Fix version.sh compatiblity with Solaris
[xz/debian.git] / src / liblzma / lz / lz_encoder.c
blob4af23e14c423ce60391468c7d5eecf84912449ae
1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file lz_encoder.c
6 /// \brief LZ in window
7 ///
8 // Authors: Igor Pavlov
9 // Lasse Collin
11 ///////////////////////////////////////////////////////////////////////////////
13 #include "lz_encoder.h"
14 #include "lz_encoder_hash.h"
16 // See lz_encoder_hash.h. This is a bit hackish but avoids making
17 // endianness a conditional in makefiles.
18 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
19 # include "lz_encoder_hash_table.h"
20 #endif
22 #include "memcmplen.h"
25 typedef struct {
26 /// LZ-based encoder e.g. LZMA
27 lzma_lz_encoder lz;
29 /// History buffer and match finder
30 lzma_mf mf;
32 /// Next coder in the chain
33 lzma_next_coder next;
34 } lzma_coder;
37 /// \brief Moves the data in the input window to free space for new data
38 ///
39 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
40 /// bytes of input history available all the time. Now and then we need to
41 /// "slide" the buffer to make space for the new data to the end of the
42 /// buffer. At the same time, data older than keep_size_before is dropped.
43 ///
44 static void
45 move_window(lzma_mf *mf)
47 // Align the move to a multiple of 16 bytes. Some LZ-based encoders
48 // like LZMA use the lowest bits of mf->read_pos to know the
49 // alignment of the uncompressed data. We also get better speed
50 // for memmove() with aligned buffers.
51 assert(mf->read_pos > mf->keep_size_before);
52 const uint32_t move_offset
53 = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
55 assert(mf->write_pos > move_offset);
56 const size_t move_size = mf->write_pos - move_offset;
58 assert(move_offset + move_size <= mf->size);
60 memmove(mf->buffer, mf->buffer + move_offset, move_size);
62 mf->offset += move_offset;
63 mf->read_pos -= move_offset;
64 mf->read_limit -= move_offset;
65 mf->write_pos -= move_offset;
67 return;
71 /// \brief Tries to fill the input window (mf->buffer)
72 ///
73 /// If we are the last encoder in the chain, our input data is in in[].
74 /// Otherwise we call the next filter in the chain to process in[] and
75 /// write its output to mf->buffer.
76 ///
77 /// This function must not be called once it has returned LZMA_STREAM_END.
78 ///
79 static lzma_ret
80 fill_window(lzma_coder *coder, const lzma_allocator *allocator,
81 const uint8_t *in, size_t *in_pos, size_t in_size,
82 lzma_action action)
84 assert(coder->mf.read_pos <= coder->mf.write_pos);
86 // Move the sliding window if needed.
87 if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
88 move_window(&coder->mf);
90 // Maybe this is ugly, but lzma_mf uses uint32_t for most things
91 // (which I find cleanest), but we need size_t here when filling
92 // the history window.
93 size_t write_pos = coder->mf.write_pos;
94 lzma_ret ret;
95 if (coder->next.code == NULL) {
96 // Not using a filter, simply memcpy() as much as possible.
97 lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
98 &write_pos, coder->mf.size);
100 ret = action != LZMA_RUN && *in_pos == in_size
101 ? LZMA_STREAM_END : LZMA_OK;
103 } else {
104 ret = coder->next.code(coder->next.coder, allocator,
105 in, in_pos, in_size,
106 coder->mf.buffer, &write_pos,
107 coder->mf.size, action);
110 coder->mf.write_pos = write_pos;
112 // Silence Valgrind. lzma_memcmplen() can read extra bytes
113 // and Valgrind will give warnings if those bytes are uninitialized
114 // because Valgrind cannot see that the values of the uninitialized
115 // bytes are eventually ignored.
116 memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
118 // If end of stream has been reached or flushing completed, we allow
119 // the encoder to process all the input (that is, read_pos is allowed
120 // to reach write_pos). Otherwise we keep keep_size_after bytes
121 // available as prebuffer.
122 if (ret == LZMA_STREAM_END) {
123 assert(*in_pos == in_size);
124 ret = LZMA_OK;
125 coder->mf.action = action;
126 coder->mf.read_limit = coder->mf.write_pos;
128 } else if (coder->mf.write_pos > coder->mf.keep_size_after) {
129 // This needs to be done conditionally, because if we got
130 // only little new input, there may be too little input
131 // to do any encoding yet.
132 coder->mf.read_limit = coder->mf.write_pos
133 - coder->mf.keep_size_after;
136 // Restart the match finder after finished LZMA_SYNC_FLUSH.
137 if (coder->mf.pending > 0
138 && coder->mf.read_pos < coder->mf.read_limit) {
139 // Match finder may update coder->pending and expects it to
140 // start from zero, so use a temporary variable.
141 const uint32_t pending = coder->mf.pending;
142 coder->mf.pending = 0;
144 // Rewind read_pos so that the match finder can hash
145 // the pending bytes.
146 assert(coder->mf.read_pos >= pending);
147 coder->mf.read_pos -= pending;
149 // Call the skip function directly instead of using
150 // mf_skip(), since we don't want to touch mf->read_ahead.
151 coder->mf.skip(&coder->mf, pending);
154 return ret;
158 static lzma_ret
159 lz_encode(void *coder_ptr, const lzma_allocator *allocator,
160 const uint8_t *restrict in, size_t *restrict in_pos,
161 size_t in_size,
162 uint8_t *restrict out, size_t *restrict out_pos,
163 size_t out_size, lzma_action action)
165 lzma_coder *coder = coder_ptr;
167 while (*out_pos < out_size
168 && (*in_pos < in_size || action != LZMA_RUN)) {
169 // Read more data to coder->mf.buffer if needed.
170 if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
171 >= coder->mf.read_limit)
172 return_if_error(fill_window(coder, allocator,
173 in, in_pos, in_size, action));
175 // Encode
176 const lzma_ret ret = coder->lz.code(coder->lz.coder,
177 &coder->mf, out, out_pos, out_size);
178 if (ret != LZMA_OK) {
179 // Setting this to LZMA_RUN for cases when we are
180 // flushing. It doesn't matter when finishing or if
181 // an error occurred.
182 coder->mf.action = LZMA_RUN;
183 return ret;
187 return LZMA_OK;
191 static bool
192 lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
193 const lzma_lz_options *lz_options)
195 // For now, the dictionary size is limited to 1.5 GiB. This may grow
196 // in the future if needed, but it needs a little more work than just
197 // changing this check.
198 if (!IS_ENC_DICT_SIZE_VALID(lz_options->dict_size)
199 || lz_options->nice_len > lz_options->match_len_max)
200 return true;
202 mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
204 mf->keep_size_after = lz_options->after_size
205 + lz_options->match_len_max;
207 // To avoid constant memmove()s, allocate some extra space. Since
208 // memmove()s become more expensive when the size of the buffer
209 // increases, we reserve more space when a large dictionary is
210 // used to make the memmove() calls rarer.
212 // This works with dictionaries up to about 3 GiB. If bigger
213 // dictionary is wanted, some extra work is needed:
214 // - Several variables in lzma_mf have to be changed from uint32_t
215 // to size_t.
216 // - Memory usage calculation needs something too, e.g. use uint64_t
217 // for mf->size.
218 uint32_t reserve = lz_options->dict_size / 2;
219 if (reserve > (UINT32_C(1) << 30))
220 reserve /= 2;
222 reserve += (lz_options->before_size + lz_options->match_len_max
223 + lz_options->after_size) / 2 + (UINT32_C(1) << 19);
225 const uint32_t old_size = mf->size;
226 mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
228 // Deallocate the old history buffer if it exists but has different
229 // size than what is needed now.
230 if (mf->buffer != NULL && old_size != mf->size) {
231 lzma_free(mf->buffer, allocator);
232 mf->buffer = NULL;
235 // Match finder options
236 mf->match_len_max = lz_options->match_len_max;
237 mf->nice_len = lz_options->nice_len;
239 // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
240 // mean limiting dictionary size to less than 2 GiB. With a match
241 // finder that uses multibyte resolution (hashes start at e.g. every
242 // fourth byte), cyclic_size would stay below 2 Gi even when
243 // dictionary size is greater than 2 GiB.
245 // It would be possible to allow cyclic_size >= 2 Gi, but then we
246 // would need to be careful to use 64-bit types in various places
247 // (size_t could do since we would need bigger than 32-bit address
248 // space anyway). It would also require either zeroing a multigigabyte
249 // buffer at initialization (waste of time and RAM) or allow
250 // normalization in lz_encoder_mf.c to access uninitialized
251 // memory to keep the code simpler. The current way is simple and
252 // still allows pretty big dictionaries, so I don't expect these
253 // limits to change.
254 mf->cyclic_size = lz_options->dict_size + 1;
256 // Validate the match finder ID and setup the function pointers.
257 switch (lz_options->match_finder) {
258 #ifdef HAVE_MF_HC3
259 case LZMA_MF_HC3:
260 mf->find = &lzma_mf_hc3_find;
261 mf->skip = &lzma_mf_hc3_skip;
262 break;
263 #endif
264 #ifdef HAVE_MF_HC4
265 case LZMA_MF_HC4:
266 mf->find = &lzma_mf_hc4_find;
267 mf->skip = &lzma_mf_hc4_skip;
268 break;
269 #endif
270 #ifdef HAVE_MF_BT2
271 case LZMA_MF_BT2:
272 mf->find = &lzma_mf_bt2_find;
273 mf->skip = &lzma_mf_bt2_skip;
274 break;
275 #endif
276 #ifdef HAVE_MF_BT3
277 case LZMA_MF_BT3:
278 mf->find = &lzma_mf_bt3_find;
279 mf->skip = &lzma_mf_bt3_skip;
280 break;
281 #endif
282 #ifdef HAVE_MF_BT4
283 case LZMA_MF_BT4:
284 mf->find = &lzma_mf_bt4_find;
285 mf->skip = &lzma_mf_bt4_skip;
286 break;
287 #endif
289 default:
290 return true;
293 // Calculate the sizes of mf->hash and mf->son.
295 // NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
296 // is big enough for the selected match finder. This makes it
297 // easier for applications as nice_len = 2 will always be accepted
298 // even though the effective value can be slightly bigger.
299 const uint32_t hash_bytes
300 = mf_get_hash_bytes(lz_options->match_finder);
301 assert(hash_bytes <= mf->nice_len);
303 const bool is_bt = (lz_options->match_finder & 0x10) != 0;
304 uint32_t hs;
306 if (hash_bytes == 2) {
307 hs = 0xFFFF;
308 } else {
309 // Round dictionary size up to the next 2^n - 1 so it can
310 // be used as a hash mask.
311 hs = lz_options->dict_size - 1;
312 hs |= hs >> 1;
313 hs |= hs >> 2;
314 hs |= hs >> 4;
315 hs |= hs >> 8;
316 hs >>= 1;
317 hs |= 0xFFFF;
319 if (hs > (UINT32_C(1) << 24)) {
320 if (hash_bytes == 3)
321 hs = (UINT32_C(1) << 24) - 1;
322 else
323 hs >>= 1;
327 mf->hash_mask = hs;
329 ++hs;
330 if (hash_bytes > 2)
331 hs += HASH_2_SIZE;
332 if (hash_bytes > 3)
333 hs += HASH_3_SIZE;
335 No match finder uses this at the moment.
336 if (mf->hash_bytes > 4)
337 hs += HASH_4_SIZE;
340 const uint32_t old_hash_count = mf->hash_count;
341 const uint32_t old_sons_count = mf->sons_count;
342 mf->hash_count = hs;
343 mf->sons_count = mf->cyclic_size;
344 if (is_bt)
345 mf->sons_count *= 2;
347 // Deallocate the old hash array if it exists and has different size
348 // than what is needed now.
349 if (old_hash_count != mf->hash_count
350 || old_sons_count != mf->sons_count) {
351 lzma_free(mf->hash, allocator);
352 mf->hash = NULL;
354 lzma_free(mf->son, allocator);
355 mf->son = NULL;
358 // Maximum number of match finder cycles
359 mf->depth = lz_options->depth;
360 if (mf->depth == 0) {
361 if (is_bt)
362 mf->depth = 16 + mf->nice_len / 2;
363 else
364 mf->depth = 4 + mf->nice_len / 4;
367 return false;
371 static bool
372 lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
373 const lzma_lz_options *lz_options)
375 // Allocate the history buffer.
376 if (mf->buffer == NULL) {
377 // lzma_memcmplen() is used for the dictionary buffer
378 // so we need to allocate a few extra bytes to prevent
379 // it from reading past the end of the buffer.
380 mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
381 allocator);
382 if (mf->buffer == NULL)
383 return true;
385 // Keep Valgrind happy with lzma_memcmplen() and initialize
386 // the extra bytes whose value may get read but which will
387 // effectively get ignored.
388 memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
391 // Use cyclic_size as initial mf->offset. This allows
392 // avoiding a few branches in the match finders. The downside is
393 // that match finder needs to be normalized more often, which may
394 // hurt performance with huge dictionaries.
395 mf->offset = mf->cyclic_size;
396 mf->read_pos = 0;
397 mf->read_ahead = 0;
398 mf->read_limit = 0;
399 mf->write_pos = 0;
400 mf->pending = 0;
402 #if UINT32_MAX >= SIZE_MAX / 4
403 // Check for integer overflow. (Huge dictionaries are not
404 // possible on 32-bit CPU.)
405 if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
406 || mf->sons_count > SIZE_MAX / sizeof(uint32_t))
407 return true;
408 #endif
410 // Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
411 // is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
413 // We don't need to initialize mf->son, but not doing that may
414 // make Valgrind complain in normalization (see normalize() in
415 // lz_encoder_mf.c). Skipping the initialization is *very* good
416 // when big dictionary is used but only small amount of data gets
417 // actually compressed: most of the mf->son won't get actually
418 // allocated by the kernel, so we avoid wasting RAM and improve
419 // initialization speed a lot.
420 if (mf->hash == NULL) {
421 mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
422 allocator);
423 mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
424 allocator);
426 if (mf->hash == NULL || mf->son == NULL) {
427 lzma_free(mf->hash, allocator);
428 mf->hash = NULL;
430 lzma_free(mf->son, allocator);
431 mf->son = NULL;
433 return true;
435 } else {
437 for (uint32_t i = 0; i < mf->hash_count; ++i)
438 mf->hash[i] = EMPTY_HASH_VALUE;
440 memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
443 mf->cyclic_pos = 0;
445 // Handle preset dictionary.
446 if (lz_options->preset_dict != NULL
447 && lz_options->preset_dict_size > 0) {
448 // If the preset dictionary is bigger than the actual
449 // dictionary, use only the tail.
450 mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
451 memcpy(mf->buffer, lz_options->preset_dict
452 + lz_options->preset_dict_size - mf->write_pos,
453 mf->write_pos);
454 mf->action = LZMA_SYNC_FLUSH;
455 mf->skip(mf, mf->write_pos);
458 mf->action = LZMA_RUN;
460 return false;
464 extern uint64_t
465 lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
467 // Old buffers must not exist when calling lz_encoder_prepare().
468 lzma_mf mf = {
469 .buffer = NULL,
470 .hash = NULL,
471 .son = NULL,
472 .hash_count = 0,
473 .sons_count = 0,
476 // Setup the size information into mf.
477 if (lz_encoder_prepare(&mf, NULL, lz_options))
478 return UINT64_MAX;
480 // Calculate the memory usage.
481 return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
482 + mf.size + sizeof(lzma_coder);
486 static void
487 lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
489 lzma_coder *coder = coder_ptr;
491 lzma_next_end(&coder->next, allocator);
493 lzma_free(coder->mf.son, allocator);
494 lzma_free(coder->mf.hash, allocator);
495 lzma_free(coder->mf.buffer, allocator);
497 if (coder->lz.end != NULL)
498 coder->lz.end(coder->lz.coder, allocator);
499 else
500 lzma_free(coder->lz.coder, allocator);
502 lzma_free(coder, allocator);
503 return;
507 static lzma_ret
508 lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
509 const lzma_filter *filters_null lzma_attribute((__unused__)),
510 const lzma_filter *reversed_filters)
512 lzma_coder *coder = coder_ptr;
514 if (coder->lz.options_update == NULL)
515 return LZMA_PROG_ERROR;
517 return_if_error(coder->lz.options_update(
518 coder->lz.coder, reversed_filters));
520 return lzma_next_filter_update(
521 &coder->next, allocator, reversed_filters + 1);
525 static lzma_ret
526 lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
527 uint64_t out_limit)
529 lzma_coder *coder = coder_ptr;
531 // This is supported only if there are no other filters chained.
532 if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
533 return coder->lz.set_out_limit(
534 coder->lz.coder, uncomp_size, out_limit);
536 return LZMA_OPTIONS_ERROR;
540 extern lzma_ret
541 lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
542 const lzma_filter_info *filters,
543 lzma_ret (*lz_init)(lzma_lz_encoder *lz,
544 const lzma_allocator *allocator,
545 lzma_vli id, const void *options,
546 lzma_lz_options *lz_options))
548 #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
549 // The CRC32 table must be initialized.
550 lzma_crc32_init();
551 #endif
553 // Allocate and initialize the base data structure.
554 lzma_coder *coder = next->coder;
555 if (coder == NULL) {
556 coder = lzma_alloc(sizeof(lzma_coder), allocator);
557 if (coder == NULL)
558 return LZMA_MEM_ERROR;
560 next->coder = coder;
561 next->code = &lz_encode;
562 next->end = &lz_encoder_end;
563 next->update = &lz_encoder_update;
564 next->set_out_limit = &lz_encoder_set_out_limit;
566 coder->lz.coder = NULL;
567 coder->lz.code = NULL;
568 coder->lz.end = NULL;
569 coder->lz.options_update = NULL;
570 coder->lz.set_out_limit = NULL;
572 // mf.size is initialized to silence Valgrind
573 // when used on optimized binaries (GCC may reorder
574 // code in a way that Valgrind gets unhappy).
575 coder->mf.buffer = NULL;
576 coder->mf.size = 0;
577 coder->mf.hash = NULL;
578 coder->mf.son = NULL;
579 coder->mf.hash_count = 0;
580 coder->mf.sons_count = 0;
582 coder->next = LZMA_NEXT_CODER_INIT;
585 // Initialize the LZ-based encoder.
586 lzma_lz_options lz_options;
587 return_if_error(lz_init(&coder->lz, allocator,
588 filters[0].id, filters[0].options, &lz_options));
590 // Setup the size information into coder->mf and deallocate
591 // old buffers if they have wrong size.
592 if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
593 return LZMA_OPTIONS_ERROR;
595 // Allocate new buffers if needed, and do the rest of
596 // the initialization.
597 if (lz_encoder_init(&coder->mf, allocator, &lz_options))
598 return LZMA_MEM_ERROR;
600 // Initialize the next filter in the chain, if any.
601 return lzma_next_filter_init(&coder->next, allocator, filters + 1);
605 extern LZMA_API(lzma_bool)
606 lzma_mf_is_supported(lzma_match_finder mf)
608 switch (mf) {
609 #ifdef HAVE_MF_HC3
610 case LZMA_MF_HC3:
611 return true;
612 #endif
613 #ifdef HAVE_MF_HC4
614 case LZMA_MF_HC4:
615 return true;
616 #endif
617 #ifdef HAVE_MF_BT2
618 case LZMA_MF_BT2:
619 return true;
620 #endif
621 #ifdef HAVE_MF_BT3
622 case LZMA_MF_BT3:
623 return true;
624 #endif
625 #ifdef HAVE_MF_BT4
626 case LZMA_MF_BT4:
627 return true;
628 #endif
629 default:
630 return false;