x86: fix bogus KERN_ALERT on oops
[wrt350n-kernel.git] / Documentation / lguest / lguest.c
blob5bdc37f8184292a57e273f4256d698ef148b68a4
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 /*L:110 We can ignore the 30 include files we need for this program, but I do
38 * want to draw attention to the use of kernel-style types.
40 * As Linus said, "C is a Spartan language, and so should your naming be." I
41 * like these abbreviations and the header we need uses them, so we define them
42 * here.
44 typedef unsigned long long u64;
45 typedef uint32_t u32;
46 typedef uint16_t u16;
47 typedef uint8_t u8;
48 #include "linux/lguest_launcher.h"
49 #include "linux/pci_ids.h"
50 #include "linux/virtio_config.h"
51 #include "linux/virtio_net.h"
52 #include "linux/virtio_blk.h"
53 #include "linux/virtio_console.h"
54 #include "linux/virtio_ring.h"
55 #include "asm-x86/bootparam.h"
56 /*:*/
58 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
59 #define NET_PEERNUM 1
60 #define BRIDGE_PFX "bridge:"
61 #ifndef SIOCBRADDIF
62 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
63 #endif
64 /* We can have up to 256 pages for devices. */
65 #define DEVICE_PAGES 256
66 /* This fits nicely in a single 4096-byte page. */
67 #define VIRTQUEUE_NUM 127
69 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
70 * this, and although I wouldn't recommend it, it works quite nicely here. */
71 static bool verbose;
72 #define verbose(args...) \
73 do { if (verbose) printf(args); } while(0)
74 /*:*/
76 /* The pipe to send commands to the waker process */
77 static int waker_fd;
78 /* The pointer to the start of guest memory. */
79 static void *guest_base;
80 /* The maximum guest physical address allowed, and maximum possible. */
81 static unsigned long guest_limit, guest_max;
83 /* This is our list of devices. */
84 struct device_list
86 /* Summary information about the devices in our list: ready to pass to
87 * select() to ask which need servicing.*/
88 fd_set infds;
89 int max_infd;
91 /* Counter to assign interrupt numbers. */
92 unsigned int next_irq;
94 /* Counter to print out convenient device numbers. */
95 unsigned int device_num;
97 /* The descriptor page for the devices. */
98 u8 *descpage;
100 /* The tail of the last descriptor. */
101 unsigned int desc_used;
103 /* A single linked list of devices. */
104 struct device *dev;
105 /* ... And an end pointer so we can easily append new devices */
106 struct device **lastdev;
109 /* The list of Guest devices, based on command line arguments. */
110 static struct device_list devices;
112 /* The device structure describes a single device. */
113 struct device
115 /* The linked-list pointer. */
116 struct device *next;
118 /* The this device's descriptor, as mapped into the Guest. */
119 struct lguest_device_desc *desc;
121 /* The name of this device, for --verbose. */
122 const char *name;
124 /* If handle_input is set, it wants to be called when this file
125 * descriptor is ready. */
126 int fd;
127 bool (*handle_input)(int fd, struct device *me);
129 /* Any queues attached to this device */
130 struct virtqueue *vq;
132 /* Device-specific data. */
133 void *priv;
136 /* The virtqueue structure describes a queue attached to a device. */
137 struct virtqueue
139 struct virtqueue *next;
141 /* Which device owns me. */
142 struct device *dev;
144 /* The configuration for this queue. */
145 struct lguest_vqconfig config;
147 /* The actual ring of buffers. */
148 struct vring vring;
150 /* Last available index we saw. */
151 u16 last_avail_idx;
153 /* The routine to call when the Guest pings us. */
154 void (*handle_output)(int fd, struct virtqueue *me);
157 /* Since guest is UP and we don't run at the same time, we don't need barriers.
158 * But I include them in the code in case others copy it. */
159 #define wmb()
161 /* Convert an iovec element to the given type.
163 * This is a fairly ugly trick: we need to know the size of the type and
164 * alignment requirement to check the pointer is kosher. It's also nice to
165 * have the name of the type in case we report failure.
167 * Typing those three things all the time is cumbersome and error prone, so we
168 * have a macro which sets them all up and passes to the real function. */
169 #define convert(iov, type) \
170 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
172 static void *_convert(struct iovec *iov, size_t size, size_t align,
173 const char *name)
175 if (iov->iov_len != size)
176 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
177 if ((unsigned long)iov->iov_base % align != 0)
178 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
179 return iov->iov_base;
182 /* The virtio configuration space is defined to be little-endian. x86 is
183 * little-endian too, but it's nice to be explicit so we have these helpers. */
184 #define cpu_to_le16(v16) (v16)
185 #define cpu_to_le32(v32) (v32)
186 #define cpu_to_le64(v64) (v64)
187 #define le16_to_cpu(v16) (v16)
188 #define le32_to_cpu(v32) (v32)
189 #define le64_to_cpu(v32) (v64)
191 /*L:100 The Launcher code itself takes us out into userspace, that scary place
192 * where pointers run wild and free! Unfortunately, like most userspace
193 * programs, it's quite boring (which is why everyone likes to hack on the
194 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
195 * will get you through this section. Or, maybe not.
197 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
198 * memory and stores it in "guest_base". In other words, Guest physical ==
199 * Launcher virtual with an offset.
201 * This can be tough to get your head around, but usually it just means that we
202 * use these trivial conversion functions when the Guest gives us it's
203 * "physical" addresses: */
204 static void *from_guest_phys(unsigned long addr)
206 return guest_base + addr;
209 static unsigned long to_guest_phys(const void *addr)
211 return (addr - guest_base);
214 /*L:130
215 * Loading the Kernel.
217 * We start with couple of simple helper routines. open_or_die() avoids
218 * error-checking code cluttering the callers: */
219 static int open_or_die(const char *name, int flags)
221 int fd = open(name, flags);
222 if (fd < 0)
223 err(1, "Failed to open %s", name);
224 return fd;
227 /* map_zeroed_pages() takes a number of pages. */
228 static void *map_zeroed_pages(unsigned int num)
230 int fd = open_or_die("/dev/zero", O_RDONLY);
231 void *addr;
233 /* We use a private mapping (ie. if we write to the page, it will be
234 * copied). */
235 addr = mmap(NULL, getpagesize() * num,
236 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
237 if (addr == MAP_FAILED)
238 err(1, "Mmaping %u pages of /dev/zero", num);
240 return addr;
243 /* Get some more pages for a device. */
244 static void *get_pages(unsigned int num)
246 void *addr = from_guest_phys(guest_limit);
248 guest_limit += num * getpagesize();
249 if (guest_limit > guest_max)
250 errx(1, "Not enough memory for devices");
251 return addr;
254 /* This routine is used to load the kernel or initrd. It tries mmap, but if
255 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
256 * it falls back to reading the memory in. */
257 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
259 ssize_t r;
261 /* We map writable even though for some segments are marked read-only.
262 * The kernel really wants to be writable: it patches its own
263 * instructions.
265 * MAP_PRIVATE means that the page won't be copied until a write is
266 * done to it. This allows us to share untouched memory between
267 * Guests. */
268 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
269 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
270 return;
272 /* pread does a seek and a read in one shot: saves a few lines. */
273 r = pread(fd, addr, len, offset);
274 if (r != len)
275 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
278 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
279 * the Guest memory. ELF = Embedded Linking Format, which is the format used
280 * by all modern binaries on Linux including the kernel.
282 * The ELF headers give *two* addresses: a physical address, and a virtual
283 * address. We use the physical address; the Guest will map itself to the
284 * virtual address.
286 * We return the starting address. */
287 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
289 Elf32_Phdr phdr[ehdr->e_phnum];
290 unsigned int i;
292 /* Sanity checks on the main ELF header: an x86 executable with a
293 * reasonable number of correctly-sized program headers. */
294 if (ehdr->e_type != ET_EXEC
295 || ehdr->e_machine != EM_386
296 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
297 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
298 errx(1, "Malformed elf header");
300 /* An ELF executable contains an ELF header and a number of "program"
301 * headers which indicate which parts ("segments") of the program to
302 * load where. */
304 /* We read in all the program headers at once: */
305 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
306 err(1, "Seeking to program headers");
307 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
308 err(1, "Reading program headers");
310 /* Try all the headers: there are usually only three. A read-only one,
311 * a read-write one, and a "note" section which isn't loadable. */
312 for (i = 0; i < ehdr->e_phnum; i++) {
313 /* If this isn't a loadable segment, we ignore it */
314 if (phdr[i].p_type != PT_LOAD)
315 continue;
317 verbose("Section %i: size %i addr %p\n",
318 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
320 /* We map this section of the file at its physical address. */
321 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
322 phdr[i].p_offset, phdr[i].p_filesz);
325 /* The entry point is given in the ELF header. */
326 return ehdr->e_entry;
329 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
330 * supposed to jump into it and it will unpack itself. We used to have to
331 * perform some hairy magic because the unpacking code scared me.
333 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
334 * a small patch to jump over the tricky bits in the Guest, so now we just read
335 * the funky header so we know where in the file to load, and away we go! */
336 static unsigned long load_bzimage(int fd)
338 struct boot_params boot;
339 int r;
340 /* Modern bzImages get loaded at 1M. */
341 void *p = from_guest_phys(0x100000);
343 /* Go back to the start of the file and read the header. It should be
344 * a Linux boot header (see Documentation/i386/boot.txt) */
345 lseek(fd, 0, SEEK_SET);
346 read(fd, &boot, sizeof(boot));
348 /* Inside the setup_hdr, we expect the magic "HdrS" */
349 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
350 errx(1, "This doesn't look like a bzImage to me");
352 /* Skip over the extra sectors of the header. */
353 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
355 /* Now read everything into memory. in nice big chunks. */
356 while ((r = read(fd, p, 65536)) > 0)
357 p += r;
359 /* Finally, code32_start tells us where to enter the kernel. */
360 return boot.hdr.code32_start;
363 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
364 * come wrapped up in the self-decompressing "bzImage" format. With some funky
365 * coding, we can load those, too. */
366 static unsigned long load_kernel(int fd)
368 Elf32_Ehdr hdr;
370 /* Read in the first few bytes. */
371 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
372 err(1, "Reading kernel");
374 /* If it's an ELF file, it starts with "\177ELF" */
375 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
376 return map_elf(fd, &hdr);
378 /* Otherwise we assume it's a bzImage, and try to unpack it */
379 return load_bzimage(fd);
382 /* This is a trivial little helper to align pages. Andi Kleen hated it because
383 * it calls getpagesize() twice: "it's dumb code."
385 * Kernel guys get really het up about optimization, even when it's not
386 * necessary. I leave this code as a reaction against that. */
387 static inline unsigned long page_align(unsigned long addr)
389 /* Add upwards and truncate downwards. */
390 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
393 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
394 * the kernel which the kernel can use to boot from without needing any
395 * drivers. Most distributions now use this as standard: the initrd contains
396 * the code to load the appropriate driver modules for the current machine.
398 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
399 * kernels. He sent me this (and tells me when I break it). */
400 static unsigned long load_initrd(const char *name, unsigned long mem)
402 int ifd;
403 struct stat st;
404 unsigned long len;
406 ifd = open_or_die(name, O_RDONLY);
407 /* fstat() is needed to get the file size. */
408 if (fstat(ifd, &st) < 0)
409 err(1, "fstat() on initrd '%s'", name);
411 /* We map the initrd at the top of memory, but mmap wants it to be
412 * page-aligned, so we round the size up for that. */
413 len = page_align(st.st_size);
414 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
415 /* Once a file is mapped, you can close the file descriptor. It's a
416 * little odd, but quite useful. */
417 close(ifd);
418 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
420 /* We return the initrd size. */
421 return len;
424 /* Once we know how much memory we have, we can construct simple linear page
425 * tables which set virtual == physical which will get the Guest far enough
426 * into the boot to create its own.
428 * We lay them out of the way, just below the initrd (which is why we need to
429 * know its size). */
430 static unsigned long setup_pagetables(unsigned long mem,
431 unsigned long initrd_size)
433 unsigned long *pgdir, *linear;
434 unsigned int mapped_pages, i, linear_pages;
435 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
437 mapped_pages = mem/getpagesize();
439 /* Each PTE page can map ptes_per_page pages: how many do we need? */
440 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
442 /* We put the toplevel page directory page at the top of memory. */
443 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
445 /* Now we use the next linear_pages pages as pte pages */
446 linear = (void *)pgdir - linear_pages*getpagesize();
448 /* Linear mapping is easy: put every page's address into the mapping in
449 * order. PAGE_PRESENT contains the flags Present, Writable and
450 * Executable. */
451 for (i = 0; i < mapped_pages; i++)
452 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
454 /* The top level points to the linear page table pages above. */
455 for (i = 0; i < mapped_pages; i += ptes_per_page) {
456 pgdir[i/ptes_per_page]
457 = ((to_guest_phys(linear) + i*sizeof(void *))
458 | PAGE_PRESENT);
461 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
462 mapped_pages, linear_pages, to_guest_phys(linear));
464 /* We return the top level (guest-physical) address: the kernel needs
465 * to know where it is. */
466 return to_guest_phys(pgdir);
469 /* Simple routine to roll all the commandline arguments together with spaces
470 * between them. */
471 static void concat(char *dst, char *args[])
473 unsigned int i, len = 0;
475 for (i = 0; args[i]; i++) {
476 strcpy(dst+len, args[i]);
477 strcat(dst+len, " ");
478 len += strlen(args[i]) + 1;
480 /* In case it's empty. */
481 dst[len] = '\0';
484 /* This is where we actually tell the kernel to initialize the Guest. We saw
485 * the arguments it expects when we looked at initialize() in lguest_user.c:
486 * the base of guest "physical" memory, the top physical page to allow, the
487 * top level pagetable and the entry point for the Guest. */
488 static int tell_kernel(unsigned long pgdir, unsigned long start)
490 unsigned long args[] = { LHREQ_INITIALIZE,
491 (unsigned long)guest_base,
492 guest_limit / getpagesize(), pgdir, start };
493 int fd;
495 verbose("Guest: %p - %p (%#lx)\n",
496 guest_base, guest_base + guest_limit, guest_limit);
497 fd = open_or_die("/dev/lguest", O_RDWR);
498 if (write(fd, args, sizeof(args)) < 0)
499 err(1, "Writing to /dev/lguest");
501 /* We return the /dev/lguest file descriptor to control this Guest */
502 return fd;
504 /*:*/
506 static void add_device_fd(int fd)
508 FD_SET(fd, &devices.infds);
509 if (fd > devices.max_infd)
510 devices.max_infd = fd;
513 /*L:200
514 * The Waker.
516 * With a console and network devices, we can have lots of input which we need
517 * to process. We could try to tell the kernel what file descriptors to watch,
518 * but handing a file descriptor mask through to the kernel is fairly icky.
520 * Instead, we fork off a process which watches the file descriptors and writes
521 * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
522 * loop to stop running the Guest. This causes it to return from the
523 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
524 * the LHREQ_BREAK and wake us up again.
526 * This, of course, is merely a different *kind* of icky.
528 static void wake_parent(int pipefd, int lguest_fd)
530 /* Add the pipe from the Launcher to the fdset in the device_list, so
531 * we watch it, too. */
532 add_device_fd(pipefd);
534 for (;;) {
535 fd_set rfds = devices.infds;
536 unsigned long args[] = { LHREQ_BREAK, 1 };
538 /* Wait until input is ready from one of the devices. */
539 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
540 /* Is it a message from the Launcher? */
541 if (FD_ISSET(pipefd, &rfds)) {
542 int fd;
543 /* If read() returns 0, it means the Launcher has
544 * exited. We silently follow. */
545 if (read(pipefd, &fd, sizeof(fd)) == 0)
546 exit(0);
547 /* Otherwise it's telling us to change what file
548 * descriptors we're to listen to. */
549 if (fd >= 0)
550 FD_SET(fd, &devices.infds);
551 else
552 FD_CLR(-fd - 1, &devices.infds);
553 } else /* Send LHREQ_BREAK command. */
554 write(lguest_fd, args, sizeof(args));
558 /* This routine just sets up a pipe to the Waker process. */
559 static int setup_waker(int lguest_fd)
561 int pipefd[2], child;
563 /* We create a pipe to talk to the waker, and also so it knows when the
564 * Launcher dies (and closes pipe). */
565 pipe(pipefd);
566 child = fork();
567 if (child == -1)
568 err(1, "forking");
570 if (child == 0) {
571 /* Close the "writing" end of our copy of the pipe */
572 close(pipefd[1]);
573 wake_parent(pipefd[0], lguest_fd);
575 /* Close the reading end of our copy of the pipe. */
576 close(pipefd[0]);
578 /* Here is the fd used to talk to the waker. */
579 return pipefd[1];
582 /*L:210
583 * Device Handling.
585 * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
586 * We need to make sure it's not trying to reach into the Launcher itself, so
587 * we have a convenient routine which check it and exits with an error message
588 * if something funny is going on:
590 static void *_check_pointer(unsigned long addr, unsigned int size,
591 unsigned int line)
593 /* We have to separately check addr and addr+size, because size could
594 * be huge and addr + size might wrap around. */
595 if (addr >= guest_limit || addr + size >= guest_limit)
596 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
597 /* We return a pointer for the caller's convenience, now we know it's
598 * safe to use. */
599 return from_guest_phys(addr);
601 /* A macro which transparently hands the line number to the real function. */
602 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
604 /* This function returns the next descriptor in the chain, or vq->vring.num. */
605 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
607 unsigned int next;
609 /* If this descriptor says it doesn't chain, we're done. */
610 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
611 return vq->vring.num;
613 /* Check they're not leading us off end of descriptors. */
614 next = vq->vring.desc[i].next;
615 /* Make sure compiler knows to grab that: we don't want it changing! */
616 wmb();
618 if (next >= vq->vring.num)
619 errx(1, "Desc next is %u", next);
621 return next;
624 /* This looks in the virtqueue and for the first available buffer, and converts
625 * it to an iovec for convenient access. Since descriptors consist of some
626 * number of output then some number of input descriptors, it's actually two
627 * iovecs, but we pack them into one and note how many of each there were.
629 * This function returns the descriptor number found, or vq->vring.num (which
630 * is never a valid descriptor number) if none was found. */
631 static unsigned get_vq_desc(struct virtqueue *vq,
632 struct iovec iov[],
633 unsigned int *out_num, unsigned int *in_num)
635 unsigned int i, head;
637 /* Check it isn't doing very strange things with descriptor numbers. */
638 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
639 errx(1, "Guest moved used index from %u to %u",
640 vq->last_avail_idx, vq->vring.avail->idx);
642 /* If there's nothing new since last we looked, return invalid. */
643 if (vq->vring.avail->idx == vq->last_avail_idx)
644 return vq->vring.num;
646 /* Grab the next descriptor number they're advertising, and increment
647 * the index we've seen. */
648 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
650 /* If their number is silly, that's a fatal mistake. */
651 if (head >= vq->vring.num)
652 errx(1, "Guest says index %u is available", head);
654 /* When we start there are none of either input nor output. */
655 *out_num = *in_num = 0;
657 i = head;
658 do {
659 /* Grab the first descriptor, and check it's OK. */
660 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
661 iov[*out_num + *in_num].iov_base
662 = check_pointer(vq->vring.desc[i].addr,
663 vq->vring.desc[i].len);
664 /* If this is an input descriptor, increment that count. */
665 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
666 (*in_num)++;
667 else {
668 /* If it's an output descriptor, they're all supposed
669 * to come before any input descriptors. */
670 if (*in_num)
671 errx(1, "Descriptor has out after in");
672 (*out_num)++;
675 /* If we've got too many, that implies a descriptor loop. */
676 if (*out_num + *in_num > vq->vring.num)
677 errx(1, "Looped descriptor");
678 } while ((i = next_desc(vq, i)) != vq->vring.num);
680 return head;
683 /* Once we've used one of their buffers, we tell them about it. We'll then
684 * want to send them an interrupt, using trigger_irq(). */
685 static void add_used(struct virtqueue *vq, unsigned int head, int len)
687 struct vring_used_elem *used;
689 /* Get a pointer to the next entry in the used ring. */
690 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
691 used->id = head;
692 used->len = len;
693 /* Make sure buffer is written before we update index. */
694 wmb();
695 vq->vring.used->idx++;
698 /* This actually sends the interrupt for this virtqueue */
699 static void trigger_irq(int fd, struct virtqueue *vq)
701 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
703 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
704 return;
706 /* Send the Guest an interrupt tell them we used something up. */
707 if (write(fd, buf, sizeof(buf)) != 0)
708 err(1, "Triggering irq %i", vq->config.irq);
711 /* And here's the combo meal deal. Supersize me! */
712 static void add_used_and_trigger(int fd, struct virtqueue *vq,
713 unsigned int head, int len)
715 add_used(vq, head, len);
716 trigger_irq(fd, vq);
719 /* Here is the input terminal setting we save, and the routine to restore them
720 * on exit so the user can see what they type next. */
721 static struct termios orig_term;
722 static void restore_term(void)
724 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
727 /* We associate some data with the console for our exit hack. */
728 struct console_abort
730 /* How many times have they hit ^C? */
731 int count;
732 /* When did they start? */
733 struct timeval start;
736 /* This is the routine which handles console input (ie. stdin). */
737 static bool handle_console_input(int fd, struct device *dev)
739 int len;
740 unsigned int head, in_num, out_num;
741 struct iovec iov[dev->vq->vring.num];
742 struct console_abort *abort = dev->priv;
744 /* First we need a console buffer from the Guests's input virtqueue. */
745 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
747 /* If they're not ready for input, stop listening to this file
748 * descriptor. We'll start again once they add an input buffer. */
749 if (head == dev->vq->vring.num)
750 return false;
752 if (out_num)
753 errx(1, "Output buffers in console in queue?");
755 /* This is why we convert to iovecs: the readv() call uses them, and so
756 * it reads straight into the Guest's buffer. */
757 len = readv(dev->fd, iov, in_num);
758 if (len <= 0) {
759 /* This implies that the console is closed, is /dev/null, or
760 * something went terribly wrong. */
761 warnx("Failed to get console input, ignoring console.");
762 /* Put the input terminal back. */
763 restore_term();
764 /* Remove callback from input vq, so it doesn't restart us. */
765 dev->vq->handle_output = NULL;
766 /* Stop listening to this fd: don't call us again. */
767 return false;
770 /* Tell the Guest about the new input. */
771 add_used_and_trigger(fd, dev->vq, head, len);
773 /* Three ^C within one second? Exit.
775 * This is such a hack, but works surprisingly well. Each ^C has to be
776 * in a buffer by itself, so they can't be too fast. But we check that
777 * we get three within about a second, so they can't be too slow. */
778 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
779 if (!abort->count++)
780 gettimeofday(&abort->start, NULL);
781 else if (abort->count == 3) {
782 struct timeval now;
783 gettimeofday(&now, NULL);
784 if (now.tv_sec <= abort->start.tv_sec+1) {
785 unsigned long args[] = { LHREQ_BREAK, 0 };
786 /* Close the fd so Waker will know it has to
787 * exit. */
788 close(waker_fd);
789 /* Just in case waker is blocked in BREAK, send
790 * unbreak now. */
791 write(fd, args, sizeof(args));
792 exit(2);
794 abort->count = 0;
796 } else
797 /* Any other key resets the abort counter. */
798 abort->count = 0;
800 /* Everything went OK! */
801 return true;
804 /* Handling output for console is simple: we just get all the output buffers
805 * and write them to stdout. */
806 static void handle_console_output(int fd, struct virtqueue *vq)
808 unsigned int head, out, in;
809 int len;
810 struct iovec iov[vq->vring.num];
812 /* Keep getting output buffers from the Guest until we run out. */
813 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
814 if (in)
815 errx(1, "Input buffers in output queue?");
816 len = writev(STDOUT_FILENO, iov, out);
817 add_used_and_trigger(fd, vq, head, len);
821 /* Handling output for network is also simple: we get all the output buffers
822 * and write them (ignoring the first element) to this device's file descriptor
823 * (stdout). */
824 static void handle_net_output(int fd, struct virtqueue *vq)
826 unsigned int head, out, in;
827 int len;
828 struct iovec iov[vq->vring.num];
830 /* Keep getting output buffers from the Guest until we run out. */
831 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
832 if (in)
833 errx(1, "Input buffers in output queue?");
834 /* Check header, but otherwise ignore it (we said we supported
835 * no features). */
836 (void)convert(&iov[0], struct virtio_net_hdr);
837 len = writev(vq->dev->fd, iov+1, out-1);
838 add_used_and_trigger(fd, vq, head, len);
842 /* This is where we handle a packet coming in from the tun device to our
843 * Guest. */
844 static bool handle_tun_input(int fd, struct device *dev)
846 unsigned int head, in_num, out_num;
847 int len;
848 struct iovec iov[dev->vq->vring.num];
849 struct virtio_net_hdr *hdr;
851 /* First we need a network buffer from the Guests's recv virtqueue. */
852 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
853 if (head == dev->vq->vring.num) {
854 /* Now, it's expected that if we try to send a packet too
855 * early, the Guest won't be ready yet. Wait until the device
856 * status says it's ready. */
857 /* FIXME: Actually want DRIVER_ACTIVE here. */
858 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
859 warn("network: no dma buffer!");
860 /* We'll turn this back on if input buffers are registered. */
861 return false;
862 } else if (out_num)
863 errx(1, "Output buffers in network recv queue?");
865 /* First element is the header: we set it to 0 (no features). */
866 hdr = convert(&iov[0], struct virtio_net_hdr);
867 hdr->flags = 0;
868 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
870 /* Read the packet from the device directly into the Guest's buffer. */
871 len = readv(dev->fd, iov+1, in_num-1);
872 if (len <= 0)
873 err(1, "reading network");
875 /* Tell the Guest about the new packet. */
876 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
878 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
879 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
880 head != dev->vq->vring.num ? "sent" : "discarded");
882 /* All good. */
883 return true;
886 /* This callback ensures we try again, in case we stopped console or net
887 * delivery because Guest didn't have any buffers. */
888 static void enable_fd(int fd, struct virtqueue *vq)
890 add_device_fd(vq->dev->fd);
891 /* Tell waker to listen to it again */
892 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
895 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
896 static void handle_output(int fd, unsigned long addr)
898 struct device *i;
899 struct virtqueue *vq;
901 /* Check each virtqueue. */
902 for (i = devices.dev; i; i = i->next) {
903 for (vq = i->vq; vq; vq = vq->next) {
904 if (vq->config.pfn == addr/getpagesize()
905 && vq->handle_output) {
906 verbose("Output to %s\n", vq->dev->name);
907 vq->handle_output(fd, vq);
908 return;
913 /* Early console write is done using notify on a nul-terminated string
914 * in Guest memory. */
915 if (addr >= guest_limit)
916 errx(1, "Bad NOTIFY %#lx", addr);
918 write(STDOUT_FILENO, from_guest_phys(addr),
919 strnlen(from_guest_phys(addr), guest_limit - addr));
922 /* This is called when the waker wakes us up: check for incoming file
923 * descriptors. */
924 static void handle_input(int fd)
926 /* select() wants a zeroed timeval to mean "don't wait". */
927 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
929 for (;;) {
930 struct device *i;
931 fd_set fds = devices.infds;
933 /* If nothing is ready, we're done. */
934 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
935 break;
937 /* Otherwise, call the device(s) which have readable
938 * file descriptors and a method of handling them. */
939 for (i = devices.dev; i; i = i->next) {
940 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
941 int dev_fd;
942 if (i->handle_input(fd, i))
943 continue;
945 /* If handle_input() returns false, it means we
946 * should no longer service it. Networking and
947 * console do this when there's no input
948 * buffers to deliver into. Console also uses
949 * it when it discovers that stdin is
950 * closed. */
951 FD_CLR(i->fd, &devices.infds);
952 /* Tell waker to ignore it too, by sending a
953 * negative fd number (-1, since 0 is a valid
954 * FD number). */
955 dev_fd = -i->fd - 1;
956 write(waker_fd, &dev_fd, sizeof(dev_fd));
962 /*L:190
963 * Device Setup
965 * All devices need a descriptor so the Guest knows it exists, and a "struct
966 * device" so the Launcher can keep track of it. We have common helper
967 * routines to allocate them.
969 * This routine allocates a new "struct lguest_device_desc" from descriptor
970 * table just above the Guest's normal memory. It returns a pointer to that
971 * descriptor. */
972 static struct lguest_device_desc *new_dev_desc(u16 type)
974 struct lguest_device_desc *d;
976 /* We only have one page for all the descriptors. */
977 if (devices.desc_used + sizeof(*d) > getpagesize())
978 errx(1, "Too many devices");
980 /* We don't need to set config_len or status: page is 0 already. */
981 d = (void *)devices.descpage + devices.desc_used;
982 d->type = type;
983 devices.desc_used += sizeof(*d);
985 return d;
988 /* Each device descriptor is followed by some configuration information.
989 * The first byte is a "status" byte for the Guest to report what's happening.
990 * After that are fields: u8 type, u8 len, [... len bytes...].
992 * This routine adds a new field to an existing device's descriptor. It only
993 * works for the last device, but that's OK because that's how we use it. */
994 static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
996 /* This is the last descriptor, right? */
997 assert(devices.descpage + devices.desc_used
998 == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1000 /* We only have one page of device descriptions. */
1001 if (devices.desc_used + 2 + len > getpagesize())
1002 errx(1, "Too many devices");
1004 /* Copy in the new config header: type then length. */
1005 devices.descpage[devices.desc_used++] = type;
1006 devices.descpage[devices.desc_used++] = len;
1007 memcpy(devices.descpage + devices.desc_used, c, len);
1008 devices.desc_used += len;
1010 /* Update the device descriptor length: two byte head then data. */
1011 dev->desc->config_len += 2 + len;
1014 /* This routine adds a virtqueue to a device. We specify how many descriptors
1015 * the virtqueue is to have. */
1016 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1017 void (*handle_output)(int fd, struct virtqueue *me))
1019 unsigned int pages;
1020 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1021 void *p;
1023 /* First we need some pages for this virtqueue. */
1024 pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
1025 p = get_pages(pages);
1027 /* Initialize the configuration. */
1028 vq->config.num = num_descs;
1029 vq->config.irq = devices.next_irq++;
1030 vq->config.pfn = to_guest_phys(p) / getpagesize();
1032 /* Initialize the vring. */
1033 vring_init(&vq->vring, num_descs, p);
1035 /* Add the configuration information to this device's descriptor. */
1036 add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1037 sizeof(vq->config), &vq->config);
1039 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1040 * second. */
1041 for (i = &dev->vq; *i; i = &(*i)->next);
1042 *i = vq;
1044 /* Link virtqueue back to device. */
1045 vq->dev = dev;
1047 /* Set up handler. */
1048 vq->handle_output = handle_output;
1049 if (!handle_output)
1050 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1053 /* This routine does all the creation and setup of a new device, including
1054 * caling new_dev_desc() to allocate the descriptor and device memory. */
1055 static struct device *new_device(const char *name, u16 type, int fd,
1056 bool (*handle_input)(int, struct device *))
1058 struct device *dev = malloc(sizeof(*dev));
1060 /* Append to device list. Prepending to a single-linked list is
1061 * easier, but the user expects the devices to be arranged on the bus
1062 * in command-line order. The first network device on the command line
1063 * is eth0, the first block device /dev/lgba, etc. */
1064 *devices.lastdev = dev;
1065 dev->next = NULL;
1066 devices.lastdev = &dev->next;
1068 /* Now we populate the fields one at a time. */
1069 dev->fd = fd;
1070 /* If we have an input handler for this file descriptor, then we add it
1071 * to the device_list's fdset and maxfd. */
1072 if (handle_input)
1073 add_device_fd(dev->fd);
1074 dev->desc = new_dev_desc(type);
1075 dev->handle_input = handle_input;
1076 dev->name = name;
1077 return dev;
1080 /* Our first setup routine is the console. It's a fairly simple device, but
1081 * UNIX tty handling makes it uglier than it could be. */
1082 static void setup_console(void)
1084 struct device *dev;
1086 /* If we can save the initial standard input settings... */
1087 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1088 struct termios term = orig_term;
1089 /* Then we turn off echo, line buffering and ^C etc. We want a
1090 * raw input stream to the Guest. */
1091 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1092 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1093 /* If we exit gracefully, the original settings will be
1094 * restored so the user can see what they're typing. */
1095 atexit(restore_term);
1098 dev = new_device("console", VIRTIO_ID_CONSOLE,
1099 STDIN_FILENO, handle_console_input);
1100 /* We store the console state in dev->priv, and initialize it. */
1101 dev->priv = malloc(sizeof(struct console_abort));
1102 ((struct console_abort *)dev->priv)->count = 0;
1104 /* The console needs two virtqueues: the input then the output. When
1105 * they put something the input queue, we make sure we're listening to
1106 * stdin. When they put something in the output queue, we write it to
1107 * stdout. */
1108 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1109 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1111 verbose("device %u: console\n", devices.device_num++);
1113 /*:*/
1115 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1116 * --sharenet=<name> option which opens or creates a named pipe. This can be
1117 * used to send packets to another guest in a 1:1 manner.
1119 * More sopisticated is to use one of the tools developed for project like UML
1120 * to do networking.
1122 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1123 * completely generic ("here's my vring, attach to your vring") and would work
1124 * for any traffic. Of course, namespace and permissions issues need to be
1125 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1126 * multiple inter-guest channels behind one interface, although it would
1127 * require some manner of hotplugging new virtio channels.
1129 * Finally, we could implement a virtio network switch in the kernel. :*/
1131 static u32 str2ip(const char *ipaddr)
1133 unsigned int byte[4];
1135 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1136 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1139 /* This code is "adapted" from libbridge: it attaches the Host end of the
1140 * network device to the bridge device specified by the command line.
1142 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1143 * dislike bridging), and I just try not to break it. */
1144 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1146 int ifidx;
1147 struct ifreq ifr;
1149 if (!*br_name)
1150 errx(1, "must specify bridge name");
1152 ifidx = if_nametoindex(if_name);
1153 if (!ifidx)
1154 errx(1, "interface %s does not exist!", if_name);
1156 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1157 ifr.ifr_ifindex = ifidx;
1158 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1159 err(1, "can't add %s to bridge %s", if_name, br_name);
1162 /* This sets up the Host end of the network device with an IP address, brings
1163 * it up so packets will flow, the copies the MAC address into the hwaddr
1164 * pointer. */
1165 static void configure_device(int fd, const char *devname, u32 ipaddr,
1166 unsigned char hwaddr[6])
1168 struct ifreq ifr;
1169 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1171 /* Don't read these incantations. Just cut & paste them like I did! */
1172 memset(&ifr, 0, sizeof(ifr));
1173 strcpy(ifr.ifr_name, devname);
1174 sin->sin_family = AF_INET;
1175 sin->sin_addr.s_addr = htonl(ipaddr);
1176 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1177 err(1, "Setting %s interface address", devname);
1178 ifr.ifr_flags = IFF_UP;
1179 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1180 err(1, "Bringing interface %s up", devname);
1182 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1183 * above). IF means Interface, and HWADDR is hardware address.
1184 * Simple! */
1185 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1186 err(1, "getting hw address for %s", devname);
1187 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1190 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1191 * routing, but the principle is the same: it uses the "tun" device to inject
1192 * packets into the Host as if they came in from a normal network card. We
1193 * just shunt packets between the Guest and the tun device. */
1194 static void setup_tun_net(const char *arg)
1196 struct device *dev;
1197 struct ifreq ifr;
1198 int netfd, ipfd;
1199 u32 ip;
1200 const char *br_name = NULL;
1201 u8 hwaddr[6];
1203 /* We open the /dev/net/tun device and tell it we want a tap device. A
1204 * tap device is like a tun device, only somehow different. To tell
1205 * the truth, I completely blundered my way through this code, but it
1206 * works now! */
1207 netfd = open_or_die("/dev/net/tun", O_RDWR);
1208 memset(&ifr, 0, sizeof(ifr));
1209 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1210 strcpy(ifr.ifr_name, "tap%d");
1211 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1212 err(1, "configuring /dev/net/tun");
1213 /* We don't need checksums calculated for packets coming in this
1214 * device: trust us! */
1215 ioctl(netfd, TUNSETNOCSUM, 1);
1217 /* First we create a new network device. */
1218 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1220 /* Network devices need a receive and a send queue, just like
1221 * console. */
1222 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1223 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1225 /* We need a socket to perform the magic network ioctls to bring up the
1226 * tap interface, connect to the bridge etc. Any socket will do! */
1227 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1228 if (ipfd < 0)
1229 err(1, "opening IP socket");
1231 /* If the command line was --tunnet=bridge:<name> do bridging. */
1232 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1233 ip = INADDR_ANY;
1234 br_name = arg + strlen(BRIDGE_PFX);
1235 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1236 } else /* It is an IP address to set up the device with */
1237 ip = str2ip(arg);
1239 /* Set up the tun device, and get the mac address for the interface. */
1240 configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1242 /* Tell Guest what MAC address to use. */
1243 add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1245 /* We don't seed the socket any more; setup is done. */
1246 close(ipfd);
1248 verbose("device %u: tun net %u.%u.%u.%u\n",
1249 devices.device_num++,
1250 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1251 if (br_name)
1252 verbose("attached to bridge: %s\n", br_name);
1257 * Block device.
1259 * Serving a block device is really easy: the Guest asks for a block number and
1260 * we read or write that position in the file.
1262 * Unfortunately, this is amazingly slow: the Guest waits until the read is
1263 * finished before running anything else, even if it could be doing useful
1264 * work. We could use async I/O, except it's reputed to suck so hard that
1265 * characters actually go missing from your code when you try to use it.
1267 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1269 /* This hangs off device->priv, with the data. */
1270 struct vblk_info
1272 /* The size of the file. */
1273 off64_t len;
1275 /* The file descriptor for the file. */
1276 int fd;
1278 /* IO thread listens on this file descriptor [0]. */
1279 int workpipe[2];
1281 /* IO thread writes to this file descriptor to mark it done, then
1282 * Launcher triggers interrupt to Guest. */
1283 int done_fd;
1286 /* This is the core of the I/O thread. It returns true if it did something. */
1287 static bool service_io(struct device *dev)
1289 struct vblk_info *vblk = dev->priv;
1290 unsigned int head, out_num, in_num, wlen;
1291 int ret;
1292 struct virtio_blk_inhdr *in;
1293 struct virtio_blk_outhdr *out;
1294 struct iovec iov[dev->vq->vring.num];
1295 off64_t off;
1297 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1298 if (head == dev->vq->vring.num)
1299 return false;
1301 if (out_num == 0 || in_num == 0)
1302 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1303 head, out_num, in_num);
1305 out = convert(&iov[0], struct virtio_blk_outhdr);
1306 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1307 off = out->sector * 512;
1309 /* This is how we implement barriers. Pretty poor, no? */
1310 if (out->type & VIRTIO_BLK_T_BARRIER)
1311 fdatasync(vblk->fd);
1313 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1314 fprintf(stderr, "Scsi commands unsupported\n");
1315 in->status = VIRTIO_BLK_S_UNSUPP;
1316 wlen = sizeof(in);
1317 } else if (out->type & VIRTIO_BLK_T_OUT) {
1318 /* Write */
1320 /* Move to the right location in the block file. This can fail
1321 * if they try to write past end. */
1322 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1323 err(1, "Bad seek to sector %llu", out->sector);
1325 ret = writev(vblk->fd, iov+1, out_num-1);
1326 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1328 /* Grr... Now we know how long the descriptor they sent was, we
1329 * make sure they didn't try to write over the end of the block
1330 * file (possibly extending it). */
1331 if (ret > 0 && off + ret > vblk->len) {
1332 /* Trim it back to the correct length */
1333 ftruncate64(vblk->fd, vblk->len);
1334 /* Die, bad Guest, die. */
1335 errx(1, "Write past end %llu+%u", off, ret);
1337 wlen = sizeof(in);
1338 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1339 } else {
1340 /* Read */
1342 /* Move to the right location in the block file. This can fail
1343 * if they try to read past end. */
1344 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1345 err(1, "Bad seek to sector %llu", out->sector);
1347 ret = readv(vblk->fd, iov+1, in_num-1);
1348 verbose("READ from sector %llu: %i\n", out->sector, ret);
1349 if (ret >= 0) {
1350 wlen = sizeof(in) + ret;
1351 in->status = VIRTIO_BLK_S_OK;
1352 } else {
1353 wlen = sizeof(in);
1354 in->status = VIRTIO_BLK_S_IOERR;
1358 /* We can't trigger an IRQ, because we're not the Launcher. It does
1359 * that when we tell it we're done. */
1360 add_used(dev->vq, head, wlen);
1361 return true;
1364 /* This is the thread which actually services the I/O. */
1365 static int io_thread(void *_dev)
1367 struct device *dev = _dev;
1368 struct vblk_info *vblk = dev->priv;
1369 char c;
1371 /* Close other side of workpipe so we get 0 read when main dies. */
1372 close(vblk->workpipe[1]);
1373 /* Close the other side of the done_fd pipe. */
1374 close(dev->fd);
1376 /* When this read fails, it means Launcher died, so we follow. */
1377 while (read(vblk->workpipe[0], &c, 1) == 1) {
1378 /* We acknowledge each request immediately, to reduce latency,
1379 * rather than waiting until we've done them all. I haven't
1380 * measured to see if it makes any difference. */
1381 while (service_io(dev))
1382 write(vblk->done_fd, &c, 1);
1384 return 0;
1387 /* When the thread says some I/O is done, we interrupt the Guest. */
1388 static bool handle_io_finish(int fd, struct device *dev)
1390 char c;
1392 /* If child died, presumably it printed message. */
1393 if (read(dev->fd, &c, 1) != 1)
1394 exit(1);
1396 /* It did some work, so trigger the irq. */
1397 trigger_irq(fd, dev->vq);
1398 return true;
1401 /* When the Guest submits some I/O, we wake the I/O thread. */
1402 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1404 struct vblk_info *vblk = vq->dev->priv;
1405 char c = 0;
1407 /* Wake up I/O thread and tell it to go to work! */
1408 if (write(vblk->workpipe[1], &c, 1) != 1)
1409 /* Presumably it indicated why it died. */
1410 exit(1);
1413 /* This creates a virtual block device. */
1414 static void setup_block_file(const char *filename)
1416 int p[2];
1417 struct device *dev;
1418 struct vblk_info *vblk;
1419 void *stack;
1420 u64 cap;
1421 unsigned int val;
1423 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1424 pipe(p);
1426 /* The device responds to return from I/O thread. */
1427 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1429 /* The device has a virtqueue. */
1430 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1432 /* Allocate the room for our own bookkeeping */
1433 vblk = dev->priv = malloc(sizeof(*vblk));
1435 /* First we open the file and store the length. */
1436 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1437 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1439 /* Tell Guest how many sectors this device has. */
1440 cap = cpu_to_le64(vblk->len / 512);
1441 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1443 /* Tell Guest not to put in too many descriptors at once: two are used
1444 * for the in and out elements. */
1445 val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1446 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1448 /* The I/O thread writes to this end of the pipe when done. */
1449 vblk->done_fd = p[1];
1451 /* This is how we tell the I/O thread about more work. */
1452 pipe(vblk->workpipe);
1454 /* Create stack for thread and run it */
1455 stack = malloc(32768);
1456 if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1457 err(1, "Creating clone");
1459 /* We don't need to keep the I/O thread's end of the pipes open. */
1460 close(vblk->done_fd);
1461 close(vblk->workpipe[0]);
1463 verbose("device %u: virtblock %llu sectors\n",
1464 devices.device_num, cap);
1466 /* That's the end of device setup. */
1468 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1469 * its input and output, and finally, lays it to rest. */
1470 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1472 for (;;) {
1473 unsigned long args[] = { LHREQ_BREAK, 0 };
1474 unsigned long notify_addr;
1475 int readval;
1477 /* We read from the /dev/lguest device to run the Guest. */
1478 readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1480 /* One unsigned long means the Guest did HCALL_NOTIFY */
1481 if (readval == sizeof(notify_addr)) {
1482 verbose("Notify on address %#lx\n", notify_addr);
1483 handle_output(lguest_fd, notify_addr);
1484 continue;
1485 /* ENOENT means the Guest died. Reading tells us why. */
1486 } else if (errno == ENOENT) {
1487 char reason[1024] = { 0 };
1488 read(lguest_fd, reason, sizeof(reason)-1);
1489 errx(1, "%s", reason);
1490 /* EAGAIN means the waker wanted us to look at some input.
1491 * Anything else means a bug or incompatible change. */
1492 } else if (errno != EAGAIN)
1493 err(1, "Running guest failed");
1495 /* Service input, then unset the BREAK which releases
1496 * the Waker. */
1497 handle_input(lguest_fd);
1498 if (write(lguest_fd, args, sizeof(args)) < 0)
1499 err(1, "Resetting break");
1503 * This is the end of the Launcher.
1505 * But wait! We've seen I/O from the Launcher, and we've seen I/O from the
1506 * Drivers. If we were to see the Host kernel I/O code, our understanding
1507 * would be complete... :*/
1509 static struct option opts[] = {
1510 { "verbose", 0, NULL, 'v' },
1511 { "tunnet", 1, NULL, 't' },
1512 { "block", 1, NULL, 'b' },
1513 { "initrd", 1, NULL, 'i' },
1514 { NULL },
1516 static void usage(void)
1518 errx(1, "Usage: lguest [--verbose] "
1519 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1520 "|--block=<filename>|--initrd=<filename>]...\n"
1521 "<mem-in-mb> vmlinux [args...]");
1524 /*L:105 The main routine is where the real work begins: */
1525 int main(int argc, char *argv[])
1527 /* Memory, top-level pagetable, code startpoint and size of the
1528 * (optional) initrd. */
1529 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1530 /* A temporary and the /dev/lguest file descriptor. */
1531 int i, c, lguest_fd;
1532 /* The boot information for the Guest. */
1533 struct boot_params *boot;
1534 /* If they specify an initrd file to load. */
1535 const char *initrd_name = NULL;
1537 /* First we initialize the device list. Since console and network
1538 * device receive input from a file descriptor, we keep an fdset
1539 * (infds) and the maximum fd number (max_infd) with the head of the
1540 * list. We also keep a pointer to the last device, for easy appending
1541 * to the list. Finally, we keep the next interrupt number to hand out
1542 * (1: remember that 0 is used by the timer). */
1543 FD_ZERO(&devices.infds);
1544 devices.max_infd = -1;
1545 devices.lastdev = &devices.dev;
1546 devices.next_irq = 1;
1548 /* We need to know how much memory so we can set up the device
1549 * descriptor and memory pages for the devices as we parse the command
1550 * line. So we quickly look through the arguments to find the amount
1551 * of memory now. */
1552 for (i = 1; i < argc; i++) {
1553 if (argv[i][0] != '-') {
1554 mem = atoi(argv[i]) * 1024 * 1024;
1555 /* We start by mapping anonymous pages over all of
1556 * guest-physical memory range. This fills it with 0,
1557 * and ensures that the Guest won't be killed when it
1558 * tries to access it. */
1559 guest_base = map_zeroed_pages(mem / getpagesize()
1560 + DEVICE_PAGES);
1561 guest_limit = mem;
1562 guest_max = mem + DEVICE_PAGES*getpagesize();
1563 devices.descpage = get_pages(1);
1564 break;
1568 /* The options are fairly straight-forward */
1569 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1570 switch (c) {
1571 case 'v':
1572 verbose = true;
1573 break;
1574 case 't':
1575 setup_tun_net(optarg);
1576 break;
1577 case 'b':
1578 setup_block_file(optarg);
1579 break;
1580 case 'i':
1581 initrd_name = optarg;
1582 break;
1583 default:
1584 warnx("Unknown argument %s", argv[optind]);
1585 usage();
1588 /* After the other arguments we expect memory and kernel image name,
1589 * followed by command line arguments for the kernel. */
1590 if (optind + 2 > argc)
1591 usage();
1593 verbose("Guest base is at %p\n", guest_base);
1595 /* We always have a console device */
1596 setup_console();
1598 /* Now we load the kernel */
1599 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1601 /* Boot information is stashed at physical address 0 */
1602 boot = from_guest_phys(0);
1604 /* Map the initrd image if requested (at top of physical memory) */
1605 if (initrd_name) {
1606 initrd_size = load_initrd(initrd_name, mem);
1607 /* These are the location in the Linux boot header where the
1608 * start and size of the initrd are expected to be found. */
1609 boot->hdr.ramdisk_image = mem - initrd_size;
1610 boot->hdr.ramdisk_size = initrd_size;
1611 /* The bootloader type 0xFF means "unknown"; that's OK. */
1612 boot->hdr.type_of_loader = 0xFF;
1615 /* Set up the initial linear pagetables, starting below the initrd. */
1616 pgdir = setup_pagetables(mem, initrd_size);
1618 /* The Linux boot header contains an "E820" memory map: ours is a
1619 * simple, single region. */
1620 boot->e820_entries = 1;
1621 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1622 /* The boot header contains a command line pointer: we put the command
1623 * line after the boot header. */
1624 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1625 concat((char *)(boot + 1), argv+optind+2);
1627 /* Boot protocol version: 2.07 supports the fields for lguest. */
1628 boot->hdr.version = 0x207;
1630 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1631 boot->hdr.hardware_subarch = 1;
1633 /* Tell the entry path not to try to reload segment registers. */
1634 boot->hdr.loadflags |= KEEP_SEGMENTS;
1636 /* We tell the kernel to initialize the Guest: this returns the open
1637 * /dev/lguest file descriptor. */
1638 lguest_fd = tell_kernel(pgdir, start);
1640 /* We fork off a child process, which wakes the Launcher whenever one
1641 * of the input file descriptors needs attention. Otherwise we would
1642 * run the Guest until it tries to output something. */
1643 waker_fd = setup_waker(lguest_fd);
1645 /* Finally, run the Guest. This doesn't return. */
1646 run_guest(lguest_fd);
1648 /*:*/
1650 /*M:999
1651 * Mastery is done: you now know everything I do.
1653 * But surely you have seen code, features and bugs in your wanderings which
1654 * you now yearn to attack? That is the real game, and I look forward to you
1655 * patching and forking lguest into the Your-Name-Here-visor.
1657 * Farewell, and good coding!
1658 * Rusty Russell.