2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
32 #define MAX_IO_MSRS 256
33 #define CR0_RESERVED_BITS \
34 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
35 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
36 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
37 #define CR4_RESERVED_BITS \
38 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
39 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
40 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
41 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
44 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
46 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
47 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
49 struct kvm_x86_ops
*kvm_x86_ops
;
51 struct kvm_stats_debugfs_item debugfs_entries
[] = {
52 { "pf_fixed", VCPU_STAT(pf_fixed
) },
53 { "pf_guest", VCPU_STAT(pf_guest
) },
54 { "tlb_flush", VCPU_STAT(tlb_flush
) },
55 { "invlpg", VCPU_STAT(invlpg
) },
56 { "exits", VCPU_STAT(exits
) },
57 { "io_exits", VCPU_STAT(io_exits
) },
58 { "mmio_exits", VCPU_STAT(mmio_exits
) },
59 { "signal_exits", VCPU_STAT(signal_exits
) },
60 { "irq_window", VCPU_STAT(irq_window_exits
) },
61 { "halt_exits", VCPU_STAT(halt_exits
) },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
63 { "request_irq", VCPU_STAT(request_irq_exits
) },
64 { "irq_exits", VCPU_STAT(irq_exits
) },
65 { "host_state_reload", VCPU_STAT(host_state_reload
) },
66 { "efer_reload", VCPU_STAT(efer_reload
) },
67 { "fpu_reload", VCPU_STAT(fpu_reload
) },
68 { "insn_emulation", VCPU_STAT(insn_emulation
) },
69 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
70 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
71 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
72 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
73 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
74 { "mmu_flooded", VM_STAT(mmu_flooded
) },
75 { "mmu_recycled", VM_STAT(mmu_recycled
) },
76 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
77 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
82 unsigned long segment_base(u16 selector
)
84 struct descriptor_table gdt
;
85 struct segment_descriptor
*d
;
86 unsigned long table_base
;
92 asm("sgdt %0" : "=m"(gdt
));
93 table_base
= gdt
.base
;
95 if (selector
& 4) { /* from ldt */
98 asm("sldt %0" : "=g"(ldt_selector
));
99 table_base
= segment_base(ldt_selector
);
101 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
102 v
= d
->base_low
| ((unsigned long)d
->base_mid
<< 16) |
103 ((unsigned long)d
->base_high
<< 24);
105 if (d
->system
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
106 v
|= ((unsigned long) \
107 ((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
111 EXPORT_SYMBOL_GPL(segment_base
);
113 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
115 if (irqchip_in_kernel(vcpu
->kvm
))
116 return vcpu
->arch
.apic_base
;
118 return vcpu
->arch
.apic_base
;
120 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
122 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
124 /* TODO: reserve bits check */
125 if (irqchip_in_kernel(vcpu
->kvm
))
126 kvm_lapic_set_base(vcpu
, data
);
128 vcpu
->arch
.apic_base
= data
;
130 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
132 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
134 WARN_ON(vcpu
->arch
.exception
.pending
);
135 vcpu
->arch
.exception
.pending
= true;
136 vcpu
->arch
.exception
.has_error_code
= false;
137 vcpu
->arch
.exception
.nr
= nr
;
139 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
141 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
144 ++vcpu
->stat
.pf_guest
;
145 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
146 printk(KERN_DEBUG
"kvm: inject_page_fault:"
147 " double fault 0x%lx\n", addr
);
148 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
149 vcpu
->arch
.exception
.error_code
= 0;
152 vcpu
->arch
.cr2
= addr
;
153 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
156 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
158 WARN_ON(vcpu
->arch
.exception
.pending
);
159 vcpu
->arch
.exception
.pending
= true;
160 vcpu
->arch
.exception
.has_error_code
= true;
161 vcpu
->arch
.exception
.nr
= nr
;
162 vcpu
->arch
.exception
.error_code
= error_code
;
164 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
166 static void __queue_exception(struct kvm_vcpu
*vcpu
)
168 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
169 vcpu
->arch
.exception
.has_error_code
,
170 vcpu
->arch
.exception
.error_code
);
174 * Load the pae pdptrs. Return true is they are all valid.
176 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
178 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
179 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
182 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
184 down_read(¤t
->mm
->mmap_sem
);
185 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
186 offset
* sizeof(u64
), sizeof(pdpte
));
191 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
192 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
199 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
201 up_read(¤t
->mm
->mmap_sem
);
206 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
208 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
212 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
215 down_read(¤t
->mm
->mmap_sem
);
216 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
219 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
221 up_read(¤t
->mm
->mmap_sem
);
226 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
228 if (cr0
& CR0_RESERVED_BITS
) {
229 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
230 cr0
, vcpu
->arch
.cr0
);
231 kvm_inject_gp(vcpu
, 0);
235 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
236 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
237 kvm_inject_gp(vcpu
, 0);
241 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
242 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
243 "and a clear PE flag\n");
244 kvm_inject_gp(vcpu
, 0);
248 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
250 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
254 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
255 "in long mode while PAE is disabled\n");
256 kvm_inject_gp(vcpu
, 0);
259 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
261 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
262 "in long mode while CS.L == 1\n");
263 kvm_inject_gp(vcpu
, 0);
269 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
270 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
272 kvm_inject_gp(vcpu
, 0);
278 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
279 vcpu
->arch
.cr0
= cr0
;
281 kvm_mmu_reset_context(vcpu
);
284 EXPORT_SYMBOL_GPL(set_cr0
);
286 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
288 set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
290 EXPORT_SYMBOL_GPL(lmsw
);
292 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
294 if (cr4
& CR4_RESERVED_BITS
) {
295 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
296 kvm_inject_gp(vcpu
, 0);
300 if (is_long_mode(vcpu
)) {
301 if (!(cr4
& X86_CR4_PAE
)) {
302 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
304 kvm_inject_gp(vcpu
, 0);
307 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
308 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
309 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
310 kvm_inject_gp(vcpu
, 0);
314 if (cr4
& X86_CR4_VMXE
) {
315 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
316 kvm_inject_gp(vcpu
, 0);
319 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
320 vcpu
->arch
.cr4
= cr4
;
321 kvm_mmu_reset_context(vcpu
);
323 EXPORT_SYMBOL_GPL(set_cr4
);
325 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
327 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
328 kvm_mmu_flush_tlb(vcpu
);
332 if (is_long_mode(vcpu
)) {
333 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
334 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
335 kvm_inject_gp(vcpu
, 0);
340 if (cr3
& CR3_PAE_RESERVED_BITS
) {
342 "set_cr3: #GP, reserved bits\n");
343 kvm_inject_gp(vcpu
, 0);
346 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
347 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
349 kvm_inject_gp(vcpu
, 0);
354 * We don't check reserved bits in nonpae mode, because
355 * this isn't enforced, and VMware depends on this.
359 down_read(¤t
->mm
->mmap_sem
);
361 * Does the new cr3 value map to physical memory? (Note, we
362 * catch an invalid cr3 even in real-mode, because it would
363 * cause trouble later on when we turn on paging anyway.)
365 * A real CPU would silently accept an invalid cr3 and would
366 * attempt to use it - with largely undefined (and often hard
367 * to debug) behavior on the guest side.
369 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
370 kvm_inject_gp(vcpu
, 0);
372 vcpu
->arch
.cr3
= cr3
;
373 vcpu
->arch
.mmu
.new_cr3(vcpu
);
375 up_read(¤t
->mm
->mmap_sem
);
377 EXPORT_SYMBOL_GPL(set_cr3
);
379 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
381 if (cr8
& CR8_RESERVED_BITS
) {
382 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
383 kvm_inject_gp(vcpu
, 0);
386 if (irqchip_in_kernel(vcpu
->kvm
))
387 kvm_lapic_set_tpr(vcpu
, cr8
);
389 vcpu
->arch
.cr8
= cr8
;
391 EXPORT_SYMBOL_GPL(set_cr8
);
393 unsigned long get_cr8(struct kvm_vcpu
*vcpu
)
395 if (irqchip_in_kernel(vcpu
->kvm
))
396 return kvm_lapic_get_cr8(vcpu
);
398 return vcpu
->arch
.cr8
;
400 EXPORT_SYMBOL_GPL(get_cr8
);
403 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
404 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
406 * This list is modified at module load time to reflect the
407 * capabilities of the host cpu.
409 static u32 msrs_to_save
[] = {
410 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
413 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
415 MSR_IA32_TIME_STAMP_COUNTER
,
418 static unsigned num_msrs_to_save
;
420 static u32 emulated_msrs
[] = {
421 MSR_IA32_MISC_ENABLE
,
426 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
428 if (efer
& EFER_RESERVED_BITS
) {
429 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
431 kvm_inject_gp(vcpu
, 0);
436 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
437 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
438 kvm_inject_gp(vcpu
, 0);
442 kvm_x86_ops
->set_efer(vcpu
, efer
);
445 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
447 vcpu
->arch
.shadow_efer
= efer
;
453 * Writes msr value into into the appropriate "register".
454 * Returns 0 on success, non-0 otherwise.
455 * Assumes vcpu_load() was already called.
457 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
459 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
463 * Adapt set_msr() to msr_io()'s calling convention
465 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
467 return kvm_set_msr(vcpu
, index
, *data
);
471 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
476 set_efer(vcpu
, data
);
479 case MSR_IA32_MC0_STATUS
:
480 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
483 case MSR_IA32_MCG_STATUS
:
484 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
487 case MSR_IA32_UCODE_REV
:
488 case MSR_IA32_UCODE_WRITE
:
489 case 0x200 ... 0x2ff: /* MTRRs */
491 case MSR_IA32_APICBASE
:
492 kvm_set_apic_base(vcpu
, data
);
494 case MSR_IA32_MISC_ENABLE
:
495 vcpu
->arch
.ia32_misc_enable_msr
= data
;
498 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
503 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
507 * Reads an msr value (of 'msr_index') into 'pdata'.
508 * Returns 0 on success, non-0 otherwise.
509 * Assumes vcpu_load() was already called.
511 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
513 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
516 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
521 case 0xc0010010: /* SYSCFG */
522 case 0xc0010015: /* HWCR */
523 case MSR_IA32_PLATFORM_ID
:
524 case MSR_IA32_P5_MC_ADDR
:
525 case MSR_IA32_P5_MC_TYPE
:
526 case MSR_IA32_MC0_CTL
:
527 case MSR_IA32_MCG_STATUS
:
528 case MSR_IA32_MCG_CAP
:
529 case MSR_IA32_MC0_MISC
:
530 case MSR_IA32_MC0_MISC
+4:
531 case MSR_IA32_MC0_MISC
+8:
532 case MSR_IA32_MC0_MISC
+12:
533 case MSR_IA32_MC0_MISC
+16:
534 case MSR_IA32_UCODE_REV
:
535 case MSR_IA32_PERF_STATUS
:
536 case MSR_IA32_EBL_CR_POWERON
:
539 case 0x200 ... 0x2ff:
542 case 0xcd: /* fsb frequency */
545 case MSR_IA32_APICBASE
:
546 data
= kvm_get_apic_base(vcpu
);
548 case MSR_IA32_MISC_ENABLE
:
549 data
= vcpu
->arch
.ia32_misc_enable_msr
;
553 data
= vcpu
->arch
.shadow_efer
;
557 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
563 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
566 * Read or write a bunch of msrs. All parameters are kernel addresses.
568 * @return number of msrs set successfully.
570 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
571 struct kvm_msr_entry
*entries
,
572 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
573 unsigned index
, u64
*data
))
579 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
580 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
589 * Read or write a bunch of msrs. Parameters are user addresses.
591 * @return number of msrs set successfully.
593 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
594 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
595 unsigned index
, u64
*data
),
598 struct kvm_msrs msrs
;
599 struct kvm_msr_entry
*entries
;
604 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
608 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
612 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
613 entries
= vmalloc(size
);
618 if (copy_from_user(entries
, user_msrs
->entries
, size
))
621 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
626 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
638 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
641 void decache_vcpus_on_cpu(int cpu
)
644 struct kvm_vcpu
*vcpu
;
647 spin_lock(&kvm_lock
);
648 list_for_each_entry(vm
, &vm_list
, vm_list
)
649 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
654 * If the vcpu is locked, then it is running on some
655 * other cpu and therefore it is not cached on the
658 * If it's not locked, check the last cpu it executed
661 if (mutex_trylock(&vcpu
->mutex
)) {
662 if (vcpu
->cpu
== cpu
) {
663 kvm_x86_ops
->vcpu_decache(vcpu
);
666 mutex_unlock(&vcpu
->mutex
);
669 spin_unlock(&kvm_lock
);
672 int kvm_dev_ioctl_check_extension(long ext
)
677 case KVM_CAP_IRQCHIP
:
679 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
680 case KVM_CAP_USER_MEMORY
:
681 case KVM_CAP_SET_TSS_ADDR
:
682 case KVM_CAP_EXT_CPUID
:
686 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
696 long kvm_arch_dev_ioctl(struct file
*filp
,
697 unsigned int ioctl
, unsigned long arg
)
699 void __user
*argp
= (void __user
*)arg
;
703 case KVM_GET_MSR_INDEX_LIST
: {
704 struct kvm_msr_list __user
*user_msr_list
= argp
;
705 struct kvm_msr_list msr_list
;
709 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
712 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
713 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
716 if (n
< num_msrs_to_save
)
719 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
720 num_msrs_to_save
* sizeof(u32
)))
722 if (copy_to_user(user_msr_list
->indices
723 + num_msrs_to_save
* sizeof(u32
),
725 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
737 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
739 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
742 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
744 kvm_x86_ops
->vcpu_put(vcpu
);
745 kvm_put_guest_fpu(vcpu
);
748 static int is_efer_nx(void)
752 rdmsrl(MSR_EFER
, efer
);
753 return efer
& EFER_NX
;
756 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
759 struct kvm_cpuid_entry2
*e
, *entry
;
762 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
763 e
= &vcpu
->arch
.cpuid_entries
[i
];
764 if (e
->function
== 0x80000001) {
769 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
770 entry
->edx
&= ~(1 << 20);
771 printk(KERN_INFO
"kvm: guest NX capability removed\n");
775 /* when an old userspace process fills a new kernel module */
776 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
777 struct kvm_cpuid
*cpuid
,
778 struct kvm_cpuid_entry __user
*entries
)
781 struct kvm_cpuid_entry
*cpuid_entries
;
784 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
787 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
791 if (copy_from_user(cpuid_entries
, entries
,
792 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
794 for (i
= 0; i
< cpuid
->nent
; i
++) {
795 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
796 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
797 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
798 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
799 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
800 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
801 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
802 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
803 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
804 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
806 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
807 cpuid_fix_nx_cap(vcpu
);
811 vfree(cpuid_entries
);
816 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
817 struct kvm_cpuid2
*cpuid
,
818 struct kvm_cpuid_entry2 __user
*entries
)
823 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
826 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
827 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
829 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
836 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
837 struct kvm_cpuid2
*cpuid
,
838 struct kvm_cpuid_entry2 __user
*entries
)
843 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
846 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
847 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
852 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
856 static inline u32
bit(int bitno
)
858 return 1 << (bitno
& 31);
861 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
864 entry
->function
= function
;
865 entry
->index
= index
;
866 cpuid_count(entry
->function
, entry
->index
,
867 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
871 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
872 u32 index
, int *nent
, int maxnent
)
874 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
875 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
876 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
877 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
878 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
879 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
880 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
881 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
882 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
883 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
884 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
885 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
886 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
887 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
888 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
889 bit(X86_FEATURE_PGE
) |
890 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
891 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
892 bit(X86_FEATURE_SYSCALL
) |
893 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
895 bit(X86_FEATURE_LM
) |
897 bit(X86_FEATURE_MMXEXT
) |
898 bit(X86_FEATURE_3DNOWEXT
) |
899 bit(X86_FEATURE_3DNOW
);
900 const u32 kvm_supported_word3_x86_features
=
901 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
902 const u32 kvm_supported_word6_x86_features
=
903 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
);
905 /* all func 2 cpuid_count() should be called on the same cpu */
907 do_cpuid_1_ent(entry
, function
, index
);
912 entry
->eax
= min(entry
->eax
, (u32
)0xb);
915 entry
->edx
&= kvm_supported_word0_x86_features
;
916 entry
->ecx
&= kvm_supported_word3_x86_features
;
918 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
919 * may return different values. This forces us to get_cpu() before
920 * issuing the first command, and also to emulate this annoying behavior
921 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
923 int t
, times
= entry
->eax
& 0xff;
925 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
926 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
927 do_cpuid_1_ent(&entry
[t
], function
, 0);
928 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
933 /* function 4 and 0xb have additional index. */
935 int index
, cache_type
;
937 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
938 /* read more entries until cache_type is zero */
939 for (index
= 1; *nent
< maxnent
; ++index
) {
940 cache_type
= entry
[index
- 1].eax
& 0x1f;
943 do_cpuid_1_ent(&entry
[index
], function
, index
);
944 entry
[index
].flags
|=
945 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
951 int index
, level_type
;
953 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
954 /* read more entries until level_type is zero */
955 for (index
= 1; *nent
< maxnent
; ++index
) {
956 level_type
= entry
[index
- 1].ecx
& 0xff;
959 do_cpuid_1_ent(&entry
[index
], function
, index
);
960 entry
[index
].flags
|=
961 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
967 entry
->eax
= min(entry
->eax
, 0x8000001a);
970 entry
->edx
&= kvm_supported_word1_x86_features
;
971 entry
->ecx
&= kvm_supported_word6_x86_features
;
977 static int kvm_vm_ioctl_get_supported_cpuid(struct kvm
*kvm
,
978 struct kvm_cpuid2
*cpuid
,
979 struct kvm_cpuid_entry2 __user
*entries
)
981 struct kvm_cpuid_entry2
*cpuid_entries
;
982 int limit
, nent
= 0, r
= -E2BIG
;
988 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
992 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
993 limit
= cpuid_entries
[0].eax
;
994 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
995 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
998 if (nent
>= cpuid
->nent
)
1001 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1002 limit
= cpuid_entries
[nent
- 1].eax
;
1003 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1004 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1005 &nent
, cpuid
->nent
);
1007 if (copy_to_user(entries
, cpuid_entries
,
1008 nent
* sizeof(struct kvm_cpuid_entry2
)))
1014 vfree(cpuid_entries
);
1019 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1020 struct kvm_lapic_state
*s
)
1023 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1029 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1030 struct kvm_lapic_state
*s
)
1033 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1034 kvm_apic_post_state_restore(vcpu
);
1040 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1041 struct kvm_interrupt
*irq
)
1043 if (irq
->irq
< 0 || irq
->irq
>= 256)
1045 if (irqchip_in_kernel(vcpu
->kvm
))
1049 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1050 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1057 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1058 struct kvm_tpr_access_ctl
*tac
)
1062 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1066 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1067 unsigned int ioctl
, unsigned long arg
)
1069 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1070 void __user
*argp
= (void __user
*)arg
;
1074 case KVM_GET_LAPIC
: {
1075 struct kvm_lapic_state lapic
;
1077 memset(&lapic
, 0, sizeof lapic
);
1078 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
1082 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
1087 case KVM_SET_LAPIC
: {
1088 struct kvm_lapic_state lapic
;
1091 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
1093 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
1099 case KVM_INTERRUPT
: {
1100 struct kvm_interrupt irq
;
1103 if (copy_from_user(&irq
, argp
, sizeof irq
))
1105 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1111 case KVM_SET_CPUID
: {
1112 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1113 struct kvm_cpuid cpuid
;
1116 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1118 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1123 case KVM_SET_CPUID2
: {
1124 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1125 struct kvm_cpuid2 cpuid
;
1128 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1130 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1131 cpuid_arg
->entries
);
1136 case KVM_GET_CPUID2
: {
1137 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1138 struct kvm_cpuid2 cpuid
;
1141 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1143 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1144 cpuid_arg
->entries
);
1148 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1154 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1157 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1159 case KVM_TPR_ACCESS_REPORTING
: {
1160 struct kvm_tpr_access_ctl tac
;
1163 if (copy_from_user(&tac
, argp
, sizeof tac
))
1165 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1169 if (copy_to_user(argp
, &tac
, sizeof tac
))
1174 case KVM_SET_VAPIC_ADDR
: {
1175 struct kvm_vapic_addr va
;
1178 if (!irqchip_in_kernel(vcpu
->kvm
))
1181 if (copy_from_user(&va
, argp
, sizeof va
))
1184 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1194 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1198 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1200 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1204 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1205 u32 kvm_nr_mmu_pages
)
1207 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1210 down_write(¤t
->mm
->mmap_sem
);
1212 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1213 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1215 up_write(¤t
->mm
->mmap_sem
);
1219 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1221 return kvm
->arch
.n_alloc_mmu_pages
;
1224 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1227 struct kvm_mem_alias
*alias
;
1229 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1230 alias
= &kvm
->arch
.aliases
[i
];
1231 if (gfn
>= alias
->base_gfn
1232 && gfn
< alias
->base_gfn
+ alias
->npages
)
1233 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1239 * Set a new alias region. Aliases map a portion of physical memory into
1240 * another portion. This is useful for memory windows, for example the PC
1243 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1244 struct kvm_memory_alias
*alias
)
1247 struct kvm_mem_alias
*p
;
1250 /* General sanity checks */
1251 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1253 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1255 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1257 if (alias
->guest_phys_addr
+ alias
->memory_size
1258 < alias
->guest_phys_addr
)
1260 if (alias
->target_phys_addr
+ alias
->memory_size
1261 < alias
->target_phys_addr
)
1264 down_write(¤t
->mm
->mmap_sem
);
1266 p
= &kvm
->arch
.aliases
[alias
->slot
];
1267 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1268 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1269 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1271 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1272 if (kvm
->arch
.aliases
[n
- 1].npages
)
1274 kvm
->arch
.naliases
= n
;
1276 kvm_mmu_zap_all(kvm
);
1278 up_write(¤t
->mm
->mmap_sem
);
1286 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1291 switch (chip
->chip_id
) {
1292 case KVM_IRQCHIP_PIC_MASTER
:
1293 memcpy(&chip
->chip
.pic
,
1294 &pic_irqchip(kvm
)->pics
[0],
1295 sizeof(struct kvm_pic_state
));
1297 case KVM_IRQCHIP_PIC_SLAVE
:
1298 memcpy(&chip
->chip
.pic
,
1299 &pic_irqchip(kvm
)->pics
[1],
1300 sizeof(struct kvm_pic_state
));
1302 case KVM_IRQCHIP_IOAPIC
:
1303 memcpy(&chip
->chip
.ioapic
,
1304 ioapic_irqchip(kvm
),
1305 sizeof(struct kvm_ioapic_state
));
1314 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1319 switch (chip
->chip_id
) {
1320 case KVM_IRQCHIP_PIC_MASTER
:
1321 memcpy(&pic_irqchip(kvm
)->pics
[0],
1323 sizeof(struct kvm_pic_state
));
1325 case KVM_IRQCHIP_PIC_SLAVE
:
1326 memcpy(&pic_irqchip(kvm
)->pics
[1],
1328 sizeof(struct kvm_pic_state
));
1330 case KVM_IRQCHIP_IOAPIC
:
1331 memcpy(ioapic_irqchip(kvm
),
1333 sizeof(struct kvm_ioapic_state
));
1339 kvm_pic_update_irq(pic_irqchip(kvm
));
1344 * Get (and clear) the dirty memory log for a memory slot.
1346 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1347 struct kvm_dirty_log
*log
)
1351 struct kvm_memory_slot
*memslot
;
1354 down_write(¤t
->mm
->mmap_sem
);
1356 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1360 /* If nothing is dirty, don't bother messing with page tables. */
1362 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1363 kvm_flush_remote_tlbs(kvm
);
1364 memslot
= &kvm
->memslots
[log
->slot
];
1365 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1366 memset(memslot
->dirty_bitmap
, 0, n
);
1370 up_write(¤t
->mm
->mmap_sem
);
1374 long kvm_arch_vm_ioctl(struct file
*filp
,
1375 unsigned int ioctl
, unsigned long arg
)
1377 struct kvm
*kvm
= filp
->private_data
;
1378 void __user
*argp
= (void __user
*)arg
;
1382 case KVM_SET_TSS_ADDR
:
1383 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1387 case KVM_SET_MEMORY_REGION
: {
1388 struct kvm_memory_region kvm_mem
;
1389 struct kvm_userspace_memory_region kvm_userspace_mem
;
1392 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1394 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1395 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1396 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1397 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1398 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1403 case KVM_SET_NR_MMU_PAGES
:
1404 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1408 case KVM_GET_NR_MMU_PAGES
:
1409 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1411 case KVM_SET_MEMORY_ALIAS
: {
1412 struct kvm_memory_alias alias
;
1415 if (copy_from_user(&alias
, argp
, sizeof alias
))
1417 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
1422 case KVM_CREATE_IRQCHIP
:
1424 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1425 if (kvm
->arch
.vpic
) {
1426 r
= kvm_ioapic_init(kvm
);
1428 kfree(kvm
->arch
.vpic
);
1429 kvm
->arch
.vpic
= NULL
;
1435 case KVM_IRQ_LINE
: {
1436 struct kvm_irq_level irq_event
;
1439 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1441 if (irqchip_in_kernel(kvm
)) {
1442 mutex_lock(&kvm
->lock
);
1443 if (irq_event
.irq
< 16)
1444 kvm_pic_set_irq(pic_irqchip(kvm
),
1447 kvm_ioapic_set_irq(kvm
->arch
.vioapic
,
1450 mutex_unlock(&kvm
->lock
);
1455 case KVM_GET_IRQCHIP
: {
1456 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1457 struct kvm_irqchip chip
;
1460 if (copy_from_user(&chip
, argp
, sizeof chip
))
1463 if (!irqchip_in_kernel(kvm
))
1465 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
1469 if (copy_to_user(argp
, &chip
, sizeof chip
))
1474 case KVM_SET_IRQCHIP
: {
1475 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1476 struct kvm_irqchip chip
;
1479 if (copy_from_user(&chip
, argp
, sizeof chip
))
1482 if (!irqchip_in_kernel(kvm
))
1484 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
1490 case KVM_GET_SUPPORTED_CPUID
: {
1491 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1492 struct kvm_cpuid2 cpuid
;
1495 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1497 r
= kvm_vm_ioctl_get_supported_cpuid(kvm
, &cpuid
,
1498 cpuid_arg
->entries
);
1503 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1515 static void kvm_init_msr_list(void)
1520 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1521 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1524 msrs_to_save
[j
] = msrs_to_save
[i
];
1527 num_msrs_to_save
= j
;
1531 * Only apic need an MMIO device hook, so shortcut now..
1533 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1536 struct kvm_io_device
*dev
;
1538 if (vcpu
->arch
.apic
) {
1539 dev
= &vcpu
->arch
.apic
->dev
;
1540 if (dev
->in_range(dev
, addr
))
1547 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1550 struct kvm_io_device
*dev
;
1552 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
);
1554 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1558 int emulator_read_std(unsigned long addr
,
1561 struct kvm_vcpu
*vcpu
)
1564 int r
= X86EMUL_CONTINUE
;
1566 down_read(¤t
->mm
->mmap_sem
);
1568 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1569 unsigned offset
= addr
& (PAGE_SIZE
-1);
1570 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1573 if (gpa
== UNMAPPED_GVA
) {
1574 r
= X86EMUL_PROPAGATE_FAULT
;
1577 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, tocopy
);
1579 r
= X86EMUL_UNHANDLEABLE
;
1588 up_read(¤t
->mm
->mmap_sem
);
1591 EXPORT_SYMBOL_GPL(emulator_read_std
);
1593 static int emulator_read_emulated(unsigned long addr
,
1596 struct kvm_vcpu
*vcpu
)
1598 struct kvm_io_device
*mmio_dev
;
1601 if (vcpu
->mmio_read_completed
) {
1602 memcpy(val
, vcpu
->mmio_data
, bytes
);
1603 vcpu
->mmio_read_completed
= 0;
1604 return X86EMUL_CONTINUE
;
1607 down_read(¤t
->mm
->mmap_sem
);
1608 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1609 up_read(¤t
->mm
->mmap_sem
);
1611 /* For APIC access vmexit */
1612 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1615 if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1616 == X86EMUL_CONTINUE
)
1617 return X86EMUL_CONTINUE
;
1618 if (gpa
== UNMAPPED_GVA
)
1619 return X86EMUL_PROPAGATE_FAULT
;
1623 * Is this MMIO handled locally?
1625 mutex_lock(&vcpu
->kvm
->lock
);
1626 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1628 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1629 mutex_unlock(&vcpu
->kvm
->lock
);
1630 return X86EMUL_CONTINUE
;
1632 mutex_unlock(&vcpu
->kvm
->lock
);
1634 vcpu
->mmio_needed
= 1;
1635 vcpu
->mmio_phys_addr
= gpa
;
1636 vcpu
->mmio_size
= bytes
;
1637 vcpu
->mmio_is_write
= 0;
1639 return X86EMUL_UNHANDLEABLE
;
1642 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1643 const void *val
, int bytes
)
1647 down_read(¤t
->mm
->mmap_sem
);
1648 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
1650 up_read(¤t
->mm
->mmap_sem
);
1653 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1654 up_read(¤t
->mm
->mmap_sem
);
1658 static int emulator_write_emulated_onepage(unsigned long addr
,
1661 struct kvm_vcpu
*vcpu
)
1663 struct kvm_io_device
*mmio_dev
;
1666 down_read(¤t
->mm
->mmap_sem
);
1667 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1668 up_read(¤t
->mm
->mmap_sem
);
1670 if (gpa
== UNMAPPED_GVA
) {
1671 kvm_inject_page_fault(vcpu
, addr
, 2);
1672 return X86EMUL_PROPAGATE_FAULT
;
1675 /* For APIC access vmexit */
1676 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1679 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1680 return X86EMUL_CONTINUE
;
1684 * Is this MMIO handled locally?
1686 mutex_lock(&vcpu
->kvm
->lock
);
1687 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1689 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1690 mutex_unlock(&vcpu
->kvm
->lock
);
1691 return X86EMUL_CONTINUE
;
1693 mutex_unlock(&vcpu
->kvm
->lock
);
1695 vcpu
->mmio_needed
= 1;
1696 vcpu
->mmio_phys_addr
= gpa
;
1697 vcpu
->mmio_size
= bytes
;
1698 vcpu
->mmio_is_write
= 1;
1699 memcpy(vcpu
->mmio_data
, val
, bytes
);
1701 return X86EMUL_CONTINUE
;
1704 int emulator_write_emulated(unsigned long addr
,
1707 struct kvm_vcpu
*vcpu
)
1709 /* Crossing a page boundary? */
1710 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1713 now
= -addr
& ~PAGE_MASK
;
1714 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1715 if (rc
!= X86EMUL_CONTINUE
)
1721 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1723 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1725 static int emulator_cmpxchg_emulated(unsigned long addr
,
1729 struct kvm_vcpu
*vcpu
)
1731 static int reported
;
1735 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1737 #ifndef CONFIG_X86_64
1738 /* guests cmpxchg8b have to be emulated atomically */
1745 down_read(¤t
->mm
->mmap_sem
);
1746 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1748 if (gpa
== UNMAPPED_GVA
||
1749 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
1752 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
1756 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1757 kaddr
= kmap_atomic(page
, KM_USER0
);
1758 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
1759 kunmap_atomic(kaddr
, KM_USER0
);
1760 kvm_release_page_dirty(page
);
1762 up_read(¤t
->mm
->mmap_sem
);
1766 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
1769 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1771 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
1774 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1776 return X86EMUL_CONTINUE
;
1779 int emulate_clts(struct kvm_vcpu
*vcpu
)
1781 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
1782 return X86EMUL_CONTINUE
;
1785 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
1787 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1791 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
1792 return X86EMUL_CONTINUE
;
1794 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __FUNCTION__
, dr
);
1795 return X86EMUL_UNHANDLEABLE
;
1799 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1801 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1804 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1806 /* FIXME: better handling */
1807 return X86EMUL_UNHANDLEABLE
;
1809 return X86EMUL_CONTINUE
;
1812 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
1814 static int reported
;
1816 unsigned long rip
= vcpu
->arch
.rip
;
1817 unsigned long rip_linear
;
1819 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
1824 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
1826 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1827 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1830 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
1832 struct x86_emulate_ops emulate_ops
= {
1833 .read_std
= emulator_read_std
,
1834 .read_emulated
= emulator_read_emulated
,
1835 .write_emulated
= emulator_write_emulated
,
1836 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1839 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1840 struct kvm_run
*run
,
1846 struct decode_cache
*c
;
1848 vcpu
->arch
.mmio_fault_cr2
= cr2
;
1849 kvm_x86_ops
->cache_regs(vcpu
);
1851 vcpu
->mmio_is_write
= 0;
1852 vcpu
->arch
.pio
.string
= 0;
1854 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
1856 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1858 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
1859 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
1860 vcpu
->arch
.emulate_ctxt
.mode
=
1861 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1862 ? X86EMUL_MODE_REAL
: cs_l
1863 ? X86EMUL_MODE_PROT64
: cs_db
1864 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1866 if (vcpu
->arch
.emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1867 vcpu
->arch
.emulate_ctxt
.cs_base
= 0;
1868 vcpu
->arch
.emulate_ctxt
.ds_base
= 0;
1869 vcpu
->arch
.emulate_ctxt
.es_base
= 0;
1870 vcpu
->arch
.emulate_ctxt
.ss_base
= 0;
1872 vcpu
->arch
.emulate_ctxt
.cs_base
=
1873 get_segment_base(vcpu
, VCPU_SREG_CS
);
1874 vcpu
->arch
.emulate_ctxt
.ds_base
=
1875 get_segment_base(vcpu
, VCPU_SREG_DS
);
1876 vcpu
->arch
.emulate_ctxt
.es_base
=
1877 get_segment_base(vcpu
, VCPU_SREG_ES
);
1878 vcpu
->arch
.emulate_ctxt
.ss_base
=
1879 get_segment_base(vcpu
, VCPU_SREG_SS
);
1882 vcpu
->arch
.emulate_ctxt
.gs_base
=
1883 get_segment_base(vcpu
, VCPU_SREG_GS
);
1884 vcpu
->arch
.emulate_ctxt
.fs_base
=
1885 get_segment_base(vcpu
, VCPU_SREG_FS
);
1887 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
1889 /* Reject the instructions other than VMCALL/VMMCALL when
1890 * try to emulate invalid opcode */
1891 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
1892 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
1893 (!(c
->twobyte
&& c
->b
== 0x01 &&
1894 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
1895 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
1896 return EMULATE_FAIL
;
1898 ++vcpu
->stat
.insn_emulation
;
1900 ++vcpu
->stat
.insn_emulation_fail
;
1901 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1902 return EMULATE_DONE
;
1903 return EMULATE_FAIL
;
1907 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
1909 if (vcpu
->arch
.pio
.string
)
1910 return EMULATE_DO_MMIO
;
1912 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1913 run
->exit_reason
= KVM_EXIT_MMIO
;
1914 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1915 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1916 run
->mmio
.len
= vcpu
->mmio_size
;
1917 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1921 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1922 return EMULATE_DONE
;
1923 if (!vcpu
->mmio_needed
) {
1924 kvm_report_emulation_failure(vcpu
, "mmio");
1925 return EMULATE_FAIL
;
1927 return EMULATE_DO_MMIO
;
1930 kvm_x86_ops
->decache_regs(vcpu
);
1931 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
1933 if (vcpu
->mmio_is_write
) {
1934 vcpu
->mmio_needed
= 0;
1935 return EMULATE_DO_MMIO
;
1938 return EMULATE_DONE
;
1940 EXPORT_SYMBOL_GPL(emulate_instruction
);
1942 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
1946 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.pio
.guest_pages
); ++i
)
1947 if (vcpu
->arch
.pio
.guest_pages
[i
]) {
1948 kvm_release_page_dirty(vcpu
->arch
.pio
.guest_pages
[i
]);
1949 vcpu
->arch
.pio
.guest_pages
[i
] = NULL
;
1953 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1955 void *p
= vcpu
->arch
.pio_data
;
1958 int nr_pages
= vcpu
->arch
.pio
.guest_pages
[1] ? 2 : 1;
1960 q
= vmap(vcpu
->arch
.pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1963 free_pio_guest_pages(vcpu
);
1966 q
+= vcpu
->arch
.pio
.guest_page_offset
;
1967 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
1968 if (vcpu
->arch
.pio
.in
)
1969 memcpy(q
, p
, bytes
);
1971 memcpy(p
, q
, bytes
);
1972 q
-= vcpu
->arch
.pio
.guest_page_offset
;
1974 free_pio_guest_pages(vcpu
);
1978 int complete_pio(struct kvm_vcpu
*vcpu
)
1980 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
1984 kvm_x86_ops
->cache_regs(vcpu
);
1988 memcpy(&vcpu
->arch
.regs
[VCPU_REGS_RAX
], vcpu
->arch
.pio_data
,
1992 r
= pio_copy_data(vcpu
);
1994 kvm_x86_ops
->cache_regs(vcpu
);
2001 delta
*= io
->cur_count
;
2003 * The size of the register should really depend on
2004 * current address size.
2006 vcpu
->arch
.regs
[VCPU_REGS_RCX
] -= delta
;
2012 vcpu
->arch
.regs
[VCPU_REGS_RDI
] += delta
;
2014 vcpu
->arch
.regs
[VCPU_REGS_RSI
] += delta
;
2017 kvm_x86_ops
->decache_regs(vcpu
);
2019 io
->count
-= io
->cur_count
;
2025 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2026 struct kvm_vcpu
*vcpu
,
2029 /* TODO: String I/O for in kernel device */
2031 mutex_lock(&vcpu
->kvm
->lock
);
2032 if (vcpu
->arch
.pio
.in
)
2033 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2034 vcpu
->arch
.pio
.size
,
2037 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2038 vcpu
->arch
.pio
.size
,
2040 mutex_unlock(&vcpu
->kvm
->lock
);
2043 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2044 struct kvm_vcpu
*vcpu
)
2046 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2047 void *pd
= vcpu
->arch
.pio_data
;
2050 mutex_lock(&vcpu
->kvm
->lock
);
2051 for (i
= 0; i
< io
->cur_count
; i
++) {
2052 kvm_iodevice_write(pio_dev
, io
->port
,
2057 mutex_unlock(&vcpu
->kvm
->lock
);
2060 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2063 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
2066 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2067 int size
, unsigned port
)
2069 struct kvm_io_device
*pio_dev
;
2071 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2072 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2073 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2074 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2075 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2076 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2077 vcpu
->arch
.pio
.in
= in
;
2078 vcpu
->arch
.pio
.string
= 0;
2079 vcpu
->arch
.pio
.down
= 0;
2080 vcpu
->arch
.pio
.guest_page_offset
= 0;
2081 vcpu
->arch
.pio
.rep
= 0;
2083 kvm_x86_ops
->cache_regs(vcpu
);
2084 memcpy(vcpu
->arch
.pio_data
, &vcpu
->arch
.regs
[VCPU_REGS_RAX
], 4);
2085 kvm_x86_ops
->decache_regs(vcpu
);
2087 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2089 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2091 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2097 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2099 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2100 int size
, unsigned long count
, int down
,
2101 gva_t address
, int rep
, unsigned port
)
2103 unsigned now
, in_page
;
2107 struct kvm_io_device
*pio_dev
;
2109 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2110 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2111 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2112 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2113 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2114 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2115 vcpu
->arch
.pio
.in
= in
;
2116 vcpu
->arch
.pio
.string
= 1;
2117 vcpu
->arch
.pio
.down
= down
;
2118 vcpu
->arch
.pio
.guest_page_offset
= offset_in_page(address
);
2119 vcpu
->arch
.pio
.rep
= rep
;
2122 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2127 in_page
= PAGE_SIZE
- offset_in_page(address
);
2129 in_page
= offset_in_page(address
) + size
;
2130 now
= min(count
, (unsigned long)in_page
/ size
);
2133 * String I/O straddles page boundary. Pin two guest pages
2134 * so that we satisfy atomicity constraints. Do just one
2135 * transaction to avoid complexity.
2142 * String I/O in reverse. Yuck. Kill the guest, fix later.
2144 pr_unimpl(vcpu
, "guest string pio down\n");
2145 kvm_inject_gp(vcpu
, 0);
2148 vcpu
->run
->io
.count
= now
;
2149 vcpu
->arch
.pio
.cur_count
= now
;
2151 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2152 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2154 for (i
= 0; i
< nr_pages
; ++i
) {
2155 down_read(¤t
->mm
->mmap_sem
);
2156 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
2157 vcpu
->arch
.pio
.guest_pages
[i
] = page
;
2158 up_read(¤t
->mm
->mmap_sem
);
2160 kvm_inject_gp(vcpu
, 0);
2161 free_pio_guest_pages(vcpu
);
2166 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
2167 if (!vcpu
->arch
.pio
.in
) {
2168 /* string PIO write */
2169 ret
= pio_copy_data(vcpu
);
2170 if (ret
>= 0 && pio_dev
) {
2171 pio_string_write(pio_dev
, vcpu
);
2173 if (vcpu
->arch
.pio
.count
== 0)
2177 pr_unimpl(vcpu
, "no string pio read support yet, "
2178 "port %x size %d count %ld\n",
2183 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2185 int kvm_arch_init(void *opaque
)
2188 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2191 printk(KERN_ERR
"kvm: already loaded the other module\n");
2196 if (!ops
->cpu_has_kvm_support()) {
2197 printk(KERN_ERR
"kvm: no hardware support\n");
2201 if (ops
->disabled_by_bios()) {
2202 printk(KERN_ERR
"kvm: disabled by bios\n");
2207 r
= kvm_mmu_module_init();
2211 kvm_init_msr_list();
2214 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2221 void kvm_arch_exit(void)
2224 kvm_mmu_module_exit();
2227 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2229 ++vcpu
->stat
.halt_exits
;
2230 if (irqchip_in_kernel(vcpu
->kvm
)) {
2231 vcpu
->arch
.mp_state
= VCPU_MP_STATE_HALTED
;
2232 kvm_vcpu_block(vcpu
);
2233 if (vcpu
->arch
.mp_state
!= VCPU_MP_STATE_RUNNABLE
)
2237 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2241 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2243 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2245 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2247 kvm_x86_ops
->cache_regs(vcpu
);
2249 nr
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2250 a0
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2251 a1
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2252 a2
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2253 a3
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2255 if (!is_long_mode(vcpu
)) {
2264 case KVM_HC_VAPIC_POLL_IRQ
:
2271 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = ret
;
2272 kvm_x86_ops
->decache_regs(vcpu
);
2275 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2277 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2279 char instruction
[3];
2284 * Blow out the MMU to ensure that no other VCPU has an active mapping
2285 * to ensure that the updated hypercall appears atomically across all
2288 kvm_mmu_zap_all(vcpu
->kvm
);
2290 kvm_x86_ops
->cache_regs(vcpu
);
2291 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2292 if (emulator_write_emulated(vcpu
->arch
.rip
, instruction
, 3, vcpu
)
2293 != X86EMUL_CONTINUE
)
2299 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2301 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2304 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2306 struct descriptor_table dt
= { limit
, base
};
2308 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2311 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2313 struct descriptor_table dt
= { limit
, base
};
2315 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2318 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2319 unsigned long *rflags
)
2322 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2325 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2327 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2330 return vcpu
->arch
.cr0
;
2332 return vcpu
->arch
.cr2
;
2334 return vcpu
->arch
.cr3
;
2336 return vcpu
->arch
.cr4
;
2338 return get_cr8(vcpu
);
2340 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
2345 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2346 unsigned long *rflags
)
2350 set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2351 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2354 vcpu
->arch
.cr2
= val
;
2360 set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2363 set_cr8(vcpu
, val
& 0xfUL
);
2366 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
2370 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2372 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2373 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2375 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2376 /* when no next entry is found, the current entry[i] is reselected */
2377 for (j
= i
+ 1; j
== i
; j
= (j
+ 1) % nent
) {
2378 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2379 if (ej
->function
== e
->function
) {
2380 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2384 return 0; /* silence gcc, even though control never reaches here */
2387 /* find an entry with matching function, matching index (if needed), and that
2388 * should be read next (if it's stateful) */
2389 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2390 u32 function
, u32 index
)
2392 if (e
->function
!= function
)
2394 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2396 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2397 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2402 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2405 u32 function
, index
;
2406 struct kvm_cpuid_entry2
*e
, *best
;
2408 kvm_x86_ops
->cache_regs(vcpu
);
2409 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2410 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2411 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = 0;
2412 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = 0;
2413 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = 0;
2414 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = 0;
2416 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2417 e
= &vcpu
->arch
.cpuid_entries
[i
];
2418 if (is_matching_cpuid_entry(e
, function
, index
)) {
2419 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2420 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2425 * Both basic or both extended?
2427 if (((e
->function
^ function
) & 0x80000000) == 0)
2428 if (!best
|| e
->function
> best
->function
)
2432 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = best
->eax
;
2433 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = best
->ebx
;
2434 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = best
->ecx
;
2435 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = best
->edx
;
2437 kvm_x86_ops
->decache_regs(vcpu
);
2438 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2440 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2443 * Check if userspace requested an interrupt window, and that the
2444 * interrupt window is open.
2446 * No need to exit to userspace if we already have an interrupt queued.
2448 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2449 struct kvm_run
*kvm_run
)
2451 return (!vcpu
->arch
.irq_summary
&&
2452 kvm_run
->request_interrupt_window
&&
2453 vcpu
->arch
.interrupt_window_open
&&
2454 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2457 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2458 struct kvm_run
*kvm_run
)
2460 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2461 kvm_run
->cr8
= get_cr8(vcpu
);
2462 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2463 if (irqchip_in_kernel(vcpu
->kvm
))
2464 kvm_run
->ready_for_interrupt_injection
= 1;
2466 kvm_run
->ready_for_interrupt_injection
=
2467 (vcpu
->arch
.interrupt_window_open
&&
2468 vcpu
->arch
.irq_summary
== 0);
2471 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2473 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2476 if (!apic
|| !apic
->vapic_addr
)
2479 down_read(¤t
->mm
->mmap_sem
);
2480 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2481 vcpu
->arch
.apic
->vapic_page
= page
;
2482 up_read(¤t
->mm
->mmap_sem
);
2485 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2487 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2489 if (!apic
|| !apic
->vapic_addr
)
2492 kvm_release_page_dirty(apic
->vapic_page
);
2493 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2496 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2500 if (unlikely(vcpu
->arch
.mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
)) {
2501 pr_debug("vcpu %d received sipi with vector # %x\n",
2502 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
2503 kvm_lapic_reset(vcpu
);
2504 r
= kvm_x86_ops
->vcpu_reset(vcpu
);
2507 vcpu
->arch
.mp_state
= VCPU_MP_STATE_RUNNABLE
;
2513 if (vcpu
->guest_debug
.enabled
)
2514 kvm_x86_ops
->guest_debug_pre(vcpu
);
2517 r
= kvm_mmu_reload(vcpu
);
2521 if (vcpu
->requests
) {
2522 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2523 __kvm_migrate_apic_timer(vcpu
);
2524 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
2526 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
2532 kvm_inject_pending_timer_irqs(vcpu
);
2536 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2537 kvm_load_guest_fpu(vcpu
);
2539 local_irq_disable();
2541 if (need_resched()) {
2548 if (signal_pending(current
)) {
2552 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2553 ++vcpu
->stat
.signal_exits
;
2557 if (vcpu
->arch
.exception
.pending
)
2558 __queue_exception(vcpu
);
2559 else if (irqchip_in_kernel(vcpu
->kvm
))
2560 kvm_x86_ops
->inject_pending_irq(vcpu
);
2562 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2564 kvm_lapic_sync_to_vapic(vcpu
);
2566 vcpu
->guest_mode
= 1;
2570 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2571 kvm_x86_ops
->tlb_flush(vcpu
);
2573 kvm_x86_ops
->run(vcpu
, kvm_run
);
2575 vcpu
->guest_mode
= 0;
2581 * We must have an instruction between local_irq_enable() and
2582 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2583 * the interrupt shadow. The stat.exits increment will do nicely.
2584 * But we need to prevent reordering, hence this barrier():
2593 * Profile KVM exit RIPs:
2595 if (unlikely(prof_on
== KVM_PROFILING
)) {
2596 kvm_x86_ops
->cache_regs(vcpu
);
2597 profile_hit(KVM_PROFILING
, (void *)vcpu
->arch
.rip
);
2600 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
2601 vcpu
->arch
.exception
.pending
= false;
2603 kvm_lapic_sync_from_vapic(vcpu
);
2605 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2608 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2610 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2611 ++vcpu
->stat
.request_irq_exits
;
2614 if (!need_resched())
2624 post_kvm_run_save(vcpu
, kvm_run
);
2631 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2638 if (unlikely(vcpu
->arch
.mp_state
== VCPU_MP_STATE_UNINITIALIZED
)) {
2639 kvm_vcpu_block(vcpu
);
2644 if (vcpu
->sigset_active
)
2645 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2647 /* re-sync apic's tpr */
2648 if (!irqchip_in_kernel(vcpu
->kvm
))
2649 set_cr8(vcpu
, kvm_run
->cr8
);
2651 if (vcpu
->arch
.pio
.cur_count
) {
2652 r
= complete_pio(vcpu
);
2656 #if CONFIG_HAS_IOMEM
2657 if (vcpu
->mmio_needed
) {
2658 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2659 vcpu
->mmio_read_completed
= 1;
2660 vcpu
->mmio_needed
= 0;
2661 r
= emulate_instruction(vcpu
, kvm_run
,
2662 vcpu
->arch
.mmio_fault_cr2
, 0,
2663 EMULTYPE_NO_DECODE
);
2664 if (r
== EMULATE_DO_MMIO
) {
2666 * Read-modify-write. Back to userspace.
2673 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
2674 kvm_x86_ops
->cache_regs(vcpu
);
2675 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
2676 kvm_x86_ops
->decache_regs(vcpu
);
2679 r
= __vcpu_run(vcpu
, kvm_run
);
2682 if (vcpu
->sigset_active
)
2683 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2689 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2693 kvm_x86_ops
->cache_regs(vcpu
);
2695 regs
->rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2696 regs
->rbx
= vcpu
->arch
.regs
[VCPU_REGS_RBX
];
2697 regs
->rcx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2698 regs
->rdx
= vcpu
->arch
.regs
[VCPU_REGS_RDX
];
2699 regs
->rsi
= vcpu
->arch
.regs
[VCPU_REGS_RSI
];
2700 regs
->rdi
= vcpu
->arch
.regs
[VCPU_REGS_RDI
];
2701 regs
->rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2702 regs
->rbp
= vcpu
->arch
.regs
[VCPU_REGS_RBP
];
2703 #ifdef CONFIG_X86_64
2704 regs
->r8
= vcpu
->arch
.regs
[VCPU_REGS_R8
];
2705 regs
->r9
= vcpu
->arch
.regs
[VCPU_REGS_R9
];
2706 regs
->r10
= vcpu
->arch
.regs
[VCPU_REGS_R10
];
2707 regs
->r11
= vcpu
->arch
.regs
[VCPU_REGS_R11
];
2708 regs
->r12
= vcpu
->arch
.regs
[VCPU_REGS_R12
];
2709 regs
->r13
= vcpu
->arch
.regs
[VCPU_REGS_R13
];
2710 regs
->r14
= vcpu
->arch
.regs
[VCPU_REGS_R14
];
2711 regs
->r15
= vcpu
->arch
.regs
[VCPU_REGS_R15
];
2714 regs
->rip
= vcpu
->arch
.rip
;
2715 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2718 * Don't leak debug flags in case they were set for guest debugging
2720 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
2721 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2728 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
2732 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = regs
->rax
;
2733 vcpu
->arch
.regs
[VCPU_REGS_RBX
] = regs
->rbx
;
2734 vcpu
->arch
.regs
[VCPU_REGS_RCX
] = regs
->rcx
;
2735 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = regs
->rdx
;
2736 vcpu
->arch
.regs
[VCPU_REGS_RSI
] = regs
->rsi
;
2737 vcpu
->arch
.regs
[VCPU_REGS_RDI
] = regs
->rdi
;
2738 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = regs
->rsp
;
2739 vcpu
->arch
.regs
[VCPU_REGS_RBP
] = regs
->rbp
;
2740 #ifdef CONFIG_X86_64
2741 vcpu
->arch
.regs
[VCPU_REGS_R8
] = regs
->r8
;
2742 vcpu
->arch
.regs
[VCPU_REGS_R9
] = regs
->r9
;
2743 vcpu
->arch
.regs
[VCPU_REGS_R10
] = regs
->r10
;
2744 vcpu
->arch
.regs
[VCPU_REGS_R11
] = regs
->r11
;
2745 vcpu
->arch
.regs
[VCPU_REGS_R12
] = regs
->r12
;
2746 vcpu
->arch
.regs
[VCPU_REGS_R13
] = regs
->r13
;
2747 vcpu
->arch
.regs
[VCPU_REGS_R14
] = regs
->r14
;
2748 vcpu
->arch
.regs
[VCPU_REGS_R15
] = regs
->r15
;
2751 vcpu
->arch
.rip
= regs
->rip
;
2752 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
2754 kvm_x86_ops
->decache_regs(vcpu
);
2761 static void get_segment(struct kvm_vcpu
*vcpu
,
2762 struct kvm_segment
*var
, int seg
)
2764 return kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
2767 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2769 struct kvm_segment cs
;
2771 get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2775 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
2777 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
2778 struct kvm_sregs
*sregs
)
2780 struct descriptor_table dt
;
2785 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2786 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2787 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2788 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2789 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2790 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2792 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2793 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2795 kvm_x86_ops
->get_idt(vcpu
, &dt
);
2796 sregs
->idt
.limit
= dt
.limit
;
2797 sregs
->idt
.base
= dt
.base
;
2798 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
2799 sregs
->gdt
.limit
= dt
.limit
;
2800 sregs
->gdt
.base
= dt
.base
;
2802 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2803 sregs
->cr0
= vcpu
->arch
.cr0
;
2804 sregs
->cr2
= vcpu
->arch
.cr2
;
2805 sregs
->cr3
= vcpu
->arch
.cr3
;
2806 sregs
->cr4
= vcpu
->arch
.cr4
;
2807 sregs
->cr8
= get_cr8(vcpu
);
2808 sregs
->efer
= vcpu
->arch
.shadow_efer
;
2809 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
2811 if (irqchip_in_kernel(vcpu
->kvm
)) {
2812 memset(sregs
->interrupt_bitmap
, 0,
2813 sizeof sregs
->interrupt_bitmap
);
2814 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
2815 if (pending_vec
>= 0)
2816 set_bit(pending_vec
,
2817 (unsigned long *)sregs
->interrupt_bitmap
);
2819 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
2820 sizeof sregs
->interrupt_bitmap
);
2827 static void set_segment(struct kvm_vcpu
*vcpu
,
2828 struct kvm_segment
*var
, int seg
)
2830 return kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
2833 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
2834 struct kvm_sregs
*sregs
)
2836 int mmu_reset_needed
= 0;
2837 int i
, pending_vec
, max_bits
;
2838 struct descriptor_table dt
;
2842 dt
.limit
= sregs
->idt
.limit
;
2843 dt
.base
= sregs
->idt
.base
;
2844 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2845 dt
.limit
= sregs
->gdt
.limit
;
2846 dt
.base
= sregs
->gdt
.base
;
2847 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2849 vcpu
->arch
.cr2
= sregs
->cr2
;
2850 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
2851 vcpu
->arch
.cr3
= sregs
->cr3
;
2853 set_cr8(vcpu
, sregs
->cr8
);
2855 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
2856 #ifdef CONFIG_X86_64
2857 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
2859 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
2861 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2863 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
2864 vcpu
->arch
.cr0
= sregs
->cr0
;
2865 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
2867 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
2868 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
2869 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2870 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
2872 if (mmu_reset_needed
)
2873 kvm_mmu_reset_context(vcpu
);
2875 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2876 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
2877 sizeof vcpu
->arch
.irq_pending
);
2878 vcpu
->arch
.irq_summary
= 0;
2879 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
2880 if (vcpu
->arch
.irq_pending
[i
])
2881 __set_bit(i
, &vcpu
->arch
.irq_summary
);
2883 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
2884 pending_vec
= find_first_bit(
2885 (const unsigned long *)sregs
->interrupt_bitmap
,
2887 /* Only pending external irq is handled here */
2888 if (pending_vec
< max_bits
) {
2889 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
2890 pr_debug("Set back pending irq %d\n",
2895 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2896 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2897 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2898 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2899 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2900 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2902 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2903 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2910 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2911 struct kvm_debug_guest
*dbg
)
2917 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
2925 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2926 * we have asm/x86/processor.h
2937 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2938 #ifdef CONFIG_X86_64
2939 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2941 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2946 * Translate a guest virtual address to a guest physical address.
2948 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2949 struct kvm_translation
*tr
)
2951 unsigned long vaddr
= tr
->linear_address
;
2955 down_read(¤t
->mm
->mmap_sem
);
2956 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
2957 up_read(¤t
->mm
->mmap_sem
);
2958 tr
->physical_address
= gpa
;
2959 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2967 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2969 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
2973 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2974 fpu
->fcw
= fxsave
->cwd
;
2975 fpu
->fsw
= fxsave
->swd
;
2976 fpu
->ftwx
= fxsave
->twd
;
2977 fpu
->last_opcode
= fxsave
->fop
;
2978 fpu
->last_ip
= fxsave
->rip
;
2979 fpu
->last_dp
= fxsave
->rdp
;
2980 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2987 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2989 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
2993 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
2994 fxsave
->cwd
= fpu
->fcw
;
2995 fxsave
->swd
= fpu
->fsw
;
2996 fxsave
->twd
= fpu
->ftwx
;
2997 fxsave
->fop
= fpu
->last_opcode
;
2998 fxsave
->rip
= fpu
->last_ip
;
2999 fxsave
->rdp
= fpu
->last_dp
;
3000 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3007 void fx_init(struct kvm_vcpu
*vcpu
)
3009 unsigned after_mxcsr_mask
;
3011 /* Initialize guest FPU by resetting ours and saving into guest's */
3013 fx_save(&vcpu
->arch
.host_fx_image
);
3015 fx_save(&vcpu
->arch
.guest_fx_image
);
3016 fx_restore(&vcpu
->arch
.host_fx_image
);
3019 vcpu
->arch
.cr0
|= X86_CR0_ET
;
3020 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
3021 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
3022 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
3023 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
3025 EXPORT_SYMBOL_GPL(fx_init
);
3027 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
3029 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
3032 vcpu
->guest_fpu_loaded
= 1;
3033 fx_save(&vcpu
->arch
.host_fx_image
);
3034 fx_restore(&vcpu
->arch
.guest_fx_image
);
3036 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
3038 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
3040 if (!vcpu
->guest_fpu_loaded
)
3043 vcpu
->guest_fpu_loaded
= 0;
3044 fx_save(&vcpu
->arch
.guest_fx_image
);
3045 fx_restore(&vcpu
->arch
.host_fx_image
);
3046 ++vcpu
->stat
.fpu_reload
;
3048 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
3050 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
3052 kvm_x86_ops
->vcpu_free(vcpu
);
3055 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
3058 return kvm_x86_ops
->vcpu_create(kvm
, id
);
3061 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
3065 /* We do fxsave: this must be aligned. */
3066 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
3069 r
= kvm_arch_vcpu_reset(vcpu
);
3071 r
= kvm_mmu_setup(vcpu
);
3078 kvm_x86_ops
->vcpu_free(vcpu
);
3082 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
3085 kvm_mmu_unload(vcpu
);
3088 kvm_x86_ops
->vcpu_free(vcpu
);
3091 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
3093 return kvm_x86_ops
->vcpu_reset(vcpu
);
3096 void kvm_arch_hardware_enable(void *garbage
)
3098 kvm_x86_ops
->hardware_enable(garbage
);
3101 void kvm_arch_hardware_disable(void *garbage
)
3103 kvm_x86_ops
->hardware_disable(garbage
);
3106 int kvm_arch_hardware_setup(void)
3108 return kvm_x86_ops
->hardware_setup();
3111 void kvm_arch_hardware_unsetup(void)
3113 kvm_x86_ops
->hardware_unsetup();
3116 void kvm_arch_check_processor_compat(void *rtn
)
3118 kvm_x86_ops
->check_processor_compatibility(rtn
);
3121 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
3127 BUG_ON(vcpu
->kvm
== NULL
);
3130 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3131 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
3132 vcpu
->arch
.mp_state
= VCPU_MP_STATE_RUNNABLE
;
3134 vcpu
->arch
.mp_state
= VCPU_MP_STATE_UNINITIALIZED
;
3136 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3141 vcpu
->arch
.pio_data
= page_address(page
);
3143 r
= kvm_mmu_create(vcpu
);
3145 goto fail_free_pio_data
;
3147 if (irqchip_in_kernel(kvm
)) {
3148 r
= kvm_create_lapic(vcpu
);
3150 goto fail_mmu_destroy
;
3156 kvm_mmu_destroy(vcpu
);
3158 free_page((unsigned long)vcpu
->arch
.pio_data
);
3163 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
3165 kvm_free_lapic(vcpu
);
3166 kvm_mmu_destroy(vcpu
);
3167 free_page((unsigned long)vcpu
->arch
.pio_data
);
3170 struct kvm
*kvm_arch_create_vm(void)
3172 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
3175 return ERR_PTR(-ENOMEM
);
3177 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
3182 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
3185 kvm_mmu_unload(vcpu
);
3189 static void kvm_free_vcpus(struct kvm
*kvm
)
3194 * Unpin any mmu pages first.
3196 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
3198 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
3199 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3200 if (kvm
->vcpus
[i
]) {
3201 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
3202 kvm
->vcpus
[i
] = NULL
;
3208 void kvm_arch_destroy_vm(struct kvm
*kvm
)
3210 kfree(kvm
->arch
.vpic
);
3211 kfree(kvm
->arch
.vioapic
);
3212 kvm_free_vcpus(kvm
);
3213 kvm_free_physmem(kvm
);
3217 int kvm_arch_set_memory_region(struct kvm
*kvm
,
3218 struct kvm_userspace_memory_region
*mem
,
3219 struct kvm_memory_slot old
,
3222 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
3223 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
3225 /*To keep backward compatibility with older userspace,
3226 *x86 needs to hanlde !user_alloc case.
3229 if (npages
&& !old
.rmap
) {
3230 memslot
->userspace_addr
= do_mmap(NULL
, 0,
3232 PROT_READ
| PROT_WRITE
,
3233 MAP_SHARED
| MAP_ANONYMOUS
,
3236 if (IS_ERR((void *)memslot
->userspace_addr
))
3237 return PTR_ERR((void *)memslot
->userspace_addr
);
3239 if (!old
.user_alloc
&& old
.rmap
) {
3242 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
3243 old
.npages
* PAGE_SIZE
);
3246 "kvm_vm_ioctl_set_memory_region: "
3247 "failed to munmap memory\n");
3252 if (!kvm
->arch
.n_requested_mmu_pages
) {
3253 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
3254 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
3257 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
3258 kvm_flush_remote_tlbs(kvm
);
3263 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
3265 return vcpu
->arch
.mp_state
== VCPU_MP_STATE_RUNNABLE
3266 || vcpu
->arch
.mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
;
3269 static void vcpu_kick_intr(void *info
)
3272 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
3273 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
3277 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
3279 int ipi_pcpu
= vcpu
->cpu
;
3281 if (waitqueue_active(&vcpu
->wq
)) {
3282 wake_up_interruptible(&vcpu
->wq
);
3283 ++vcpu
->stat
.halt_wakeup
;
3285 if (vcpu
->guest_mode
)
3286 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0, 0);