Remodified Makefile to ARCH ?= $(SUBARCH)
[wrt350n-kernel.git] / net / ipv4 / arp.c
blobc663fa5339ee9cbadef76d947455806ba2db8425
1 /* linux/net/ipv4/arp.c
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
5 * Copyright (C) 1994 by Florian La Roche
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * Fixes:
18 * Alan Cox : Removed the Ethernet assumptions in
19 * Florian's code
20 * Alan Cox : Fixed some small errors in the ARP
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
135 static struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
145 static struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
155 static struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
163 struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
173 struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
222 return -EINVAL;
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
231 static int arp_constructor(struct neighbour *neigh)
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
238 rcu_read_lock();
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
241 rcu_read_unlock();
242 return -EINVAL;
245 neigh->type = inet_addr_type(&init_net, addr);
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
272 #if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292 #endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296 #endif
298 #endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
320 return 0;
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 dst_link_failure(skb);
326 kfree_skb(skb);
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
338 if (!in_dev)
339 return;
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 default:
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(&init_net, ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
346 break;
347 case 1: /* Restrict announcements of saddr in same subnet */
348 if (!skb)
349 break;
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(&init_net, saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
354 break;
356 saddr = 0;
357 break;
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
359 break;
362 if (in_dev)
363 in_dev_put(in_dev);
364 if (!saddr)
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 } else if ((probes -= neigh->parms->app_probes) < 0) {
372 #ifdef CONFIG_ARPD
373 neigh_app_ns(neigh);
374 #endif
375 return;
378 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
379 dst_ha, dev->dev_addr, NULL);
382 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
384 int scope;
386 switch (IN_DEV_ARP_IGNORE(in_dev)) {
387 case 0: /* Reply, the tip is already validated */
388 return 0;
389 case 1: /* Reply only if tip is configured on the incoming interface */
390 sip = 0;
391 scope = RT_SCOPE_HOST;
392 break;
393 case 2: /*
394 * Reply only if tip is configured on the incoming interface
395 * and is in same subnet as sip
397 scope = RT_SCOPE_HOST;
398 break;
399 case 3: /* Do not reply for scope host addresses */
400 sip = 0;
401 scope = RT_SCOPE_LINK;
402 break;
403 case 4: /* Reserved */
404 case 5:
405 case 6:
406 case 7:
407 return 0;
408 case 8: /* Do not reply */
409 return 1;
410 default:
411 return 0;
413 return !inet_confirm_addr(in_dev, sip, tip, scope);
416 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
418 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
419 .saddr = tip } } };
420 struct rtable *rt;
421 int flag = 0;
422 /*unsigned long now; */
424 if (ip_route_output_key(&init_net, &rt, &fl) < 0)
425 return 1;
426 if (rt->u.dst.dev != dev) {
427 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
428 flag = 1;
430 ip_rt_put(rt);
431 return flag;
434 /* OBSOLETE FUNCTIONS */
437 * Find an arp mapping in the cache. If not found, post a request.
439 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
440 * even if it exists. It is supposed that skb->dev was mangled
441 * by a virtual device (eql, shaper). Nobody but broken devices
442 * is allowed to use this function, it is scheduled to be removed. --ANK
445 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
447 switch (addr_hint) {
448 case RTN_LOCAL:
449 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
450 memcpy(haddr, dev->dev_addr, dev->addr_len);
451 return 1;
452 case RTN_MULTICAST:
453 arp_mc_map(paddr, haddr, dev, 1);
454 return 1;
455 case RTN_BROADCAST:
456 memcpy(haddr, dev->broadcast, dev->addr_len);
457 return 1;
459 return 0;
463 int arp_find(unsigned char *haddr, struct sk_buff *skb)
465 struct net_device *dev = skb->dev;
466 __be32 paddr;
467 struct neighbour *n;
469 if (!skb->dst) {
470 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
471 kfree_skb(skb);
472 return 1;
475 paddr = ((struct rtable*)skb->dst)->rt_gateway;
477 if (arp_set_predefined(inet_addr_type(&init_net, paddr), haddr, paddr, dev))
478 return 0;
480 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
482 if (n) {
483 n->used = jiffies;
484 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
485 read_lock_bh(&n->lock);
486 memcpy(haddr, n->ha, dev->addr_len);
487 read_unlock_bh(&n->lock);
488 neigh_release(n);
489 return 0;
491 neigh_release(n);
492 } else
493 kfree_skb(skb);
494 return 1;
497 /* END OF OBSOLETE FUNCTIONS */
499 int arp_bind_neighbour(struct dst_entry *dst)
501 struct net_device *dev = dst->dev;
502 struct neighbour *n = dst->neighbour;
504 if (dev == NULL)
505 return -EINVAL;
506 if (n == NULL) {
507 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
508 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
509 nexthop = 0;
510 n = __neigh_lookup_errno(
511 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
512 dev->type == ARPHRD_ATM ? clip_tbl_hook :
513 #endif
514 &arp_tbl, &nexthop, dev);
515 if (IS_ERR(n))
516 return PTR_ERR(n);
517 dst->neighbour = n;
519 return 0;
523 * Check if we can use proxy ARP for this path
526 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
528 struct in_device *out_dev;
529 int imi, omi = -1;
531 if (!IN_DEV_PROXY_ARP(in_dev))
532 return 0;
534 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
535 return 1;
536 if (imi == -1)
537 return 0;
539 /* place to check for proxy_arp for routes */
541 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
542 omi = IN_DEV_MEDIUM_ID(out_dev);
543 in_dev_put(out_dev);
545 return (omi != imi && omi != -1);
549 * Interface to link layer: send routine and receive handler.
553 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
554 * message.
556 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
557 struct net_device *dev, __be32 src_ip,
558 const unsigned char *dest_hw,
559 const unsigned char *src_hw,
560 const unsigned char *target_hw)
562 struct sk_buff *skb;
563 struct arphdr *arp;
564 unsigned char *arp_ptr;
567 * Allocate a buffer
570 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
571 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
572 if (skb == NULL)
573 return NULL;
575 skb_reserve(skb, LL_RESERVED_SPACE(dev));
576 skb_reset_network_header(skb);
577 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
578 skb->dev = dev;
579 skb->protocol = htons(ETH_P_ARP);
580 if (src_hw == NULL)
581 src_hw = dev->dev_addr;
582 if (dest_hw == NULL)
583 dest_hw = dev->broadcast;
586 * Fill the device header for the ARP frame
588 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
589 goto out;
592 * Fill out the arp protocol part.
594 * The arp hardware type should match the device type, except for FDDI,
595 * which (according to RFC 1390) should always equal 1 (Ethernet).
598 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
599 * DIX code for the protocol. Make these device structure fields.
601 switch (dev->type) {
602 default:
603 arp->ar_hrd = htons(dev->type);
604 arp->ar_pro = htons(ETH_P_IP);
605 break;
607 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
608 case ARPHRD_AX25:
609 arp->ar_hrd = htons(ARPHRD_AX25);
610 arp->ar_pro = htons(AX25_P_IP);
611 break;
613 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
614 case ARPHRD_NETROM:
615 arp->ar_hrd = htons(ARPHRD_NETROM);
616 arp->ar_pro = htons(AX25_P_IP);
617 break;
618 #endif
619 #endif
621 #ifdef CONFIG_FDDI
622 case ARPHRD_FDDI:
623 arp->ar_hrd = htons(ARPHRD_ETHER);
624 arp->ar_pro = htons(ETH_P_IP);
625 break;
626 #endif
627 #ifdef CONFIG_TR
628 case ARPHRD_IEEE802_TR:
629 arp->ar_hrd = htons(ARPHRD_IEEE802);
630 arp->ar_pro = htons(ETH_P_IP);
631 break;
632 #endif
635 arp->ar_hln = dev->addr_len;
636 arp->ar_pln = 4;
637 arp->ar_op = htons(type);
639 arp_ptr=(unsigned char *)(arp+1);
641 memcpy(arp_ptr, src_hw, dev->addr_len);
642 arp_ptr+=dev->addr_len;
643 memcpy(arp_ptr, &src_ip,4);
644 arp_ptr+=4;
645 if (target_hw != NULL)
646 memcpy(arp_ptr, target_hw, dev->addr_len);
647 else
648 memset(arp_ptr, 0, dev->addr_len);
649 arp_ptr+=dev->addr_len;
650 memcpy(arp_ptr, &dest_ip, 4);
652 return skb;
654 out:
655 kfree_skb(skb);
656 return NULL;
660 * Send an arp packet.
662 void arp_xmit(struct sk_buff *skb)
664 /* Send it off, maybe filter it using firewalling first. */
665 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
669 * Create and send an arp packet.
671 void arp_send(int type, int ptype, __be32 dest_ip,
672 struct net_device *dev, __be32 src_ip,
673 const unsigned char *dest_hw, const unsigned char *src_hw,
674 const unsigned char *target_hw)
676 struct sk_buff *skb;
679 * No arp on this interface.
682 if (dev->flags&IFF_NOARP)
683 return;
685 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
686 dest_hw, src_hw, target_hw);
687 if (skb == NULL) {
688 return;
691 arp_xmit(skb);
695 * Process an arp request.
698 static int arp_process(struct sk_buff *skb)
700 struct net_device *dev = skb->dev;
701 struct in_device *in_dev = in_dev_get(dev);
702 struct arphdr *arp;
703 unsigned char *arp_ptr;
704 struct rtable *rt;
705 unsigned char *sha;
706 __be32 sip, tip;
707 u16 dev_type = dev->type;
708 int addr_type;
709 struct neighbour *n;
711 /* arp_rcv below verifies the ARP header and verifies the device
712 * is ARP'able.
715 if (in_dev == NULL)
716 goto out;
718 arp = arp_hdr(skb);
720 switch (dev_type) {
721 default:
722 if (arp->ar_pro != htons(ETH_P_IP) ||
723 htons(dev_type) != arp->ar_hrd)
724 goto out;
725 break;
726 case ARPHRD_ETHER:
727 case ARPHRD_IEEE802_TR:
728 case ARPHRD_FDDI:
729 case ARPHRD_IEEE802:
731 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
732 * devices, according to RFC 2625) devices will accept ARP
733 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
734 * This is the case also of FDDI, where the RFC 1390 says that
735 * FDDI devices should accept ARP hardware of (1) Ethernet,
736 * however, to be more robust, we'll accept both 1 (Ethernet)
737 * or 6 (IEEE 802.2)
739 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
740 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
741 arp->ar_pro != htons(ETH_P_IP))
742 goto out;
743 break;
744 case ARPHRD_AX25:
745 if (arp->ar_pro != htons(AX25_P_IP) ||
746 arp->ar_hrd != htons(ARPHRD_AX25))
747 goto out;
748 break;
749 case ARPHRD_NETROM:
750 if (arp->ar_pro != htons(AX25_P_IP) ||
751 arp->ar_hrd != htons(ARPHRD_NETROM))
752 goto out;
753 break;
756 /* Understand only these message types */
758 if (arp->ar_op != htons(ARPOP_REPLY) &&
759 arp->ar_op != htons(ARPOP_REQUEST))
760 goto out;
763 * Extract fields
765 arp_ptr= (unsigned char *)(arp+1);
766 sha = arp_ptr;
767 arp_ptr += dev->addr_len;
768 memcpy(&sip, arp_ptr, 4);
769 arp_ptr += 4;
770 arp_ptr += dev->addr_len;
771 memcpy(&tip, arp_ptr, 4);
773 * Check for bad requests for 127.x.x.x and requests for multicast
774 * addresses. If this is one such, delete it.
776 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
777 goto out;
780 * Special case: We must set Frame Relay source Q.922 address
782 if (dev_type == ARPHRD_DLCI)
783 sha = dev->broadcast;
786 * Process entry. The idea here is we want to send a reply if it is a
787 * request for us or if it is a request for someone else that we hold
788 * a proxy for. We want to add an entry to our cache if it is a reply
789 * to us or if it is a request for our address.
790 * (The assumption for this last is that if someone is requesting our
791 * address, they are probably intending to talk to us, so it saves time
792 * if we cache their address. Their address is also probably not in
793 * our cache, since ours is not in their cache.)
795 * Putting this another way, we only care about replies if they are to
796 * us, in which case we add them to the cache. For requests, we care
797 * about those for us and those for our proxies. We reply to both,
798 * and in the case of requests for us we add the requester to the arp
799 * cache.
802 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
803 if (sip == 0) {
804 if (arp->ar_op == htons(ARPOP_REQUEST) &&
805 inet_addr_type(&init_net, tip) == RTN_LOCAL &&
806 !arp_ignore(in_dev, sip, tip))
807 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
808 dev->dev_addr, sha);
809 goto out;
812 if (arp->ar_op == htons(ARPOP_REQUEST) &&
813 ip_route_input(skb, tip, sip, 0, dev) == 0) {
815 rt = (struct rtable*)skb->dst;
816 addr_type = rt->rt_type;
818 if (addr_type == RTN_LOCAL) {
819 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
820 if (n) {
821 int dont_send = 0;
823 if (!dont_send)
824 dont_send |= arp_ignore(in_dev,sip,tip);
825 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
826 dont_send |= arp_filter(sip,tip,dev);
827 if (!dont_send)
828 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
830 neigh_release(n);
832 goto out;
833 } else if (IN_DEV_FORWARD(in_dev)) {
834 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
835 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0))) {
836 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
837 if (n)
838 neigh_release(n);
840 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
841 skb->pkt_type == PACKET_HOST ||
842 in_dev->arp_parms->proxy_delay == 0) {
843 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
844 } else {
845 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
846 in_dev_put(in_dev);
847 return 0;
849 goto out;
854 /* Update our ARP tables */
856 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
858 if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
859 /* Unsolicited ARP is not accepted by default.
860 It is possible, that this option should be enabled for some
861 devices (strip is candidate)
863 if (n == NULL &&
864 arp->ar_op == htons(ARPOP_REPLY) &&
865 inet_addr_type(&init_net, sip) == RTN_UNICAST)
866 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
869 if (n) {
870 int state = NUD_REACHABLE;
871 int override;
873 /* If several different ARP replies follows back-to-back,
874 use the FIRST one. It is possible, if several proxy
875 agents are active. Taking the first reply prevents
876 arp trashing and chooses the fastest router.
878 override = time_after(jiffies, n->updated + n->parms->locktime);
880 /* Broadcast replies and request packets
881 do not assert neighbour reachability.
883 if (arp->ar_op != htons(ARPOP_REPLY) ||
884 skb->pkt_type != PACKET_HOST)
885 state = NUD_STALE;
886 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
887 neigh_release(n);
890 out:
891 if (in_dev)
892 in_dev_put(in_dev);
893 kfree_skb(skb);
894 return 0;
897 static void parp_redo(struct sk_buff *skb)
899 arp_process(skb);
904 * Receive an arp request from the device layer.
907 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
908 struct packet_type *pt, struct net_device *orig_dev)
910 struct arphdr *arp;
912 if (dev->nd_net != &init_net)
913 goto freeskb;
915 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
916 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
917 (2 * dev->addr_len) +
918 (2 * sizeof(u32)))))
919 goto freeskb;
921 arp = arp_hdr(skb);
922 if (arp->ar_hln != dev->addr_len ||
923 dev->flags & IFF_NOARP ||
924 skb->pkt_type == PACKET_OTHERHOST ||
925 skb->pkt_type == PACKET_LOOPBACK ||
926 arp->ar_pln != 4)
927 goto freeskb;
929 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
930 goto out_of_mem;
932 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
934 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
936 freeskb:
937 kfree_skb(skb);
938 out_of_mem:
939 return 0;
943 * User level interface (ioctl)
947 * Set (create) an ARP cache entry.
950 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
952 if (dev == NULL) {
953 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
954 return 0;
956 if (__in_dev_get_rtnl(dev)) {
957 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
958 return 0;
960 return -ENXIO;
963 static int arp_req_set_public(struct net *net, struct arpreq *r,
964 struct net_device *dev)
966 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
967 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
969 if (mask && mask != htonl(0xFFFFFFFF))
970 return -EINVAL;
971 if (!dev && (r->arp_flags & ATF_COM)) {
972 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
973 r->arp_ha.sa_data);
974 if (!dev)
975 return -ENODEV;
977 if (mask) {
978 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
979 return -ENOBUFS;
980 return 0;
983 return arp_req_set_proxy(net, dev, 1);
986 static int arp_req_set(struct net *net, struct arpreq *r,
987 struct net_device * dev)
989 __be32 ip;
990 struct neighbour *neigh;
991 int err;
993 if (r->arp_flags & ATF_PUBL)
994 return arp_req_set_public(net, r, dev);
996 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
997 if (r->arp_flags & ATF_PERM)
998 r->arp_flags |= ATF_COM;
999 if (dev == NULL) {
1000 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1001 .tos = RTO_ONLINK } } };
1002 struct rtable * rt;
1003 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1004 return err;
1005 dev = rt->u.dst.dev;
1006 ip_rt_put(rt);
1007 if (!dev)
1008 return -EINVAL;
1010 switch (dev->type) {
1011 #ifdef CONFIG_FDDI
1012 case ARPHRD_FDDI:
1014 * According to RFC 1390, FDDI devices should accept ARP
1015 * hardware types of 1 (Ethernet). However, to be more
1016 * robust, we'll accept hardware types of either 1 (Ethernet)
1017 * or 6 (IEEE 802.2).
1019 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1020 r->arp_ha.sa_family != ARPHRD_ETHER &&
1021 r->arp_ha.sa_family != ARPHRD_IEEE802)
1022 return -EINVAL;
1023 break;
1024 #endif
1025 default:
1026 if (r->arp_ha.sa_family != dev->type)
1027 return -EINVAL;
1028 break;
1031 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1032 err = PTR_ERR(neigh);
1033 if (!IS_ERR(neigh)) {
1034 unsigned state = NUD_STALE;
1035 if (r->arp_flags & ATF_PERM)
1036 state = NUD_PERMANENT;
1037 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1038 r->arp_ha.sa_data : NULL, state,
1039 NEIGH_UPDATE_F_OVERRIDE|
1040 NEIGH_UPDATE_F_ADMIN);
1041 neigh_release(neigh);
1043 return err;
1046 static unsigned arp_state_to_flags(struct neighbour *neigh)
1048 unsigned flags = 0;
1049 if (neigh->nud_state&NUD_PERMANENT)
1050 flags = ATF_PERM|ATF_COM;
1051 else if (neigh->nud_state&NUD_VALID)
1052 flags = ATF_COM;
1053 return flags;
1057 * Get an ARP cache entry.
1060 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1062 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1063 struct neighbour *neigh;
1064 int err = -ENXIO;
1066 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1067 if (neigh) {
1068 read_lock_bh(&neigh->lock);
1069 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1070 r->arp_flags = arp_state_to_flags(neigh);
1071 read_unlock_bh(&neigh->lock);
1072 r->arp_ha.sa_family = dev->type;
1073 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1074 neigh_release(neigh);
1075 err = 0;
1077 return err;
1080 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1081 struct net_device *dev)
1083 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1084 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1086 if (mask == htonl(0xFFFFFFFF))
1087 return pneigh_delete(&arp_tbl, net, &ip, dev);
1089 if (mask)
1090 return -EINVAL;
1092 return arp_req_set_proxy(net, dev, 0);
1095 static int arp_req_delete(struct net *net, struct arpreq *r,
1096 struct net_device * dev)
1098 int err;
1099 __be32 ip;
1100 struct neighbour *neigh;
1102 if (r->arp_flags & ATF_PUBL)
1103 return arp_req_delete_public(net, r, dev);
1105 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1106 if (dev == NULL) {
1107 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1108 .tos = RTO_ONLINK } } };
1109 struct rtable * rt;
1110 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1111 return err;
1112 dev = rt->u.dst.dev;
1113 ip_rt_put(rt);
1114 if (!dev)
1115 return -EINVAL;
1117 err = -ENXIO;
1118 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1119 if (neigh) {
1120 if (neigh->nud_state&~NUD_NOARP)
1121 err = neigh_update(neigh, NULL, NUD_FAILED,
1122 NEIGH_UPDATE_F_OVERRIDE|
1123 NEIGH_UPDATE_F_ADMIN);
1124 neigh_release(neigh);
1126 return err;
1130 * Handle an ARP layer I/O control request.
1133 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135 int err;
1136 struct arpreq r;
1137 struct net_device *dev = NULL;
1139 switch (cmd) {
1140 case SIOCDARP:
1141 case SIOCSARP:
1142 if (!capable(CAP_NET_ADMIN))
1143 return -EPERM;
1144 case SIOCGARP:
1145 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1146 if (err)
1147 return -EFAULT;
1148 break;
1149 default:
1150 return -EINVAL;
1153 if (r.arp_pa.sa_family != AF_INET)
1154 return -EPFNOSUPPORT;
1156 if (!(r.arp_flags & ATF_PUBL) &&
1157 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1158 return -EINVAL;
1159 if (!(r.arp_flags & ATF_NETMASK))
1160 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1161 htonl(0xFFFFFFFFUL);
1162 rtnl_lock();
1163 if (r.arp_dev[0]) {
1164 err = -ENODEV;
1165 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1166 goto out;
1168 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1169 if (!r.arp_ha.sa_family)
1170 r.arp_ha.sa_family = dev->type;
1171 err = -EINVAL;
1172 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1173 goto out;
1174 } else if (cmd == SIOCGARP) {
1175 err = -ENODEV;
1176 goto out;
1179 switch (cmd) {
1180 case SIOCDARP:
1181 err = arp_req_delete(net, &r, dev);
1182 break;
1183 case SIOCSARP:
1184 err = arp_req_set(net, &r, dev);
1185 break;
1186 case SIOCGARP:
1187 err = arp_req_get(&r, dev);
1188 if (!err && copy_to_user(arg, &r, sizeof(r)))
1189 err = -EFAULT;
1190 break;
1192 out:
1193 rtnl_unlock();
1194 return err;
1197 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1199 struct net_device *dev = ptr;
1201 if (dev->nd_net != &init_net)
1202 return NOTIFY_DONE;
1204 switch (event) {
1205 case NETDEV_CHANGEADDR:
1206 neigh_changeaddr(&arp_tbl, dev);
1207 rt_cache_flush(0);
1208 break;
1209 default:
1210 break;
1213 return NOTIFY_DONE;
1216 static struct notifier_block arp_netdev_notifier = {
1217 .notifier_call = arp_netdev_event,
1220 /* Note, that it is not on notifier chain.
1221 It is necessary, that this routine was called after route cache will be
1222 flushed.
1224 void arp_ifdown(struct net_device *dev)
1226 neigh_ifdown(&arp_tbl, dev);
1231 * Called once on startup.
1234 static struct packet_type arp_packet_type = {
1235 .type = __constant_htons(ETH_P_ARP),
1236 .func = arp_rcv,
1239 static int arp_proc_init(void);
1241 void __init arp_init(void)
1243 neigh_table_init(&arp_tbl);
1245 dev_add_pack(&arp_packet_type);
1246 arp_proc_init();
1247 #ifdef CONFIG_SYSCTL
1248 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1249 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1250 #endif
1251 register_netdevice_notifier(&arp_netdev_notifier);
1254 #ifdef CONFIG_PROC_FS
1255 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1257 /* ------------------------------------------------------------------------ */
1259 * ax25 -> ASCII conversion
1261 static char *ax2asc2(ax25_address *a, char *buf)
1263 char c, *s;
1264 int n;
1266 for (n = 0, s = buf; n < 6; n++) {
1267 c = (a->ax25_call[n] >> 1) & 0x7F;
1269 if (c != ' ') *s++ = c;
1272 *s++ = '-';
1274 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1275 *s++ = '1';
1276 n -= 10;
1279 *s++ = n + '0';
1280 *s++ = '\0';
1282 if (*buf == '\0' || *buf == '-')
1283 return "*";
1285 return buf;
1288 #endif /* CONFIG_AX25 */
1290 #define HBUFFERLEN 30
1292 static void arp_format_neigh_entry(struct seq_file *seq,
1293 struct neighbour *n)
1295 char hbuffer[HBUFFERLEN];
1296 const char hexbuf[] = "0123456789ABCDEF";
1297 int k, j;
1298 char tbuf[16];
1299 struct net_device *dev = n->dev;
1300 int hatype = dev->type;
1302 read_lock(&n->lock);
1303 /* Convert hardware address to XX:XX:XX:XX ... form. */
1304 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1305 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1306 ax2asc2((ax25_address *)n->ha, hbuffer);
1307 else {
1308 #endif
1309 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1310 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1311 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1312 hbuffer[k++] = ':';
1314 hbuffer[--k] = 0;
1315 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1317 #endif
1318 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1319 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1320 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1321 read_unlock(&n->lock);
1324 static void arp_format_pneigh_entry(struct seq_file *seq,
1325 struct pneigh_entry *n)
1327 struct net_device *dev = n->dev;
1328 int hatype = dev ? dev->type : 0;
1329 char tbuf[16];
1331 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1332 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1333 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1334 dev ? dev->name : "*");
1337 static int arp_seq_show(struct seq_file *seq, void *v)
1339 if (v == SEQ_START_TOKEN) {
1340 seq_puts(seq, "IP address HW type Flags "
1341 "HW address Mask Device\n");
1342 } else {
1343 struct neigh_seq_state *state = seq->private;
1345 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1346 arp_format_pneigh_entry(seq, v);
1347 else
1348 arp_format_neigh_entry(seq, v);
1351 return 0;
1354 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1356 /* Don't want to confuse "arp -a" w/ magic entries,
1357 * so we tell the generic iterator to skip NUD_NOARP.
1359 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1362 /* ------------------------------------------------------------------------ */
1364 static const struct seq_operations arp_seq_ops = {
1365 .start = arp_seq_start,
1366 .next = neigh_seq_next,
1367 .stop = neigh_seq_stop,
1368 .show = arp_seq_show,
1371 static int arp_seq_open(struct inode *inode, struct file *file)
1373 return seq_open_net(inode, file, &arp_seq_ops,
1374 sizeof(struct neigh_seq_state));
1377 static const struct file_operations arp_seq_fops = {
1378 .owner = THIS_MODULE,
1379 .open = arp_seq_open,
1380 .read = seq_read,
1381 .llseek = seq_lseek,
1382 .release = seq_release_net,
1385 static int __init arp_proc_init(void)
1387 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1388 return -ENOMEM;
1389 return 0;
1392 #else /* CONFIG_PROC_FS */
1394 static int __init arp_proc_init(void)
1396 return 0;
1399 #endif /* CONFIG_PROC_FS */
1401 EXPORT_SYMBOL(arp_broken_ops);
1402 EXPORT_SYMBOL(arp_find);
1403 EXPORT_SYMBOL(arp_create);
1404 EXPORT_SYMBOL(arp_xmit);
1405 EXPORT_SYMBOL(arp_send);
1406 EXPORT_SYMBOL(arp_tbl);
1408 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1409 EXPORT_SYMBOL(clip_tbl_hook);
1410 #endif