spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / arm / kernel / ptrace.c
blobf5ce8ab0755a6542a7173dc5905ab7509c17ad8b
1 /*
2 * linux/arch/arm/kernel/ptrace.c
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
28 #include <asm/pgtable.h>
29 #include <asm/system.h>
30 #include <asm/traps.h>
32 #define REG_PC 15
33 #define REG_PSR 16
35 * does not yet catch signals sent when the child dies.
36 * in exit.c or in signal.c.
39 #if 0
41 * Breakpoint SWI instruction: SWI &9F0001
43 #define BREAKINST_ARM 0xef9f0001
44 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
45 #else
47 * New breakpoints - use an undefined instruction. The ARM architecture
48 * reference manual guarantees that the following instruction space
49 * will produce an undefined instruction exception on all CPUs:
51 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52 * Thumb: 1101 1110 xxxx xxxx
54 #define BREAKINST_ARM 0xe7f001f0
55 #define BREAKINST_THUMB 0xde01
56 #endif
58 struct pt_regs_offset {
59 const char *name;
60 int offset;
63 #define REG_OFFSET_NAME(r) \
64 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67 static const struct pt_regs_offset regoffset_table[] = {
68 REG_OFFSET_NAME(r0),
69 REG_OFFSET_NAME(r1),
70 REG_OFFSET_NAME(r2),
71 REG_OFFSET_NAME(r3),
72 REG_OFFSET_NAME(r4),
73 REG_OFFSET_NAME(r5),
74 REG_OFFSET_NAME(r6),
75 REG_OFFSET_NAME(r7),
76 REG_OFFSET_NAME(r8),
77 REG_OFFSET_NAME(r9),
78 REG_OFFSET_NAME(r10),
79 REG_OFFSET_NAME(fp),
80 REG_OFFSET_NAME(ip),
81 REG_OFFSET_NAME(sp),
82 REG_OFFSET_NAME(lr),
83 REG_OFFSET_NAME(pc),
84 REG_OFFSET_NAME(cpsr),
85 REG_OFFSET_NAME(ORIG_r0),
86 REG_OFFSET_END,
89 /**
90 * regs_query_register_offset() - query register offset from its name
91 * @name: the name of a register
93 * regs_query_register_offset() returns the offset of a register in struct
94 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96 int regs_query_register_offset(const char *name)
98 const struct pt_regs_offset *roff;
99 for (roff = regoffset_table; roff->name != NULL; roff++)
100 if (!strcmp(roff->name, name))
101 return roff->offset;
102 return -EINVAL;
106 * regs_query_register_name() - query register name from its offset
107 * @offset: the offset of a register in struct pt_regs.
109 * regs_query_register_name() returns the name of a register from its
110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 const char *regs_query_register_name(unsigned int offset)
114 const struct pt_regs_offset *roff;
115 for (roff = regoffset_table; roff->name != NULL; roff++)
116 if (roff->offset == offset)
117 return roff->name;
118 return NULL;
122 * regs_within_kernel_stack() - check the address in the stack
123 * @regs: pt_regs which contains kernel stack pointer.
124 * @addr: address which is checked.
126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 return ((addr & ~(THREAD_SIZE - 1)) ==
132 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
136 * regs_get_kernel_stack_nth() - get Nth entry of the stack
137 * @regs: pt_regs which contains kernel stack pointer.
138 * @n: stack entry number.
140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142 * this returns 0.
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147 addr += n;
148 if (regs_within_kernel_stack(regs, (unsigned long)addr))
149 return *addr;
150 else
151 return 0;
155 * this routine will get a word off of the processes privileged stack.
156 * the offset is how far from the base addr as stored in the THREAD.
157 * this routine assumes that all the privileged stacks are in our
158 * data space.
160 static inline long get_user_reg(struct task_struct *task, int offset)
162 return task_pt_regs(task)->uregs[offset];
166 * this routine will put a word on the processes privileged stack.
167 * the offset is how far from the base addr as stored in the THREAD.
168 * this routine assumes that all the privileged stacks are in our
169 * data space.
171 static inline int
172 put_user_reg(struct task_struct *task, int offset, long data)
174 struct pt_regs newregs, *regs = task_pt_regs(task);
175 int ret = -EINVAL;
177 newregs = *regs;
178 newregs.uregs[offset] = data;
180 if (valid_user_regs(&newregs)) {
181 regs->uregs[offset] = data;
182 ret = 0;
185 return ret;
189 * Called by kernel/ptrace.c when detaching..
191 void ptrace_disable(struct task_struct *child)
193 /* Nothing to do. */
197 * Handle hitting a breakpoint.
199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
201 siginfo_t info;
203 info.si_signo = SIGTRAP;
204 info.si_errno = 0;
205 info.si_code = TRAP_BRKPT;
206 info.si_addr = (void __user *)instruction_pointer(regs);
208 force_sig_info(SIGTRAP, &info, tsk);
211 static int break_trap(struct pt_regs *regs, unsigned int instr)
213 ptrace_break(current, regs);
214 return 0;
217 static struct undef_hook arm_break_hook = {
218 .instr_mask = 0x0fffffff,
219 .instr_val = 0x07f001f0,
220 .cpsr_mask = PSR_T_BIT,
221 .cpsr_val = 0,
222 .fn = break_trap,
225 static struct undef_hook thumb_break_hook = {
226 .instr_mask = 0xffff,
227 .instr_val = 0xde01,
228 .cpsr_mask = PSR_T_BIT,
229 .cpsr_val = PSR_T_BIT,
230 .fn = break_trap,
233 static struct undef_hook thumb2_break_hook = {
234 .instr_mask = 0xffffffff,
235 .instr_val = 0xf7f0a000,
236 .cpsr_mask = PSR_T_BIT,
237 .cpsr_val = PSR_T_BIT,
238 .fn = break_trap,
241 static int __init ptrace_break_init(void)
243 register_undef_hook(&arm_break_hook);
244 register_undef_hook(&thumb_break_hook);
245 register_undef_hook(&thumb2_break_hook);
246 return 0;
249 core_initcall(ptrace_break_init);
252 * Read the word at offset "off" into the "struct user". We
253 * actually access the pt_regs stored on the kernel stack.
255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256 unsigned long __user *ret)
258 unsigned long tmp;
260 if (off & 3 || off >= sizeof(struct user))
261 return -EIO;
263 tmp = 0;
264 if (off == PT_TEXT_ADDR)
265 tmp = tsk->mm->start_code;
266 else if (off == PT_DATA_ADDR)
267 tmp = tsk->mm->start_data;
268 else if (off == PT_TEXT_END_ADDR)
269 tmp = tsk->mm->end_code;
270 else if (off < sizeof(struct pt_regs))
271 tmp = get_user_reg(tsk, off >> 2);
273 return put_user(tmp, ret);
277 * Write the word at offset "off" into "struct user". We
278 * actually access the pt_regs stored on the kernel stack.
280 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
281 unsigned long val)
283 if (off & 3 || off >= sizeof(struct user))
284 return -EIO;
286 if (off >= sizeof(struct pt_regs))
287 return 0;
289 return put_user_reg(tsk, off >> 2, val);
292 #ifdef CONFIG_IWMMXT
295 * Get the child iWMMXt state.
297 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
299 struct thread_info *thread = task_thread_info(tsk);
301 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
302 return -ENODATA;
303 iwmmxt_task_disable(thread); /* force it to ram */
304 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
305 ? -EFAULT : 0;
309 * Set the child iWMMXt state.
311 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
313 struct thread_info *thread = task_thread_info(tsk);
315 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
316 return -EACCES;
317 iwmmxt_task_release(thread); /* force a reload */
318 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
319 ? -EFAULT : 0;
322 #endif
324 #ifdef CONFIG_CRUNCH
326 * Get the child Crunch state.
328 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
330 struct thread_info *thread = task_thread_info(tsk);
332 crunch_task_disable(thread); /* force it to ram */
333 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
334 ? -EFAULT : 0;
338 * Set the child Crunch state.
340 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
342 struct thread_info *thread = task_thread_info(tsk);
344 crunch_task_release(thread); /* force a reload */
345 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
346 ? -EFAULT : 0;
348 #endif
350 #ifdef CONFIG_HAVE_HW_BREAKPOINT
352 * Convert a virtual register number into an index for a thread_info
353 * breakpoint array. Breakpoints are identified using positive numbers
354 * whilst watchpoints are negative. The registers are laid out as pairs
355 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
356 * Register 0 is reserved for describing resource information.
358 static int ptrace_hbp_num_to_idx(long num)
360 if (num < 0)
361 num = (ARM_MAX_BRP << 1) - num;
362 return (num - 1) >> 1;
366 * Returns the virtual register number for the address of the
367 * breakpoint at index idx.
369 static long ptrace_hbp_idx_to_num(int idx)
371 long mid = ARM_MAX_BRP << 1;
372 long num = (idx << 1) + 1;
373 return num > mid ? mid - num : num;
377 * Handle hitting a HW-breakpoint.
379 static void ptrace_hbptriggered(struct perf_event *bp,
380 struct perf_sample_data *data,
381 struct pt_regs *regs)
383 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
384 long num;
385 int i;
386 siginfo_t info;
388 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
389 if (current->thread.debug.hbp[i] == bp)
390 break;
392 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
394 info.si_signo = SIGTRAP;
395 info.si_errno = (int)num;
396 info.si_code = TRAP_HWBKPT;
397 info.si_addr = (void __user *)(bkpt->trigger);
399 force_sig_info(SIGTRAP, &info, current);
403 * Set ptrace breakpoint pointers to zero for this task.
404 * This is required in order to prevent child processes from unregistering
405 * breakpoints held by their parent.
407 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
409 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
413 * Unregister breakpoints from this task and reset the pointers in
414 * the thread_struct.
416 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
418 int i;
419 struct thread_struct *t = &tsk->thread;
421 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
422 if (t->debug.hbp[i]) {
423 unregister_hw_breakpoint(t->debug.hbp[i]);
424 t->debug.hbp[i] = NULL;
429 static u32 ptrace_get_hbp_resource_info(void)
431 u8 num_brps, num_wrps, debug_arch, wp_len;
432 u32 reg = 0;
434 num_brps = hw_breakpoint_slots(TYPE_INST);
435 num_wrps = hw_breakpoint_slots(TYPE_DATA);
436 debug_arch = arch_get_debug_arch();
437 wp_len = arch_get_max_wp_len();
439 reg |= debug_arch;
440 reg <<= 8;
441 reg |= wp_len;
442 reg <<= 8;
443 reg |= num_wrps;
444 reg <<= 8;
445 reg |= num_brps;
447 return reg;
450 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
452 struct perf_event_attr attr;
454 ptrace_breakpoint_init(&attr);
456 /* Initialise fields to sane defaults. */
457 attr.bp_addr = 0;
458 attr.bp_len = HW_BREAKPOINT_LEN_4;
459 attr.bp_type = type;
460 attr.disabled = 1;
462 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
463 tsk);
466 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
467 unsigned long __user *data)
469 u32 reg;
470 int idx, ret = 0;
471 struct perf_event *bp;
472 struct arch_hw_breakpoint_ctrl arch_ctrl;
474 if (num == 0) {
475 reg = ptrace_get_hbp_resource_info();
476 } else {
477 idx = ptrace_hbp_num_to_idx(num);
478 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
479 ret = -EINVAL;
480 goto out;
483 bp = tsk->thread.debug.hbp[idx];
484 if (!bp) {
485 reg = 0;
486 goto put;
489 arch_ctrl = counter_arch_bp(bp)->ctrl;
492 * Fix up the len because we may have adjusted it
493 * to compensate for an unaligned address.
495 while (!(arch_ctrl.len & 0x1))
496 arch_ctrl.len >>= 1;
498 if (num & 0x1)
499 reg = bp->attr.bp_addr;
500 else
501 reg = encode_ctrl_reg(arch_ctrl);
504 put:
505 if (put_user(reg, data))
506 ret = -EFAULT;
508 out:
509 return ret;
512 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
513 unsigned long __user *data)
515 int idx, gen_len, gen_type, implied_type, ret = 0;
516 u32 user_val;
517 struct perf_event *bp;
518 struct arch_hw_breakpoint_ctrl ctrl;
519 struct perf_event_attr attr;
521 if (num == 0)
522 goto out;
523 else if (num < 0)
524 implied_type = HW_BREAKPOINT_RW;
525 else
526 implied_type = HW_BREAKPOINT_X;
528 idx = ptrace_hbp_num_to_idx(num);
529 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
530 ret = -EINVAL;
531 goto out;
534 if (get_user(user_val, data)) {
535 ret = -EFAULT;
536 goto out;
539 bp = tsk->thread.debug.hbp[idx];
540 if (!bp) {
541 bp = ptrace_hbp_create(tsk, implied_type);
542 if (IS_ERR(bp)) {
543 ret = PTR_ERR(bp);
544 goto out;
546 tsk->thread.debug.hbp[idx] = bp;
549 attr = bp->attr;
551 if (num & 0x1) {
552 /* Address */
553 attr.bp_addr = user_val;
554 } else {
555 /* Control */
556 decode_ctrl_reg(user_val, &ctrl);
557 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
558 if (ret)
559 goto out;
561 if ((gen_type & implied_type) != gen_type) {
562 ret = -EINVAL;
563 goto out;
566 attr.bp_len = gen_len;
567 attr.bp_type = gen_type;
568 attr.disabled = !ctrl.enabled;
571 ret = modify_user_hw_breakpoint(bp, &attr);
572 out:
573 return ret;
575 #endif
577 /* regset get/set implementations */
579 static int gpr_get(struct task_struct *target,
580 const struct user_regset *regset,
581 unsigned int pos, unsigned int count,
582 void *kbuf, void __user *ubuf)
584 struct pt_regs *regs = task_pt_regs(target);
586 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
587 regs,
588 0, sizeof(*regs));
591 static int gpr_set(struct task_struct *target,
592 const struct user_regset *regset,
593 unsigned int pos, unsigned int count,
594 const void *kbuf, const void __user *ubuf)
596 int ret;
597 struct pt_regs newregs;
599 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
600 &newregs,
601 0, sizeof(newregs));
602 if (ret)
603 return ret;
605 if (!valid_user_regs(&newregs))
606 return -EINVAL;
608 *task_pt_regs(target) = newregs;
609 return 0;
612 static int fpa_get(struct task_struct *target,
613 const struct user_regset *regset,
614 unsigned int pos, unsigned int count,
615 void *kbuf, void __user *ubuf)
617 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
618 &task_thread_info(target)->fpstate,
619 0, sizeof(struct user_fp));
622 static int fpa_set(struct task_struct *target,
623 const struct user_regset *regset,
624 unsigned int pos, unsigned int count,
625 const void *kbuf, const void __user *ubuf)
627 struct thread_info *thread = task_thread_info(target);
629 thread->used_cp[1] = thread->used_cp[2] = 1;
631 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
632 &thread->fpstate,
633 0, sizeof(struct user_fp));
636 #ifdef CONFIG_VFP
638 * VFP register get/set implementations.
640 * With respect to the kernel, struct user_fp is divided into three chunks:
641 * 16 or 32 real VFP registers (d0-d15 or d0-31)
642 * These are transferred to/from the real registers in the task's
643 * vfp_hard_struct. The number of registers depends on the kernel
644 * configuration.
646 * 16 or 0 fake VFP registers (d16-d31 or empty)
647 * i.e., the user_vfp structure has space for 32 registers even if
648 * the kernel doesn't have them all.
650 * vfp_get() reads this chunk as zero where applicable
651 * vfp_set() ignores this chunk
653 * 1 word for the FPSCR
655 * The bounds-checking logic built into user_regset_copyout and friends
656 * means that we can make a simple sequence of calls to map the relevant data
657 * to/from the specified slice of the user regset structure.
659 static int vfp_get(struct task_struct *target,
660 const struct user_regset *regset,
661 unsigned int pos, unsigned int count,
662 void *kbuf, void __user *ubuf)
664 int ret;
665 struct thread_info *thread = task_thread_info(target);
666 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
667 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
670 vfp_sync_hwstate(thread);
672 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
673 &vfp->fpregs,
674 user_fpregs_offset,
675 user_fpregs_offset + sizeof(vfp->fpregs));
676 if (ret)
677 return ret;
679 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
680 user_fpregs_offset + sizeof(vfp->fpregs),
681 user_fpscr_offset);
682 if (ret)
683 return ret;
685 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
686 &vfp->fpscr,
687 user_fpscr_offset,
688 user_fpscr_offset + sizeof(vfp->fpscr));
692 * For vfp_set() a read-modify-write is done on the VFP registers,
693 * in order to avoid writing back a half-modified set of registers on
694 * failure.
696 static int vfp_set(struct task_struct *target,
697 const struct user_regset *regset,
698 unsigned int pos, unsigned int count,
699 const void *kbuf, const void __user *ubuf)
701 int ret;
702 struct thread_info *thread = task_thread_info(target);
703 struct vfp_hard_struct new_vfp;
704 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
705 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
707 vfp_sync_hwstate(thread);
708 new_vfp = thread->vfpstate.hard;
710 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
711 &new_vfp.fpregs,
712 user_fpregs_offset,
713 user_fpregs_offset + sizeof(new_vfp.fpregs));
714 if (ret)
715 return ret;
717 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
718 user_fpregs_offset + sizeof(new_vfp.fpregs),
719 user_fpscr_offset);
720 if (ret)
721 return ret;
723 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
724 &new_vfp.fpscr,
725 user_fpscr_offset,
726 user_fpscr_offset + sizeof(new_vfp.fpscr));
727 if (ret)
728 return ret;
730 vfp_flush_hwstate(thread);
731 thread->vfpstate.hard = new_vfp;
733 return 0;
735 #endif /* CONFIG_VFP */
737 enum arm_regset {
738 REGSET_GPR,
739 REGSET_FPR,
740 #ifdef CONFIG_VFP
741 REGSET_VFP,
742 #endif
745 static const struct user_regset arm_regsets[] = {
746 [REGSET_GPR] = {
747 .core_note_type = NT_PRSTATUS,
748 .n = ELF_NGREG,
749 .size = sizeof(u32),
750 .align = sizeof(u32),
751 .get = gpr_get,
752 .set = gpr_set
754 [REGSET_FPR] = {
756 * For the FPA regs in fpstate, the real fields are a mixture
757 * of sizes, so pretend that the registers are word-sized:
759 .core_note_type = NT_PRFPREG,
760 .n = sizeof(struct user_fp) / sizeof(u32),
761 .size = sizeof(u32),
762 .align = sizeof(u32),
763 .get = fpa_get,
764 .set = fpa_set
766 #ifdef CONFIG_VFP
767 [REGSET_VFP] = {
769 * Pretend that the VFP regs are word-sized, since the FPSCR is
770 * a single word dangling at the end of struct user_vfp:
772 .core_note_type = NT_ARM_VFP,
773 .n = ARM_VFPREGS_SIZE / sizeof(u32),
774 .size = sizeof(u32),
775 .align = sizeof(u32),
776 .get = vfp_get,
777 .set = vfp_set
779 #endif /* CONFIG_VFP */
782 static const struct user_regset_view user_arm_view = {
783 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
784 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
789 return &user_arm_view;
792 long arch_ptrace(struct task_struct *child, long request,
793 unsigned long addr, unsigned long data)
795 int ret;
796 unsigned long __user *datap = (unsigned long __user *) data;
798 switch (request) {
799 case PTRACE_PEEKUSR:
800 ret = ptrace_read_user(child, addr, datap);
801 break;
803 case PTRACE_POKEUSR:
804 ret = ptrace_write_user(child, addr, data);
805 break;
807 case PTRACE_GETREGS:
808 ret = copy_regset_to_user(child,
809 &user_arm_view, REGSET_GPR,
810 0, sizeof(struct pt_regs),
811 datap);
812 break;
814 case PTRACE_SETREGS:
815 ret = copy_regset_from_user(child,
816 &user_arm_view, REGSET_GPR,
817 0, sizeof(struct pt_regs),
818 datap);
819 break;
821 case PTRACE_GETFPREGS:
822 ret = copy_regset_to_user(child,
823 &user_arm_view, REGSET_FPR,
824 0, sizeof(union fp_state),
825 datap);
826 break;
828 case PTRACE_SETFPREGS:
829 ret = copy_regset_from_user(child,
830 &user_arm_view, REGSET_FPR,
831 0, sizeof(union fp_state),
832 datap);
833 break;
835 #ifdef CONFIG_IWMMXT
836 case PTRACE_GETWMMXREGS:
837 ret = ptrace_getwmmxregs(child, datap);
838 break;
840 case PTRACE_SETWMMXREGS:
841 ret = ptrace_setwmmxregs(child, datap);
842 break;
843 #endif
845 case PTRACE_GET_THREAD_AREA:
846 ret = put_user(task_thread_info(child)->tp_value,
847 datap);
848 break;
850 case PTRACE_SET_SYSCALL:
851 task_thread_info(child)->syscall = data;
852 ret = 0;
853 break;
855 #ifdef CONFIG_CRUNCH
856 case PTRACE_GETCRUNCHREGS:
857 ret = ptrace_getcrunchregs(child, datap);
858 break;
860 case PTRACE_SETCRUNCHREGS:
861 ret = ptrace_setcrunchregs(child, datap);
862 break;
863 #endif
865 #ifdef CONFIG_VFP
866 case PTRACE_GETVFPREGS:
867 ret = copy_regset_to_user(child,
868 &user_arm_view, REGSET_VFP,
869 0, ARM_VFPREGS_SIZE,
870 datap);
871 break;
873 case PTRACE_SETVFPREGS:
874 ret = copy_regset_from_user(child,
875 &user_arm_view, REGSET_VFP,
876 0, ARM_VFPREGS_SIZE,
877 datap);
878 break;
879 #endif
881 #ifdef CONFIG_HAVE_HW_BREAKPOINT
882 case PTRACE_GETHBPREGS:
883 if (ptrace_get_breakpoints(child) < 0)
884 return -ESRCH;
886 ret = ptrace_gethbpregs(child, addr,
887 (unsigned long __user *)data);
888 ptrace_put_breakpoints(child);
889 break;
890 case PTRACE_SETHBPREGS:
891 if (ptrace_get_breakpoints(child) < 0)
892 return -ESRCH;
894 ret = ptrace_sethbpregs(child, addr,
895 (unsigned long __user *)data);
896 ptrace_put_breakpoints(child);
897 break;
898 #endif
900 default:
901 ret = ptrace_request(child, request, addr, data);
902 break;
905 return ret;
908 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
910 unsigned long ip;
912 if (why)
913 audit_syscall_exit(regs);
914 else
915 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
916 regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
918 if (!test_thread_flag(TIF_SYSCALL_TRACE))
919 return scno;
920 if (!(current->ptrace & PT_PTRACED))
921 return scno;
923 current_thread_info()->syscall = scno;
926 * IP is used to denote syscall entry/exit:
927 * IP = 0 -> entry, =1 -> exit
929 ip = regs->ARM_ip;
930 regs->ARM_ip = why;
932 /* the 0x80 provides a way for the tracing parent to distinguish
933 between a syscall stop and SIGTRAP delivery */
934 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
935 ? 0x80 : 0));
937 * this isn't the same as continuing with a signal, but it will do
938 * for normal use. strace only continues with a signal if the
939 * stopping signal is not SIGTRAP. -brl
941 if (current->exit_code) {
942 send_sig(current->exit_code, current, 1);
943 current->exit_code = 0;
945 regs->ARM_ip = ip;
947 return current_thread_info()->syscall;