!src
)) {
1519 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1520 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1523 * This really shouldn't fail, because the page is there
1524 * in the page tables. But it might just be unreadable,
1525 * in which case we just give up and fill the result with
1528 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1529 memset(kaddr
, 0, PAGE_SIZE
);
1530 kunmap_atomic(kaddr
, KM_USER0
);
1531 flush_dcache_page(dst
);
1533 copy_user_highpage(dst
, src
, va
, vma
);
1537 * This routine handles present pages, when users try to write
1538 * to a shared page. It is done by copying the page to a new address
1539 * and decrementing the shared-page counter for the old page.
1541 * Note that this routine assumes that the protection checks have been
1542 * done by the caller (the low-level page fault routine in most cases).
1543 * Thus we can safely just mark it writable once we've done any necessary
1546 * We also mark the page dirty at this point even though the page will
1547 * change only once the write actually happens. This avoids a few races,
1548 * and potentially makes it more efficient.
1550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1551 * but allow concurrent faults), with pte both mapped and locked.
1552 * We return with mmap_sem still held, but pte unmapped and unlocked.
1554 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1555 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1556 spinlock_t
*ptl
, pte_t orig_pte
)
1558 struct page
*old_page
, *new_page
;
1560 int reuse
= 0, ret
= 0;
1561 int page_mkwrite
= 0;
1562 struct page
*dirty_page
= NULL
;
1564 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1569 * Take out anonymous pages first, anonymous shared vmas are
1570 * not dirty accountable.
1572 if (PageAnon(old_page
)) {
1573 if (!TestSetPageLocked(old_page
)) {
1574 reuse
= can_share_swap_page(old_page
);
1575 unlock_page(old_page
);
1577 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1578 (VM_WRITE
|VM_SHARED
))) {
1580 * Only catch write-faults on shared writable pages,
1581 * read-only shared pages can get COWed by
1582 * get_user_pages(.write=1, .force=1).
1584 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1586 * Notify the address space that the page is about to
1587 * become writable so that it can prohibit this or wait
1588 * for the page to get into an appropriate state.
1590 * We do this without the lock held, so that it can
1591 * sleep if it needs to.
1593 page_cache_get(old_page
);
1594 pte_unmap_unlock(page_table
, ptl
);
1596 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1597 goto unwritable_page
;
1600 * Since we dropped the lock we need to revalidate
1601 * the PTE as someone else may have changed it. If
1602 * they did, we just return, as we can count on the
1603 * MMU to tell us if they didn't also make it writable.
1605 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1607 page_cache_release(old_page
);
1608 if (!pte_same(*page_table
, orig_pte
))
1613 dirty_page
= old_page
;
1614 get_page(dirty_page
);
1619 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1620 entry
= pte_mkyoung(orig_pte
);
1621 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1622 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1623 update_mmu_cache(vma
, address
, entry
);
1624 ret
|= VM_FAULT_WRITE
;
1629 * Ok, we need to copy. Oh, well..
1631 page_cache_get(old_page
);
1633 pte_unmap_unlock(page_table
, ptl
);
1635 if (unlikely(anon_vma_prepare(vma
)))
1637 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1638 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1641 cow_user_page(new_page
, old_page
, address
, vma
);
1642 __SetPageUptodate(new_page
);
1645 * Re-check the pte - we dropped the lock
1647 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1648 if (likely(pte_same(*page_table
, orig_pte
))) {
1650 page_remove_rmap(old_page
, vma
);
1651 if (!PageAnon(old_page
)) {
1652 dec_mm_counter(mm
, file_rss
);
1653 inc_mm_counter(mm
, anon_rss
);
1656 inc_mm_counter(mm
, anon_rss
);
1657 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1658 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1659 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1661 * Clear the pte entry and flush it first, before updating the
1662 * pte with the new entry. This will avoid a race condition
1663 * seen in the presence of one thread doing SMC and another
1666 ptep_clear_flush(vma
, address
, page_table
);
1667 set_pte_at(mm
, address
, page_table
, entry
);
1668 update_mmu_cache(vma
, address
, entry
);
1669 lru_cache_add_active(new_page
);
1670 page_add_new_anon_rmap(new_page
, vma
, address
);
1672 /* Free the old page.. */
1673 new_page
= old_page
;
1674 ret
|= VM_FAULT_WRITE
;
1677 page_cache_release(new_page
);
1679 page_cache_release(old_page
);
1681 pte_unmap_unlock(page_table
, ptl
);
1684 file_update_time(vma
->vm_file
);
1687 * Yes, Virginia, this is actually required to prevent a race
1688 * with clear_page_dirty_for_io() from clearing the page dirty
1689 * bit after it clear all dirty ptes, but before a racing
1690 * do_wp_page installs a dirty pte.
1692 * do_no_page is protected similarly.
1694 wait_on_page_locked(dirty_page
);
1695 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1696 put_page(dirty_page
);
1701 page_cache_release(old_page
);
1702 return VM_FAULT_OOM
;
1705 page_cache_release(old_page
);
1706 return VM_FAULT_SIGBUS
;
1710 * Helper functions for unmap_mapping_range().
1712 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1714 * We have to restart searching the prio_tree whenever we drop the lock,
1715 * since the iterator is only valid while the lock is held, and anyway
1716 * a later vma might be split and reinserted earlier while lock dropped.
1718 * The list of nonlinear vmas could be handled more efficiently, using
1719 * a placeholder, but handle it in the same way until a need is shown.
1720 * It is important to search the prio_tree before nonlinear list: a vma
1721 * may become nonlinear and be shifted from prio_tree to nonlinear list
1722 * while the lock is dropped; but never shifted from list to prio_tree.
1724 * In order to make forward progress despite restarting the search,
1725 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1726 * quickly skip it next time around. Since the prio_tree search only
1727 * shows us those vmas affected by unmapping the range in question, we
1728 * can't efficiently keep all vmas in step with mapping->truncate_count:
1729 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1730 * mapping->truncate_count and vma->vm_truncate_count are protected by
1733 * In order to make forward progress despite repeatedly restarting some
1734 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1735 * and restart from that address when we reach that vma again. It might
1736 * have been split or merged, shrunk or extended, but never shifted: so
1737 * restart_addr remains valid so long as it remains in the vma's range.
1738 * unmap_mapping_range forces truncate_count to leap over page-aligned
1739 * values so we can save vma's restart_addr in its truncate_count field.
1741 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1743 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1745 struct vm_area_struct
*vma
;
1746 struct prio_tree_iter iter
;
1748 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1749 vma
->vm_truncate_count
= 0;
1750 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1751 vma
->vm_truncate_count
= 0;
1754 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1755 unsigned long start_addr
, unsigned long end_addr
,
1756 struct zap_details
*details
)
1758 unsigned long restart_addr
;
1762 * files that support invalidating or truncating portions of the
1763 * file from under mmaped areas must have their ->fault function
1764 * return a locked page (and set VM_FAULT_LOCKED in the return).
1765 * This provides synchronisation against concurrent unmapping here.
1769 restart_addr
= vma
->vm_truncate_count
;
1770 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1771 start_addr
= restart_addr
;
1772 if (start_addr
>= end_addr
) {
1773 /* Top of vma has been split off since last time */
1774 vma
->vm_truncate_count
= details
->truncate_count
;
1779 restart_addr
= zap_page_range(vma
, start_addr
,
1780 end_addr
- start_addr
, details
);
1781 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
1783 if (restart_addr
>= end_addr
) {
1784 /* We have now completed this vma: mark it so */
1785 vma
->vm_truncate_count
= details
->truncate_count
;
1789 /* Note restart_addr in vma's truncate_count field */
1790 vma
->vm_truncate_count
= restart_addr
;
1795 spin_unlock(details
->i_mmap_lock
);
1797 spin_lock(details
->i_mmap_lock
);
1801 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1802 struct zap_details
*details
)
1804 struct vm_area_struct
*vma
;
1805 struct prio_tree_iter iter
;
1806 pgoff_t vba
, vea
, zba
, zea
;
1809 vma_prio_tree_foreach(vma
, &iter
, root
,
1810 details
->first_index
, details
->last_index
) {
1811 /* Skip quickly over those we have already dealt with */
1812 if (vma
->vm_truncate_count
== details
->truncate_count
)
1815 vba
= vma
->vm_pgoff
;
1816 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1817 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1818 zba
= details
->first_index
;
1821 zea
= details
->last_index
;
1825 if (unmap_mapping_range_vma(vma
,
1826 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1827 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1833 static inline void unmap_mapping_range_list(struct list_head
*head
,
1834 struct zap_details
*details
)
1836 struct vm_area_struct
*vma
;
1839 * In nonlinear VMAs there is no correspondence between virtual address
1840 * offset and file offset. So we must perform an exhaustive search
1841 * across *all* the pages in each nonlinear VMA, not just the pages
1842 * whose virtual address lies outside the file truncation point.
1845 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1846 /* Skip quickly over those we have already dealt with */
1847 if (vma
->vm_truncate_count
== details
->truncate_count
)
1849 details
->nonlinear_vma
= vma
;
1850 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1851 vma
->vm_end
, details
) < 0)
1857 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1858 * @mapping: the address space containing mmaps to be unmapped.
1859 * @holebegin: byte in first page to unmap, relative to the start of
1860 * the underlying file. This will be rounded down to a PAGE_SIZE
1861 * boundary. Note that this is different from vmtruncate(), which
1862 * must keep the partial page. In contrast, we must get rid of
1864 * @holelen: size of prospective hole in bytes. This will be rounded
1865 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1867 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1868 * but 0 when invalidating pagecache, don't throw away private data.
1870 void unmap_mapping_range(struct address_space
*mapping
,
1871 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1873 struct zap_details details
;
1874 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1875 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1877 /* Check for overflow. */
1878 if (sizeof(holelen
) > sizeof(hlen
)) {
1880 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1881 if (holeend
& ~(long long)ULONG_MAX
)
1882 hlen
= ULONG_MAX
- hba
+ 1;
1885 details
.check_mapping
= even_cows
? NULL
: mapping
;
1886 details
.nonlinear_vma
= NULL
;
1887 details
.first_index
= hba
;
1888 details
.last_index
= hba
+ hlen
- 1;
1889 if (details
.last_index
< details
.first_index
)
1890 details
.last_index
= ULONG_MAX
;
1891 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1893 spin_lock(&mapping
->i_mmap_lock
);
1895 /* Protect against endless unmapping loops */
1896 mapping
->truncate_count
++;
1897 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1898 if (mapping
->truncate_count
== 0)
1899 reset_vma_truncate_counts(mapping
);
1900 mapping
->truncate_count
++;
1902 details
.truncate_count
= mapping
->truncate_count
;
1904 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1905 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1906 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1907 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1908 spin_unlock(&mapping
->i_mmap_lock
);
1910 EXPORT_SYMBOL(unmap_mapping_range
);
1913 * vmtruncate - unmap mappings "freed" by truncate() syscall
1914 * @inode: inode of the file used
1915 * @offset: file offset to start truncating
1917 * NOTE! We have to be ready to update the memory sharing
1918 * between the file and the memory map for a potential last
1919 * incomplete page. Ugly, but necessary.
1921 int vmtruncate(struct inode
* inode
, loff_t offset
)
1923 if (inode
->i_size
< offset
) {
1924 unsigned long limit
;
1926 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1927 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1929 if (offset
> inode
->i_sb
->s_maxbytes
)
1931 i_size_write(inode
, offset
);
1933 struct address_space
*mapping
= inode
->i_mapping
;
1936 * truncation of in-use swapfiles is disallowed - it would
1937 * cause subsequent swapout to scribble on the now-freed
1940 if (IS_SWAPFILE(inode
))
1942 i_size_write(inode
, offset
);
1945 * unmap_mapping_range is called twice, first simply for
1946 * efficiency so that truncate_inode_pages does fewer
1947 * single-page unmaps. However after this first call, and
1948 * before truncate_inode_pages finishes, it is possible for
1949 * private pages to be COWed, which remain after
1950 * truncate_inode_pages finishes, hence the second
1951 * unmap_mapping_range call must be made for correctness.
1953 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1954 truncate_inode_pages(mapping
, offset
);
1955 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1958 if (inode
->i_op
&& inode
->i_op
->truncate
)
1959 inode
->i_op
->truncate(inode
);
1963 send_sig(SIGXFSZ
, current
, 0);
1967 EXPORT_SYMBOL(vmtruncate
);
1969 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
1971 struct address_space
*mapping
= inode
->i_mapping
;
1974 * If the underlying filesystem is not going to provide
1975 * a way to truncate a range of blocks (punch a hole) -
1976 * we should return failure right now.
1978 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
1981 mutex_lock(&inode
->i_mutex
);
1982 down_write(&inode
->i_alloc_sem
);
1983 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
1984 truncate_inode_pages_range(mapping
, offset
, end
);
1985 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
1986 inode
->i_op
->truncate_range(inode
, offset
, end
);
1987 up_write(&inode
->i_alloc_sem
);
1988 mutex_unlock(&inode
->i_mutex
);
1994 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1995 * but allow concurrent faults), and pte mapped but not yet locked.
1996 * We return with mmap_sem still held, but pte unmapped and unlocked.
1998 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1999 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2000 int write_access
, pte_t orig_pte
)
2008 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2011 entry
= pte_to_swp_entry(orig_pte
);
2012 if (is_migration_entry(entry
)) {
2013 migration_entry_wait(mm
, pmd
, address
);
2016 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2017 page
= lookup_swap_cache(entry
);
2019 grab_swap_token(); /* Contend for token _before_ read-in */
2020 page
= swapin_readahead(entry
,
2021 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2024 * Back out if somebody else faulted in this pte
2025 * while we released the pte lock.
2027 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2028 if (likely(pte_same(*page_table
, orig_pte
)))
2030 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2034 /* Had to read the page from swap area: Major fault */
2035 ret
= VM_FAULT_MAJOR
;
2036 count_vm_event(PGMAJFAULT
);
2039 mark_page_accessed(page
);
2041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2044 * Back out if somebody else already faulted in this pte.
2046 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2047 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2050 if (unlikely(!PageUptodate(page
))) {
2051 ret
= VM_FAULT_SIGBUS
;
2055 /* The page isn't present yet, go ahead with the fault. */
2057 inc_mm_counter(mm
, anon_rss
);
2058 pte
= mk_pte(page
, vma
->vm_page_prot
);
2059 if (write_access
&& can_share_swap_page(page
)) {
2060 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2064 flush_icache_page(vma
, page
);
2065 set_pte_at(mm
, address
, page_table
, pte
);
2066 page_add_anon_rmap(page
, vma
, address
);
2070 remove_exclusive_swap_page(page
);
2074 /* XXX: We could OR the do_wp_page code with this one? */
2075 if (do_wp_page(mm
, vma
, address
,
2076 page_table
, pmd
, ptl
, pte
) & VM_FAULT_OOM
)
2081 /* No need to invalidate - it was non-present before */
2082 update_mmu_cache(vma
, address
, pte
);
2084 pte_unmap_unlock(page_table
, ptl
);
2088 pte_unmap_unlock(page_table
, ptl
);
2090 page_cache_release(page
);
2095 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2096 * but allow concurrent faults), and pte mapped but not yet locked.
2097 * We return with mmap_sem still held, but pte unmapped and unlocked.
2099 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2100 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2107 /* Allocate our own private page. */
2108 pte_unmap(page_table
);
2110 if (unlikely(anon_vma_prepare(vma
)))
2112 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2115 __SetPageUptodate(page
);
2117 entry
= mk_pte(page
, vma
->vm_page_prot
);
2118 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2120 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2121 if (!pte_none(*page_table
))
2123 inc_mm_counter(mm
, anon_rss
);
2124 lru_cache_add_active(page
);
2125 page_add_new_anon_rmap(page
, vma
, address
);
2126 set_pte_at(mm
, address
, page_table
, entry
);
2128 /* No need to invalidate - it was non-present before */
2129 update_mmu_cache(vma
, address
, entry
);
2131 pte_unmap_unlock(page_table
, ptl
);
2134 page_cache_release(page
);
2137 return VM_FAULT_OOM
;
2141 * __do_fault() tries to create a new page mapping. It aggressively
2142 * tries to share with existing pages, but makes a separate copy if
2143 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2144 * the next page fault.
2146 * As this is called only for pages that do not currently exist, we
2147 * do not need to flush old virtual caches or the TLB.
2149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2150 * but allow concurrent faults), and pte neither mapped nor locked.
2151 * We return with mmap_sem still held, but pte unmapped and unlocked.
2153 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2154 unsigned long address
, pmd_t
*pmd
,
2155 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2162 struct page
*dirty_page
= NULL
;
2163 struct vm_fault vmf
;
2165 int page_mkwrite
= 0;
2167 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2172 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2174 if (likely(vma
->vm_ops
->fault
)) {
2175 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2176 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2179 /* Legacy ->nopage path */
2181 vmf
.page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
2182 /* no page was available -- either SIGBUS or OOM */
2183 if (unlikely(vmf
.page
== NOPAGE_SIGBUS
))
2184 return VM_FAULT_SIGBUS
;
2185 else if (unlikely(vmf
.page
== NOPAGE_OOM
))
2186 return VM_FAULT_OOM
;
2190 * For consistency in subsequent calls, make the faulted page always
2193 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2194 lock_page(vmf
.page
);
2196 VM_BUG_ON(!PageLocked(vmf
.page
));
2199 * Should we do an early C-O-W break?
2202 if (flags
& FAULT_FLAG_WRITE
) {
2203 if (!(vma
->vm_flags
& VM_SHARED
)) {
2205 if (unlikely(anon_vma_prepare(vma
))) {
2209 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2215 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2216 __SetPageUptodate(page
);
2219 * If the page will be shareable, see if the backing
2220 * address space wants to know that the page is about
2221 * to become writable
2223 if (vma
->vm_ops
->page_mkwrite
) {
2225 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2226 ret
= VM_FAULT_SIGBUS
;
2227 anon
= 1; /* no anon but release vmf.page */
2232 * XXX: this is not quite right (racy vs
2233 * invalidate) to unlock and relock the page
2234 * like this, however a better fix requires
2235 * reworking page_mkwrite locking API, which
2236 * is better done later.
2238 if (!page
->mapping
) {
2240 anon
= 1; /* no anon but release vmf.page */
2249 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2252 * This silly early PAGE_DIRTY setting removes a race
2253 * due to the bad i386 page protection. But it's valid
2254 * for other architectures too.
2256 * Note that if write_access is true, we either now have
2257 * an exclusive copy of the page, or this is a shared mapping,
2258 * so we can make it writable and dirty to avoid having to
2259 * handle that later.
2261 /* Only go through if we didn't race with anybody else... */
2262 if (likely(pte_same(*page_table
, orig_pte
))) {
2263 flush_icache_page(vma
, page
);
2264 entry
= mk_pte(page
, vma
->vm_page_prot
);
2265 if (flags
& FAULT_FLAG_WRITE
)
2266 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2267 set_pte_at(mm
, address
, page_table
, entry
);
2269 inc_mm_counter(mm
, anon_rss
);
2270 lru_cache_add_active(page
);
2271 page_add_new_anon_rmap(page
, vma
, address
);
2273 inc_mm_counter(mm
, file_rss
);
2274 page_add_file_rmap(page
);
2275 if (flags
& FAULT_FLAG_WRITE
) {
2277 get_page(dirty_page
);
2281 /* no need to invalidate: a not-present page won't be cached */
2282 update_mmu_cache(vma
, address
, entry
);
2285 page_cache_release(page
);
2287 anon
= 1; /* no anon but release faulted_page */
2290 pte_unmap_unlock(page_table
, ptl
);
2293 unlock_page(vmf
.page
);
2296 page_cache_release(vmf
.page
);
2297 else if (dirty_page
) {
2299 file_update_time(vma
->vm_file
);
2301 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2302 put_page(dirty_page
);
2308 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2309 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2310 int write_access
, pte_t orig_pte
)
2312 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2313 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2314 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2316 pte_unmap(page_table
);
2317 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2322 * do_no_pfn() tries to create a new page mapping for a page without
2323 * a struct_page backing it
2325 * As this is called only for pages that do not currently exist, we
2326 * do not need to flush old virtual caches or the TLB.
2328 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2329 * but allow concurrent faults), and pte mapped but not yet locked.
2330 * We return with mmap_sem still held, but pte unmapped and unlocked.
2332 * It is expected that the ->nopfn handler always returns the same pfn
2333 * for a given virtual mapping.
2335 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2337 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2338 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2345 pte_unmap(page_table
);
2346 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
2347 BUG_ON(is_cow_mapping(vma
->vm_flags
));
2349 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2350 if (unlikely(pfn
== NOPFN_OOM
))
2351 return VM_FAULT_OOM
;
2352 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2353 return VM_FAULT_SIGBUS
;
2354 else if (unlikely(pfn
== NOPFN_REFAULT
))
2357 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2359 /* Only go through if we didn't race with anybody else... */
2360 if (pte_none(*page_table
)) {
2361 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2363 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2364 set_pte_at(mm
, address
, page_table
, entry
);
2366 pte_unmap_unlock(page_table
, ptl
);
2371 * Fault of a previously existing named mapping. Repopulate the pte
2372 * from the encoded file_pte if possible. This enables swappable
2375 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2376 * but allow concurrent faults), and pte mapped but not yet locked.
2377 * We return with mmap_sem still held, but pte unmapped and unlocked.
2379 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2380 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2381 int write_access
, pte_t orig_pte
)
2383 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2384 (write_access
? FAULT_FLAG_WRITE
: 0);
2387 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2390 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2391 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2393 * Page table corrupted: show pte and kill process.
2395 print_bad_pte(vma
, orig_pte
, address
);
2396 return VM_FAULT_OOM
;
2399 pgoff
= pte_to_pgoff(orig_pte
);
2400 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2404 * These routines also need to handle stuff like marking pages dirty
2405 * and/or accessed for architectures that don't do it in hardware (most
2406 * RISC architectures). The early dirtying is also good on the i386.
2408 * There is also a hook called "update_mmu_cache()" that architectures
2409 * with external mmu caches can use to update those (ie the Sparc or
2410 * PowerPC hashed page tables that act as extended TLBs).
2412 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2413 * but allow concurrent faults), and pte mapped but not yet locked.
2414 * We return with mmap_sem still held, but pte unmapped and unlocked.
2416 static inline int handle_pte_fault(struct mm_struct
*mm
,
2417 struct vm_area_struct
*vma
, unsigned long address
,
2418 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2424 if (!pte_present(entry
)) {
2425 if (pte_none(entry
)) {
2427 if (vma
->vm_ops
->fault
|| vma
->vm_ops
->nopage
)
2428 return do_linear_fault(mm
, vma
, address
,
2429 pte
, pmd
, write_access
, entry
);
2430 if (unlikely(vma
->vm_ops
->nopfn
))
2431 return do_no_pfn(mm
, vma
, address
, pte
,
2434 return do_anonymous_page(mm
, vma
, address
,
2435 pte
, pmd
, write_access
);
2437 if (pte_file(entry
))
2438 return do_nonlinear_fault(mm
, vma
, address
,
2439 pte
, pmd
, write_access
, entry
);
2440 return do_swap_page(mm
, vma
, address
,
2441 pte
, pmd
, write_access
, entry
);
2444 ptl
= pte_lockptr(mm
, pmd
);
2446 if (unlikely(!pte_same(*pte
, entry
)))
2449 if (!pte_write(entry
))
2450 return do_wp_page(mm
, vma
, address
,
2451 pte
, pmd
, ptl
, entry
);
2452 entry
= pte_mkdirty(entry
);
2454 entry
= pte_mkyoung(entry
);
2455 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2456 update_mmu_cache(vma
, address
, entry
);
2459 * This is needed only for protection faults but the arch code
2460 * is not yet telling us if this is a protection fault or not.
2461 * This still avoids useless tlb flushes for .text page faults
2465 flush_tlb_page(vma
, address
);
2468 pte_unmap_unlock(pte
, ptl
);
2473 * By the time we get here, we already hold the mm semaphore
2475 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2476 unsigned long address
, int write_access
)
2483 __set_current_state(TASK_RUNNING
);
2485 count_vm_event(PGFAULT
);
2487 if (unlikely(is_vm_hugetlb_page(vma
)))
2488 return hugetlb_fault(mm
, vma
, address
, write_access
);
2490 pgd
= pgd_offset(mm
, address
);
2491 pud
= pud_alloc(mm
, pgd
, address
);
2493 return VM_FAULT_OOM
;
2494 pmd
= pmd_alloc(mm
, pud
, address
);
2496 return VM_FAULT_OOM
;
2497 pte
= pte_alloc_map(mm
, pmd
, address
);
2499 return VM_FAULT_OOM
;
2501 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2504 #ifndef __PAGETABLE_PUD_FOLDED
2506 * Allocate page upper directory.
2507 * We've already handled the fast-path in-line.
2509 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2511 pud_t
*new = pud_alloc_one(mm
, address
);
2515 spin_lock(&mm
->page_table_lock
);
2516 if (pgd_present(*pgd
)) /* Another has populated it */
2519 pgd_populate(mm
, pgd
, new);
2520 spin_unlock(&mm
->page_table_lock
);
2523 #endif /* __PAGETABLE_PUD_FOLDED */
2525 #ifndef __PAGETABLE_PMD_FOLDED
2527 * Allocate page middle directory.
2528 * We've already handled the fast-path in-line.
2530 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2532 pmd_t
*new = pmd_alloc_one(mm
, address
);
2536 spin_lock(&mm
->page_table_lock
);
2537 #ifndef __ARCH_HAS_4LEVEL_HACK
2538 if (pud_present(*pud
)) /* Another has populated it */
2541 pud_populate(mm
, pud
, new);
2543 if (pgd_present(*pud
)) /* Another has populated it */
2546 pgd_populate(mm
, pud
, new);
2547 #endif /* __ARCH_HAS_4LEVEL_HACK */
2548 spin_unlock(&mm
->page_table_lock
);
2551 #endif /* __PAGETABLE_PMD_FOLDED */
2553 int make_pages_present(unsigned long addr
, unsigned long end
)
2555 int ret
, len
, write
;
2556 struct vm_area_struct
* vma
;
2558 vma
= find_vma(current
->mm
, addr
);
2561 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2562 BUG_ON(addr
>= end
);
2563 BUG_ON(end
> vma
->vm_end
);
2564 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2565 ret
= get_user_pages(current
, current
->mm
, addr
,
2566 len
, write
, 0, NULL
, NULL
);
2569 return ret
== len
? 0 : -1;
2572 #if !defined(__HAVE_ARCH_GATE_AREA)
2574 #if defined(AT_SYSINFO_EHDR)
2575 static struct vm_area_struct gate_vma
;
2577 static int __init
gate_vma_init(void)
2579 gate_vma
.vm_mm
= NULL
;
2580 gate_vma
.vm_start
= FIXADDR_USER_START
;
2581 gate_vma
.vm_end
= FIXADDR_USER_END
;
2582 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2583 gate_vma
.vm_page_prot
= __P101
;
2585 * Make sure the vDSO gets into every core dump.
2586 * Dumping its contents makes post-mortem fully interpretable later
2587 * without matching up the same kernel and hardware config to see
2588 * what PC values meant.
2590 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2593 __initcall(gate_vma_init
);
2596 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2598 #ifdef AT_SYSINFO_EHDR
2605 int in_gate_area_no_task(unsigned long addr
)
2607 #ifdef AT_SYSINFO_EHDR
2608 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2614 #endif /* __HAVE_ARCH_GATE_AREA */
2617 * Access another process' address space.
2618 * Source/target buffer must be kernel space,
2619 * Do not walk the page table directly, use get_user_pages
2621 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2623 struct mm_struct
*mm
;
2624 struct vm_area_struct
*vma
;
2626 void *old_buf
= buf
;
2628 mm
= get_task_mm(tsk
);
2632 down_read(&mm
->mmap_sem
);
2633 /* ignore errors, just check how much was successfully transferred */
2635 int bytes
, ret
, offset
;
2638 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2639 write
, 1, &page
, &vma
);
2644 offset
= addr
& (PAGE_SIZE
-1);
2645 if (bytes
> PAGE_SIZE
-offset
)
2646 bytes
= PAGE_SIZE
-offset
;
2650 copy_to_user_page(vma
, page
, addr
,
2651 maddr
+ offset
, buf
, bytes
);
2652 set_page_dirty_lock(page
);
2654 copy_from_user_page(vma
, page
, addr
,
2655 buf
, maddr
+ offset
, bytes
);
2658 page_cache_release(page
);
2663 up_read(&mm
->mmap_sem
);
2666 return buf
- old_buf
;
2670 * Print the name of a VMA.
2672 void print_vma_addr(char *prefix
, unsigned long ip
)
2674 struct mm_struct
*mm
= current
->mm
;
2675 struct vm_area_struct
*vma
;
2677 down_read(&mm
->mmap_sem
);
2678 vma
= find_vma(mm
, ip
);
2679 if (vma
&& vma
->vm_file
) {
2680 struct file
*f
= vma
->vm_file
;
2681 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2685 p
= d_path(f
->f_dentry
, f
->f_vfsmnt
, buf
, PAGE_SIZE
);
2688 s
= strrchr(p
, '/');
2691 printk("%s%s[%lx+%lx]", prefix
, p
,
2693 vma
->vm_end
- vma
->vm_start
);
2694 free_page((unsigned long)buf
);
2697 up_read(¤t
->mm
->mmap_sem
);