spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / powerpc / mm / fault.c
blob2f0d1b032a892d82228b51c7d64c7df04fb7867d
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <mm/mmu_decl.h>
47 #include "icswx.h"
49 #ifdef CONFIG_KPROBES
50 static inline int notify_page_fault(struct pt_regs *regs)
52 int ret = 0;
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 ret = 1;
59 preempt_enable();
62 return ret;
64 #else
65 static inline int notify_page_fault(struct pt_regs *regs)
67 return 0;
69 #endif
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
75 static int store_updates_sp(struct pt_regs *regs)
77 unsigned int inst;
79 if (get_user(inst, (unsigned int __user *)regs->nip))
80 return 0;
81 /* check for 1 in the rA field */
82 if (((inst >> 16) & 0x1f) != 1)
83 return 0;
84 /* check major opcode */
85 switch (inst >> 26) {
86 case 37: /* stwu */
87 case 39: /* stbu */
88 case 45: /* sthu */
89 case 53: /* stfsu */
90 case 55: /* stfdu */
91 return 1;
92 case 62: /* std or stdu */
93 return (inst & 3) == 1;
94 case 31:
95 /* check minor opcode */
96 switch ((inst >> 1) & 0x3ff) {
97 case 181: /* stdux */
98 case 183: /* stwux */
99 case 247: /* stbux */
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
103 return 1;
106 return 0;
110 * For 600- and 800-family processors, the error_code parameter is DSISR
111 * for a data fault, SRR1 for an instruction fault. For 400-family processors
112 * the error_code parameter is ESR for a data fault, 0 for an instruction
113 * fault.
114 * For 64-bit processors, the error_code parameter is
115 * - DSISR for a non-SLB data access fault,
116 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
117 * - 0 any SLB fault.
119 * The return value is 0 if the fault was handled, or the signal
120 * number if this is a kernel fault that can't be handled here.
122 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
123 unsigned long error_code)
125 struct vm_area_struct * vma;
126 struct mm_struct *mm = current->mm;
127 siginfo_t info;
128 int code = SEGV_MAPERR;
129 int is_write = 0, ret;
130 int trap = TRAP(regs);
131 int is_exec = trap == 0x400;
133 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
135 * Fortunately the bit assignments in SRR1 for an instruction
136 * fault and DSISR for a data fault are mostly the same for the
137 * bits we are interested in. But there are some bits which
138 * indicate errors in DSISR but can validly be set in SRR1.
140 if (trap == 0x400)
141 error_code &= 0x48200000;
142 else
143 is_write = error_code & DSISR_ISSTORE;
144 #else
145 is_write = error_code & ESR_DST;
146 #endif /* CONFIG_4xx || CONFIG_BOOKE */
148 #ifdef CONFIG_PPC_ICSWX
150 * we need to do this early because this "data storage
151 * interrupt" does not update the DAR/DEAR so we don't want to
152 * look at it
154 if (error_code & ICSWX_DSI_UCT) {
155 int ret;
157 ret = acop_handle_fault(regs, address, error_code);
158 if (ret)
159 return ret;
161 #endif
163 if (notify_page_fault(regs))
164 return 0;
166 if (unlikely(debugger_fault_handler(regs)))
167 return 0;
169 /* On a kernel SLB miss we can only check for a valid exception entry */
170 if (!user_mode(regs) && (address >= TASK_SIZE))
171 return SIGSEGV;
173 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
174 defined(CONFIG_PPC_BOOK3S_64))
175 if (error_code & DSISR_DABRMATCH) {
176 /* DABR match */
177 do_dabr(regs, address, error_code);
178 return 0;
180 #endif
182 if (in_atomic() || mm == NULL) {
183 if (!user_mode(regs))
184 return SIGSEGV;
185 /* in_atomic() in user mode is really bad,
186 as is current->mm == NULL. */
187 printk(KERN_EMERG "Page fault in user mode with "
188 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
189 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
190 regs->nip, regs->msr);
191 die("Weird page fault", regs, SIGSEGV);
194 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
196 /* When running in the kernel we expect faults to occur only to
197 * addresses in user space. All other faults represent errors in the
198 * kernel and should generate an OOPS. Unfortunately, in the case of an
199 * erroneous fault occurring in a code path which already holds mmap_sem
200 * we will deadlock attempting to validate the fault against the
201 * address space. Luckily the kernel only validly references user
202 * space from well defined areas of code, which are listed in the
203 * exceptions table.
205 * As the vast majority of faults will be valid we will only perform
206 * the source reference check when there is a possibility of a deadlock.
207 * Attempt to lock the address space, if we cannot we then validate the
208 * source. If this is invalid we can skip the address space check,
209 * thus avoiding the deadlock.
211 if (!down_read_trylock(&mm->mmap_sem)) {
212 if (!user_mode(regs) && !search_exception_tables(regs->nip))
213 goto bad_area_nosemaphore;
215 down_read(&mm->mmap_sem);
218 vma = find_vma(mm, address);
219 if (!vma)
220 goto bad_area;
221 if (vma->vm_start <= address)
222 goto good_area;
223 if (!(vma->vm_flags & VM_GROWSDOWN))
224 goto bad_area;
227 * N.B. The POWER/Open ABI allows programs to access up to
228 * 288 bytes below the stack pointer.
229 * The kernel signal delivery code writes up to about 1.5kB
230 * below the stack pointer (r1) before decrementing it.
231 * The exec code can write slightly over 640kB to the stack
232 * before setting the user r1. Thus we allow the stack to
233 * expand to 1MB without further checks.
235 if (address + 0x100000 < vma->vm_end) {
236 /* get user regs even if this fault is in kernel mode */
237 struct pt_regs *uregs = current->thread.regs;
238 if (uregs == NULL)
239 goto bad_area;
242 * A user-mode access to an address a long way below
243 * the stack pointer is only valid if the instruction
244 * is one which would update the stack pointer to the
245 * address accessed if the instruction completed,
246 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
247 * (or the byte, halfword, float or double forms).
249 * If we don't check this then any write to the area
250 * between the last mapped region and the stack will
251 * expand the stack rather than segfaulting.
253 if (address + 2048 < uregs->gpr[1]
254 && (!user_mode(regs) || !store_updates_sp(regs)))
255 goto bad_area;
257 if (expand_stack(vma, address))
258 goto bad_area;
260 good_area:
261 code = SEGV_ACCERR;
262 #if defined(CONFIG_6xx)
263 if (error_code & 0x95700000)
264 /* an error such as lwarx to I/O controller space,
265 address matching DABR, eciwx, etc. */
266 goto bad_area;
267 #endif /* CONFIG_6xx */
268 #if defined(CONFIG_8xx)
269 /* 8xx sometimes need to load a invalid/non-present TLBs.
270 * These must be invalidated separately as linux mm don't.
272 if (error_code & 0x40000000) /* no translation? */
273 _tlbil_va(address, 0, 0, 0);
275 /* The MPC8xx seems to always set 0x80000000, which is
276 * "undefined". Of those that can be set, this is the only
277 * one which seems bad.
279 if (error_code & 0x10000000)
280 /* Guarded storage error. */
281 goto bad_area;
282 #endif /* CONFIG_8xx */
284 if (is_exec) {
285 #ifdef CONFIG_PPC_STD_MMU
286 /* Protection fault on exec go straight to failure on
287 * Hash based MMUs as they either don't support per-page
288 * execute permission, or if they do, it's handled already
289 * at the hash level. This test would probably have to
290 * be removed if we change the way this works to make hash
291 * processors use the same I/D cache coherency mechanism
292 * as embedded.
294 if (error_code & DSISR_PROTFAULT)
295 goto bad_area;
296 #endif /* CONFIG_PPC_STD_MMU */
299 * Allow execution from readable areas if the MMU does not
300 * provide separate controls over reading and executing.
302 * Note: That code used to not be enabled for 4xx/BookE.
303 * It is now as I/D cache coherency for these is done at
304 * set_pte_at() time and I see no reason why the test
305 * below wouldn't be valid on those processors. This -may-
306 * break programs compiled with a really old ABI though.
308 if (!(vma->vm_flags & VM_EXEC) &&
309 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
310 !(vma->vm_flags & (VM_READ | VM_WRITE))))
311 goto bad_area;
312 /* a write */
313 } else if (is_write) {
314 if (!(vma->vm_flags & VM_WRITE))
315 goto bad_area;
316 /* a read */
317 } else {
318 /* protection fault */
319 if (error_code & 0x08000000)
320 goto bad_area;
321 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
322 goto bad_area;
326 * If for any reason at all we couldn't handle the fault,
327 * make sure we exit gracefully rather than endlessly redo
328 * the fault.
330 ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
331 if (unlikely(ret & VM_FAULT_ERROR)) {
332 if (ret & VM_FAULT_OOM)
333 goto out_of_memory;
334 else if (ret & VM_FAULT_SIGBUS)
335 goto do_sigbus;
336 BUG();
338 if (ret & VM_FAULT_MAJOR) {
339 current->maj_flt++;
340 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
341 regs, address);
342 #ifdef CONFIG_PPC_SMLPAR
343 if (firmware_has_feature(FW_FEATURE_CMO)) {
344 preempt_disable();
345 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
346 preempt_enable();
348 #endif
349 } else {
350 current->min_flt++;
351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
352 regs, address);
354 up_read(&mm->mmap_sem);
355 return 0;
357 bad_area:
358 up_read(&mm->mmap_sem);
360 bad_area_nosemaphore:
361 /* User mode accesses cause a SIGSEGV */
362 if (user_mode(regs)) {
363 _exception(SIGSEGV, regs, code, address);
364 return 0;
367 if (is_exec && (error_code & DSISR_PROTFAULT))
368 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
369 " page (%lx) - exploit attempt? (uid: %d)\n",
370 address, current_uid());
372 return SIGSEGV;
375 * We ran out of memory, or some other thing happened to us that made
376 * us unable to handle the page fault gracefully.
378 out_of_memory:
379 up_read(&mm->mmap_sem);
380 if (!user_mode(regs))
381 return SIGKILL;
382 pagefault_out_of_memory();
383 return 0;
385 do_sigbus:
386 up_read(&mm->mmap_sem);
387 if (user_mode(regs)) {
388 info.si_signo = SIGBUS;
389 info.si_errno = 0;
390 info.si_code = BUS_ADRERR;
391 info.si_addr = (void __user *)address;
392 force_sig_info(SIGBUS, &info, current);
393 return 0;
395 return SIGBUS;
399 * bad_page_fault is called when we have a bad access from the kernel.
400 * It is called from the DSI and ISI handlers in head.S and from some
401 * of the procedures in traps.c.
403 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
405 const struct exception_table_entry *entry;
406 unsigned long *stackend;
408 /* Are we prepared to handle this fault? */
409 if ((entry = search_exception_tables(regs->nip)) != NULL) {
410 regs->nip = entry->fixup;
411 return;
414 /* kernel has accessed a bad area */
416 switch (regs->trap) {
417 case 0x300:
418 case 0x380:
419 printk(KERN_ALERT "Unable to handle kernel paging request for "
420 "data at address 0x%08lx\n", regs->dar);
421 break;
422 case 0x400:
423 case 0x480:
424 printk(KERN_ALERT "Unable to handle kernel paging request for "
425 "instruction fetch\n");
426 break;
427 default:
428 printk(KERN_ALERT "Unable to handle kernel paging request for "
429 "unknown fault\n");
430 break;
432 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
433 regs->nip);
435 stackend = end_of_stack(current);
436 if (current != &init_task && *stackend != STACK_END_MAGIC)
437 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
439 die("Kernel access of bad area", regs, sig);