1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
6 /// \brief LZ in window
8 // Authors: Igor Pavlov
11 ///////////////////////////////////////////////////////////////////////////////
13 #include "lz_encoder.h"
14 #include "lz_encoder_hash.h"
16 // See lz_encoder_hash.h. This is a bit hackish but avoids making
17 // endianness a conditional in makefiles.
18 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
19 # include "lz_encoder_hash_table.h"
22 #include "memcmplen.h"
26 /// LZ-based encoder e.g. LZMA
29 /// History buffer and match finder
32 /// Next coder in the chain
37 /// \brief Moves the data in the input window to free space for new data
39 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
40 /// bytes of input history available all the time. Now and then we need to
41 /// "slide" the buffer to make space for the new data to the end of the
42 /// buffer. At the same time, data older than keep_size_before is dropped.
45 move_window(lzma_mf
*mf
)
47 // Align the move to a multiple of 16 bytes. Some LZ-based encoders
48 // like LZMA use the lowest bits of mf->read_pos to know the
49 // alignment of the uncompressed data. We also get better speed
50 // for memmove() with aligned buffers.
51 assert(mf
->read_pos
> mf
->keep_size_before
);
52 const uint32_t move_offset
53 = (mf
->read_pos
- mf
->keep_size_before
) & ~UINT32_C(15);
55 assert(mf
->write_pos
> move_offset
);
56 const size_t move_size
= mf
->write_pos
- move_offset
;
58 assert(move_offset
+ move_size
<= mf
->size
);
60 memmove(mf
->buffer
, mf
->buffer
+ move_offset
, move_size
);
62 mf
->offset
+= move_offset
;
63 mf
->read_pos
-= move_offset
;
64 mf
->read_limit
-= move_offset
;
65 mf
->write_pos
-= move_offset
;
71 /// \brief Tries to fill the input window (mf->buffer)
73 /// If we are the last encoder in the chain, our input data is in in[].
74 /// Otherwise we call the next filter in the chain to process in[] and
75 /// write its output to mf->buffer.
77 /// This function must not be called once it has returned LZMA_STREAM_END.
80 fill_window(lzma_coder
*coder
, const lzma_allocator
*allocator
,
81 const uint8_t *in
, size_t *in_pos
, size_t in_size
,
84 assert(coder
->mf
.read_pos
<= coder
->mf
.write_pos
);
86 // Move the sliding window if needed.
87 if (coder
->mf
.read_pos
>= coder
->mf
.size
- coder
->mf
.keep_size_after
)
88 move_window(&coder
->mf
);
90 // Maybe this is ugly, but lzma_mf uses uint32_t for most things
91 // (which I find cleanest), but we need size_t here when filling
92 // the history window.
93 size_t write_pos
= coder
->mf
.write_pos
;
95 if (coder
->next
.code
== NULL
) {
96 // Not using a filter, simply memcpy() as much as possible.
97 lzma_bufcpy(in
, in_pos
, in_size
, coder
->mf
.buffer
,
98 &write_pos
, coder
->mf
.size
);
100 ret
= action
!= LZMA_RUN
&& *in_pos
== in_size
101 ? LZMA_STREAM_END
: LZMA_OK
;
104 ret
= coder
->next
.code(coder
->next
.coder
, allocator
,
106 coder
->mf
.buffer
, &write_pos
,
107 coder
->mf
.size
, action
);
110 coder
->mf
.write_pos
= write_pos
;
112 // Silence Valgrind. lzma_memcmplen() can read extra bytes
113 // and Valgrind will give warnings if those bytes are uninitialized
114 // because Valgrind cannot see that the values of the uninitialized
115 // bytes are eventually ignored.
116 memzero(coder
->mf
.buffer
+ write_pos
, LZMA_MEMCMPLEN_EXTRA
);
118 // If end of stream has been reached or flushing completed, we allow
119 // the encoder to process all the input (that is, read_pos is allowed
120 // to reach write_pos). Otherwise we keep keep_size_after bytes
121 // available as prebuffer.
122 if (ret
== LZMA_STREAM_END
) {
123 assert(*in_pos
== in_size
);
125 coder
->mf
.action
= action
;
126 coder
->mf
.read_limit
= coder
->mf
.write_pos
;
128 } else if (coder
->mf
.write_pos
> coder
->mf
.keep_size_after
) {
129 // This needs to be done conditionally, because if we got
130 // only little new input, there may be too little input
131 // to do any encoding yet.
132 coder
->mf
.read_limit
= coder
->mf
.write_pos
133 - coder
->mf
.keep_size_after
;
136 // Restart the match finder after finished LZMA_SYNC_FLUSH.
137 if (coder
->mf
.pending
> 0
138 && coder
->mf
.read_pos
< coder
->mf
.read_limit
) {
139 // Match finder may update coder->pending and expects it to
140 // start from zero, so use a temporary variable.
141 const uint32_t pending
= coder
->mf
.pending
;
142 coder
->mf
.pending
= 0;
144 // Rewind read_pos so that the match finder can hash
145 // the pending bytes.
146 assert(coder
->mf
.read_pos
>= pending
);
147 coder
->mf
.read_pos
-= pending
;
149 // Call the skip function directly instead of using
150 // mf_skip(), since we don't want to touch mf->read_ahead.
151 coder
->mf
.skip(&coder
->mf
, pending
);
159 lz_encode(void *coder_ptr
, const lzma_allocator
*allocator
,
160 const uint8_t *restrict in
, size_t *restrict in_pos
,
162 uint8_t *restrict out
, size_t *restrict out_pos
,
163 size_t out_size
, lzma_action action
)
165 lzma_coder
*coder
= coder_ptr
;
167 while (*out_pos
< out_size
168 && (*in_pos
< in_size
|| action
!= LZMA_RUN
)) {
169 // Read more data to coder->mf.buffer if needed.
170 if (coder
->mf
.action
== LZMA_RUN
&& coder
->mf
.read_pos
171 >= coder
->mf
.read_limit
)
172 return_if_error(fill_window(coder
, allocator
,
173 in
, in_pos
, in_size
, action
));
176 const lzma_ret ret
= coder
->lz
.code(coder
->lz
.coder
,
177 &coder
->mf
, out
, out_pos
, out_size
);
178 if (ret
!= LZMA_OK
) {
179 // Setting this to LZMA_RUN for cases when we are
180 // flushing. It doesn't matter when finishing or if
181 // an error occurred.
182 coder
->mf
.action
= LZMA_RUN
;
192 lz_encoder_prepare(lzma_mf
*mf
, const lzma_allocator
*allocator
,
193 const lzma_lz_options
*lz_options
)
195 // For now, the dictionary size is limited to 1.5 GiB. This may grow
196 // in the future if needed, but it needs a little more work than just
197 // changing this check.
198 if (!IS_ENC_DICT_SIZE_VALID(lz_options
->dict_size
)
199 || lz_options
->nice_len
> lz_options
->match_len_max
)
202 mf
->keep_size_before
= lz_options
->before_size
+ lz_options
->dict_size
;
204 mf
->keep_size_after
= lz_options
->after_size
205 + lz_options
->match_len_max
;
207 // To avoid constant memmove()s, allocate some extra space. Since
208 // memmove()s become more expensive when the size of the buffer
209 // increases, we reserve more space when a large dictionary is
210 // used to make the memmove() calls rarer.
212 // This works with dictionaries up to about 3 GiB. If bigger
213 // dictionary is wanted, some extra work is needed:
214 // - Several variables in lzma_mf have to be changed from uint32_t
216 // - Memory usage calculation needs something too, e.g. use uint64_t
218 uint32_t reserve
= lz_options
->dict_size
/ 2;
219 if (reserve
> (UINT32_C(1) << 30))
222 reserve
+= (lz_options
->before_size
+ lz_options
->match_len_max
223 + lz_options
->after_size
) / 2 + (UINT32_C(1) << 19);
225 const uint32_t old_size
= mf
->size
;
226 mf
->size
= mf
->keep_size_before
+ reserve
+ mf
->keep_size_after
;
228 // Deallocate the old history buffer if it exists but has different
229 // size than what is needed now.
230 if (mf
->buffer
!= NULL
&& old_size
!= mf
->size
) {
231 lzma_free(mf
->buffer
, allocator
);
235 // Match finder options
236 mf
->match_len_max
= lz_options
->match_len_max
;
237 mf
->nice_len
= lz_options
->nice_len
;
239 // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
240 // mean limiting dictionary size to less than 2 GiB. With a match
241 // finder that uses multibyte resolution (hashes start at e.g. every
242 // fourth byte), cyclic_size would stay below 2 Gi even when
243 // dictionary size is greater than 2 GiB.
245 // It would be possible to allow cyclic_size >= 2 Gi, but then we
246 // would need to be careful to use 64-bit types in various places
247 // (size_t could do since we would need bigger than 32-bit address
248 // space anyway). It would also require either zeroing a multigigabyte
249 // buffer at initialization (waste of time and RAM) or allow
250 // normalization in lz_encoder_mf.c to access uninitialized
251 // memory to keep the code simpler. The current way is simple and
252 // still allows pretty big dictionaries, so I don't expect these
254 mf
->cyclic_size
= lz_options
->dict_size
+ 1;
256 // Validate the match finder ID and setup the function pointers.
257 switch (lz_options
->match_finder
) {
260 mf
->find
= &lzma_mf_hc3_find
;
261 mf
->skip
= &lzma_mf_hc3_skip
;
266 mf
->find
= &lzma_mf_hc4_find
;
267 mf
->skip
= &lzma_mf_hc4_skip
;
272 mf
->find
= &lzma_mf_bt2_find
;
273 mf
->skip
= &lzma_mf_bt2_skip
;
278 mf
->find
= &lzma_mf_bt3_find
;
279 mf
->skip
= &lzma_mf_bt3_skip
;
284 mf
->find
= &lzma_mf_bt4_find
;
285 mf
->skip
= &lzma_mf_bt4_skip
;
293 // Calculate the sizes of mf->hash and mf->son.
295 // NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
296 // is big enough for the selected match finder. This makes it
297 // easier for applications as nice_len = 2 will always be accepted
298 // even though the effective value can be slightly bigger.
299 const uint32_t hash_bytes
300 = mf_get_hash_bytes(lz_options
->match_finder
);
301 assert(hash_bytes
<= mf
->nice_len
);
303 const bool is_bt
= (lz_options
->match_finder
& 0x10) != 0;
306 if (hash_bytes
== 2) {
309 // Round dictionary size up to the next 2^n - 1 so it can
310 // be used as a hash mask.
311 hs
= lz_options
->dict_size
- 1;
319 if (hs
> (UINT32_C(1) << 24)) {
321 hs
= (UINT32_C(1) << 24) - 1;
335 No match finder uses this at the moment.
336 if (mf->hash_bytes > 4)
340 const uint32_t old_hash_count
= mf
->hash_count
;
341 const uint32_t old_sons_count
= mf
->sons_count
;
343 mf
->sons_count
= mf
->cyclic_size
;
347 // Deallocate the old hash array if it exists and has different size
348 // than what is needed now.
349 if (old_hash_count
!= mf
->hash_count
350 || old_sons_count
!= mf
->sons_count
) {
351 lzma_free(mf
->hash
, allocator
);
354 lzma_free(mf
->son
, allocator
);
358 // Maximum number of match finder cycles
359 mf
->depth
= lz_options
->depth
;
360 if (mf
->depth
== 0) {
362 mf
->depth
= 16 + mf
->nice_len
/ 2;
364 mf
->depth
= 4 + mf
->nice_len
/ 4;
372 lz_encoder_init(lzma_mf
*mf
, const lzma_allocator
*allocator
,
373 const lzma_lz_options
*lz_options
)
375 // Allocate the history buffer.
376 if (mf
->buffer
== NULL
) {
377 // lzma_memcmplen() is used for the dictionary buffer
378 // so we need to allocate a few extra bytes to prevent
379 // it from reading past the end of the buffer.
380 mf
->buffer
= lzma_alloc(mf
->size
+ LZMA_MEMCMPLEN_EXTRA
,
382 if (mf
->buffer
== NULL
)
385 // Keep Valgrind happy with lzma_memcmplen() and initialize
386 // the extra bytes whose value may get read but which will
387 // effectively get ignored.
388 memzero(mf
->buffer
+ mf
->size
, LZMA_MEMCMPLEN_EXTRA
);
391 // Use cyclic_size as initial mf->offset. This allows
392 // avoiding a few branches in the match finders. The downside is
393 // that match finder needs to be normalized more often, which may
394 // hurt performance with huge dictionaries.
395 mf
->offset
= mf
->cyclic_size
;
402 #if UINT32_MAX >= SIZE_MAX / 4
403 // Check for integer overflow. (Huge dictionaries are not
404 // possible on 32-bit CPU.)
405 if (mf
->hash_count
> SIZE_MAX
/ sizeof(uint32_t)
406 || mf
->sons_count
> SIZE_MAX
/ sizeof(uint32_t))
410 // Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
411 // is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
413 // We don't need to initialize mf->son, but not doing that may
414 // make Valgrind complain in normalization (see normalize() in
415 // lz_encoder_mf.c). Skipping the initialization is *very* good
416 // when big dictionary is used but only small amount of data gets
417 // actually compressed: most of the mf->son won't get actually
418 // allocated by the kernel, so we avoid wasting RAM and improve
419 // initialization speed a lot.
420 if (mf
->hash
== NULL
) {
421 mf
->hash
= lzma_alloc_zero(mf
->hash_count
* sizeof(uint32_t),
423 mf
->son
= lzma_alloc(mf
->sons_count
* sizeof(uint32_t),
426 if (mf
->hash
== NULL
|| mf
->son
== NULL
) {
427 lzma_free(mf
->hash
, allocator
);
430 lzma_free(mf
->son
, allocator
);
437 for (uint32_t i = 0; i < mf->hash_count; ++i)
438 mf->hash[i] = EMPTY_HASH_VALUE;
440 memzero(mf
->hash
, mf
->hash_count
* sizeof(uint32_t));
445 // Handle preset dictionary.
446 if (lz_options
->preset_dict
!= NULL
447 && lz_options
->preset_dict_size
> 0) {
448 // If the preset dictionary is bigger than the actual
449 // dictionary, use only the tail.
450 mf
->write_pos
= my_min(lz_options
->preset_dict_size
, mf
->size
);
451 memcpy(mf
->buffer
, lz_options
->preset_dict
452 + lz_options
->preset_dict_size
- mf
->write_pos
,
454 mf
->action
= LZMA_SYNC_FLUSH
;
455 mf
->skip(mf
, mf
->write_pos
);
458 mf
->action
= LZMA_RUN
;
465 lzma_lz_encoder_memusage(const lzma_lz_options
*lz_options
)
467 // Old buffers must not exist when calling lz_encoder_prepare().
476 // Setup the size information into mf.
477 if (lz_encoder_prepare(&mf
, NULL
, lz_options
))
480 // Calculate the memory usage.
481 return ((uint64_t)(mf
.hash_count
) + mf
.sons_count
) * sizeof(uint32_t)
482 + mf
.size
+ sizeof(lzma_coder
);
487 lz_encoder_end(void *coder_ptr
, const lzma_allocator
*allocator
)
489 lzma_coder
*coder
= coder_ptr
;
491 lzma_next_end(&coder
->next
, allocator
);
493 lzma_free(coder
->mf
.son
, allocator
);
494 lzma_free(coder
->mf
.hash
, allocator
);
495 lzma_free(coder
->mf
.buffer
, allocator
);
497 if (coder
->lz
.end
!= NULL
)
498 coder
->lz
.end(coder
->lz
.coder
, allocator
);
500 lzma_free(coder
->lz
.coder
, allocator
);
502 lzma_free(coder
, allocator
);
508 lz_encoder_update(void *coder_ptr
, const lzma_allocator
*allocator
,
509 const lzma_filter
*filters_null
lzma_attribute((__unused__
)),
510 const lzma_filter
*reversed_filters
)
512 lzma_coder
*coder
= coder_ptr
;
514 if (coder
->lz
.options_update
== NULL
)
515 return LZMA_PROG_ERROR
;
517 return_if_error(coder
->lz
.options_update(
518 coder
->lz
.coder
, reversed_filters
));
520 return lzma_next_filter_update(
521 &coder
->next
, allocator
, reversed_filters
+ 1);
526 lz_encoder_set_out_limit(void *coder_ptr
, uint64_t *uncomp_size
,
529 lzma_coder
*coder
= coder_ptr
;
531 // This is supported only if there are no other filters chained.
532 if (coder
->next
.code
== NULL
&& coder
->lz
.set_out_limit
!= NULL
)
533 return coder
->lz
.set_out_limit(
534 coder
->lz
.coder
, uncomp_size
, out_limit
);
536 return LZMA_OPTIONS_ERROR
;
541 lzma_lz_encoder_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
542 const lzma_filter_info
*filters
,
543 lzma_ret (*lz_init
)(lzma_lz_encoder
*lz
,
544 const lzma_allocator
*allocator
,
545 lzma_vli id
, const void *options
,
546 lzma_lz_options
*lz_options
))
548 #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
549 // The CRC32 table must be initialized.
553 // Allocate and initialize the base data structure.
554 lzma_coder
*coder
= next
->coder
;
556 coder
= lzma_alloc(sizeof(lzma_coder
), allocator
);
558 return LZMA_MEM_ERROR
;
561 next
->code
= &lz_encode
;
562 next
->end
= &lz_encoder_end
;
563 next
->update
= &lz_encoder_update
;
564 next
->set_out_limit
= &lz_encoder_set_out_limit
;
566 coder
->lz
.coder
= NULL
;
567 coder
->lz
.code
= NULL
;
568 coder
->lz
.end
= NULL
;
569 coder
->lz
.options_update
= NULL
;
570 coder
->lz
.set_out_limit
= NULL
;
572 // mf.size is initialized to silence Valgrind
573 // when used on optimized binaries (GCC may reorder
574 // code in a way that Valgrind gets unhappy).
575 coder
->mf
.buffer
= NULL
;
577 coder
->mf
.hash
= NULL
;
578 coder
->mf
.son
= NULL
;
579 coder
->mf
.hash_count
= 0;
580 coder
->mf
.sons_count
= 0;
582 coder
->next
= LZMA_NEXT_CODER_INIT
;
585 // Initialize the LZ-based encoder.
586 lzma_lz_options lz_options
;
587 return_if_error(lz_init(&coder
->lz
, allocator
,
588 filters
[0].id
, filters
[0].options
, &lz_options
));
590 // Setup the size information into coder->mf and deallocate
591 // old buffers if they have wrong size.
592 if (lz_encoder_prepare(&coder
->mf
, allocator
, &lz_options
))
593 return LZMA_OPTIONS_ERROR
;
595 // Allocate new buffers if needed, and do the rest of
596 // the initialization.
597 if (lz_encoder_init(&coder
->mf
, allocator
, &lz_options
))
598 return LZMA_MEM_ERROR
;
600 // Initialize the next filter in the chain, if any.
601 return lzma_next_filter_init(&coder
->next
, allocator
, filters
+ 1);
605 extern LZMA_API(lzma_bool
)
606 lzma_mf_is_supported(lzma_match_finder mf
)