spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / ia64 / kernel / ptrace.c
blobdad91661ddf96e8b54aa4fbeafb9190879a65ccf
1 /*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
28 #include <asm/rse.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/unwind.h>
32 #ifdef CONFIG_PERFMON
33 #include <asm/perfmon.h>
34 #endif
36 #include "entry.h"
39 * Bits in the PSR that we allow ptrace() to change:
40 * be, up, ac, mfl, mfh (the user mask; five bits total)
41 * db (debug breakpoint fault; one bit)
42 * id (instruction debug fault disable; one bit)
43 * dd (data debug fault disable; one bit)
44 * ri (restart instruction; two bits)
45 * is (instruction set; one bit)
47 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
48 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
50 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
51 #define PFM_MASK MASK(38)
53 #define PTRACE_DEBUG 0
55 #if PTRACE_DEBUG
56 # define dprintk(format...) printk(format)
57 # define inline
58 #else
59 # define dprintk(format...)
60 #endif
62 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
64 static inline int
65 in_syscall (struct pt_regs *pt)
67 return (long) pt->cr_ifs >= 0;
71 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
72 * bitset where bit i is set iff the NaT bit of register i is set.
74 unsigned long
75 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
77 # define GET_BITS(first, last, unat) \
78 ({ \
79 unsigned long bit = ia64_unat_pos(&pt->r##first); \
80 unsigned long nbits = (last - first + 1); \
81 unsigned long mask = MASK(nbits) << first; \
82 unsigned long dist; \
83 if (bit < first) \
84 dist = 64 + bit - first; \
85 else \
86 dist = bit - first; \
87 ia64_rotr(unat, dist) & mask; \
89 unsigned long val;
92 * Registers that are stored consecutively in struct pt_regs
93 * can be handled in parallel. If the register order in
94 * struct_pt_regs changes, this code MUST be updated.
96 val = GET_BITS( 1, 1, scratch_unat);
97 val |= GET_BITS( 2, 3, scratch_unat);
98 val |= GET_BITS(12, 13, scratch_unat);
99 val |= GET_BITS(14, 14, scratch_unat);
100 val |= GET_BITS(15, 15, scratch_unat);
101 val |= GET_BITS( 8, 11, scratch_unat);
102 val |= GET_BITS(16, 31, scratch_unat);
103 return val;
105 # undef GET_BITS
109 * Set the NaT bits for the scratch registers according to NAT and
110 * return the resulting unat (assuming the scratch registers are
111 * stored in PT).
113 unsigned long
114 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
116 # define PUT_BITS(first, last, nat) \
117 ({ \
118 unsigned long bit = ia64_unat_pos(&pt->r##first); \
119 unsigned long nbits = (last - first + 1); \
120 unsigned long mask = MASK(nbits) << first; \
121 long dist; \
122 if (bit < first) \
123 dist = 64 + bit - first; \
124 else \
125 dist = bit - first; \
126 ia64_rotl(nat & mask, dist); \
128 unsigned long scratch_unat;
131 * Registers that are stored consecutively in struct pt_regs
132 * can be handled in parallel. If the register order in
133 * struct_pt_regs changes, this code MUST be updated.
135 scratch_unat = PUT_BITS( 1, 1, nat);
136 scratch_unat |= PUT_BITS( 2, 3, nat);
137 scratch_unat |= PUT_BITS(12, 13, nat);
138 scratch_unat |= PUT_BITS(14, 14, nat);
139 scratch_unat |= PUT_BITS(15, 15, nat);
140 scratch_unat |= PUT_BITS( 8, 11, nat);
141 scratch_unat |= PUT_BITS(16, 31, nat);
143 return scratch_unat;
145 # undef PUT_BITS
148 #define IA64_MLX_TEMPLATE 0x2
149 #define IA64_MOVL_OPCODE 6
151 void
152 ia64_increment_ip (struct pt_regs *regs)
154 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
156 if (ri > 2) {
157 ri = 0;
158 regs->cr_iip += 16;
159 } else if (ri == 2) {
160 get_user(w0, (char __user *) regs->cr_iip + 0);
161 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
163 * rfi'ing to slot 2 of an MLX bundle causes
164 * an illegal operation fault. We don't want
165 * that to happen...
167 ri = 0;
168 regs->cr_iip += 16;
171 ia64_psr(regs)->ri = ri;
174 void
175 ia64_decrement_ip (struct pt_regs *regs)
177 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
179 if (ia64_psr(regs)->ri == 0) {
180 regs->cr_iip -= 16;
181 ri = 2;
182 get_user(w0, (char __user *) regs->cr_iip + 0);
183 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
185 * rfi'ing to slot 2 of an MLX bundle causes
186 * an illegal operation fault. We don't want
187 * that to happen...
189 ri = 1;
192 ia64_psr(regs)->ri = ri;
196 * This routine is used to read an rnat bits that are stored on the
197 * kernel backing store. Since, in general, the alignment of the user
198 * and kernel are different, this is not completely trivial. In
199 * essence, we need to construct the user RNAT based on up to two
200 * kernel RNAT values and/or the RNAT value saved in the child's
201 * pt_regs.
203 * user rbs
205 * +--------+ <-- lowest address
206 * | slot62 |
207 * +--------+
208 * | rnat | 0x....1f8
209 * +--------+
210 * | slot00 | \
211 * +--------+ |
212 * | slot01 | > child_regs->ar_rnat
213 * +--------+ |
214 * | slot02 | / kernel rbs
215 * +--------+ +--------+
216 * <- child_regs->ar_bspstore | slot61 | <-- krbs
217 * +- - - - + +--------+
218 * | slot62 |
219 * +- - - - + +--------+
220 * | rnat |
221 * +- - - - + +--------+
222 * vrnat | slot00 |
223 * +- - - - + +--------+
224 * = =
225 * +--------+
226 * | slot00 | \
227 * +--------+ |
228 * | slot01 | > child_stack->ar_rnat
229 * +--------+ |
230 * | slot02 | /
231 * +--------+
232 * <--- child_stack->ar_bspstore
234 * The way to think of this code is as follows: bit 0 in the user rnat
235 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
236 * value. The kernel rnat value holding this bit is stored in
237 * variable rnat0. rnat1 is loaded with the kernel rnat value that
238 * form the upper bits of the user rnat value.
240 * Boundary cases:
242 * o when reading the rnat "below" the first rnat slot on the kernel
243 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
244 * merged in from pt->ar_rnat.
246 * o when reading the rnat "above" the last rnat slot on the kernel
247 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
249 static unsigned long
250 get_rnat (struct task_struct *task, struct switch_stack *sw,
251 unsigned long *krbs, unsigned long *urnat_addr,
252 unsigned long *urbs_end)
254 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
255 unsigned long umask = 0, mask, m;
256 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
257 long num_regs, nbits;
258 struct pt_regs *pt;
260 pt = task_pt_regs(task);
261 kbsp = (unsigned long *) sw->ar_bspstore;
262 ubspstore = (unsigned long *) pt->ar_bspstore;
264 if (urbs_end < urnat_addr)
265 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
266 else
267 nbits = 63;
268 mask = MASK(nbits);
270 * First, figure out which bit number slot 0 in user-land maps
271 * to in the kernel rnat. Do this by figuring out how many
272 * register slots we're beyond the user's backingstore and
273 * then computing the equivalent address in kernel space.
275 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
276 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
277 shift = ia64_rse_slot_num(slot0_kaddr);
278 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
279 rnat0_kaddr = rnat1_kaddr - 64;
281 if (ubspstore + 63 > urnat_addr) {
282 /* some bits need to be merged in from pt->ar_rnat */
283 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
284 urnat = (pt->ar_rnat & umask);
285 mask &= ~umask;
286 if (!mask)
287 return urnat;
290 m = mask << shift;
291 if (rnat0_kaddr >= kbsp)
292 rnat0 = sw->ar_rnat;
293 else if (rnat0_kaddr > krbs)
294 rnat0 = *rnat0_kaddr;
295 urnat |= (rnat0 & m) >> shift;
297 m = mask >> (63 - shift);
298 if (rnat1_kaddr >= kbsp)
299 rnat1 = sw->ar_rnat;
300 else if (rnat1_kaddr > krbs)
301 rnat1 = *rnat1_kaddr;
302 urnat |= (rnat1 & m) << (63 - shift);
303 return urnat;
307 * The reverse of get_rnat.
309 static void
310 put_rnat (struct task_struct *task, struct switch_stack *sw,
311 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
312 unsigned long *urbs_end)
314 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
315 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
316 long num_regs, nbits;
317 struct pt_regs *pt;
318 unsigned long cfm, *urbs_kargs;
320 pt = task_pt_regs(task);
321 kbsp = (unsigned long *) sw->ar_bspstore;
322 ubspstore = (unsigned long *) pt->ar_bspstore;
324 urbs_kargs = urbs_end;
325 if (in_syscall(pt)) {
327 * If entered via syscall, don't allow user to set rnat bits
328 * for syscall args.
330 cfm = pt->cr_ifs;
331 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 if (urbs_kargs >= urnat_addr)
335 nbits = 63;
336 else {
337 if ((urnat_addr - 63) >= urbs_kargs)
338 return;
339 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
341 mask = MASK(nbits);
344 * First, figure out which bit number slot 0 in user-land maps
345 * to in the kernel rnat. Do this by figuring out how many
346 * register slots we're beyond the user's backingstore and
347 * then computing the equivalent address in kernel space.
349 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
350 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
351 shift = ia64_rse_slot_num(slot0_kaddr);
352 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
353 rnat0_kaddr = rnat1_kaddr - 64;
355 if (ubspstore + 63 > urnat_addr) {
356 /* some bits need to be place in pt->ar_rnat: */
357 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
358 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
359 mask &= ~umask;
360 if (!mask)
361 return;
364 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
365 * rnat slot is ignored. so we don't have to clear it here.
367 rnat0 = (urnat << shift);
368 m = mask << shift;
369 if (rnat0_kaddr >= kbsp)
370 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
371 else if (rnat0_kaddr > krbs)
372 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
374 rnat1 = (urnat >> (63 - shift));
375 m = mask >> (63 - shift);
376 if (rnat1_kaddr >= kbsp)
377 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
378 else if (rnat1_kaddr > krbs)
379 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382 static inline int
383 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
384 unsigned long urbs_end)
386 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
387 urbs_end);
388 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
392 * Read a word from the user-level backing store of task CHILD. ADDR
393 * is the user-level address to read the word from, VAL a pointer to
394 * the return value, and USER_BSP gives the end of the user-level
395 * backing store (i.e., it's the address that would be in ar.bsp after
396 * the user executed a "cover" instruction).
398 * This routine takes care of accessing the kernel register backing
399 * store for those registers that got spilled there. It also takes
400 * care of calculating the appropriate RNaT collection words.
402 long
403 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
404 unsigned long user_rbs_end, unsigned long addr, long *val)
406 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
407 struct pt_regs *child_regs;
408 size_t copied;
409 long ret;
411 urbs_end = (long *) user_rbs_end;
412 laddr = (unsigned long *) addr;
413 child_regs = task_pt_regs(child);
414 bspstore = (unsigned long *) child_regs->ar_bspstore;
415 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
416 if (on_kernel_rbs(addr, (unsigned long) bspstore,
417 (unsigned long) urbs_end))
420 * Attempt to read the RBS in an area that's actually
421 * on the kernel RBS => read the corresponding bits in
422 * the kernel RBS.
424 rnat_addr = ia64_rse_rnat_addr(laddr);
425 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
427 if (laddr == rnat_addr) {
428 /* return NaT collection word itself */
429 *val = ret;
430 return 0;
433 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
435 * It is implementation dependent whether the
436 * data portion of a NaT value gets saved on a
437 * st8.spill or RSE spill (e.g., see EAS 2.6,
438 * 4.4.4.6 Register Spill and Fill). To get
439 * consistent behavior across all possible
440 * IA-64 implementations, we return zero in
441 * this case.
443 *val = 0;
444 return 0;
447 if (laddr < urbs_end) {
449 * The desired word is on the kernel RBS and
450 * is not a NaT.
452 regnum = ia64_rse_num_regs(bspstore, laddr);
453 *val = *ia64_rse_skip_regs(krbs, regnum);
454 return 0;
457 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
458 if (copied != sizeof(ret))
459 return -EIO;
460 *val = ret;
461 return 0;
464 long
465 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
466 unsigned long user_rbs_end, unsigned long addr, long val)
468 unsigned long *bspstore, *krbs, regnum, *laddr;
469 unsigned long *urbs_end = (long *) user_rbs_end;
470 struct pt_regs *child_regs;
472 laddr = (unsigned long *) addr;
473 child_regs = task_pt_regs(child);
474 bspstore = (unsigned long *) child_regs->ar_bspstore;
475 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
476 if (on_kernel_rbs(addr, (unsigned long) bspstore,
477 (unsigned long) urbs_end))
480 * Attempt to write the RBS in an area that's actually
481 * on the kernel RBS => write the corresponding bits
482 * in the kernel RBS.
484 if (ia64_rse_is_rnat_slot(laddr))
485 put_rnat(child, child_stack, krbs, laddr, val,
486 urbs_end);
487 else {
488 if (laddr < urbs_end) {
489 regnum = ia64_rse_num_regs(bspstore, laddr);
490 *ia64_rse_skip_regs(krbs, regnum) = val;
493 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
494 != sizeof(val))
495 return -EIO;
496 return 0;
500 * Calculate the address of the end of the user-level register backing
501 * store. This is the address that would have been stored in ar.bsp
502 * if the user had executed a "cover" instruction right before
503 * entering the kernel. If CFMP is not NULL, it is used to return the
504 * "current frame mask" that was active at the time the kernel was
505 * entered.
507 unsigned long
508 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
509 unsigned long *cfmp)
511 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
512 long ndirty;
514 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
515 bspstore = (unsigned long *) pt->ar_bspstore;
516 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
518 if (in_syscall(pt))
519 ndirty += (cfm & 0x7f);
520 else
521 cfm &= ~(1UL << 63); /* clear valid bit */
523 if (cfmp)
524 *cfmp = cfm;
525 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
529 * Synchronize (i.e, write) the RSE backing store living in kernel
530 * space to the VM of the CHILD task. SW and PT are the pointers to
531 * the switch_stack and pt_regs structures, respectively.
532 * USER_RBS_END is the user-level address at which the backing store
533 * ends.
535 long
536 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
537 unsigned long user_rbs_start, unsigned long user_rbs_end)
539 unsigned long addr, val;
540 long ret;
542 /* now copy word for word from kernel rbs to user rbs: */
543 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
544 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
545 if (ret < 0)
546 return ret;
547 if (access_process_vm(child, addr, &val, sizeof(val), 1)
548 != sizeof(val))
549 return -EIO;
551 return 0;
554 static long
555 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
558 unsigned long addr, val;
559 long ret;
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val), 0)
564 != sizeof(val))
565 return -EIO;
567 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
568 if (ret < 0)
569 return ret;
571 return 0;
574 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
575 unsigned long, unsigned long);
577 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579 struct pt_regs *pt;
580 unsigned long urbs_end;
581 syncfunc_t fn = arg;
583 if (unw_unwind_to_user(info) < 0)
584 return;
585 pt = task_pt_regs(info->task);
586 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
592 * when a thread is stopped (ptraced), debugger might change thread's user
593 * stack (change memory directly), and we must avoid the RSE stored in kernel
594 * to override user stack (user space's RSE is newer than kernel's in the
595 * case). To workaround the issue, we copy kernel RSE to user RSE before the
596 * task is stopped, so user RSE has updated data. we then copy user RSE to
597 * kernel after the task is resummed from traced stop and kernel will use the
598 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
599 * synchronize user RSE to kernel.
601 void ia64_ptrace_stop(void)
603 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
604 return;
605 set_notify_resume(current);
606 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
610 * This is called to read back the register backing store.
612 void ia64_sync_krbs(void)
614 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
620 * After PTRACE_ATTACH, a thread's register backing store area in user
621 * space is assumed to contain correct data whenever the thread is
622 * stopped. arch_ptrace_stop takes care of this on tracing stops.
623 * But if the child was already stopped for job control when we attach
624 * to it, then it might not ever get into ptrace_stop by the time we
625 * want to examine the user memory containing the RBS.
627 void
628 ptrace_attach_sync_user_rbs (struct task_struct *child)
630 int stopped = 0;
631 struct unw_frame_info info;
634 * If the child is in TASK_STOPPED, we need to change that to
635 * TASK_TRACED momentarily while we operate on it. This ensures
636 * that the child won't be woken up and return to user mode while
637 * we are doing the sync. (It can only be woken up for SIGKILL.)
640 read_lock(&tasklist_lock);
641 if (child->sighand) {
642 spin_lock_irq(&child->sighand->siglock);
643 if (child->state == TASK_STOPPED &&
644 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
645 set_notify_resume(child);
647 child->state = TASK_TRACED;
648 stopped = 1;
650 spin_unlock_irq(&child->sighand->siglock);
652 read_unlock(&tasklist_lock);
654 if (!stopped)
655 return;
657 unw_init_from_blocked_task(&info, child);
658 do_sync_rbs(&info, ia64_sync_user_rbs);
661 * Now move the child back into TASK_STOPPED if it should be in a
662 * job control stop, so that SIGCONT can be used to wake it up.
664 read_lock(&tasklist_lock);
665 if (child->sighand) {
666 spin_lock_irq(&child->sighand->siglock);
667 if (child->state == TASK_TRACED &&
668 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
669 child->state = TASK_STOPPED;
671 spin_unlock_irq(&child->sighand->siglock);
673 read_unlock(&tasklist_lock);
676 static inline int
677 thread_matches (struct task_struct *thread, unsigned long addr)
679 unsigned long thread_rbs_end;
680 struct pt_regs *thread_regs;
682 if (ptrace_check_attach(thread, 0) < 0)
684 * If the thread is not in an attachable state, we'll
685 * ignore it. The net effect is that if ADDR happens
686 * to overlap with the portion of the thread's
687 * register backing store that is currently residing
688 * on the thread's kernel stack, then ptrace() may end
689 * up accessing a stale value. But if the thread
690 * isn't stopped, that's a problem anyhow, so we're
691 * doing as well as we can...
693 return 0;
695 thread_regs = task_pt_regs(thread);
696 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
697 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
698 return 0;
700 return 1; /* looks like we've got a winner */
704 * Write f32-f127 back to task->thread.fph if it has been modified.
706 inline void
707 ia64_flush_fph (struct task_struct *task)
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
712 * Prevent migrating this task while
713 * we're fiddling with the FPU state
715 preempt_disable();
716 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
717 psr->mfh = 0;
718 task->thread.flags |= IA64_THREAD_FPH_VALID;
719 ia64_save_fpu(&task->thread.fph[0]);
721 preempt_enable();
725 * Sync the fph state of the task so that it can be manipulated
726 * through thread.fph. If necessary, f32-f127 are written back to
727 * thread.fph or, if the fph state hasn't been used before, thread.fph
728 * is cleared to zeroes. Also, access to f32-f127 is disabled to
729 * ensure that the task picks up the state from thread.fph when it
730 * executes again.
732 void
733 ia64_sync_fph (struct task_struct *task)
735 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
737 ia64_flush_fph(task);
738 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
739 task->thread.flags |= IA64_THREAD_FPH_VALID;
740 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
742 ia64_drop_fpu(task);
743 psr->dfh = 1;
747 * Change the machine-state of CHILD such that it will return via the normal
748 * kernel exit-path, rather than the syscall-exit path.
750 static void
751 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
752 unsigned long cfm)
754 struct unw_frame_info info, prev_info;
755 unsigned long ip, sp, pr;
757 unw_init_from_blocked_task(&info, child);
758 while (1) {
759 prev_info = info;
760 if (unw_unwind(&info) < 0)
761 return;
763 unw_get_sp(&info, &sp);
764 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
765 < IA64_PT_REGS_SIZE) {
766 dprintk("ptrace.%s: ran off the top of the kernel "
767 "stack\n", __func__);
768 return;
770 if (unw_get_pr (&prev_info, &pr) < 0) {
771 unw_get_rp(&prev_info, &ip);
772 dprintk("ptrace.%s: failed to read "
773 "predicate register (ip=0x%lx)\n",
774 __func__, ip);
775 return;
777 if (unw_is_intr_frame(&info)
778 && (pr & (1UL << PRED_USER_STACK)))
779 break;
783 * Note: at the time of this call, the target task is blocked
784 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
785 * (aka, "pLvSys") we redirect execution from
786 * .work_pending_syscall_end to .work_processed_kernel.
788 unw_get_pr(&prev_info, &pr);
789 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
790 pr |= (1UL << PRED_NON_SYSCALL);
791 unw_set_pr(&prev_info, pr);
793 pt->cr_ifs = (1UL << 63) | cfm;
795 * Clear the memory that is NOT written on syscall-entry to
796 * ensure we do not leak kernel-state to user when execution
797 * resumes.
799 pt->r2 = 0;
800 pt->r3 = 0;
801 pt->r14 = 0;
802 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
803 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
804 pt->b7 = 0;
805 pt->ar_ccv = 0;
806 pt->ar_csd = 0;
807 pt->ar_ssd = 0;
810 static int
811 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
812 struct unw_frame_info *info,
813 unsigned long *data, int write_access)
815 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
816 char nat = 0;
818 if (write_access) {
819 nat_bits = *data;
820 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
821 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
822 dprintk("ptrace: failed to set ar.unat\n");
823 return -1;
825 for (regnum = 4; regnum <= 7; ++regnum) {
826 unw_get_gr(info, regnum, &dummy, &nat);
827 unw_set_gr(info, regnum, dummy,
828 (nat_bits >> regnum) & 1);
830 } else {
831 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
832 dprintk("ptrace: failed to read ar.unat\n");
833 return -1;
835 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
836 for (regnum = 4; regnum <= 7; ++regnum) {
837 unw_get_gr(info, regnum, &dummy, &nat);
838 nat_bits |= (nat != 0) << regnum;
840 *data = nat_bits;
842 return 0;
845 static int
846 access_uarea (struct task_struct *child, unsigned long addr,
847 unsigned long *data, int write_access);
849 static long
850 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
852 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
853 struct unw_frame_info info;
854 struct ia64_fpreg fpval;
855 struct switch_stack *sw;
856 struct pt_regs *pt;
857 long ret, retval = 0;
858 char nat = 0;
859 int i;
861 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
862 return -EIO;
864 pt = task_pt_regs(child);
865 sw = (struct switch_stack *) (child->thread.ksp + 16);
866 unw_init_from_blocked_task(&info, child);
867 if (unw_unwind_to_user(&info) < 0) {
868 return -EIO;
871 if (((unsigned long) ppr & 0x7) != 0) {
872 dprintk("ptrace:unaligned register address %p\n", ppr);
873 return -EIO;
876 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
877 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
878 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
879 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
880 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
881 || access_uarea(child, PT_CFM, &cfm, 0)
882 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
883 return -EIO;
885 /* control regs */
887 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
888 retval |= __put_user(psr, &ppr->cr_ipsr);
890 /* app regs */
892 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
893 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
894 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
895 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
896 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
897 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
899 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
900 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
901 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
902 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
903 retval |= __put_user(cfm, &ppr->cfm);
905 /* gr1-gr3 */
907 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
908 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
910 /* gr4-gr7 */
912 for (i = 4; i < 8; i++) {
913 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
914 return -EIO;
915 retval |= __put_user(val, &ppr->gr[i]);
918 /* gr8-gr11 */
920 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
922 /* gr12-gr15 */
924 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
925 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
926 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
928 /* gr16-gr31 */
930 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
932 /* b0 */
934 retval |= __put_user(pt->b0, &ppr->br[0]);
936 /* b1-b5 */
938 for (i = 1; i < 6; i++) {
939 if (unw_access_br(&info, i, &val, 0) < 0)
940 return -EIO;
941 __put_user(val, &ppr->br[i]);
944 /* b6-b7 */
946 retval |= __put_user(pt->b6, &ppr->br[6]);
947 retval |= __put_user(pt->b7, &ppr->br[7]);
949 /* fr2-fr5 */
951 for (i = 2; i < 6; i++) {
952 if (unw_get_fr(&info, i, &fpval) < 0)
953 return -EIO;
954 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
957 /* fr6-fr11 */
959 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
960 sizeof(struct ia64_fpreg) * 6);
962 /* fp scratch regs(12-15) */
964 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
965 sizeof(struct ia64_fpreg) * 4);
967 /* fr16-fr31 */
969 for (i = 16; i < 32; i++) {
970 if (unw_get_fr(&info, i, &fpval) < 0)
971 return -EIO;
972 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
975 /* fph */
977 ia64_flush_fph(child);
978 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
979 sizeof(ppr->fr[32]) * 96);
981 /* preds */
983 retval |= __put_user(pt->pr, &ppr->pr);
985 /* nat bits */
987 retval |= __put_user(nat_bits, &ppr->nat);
989 ret = retval ? -EIO : 0;
990 return ret;
993 static long
994 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
996 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
997 struct unw_frame_info info;
998 struct switch_stack *sw;
999 struct ia64_fpreg fpval;
1000 struct pt_regs *pt;
1001 long ret, retval = 0;
1002 int i;
1004 memset(&fpval, 0, sizeof(fpval));
1006 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1007 return -EIO;
1009 pt = task_pt_regs(child);
1010 sw = (struct switch_stack *) (child->thread.ksp + 16);
1011 unw_init_from_blocked_task(&info, child);
1012 if (unw_unwind_to_user(&info) < 0) {
1013 return -EIO;
1016 if (((unsigned long) ppr & 0x7) != 0) {
1017 dprintk("ptrace:unaligned register address %p\n", ppr);
1018 return -EIO;
1021 /* control regs */
1023 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1024 retval |= __get_user(psr, &ppr->cr_ipsr);
1026 /* app regs */
1028 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1029 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1030 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1031 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1032 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1033 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1035 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1036 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1037 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1038 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1039 retval |= __get_user(cfm, &ppr->cfm);
1041 /* gr1-gr3 */
1043 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1044 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1046 /* gr4-gr7 */
1048 for (i = 4; i < 8; i++) {
1049 retval |= __get_user(val, &ppr->gr[i]);
1050 /* NaT bit will be set via PT_NAT_BITS: */
1051 if (unw_set_gr(&info, i, val, 0) < 0)
1052 return -EIO;
1055 /* gr8-gr11 */
1057 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1059 /* gr12-gr15 */
1061 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1062 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1063 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1065 /* gr16-gr31 */
1067 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1069 /* b0 */
1071 retval |= __get_user(pt->b0, &ppr->br[0]);
1073 /* b1-b5 */
1075 for (i = 1; i < 6; i++) {
1076 retval |= __get_user(val, &ppr->br[i]);
1077 unw_set_br(&info, i, val);
1080 /* b6-b7 */
1082 retval |= __get_user(pt->b6, &ppr->br[6]);
1083 retval |= __get_user(pt->b7, &ppr->br[7]);
1085 /* fr2-fr5 */
1087 for (i = 2; i < 6; i++) {
1088 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1089 if (unw_set_fr(&info, i, fpval) < 0)
1090 return -EIO;
1093 /* fr6-fr11 */
1095 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1096 sizeof(ppr->fr[6]) * 6);
1098 /* fp scratch regs(12-15) */
1100 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1101 sizeof(ppr->fr[12]) * 4);
1103 /* fr16-fr31 */
1105 for (i = 16; i < 32; i++) {
1106 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1107 sizeof(fpval));
1108 if (unw_set_fr(&info, i, fpval) < 0)
1109 return -EIO;
1112 /* fph */
1114 ia64_sync_fph(child);
1115 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1116 sizeof(ppr->fr[32]) * 96);
1118 /* preds */
1120 retval |= __get_user(pt->pr, &ppr->pr);
1122 /* nat bits */
1124 retval |= __get_user(nat_bits, &ppr->nat);
1126 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1127 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1128 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1129 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1130 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1131 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1132 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1133 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1135 ret = retval ? -EIO : 0;
1136 return ret;
1139 void
1140 user_enable_single_step (struct task_struct *child)
1142 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1144 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1145 child_psr->ss = 1;
1148 void
1149 user_enable_block_step (struct task_struct *child)
1151 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1153 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1154 child_psr->tb = 1;
1157 void
1158 user_disable_single_step (struct task_struct *child)
1160 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1162 /* make sure the single step/taken-branch trap bits are not set: */
1163 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1164 child_psr->ss = 0;
1165 child_psr->tb = 0;
1169 * Called by kernel/ptrace.c when detaching..
1171 * Make sure the single step bit is not set.
1173 void
1174 ptrace_disable (struct task_struct *child)
1176 user_disable_single_step(child);
1179 long
1180 arch_ptrace (struct task_struct *child, long request,
1181 unsigned long addr, unsigned long data)
1183 switch (request) {
1184 case PTRACE_PEEKTEXT:
1185 case PTRACE_PEEKDATA:
1186 /* read word at location addr */
1187 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1188 != sizeof(data))
1189 return -EIO;
1190 /* ensure return value is not mistaken for error code */
1191 force_successful_syscall_return();
1192 return data;
1194 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1195 * by the generic ptrace_request().
1198 case PTRACE_PEEKUSR:
1199 /* read the word at addr in the USER area */
1200 if (access_uarea(child, addr, &data, 0) < 0)
1201 return -EIO;
1202 /* ensure return value is not mistaken for error code */
1203 force_successful_syscall_return();
1204 return data;
1206 case PTRACE_POKEUSR:
1207 /* write the word at addr in the USER area */
1208 if (access_uarea(child, addr, &data, 1) < 0)
1209 return -EIO;
1210 return 0;
1212 case PTRACE_OLD_GETSIGINFO:
1213 /* for backwards-compatibility */
1214 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1216 case PTRACE_OLD_SETSIGINFO:
1217 /* for backwards-compatibility */
1218 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1220 case PTRACE_GETREGS:
1221 return ptrace_getregs(child,
1222 (struct pt_all_user_regs __user *) data);
1224 case PTRACE_SETREGS:
1225 return ptrace_setregs(child,
1226 (struct pt_all_user_regs __user *) data);
1228 default:
1229 return ptrace_request(child, request, addr, data);
1234 /* "asmlinkage" so the input arguments are preserved... */
1236 asmlinkage long
1237 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1238 long arg4, long arg5, long arg6, long arg7,
1239 struct pt_regs regs)
1241 if (test_thread_flag(TIF_SYSCALL_TRACE))
1242 if (tracehook_report_syscall_entry(&regs))
1243 return -ENOSYS;
1245 /* copy user rbs to kernel rbs */
1246 if (test_thread_flag(TIF_RESTORE_RSE))
1247 ia64_sync_krbs();
1250 audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1252 return 0;
1255 /* "asmlinkage" so the input arguments are preserved... */
1257 asmlinkage void
1258 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1259 long arg4, long arg5, long arg6, long arg7,
1260 struct pt_regs regs)
1262 int step;
1264 audit_syscall_exit(&regs);
1266 step = test_thread_flag(TIF_SINGLESTEP);
1267 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1268 tracehook_report_syscall_exit(&regs, step);
1270 /* copy user rbs to kernel rbs */
1271 if (test_thread_flag(TIF_RESTORE_RSE))
1272 ia64_sync_krbs();
1275 /* Utrace implementation starts here */
1276 struct regset_get {
1277 void *kbuf;
1278 void __user *ubuf;
1281 struct regset_set {
1282 const void *kbuf;
1283 const void __user *ubuf;
1286 struct regset_getset {
1287 struct task_struct *target;
1288 const struct user_regset *regset;
1289 union {
1290 struct regset_get get;
1291 struct regset_set set;
1292 } u;
1293 unsigned int pos;
1294 unsigned int count;
1295 int ret;
1298 static int
1299 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1300 unsigned long addr, unsigned long *data, int write_access)
1302 struct pt_regs *pt;
1303 unsigned long *ptr = NULL;
1304 int ret;
1305 char nat = 0;
1307 pt = task_pt_regs(target);
1308 switch (addr) {
1309 case ELF_GR_OFFSET(1):
1310 ptr = &pt->r1;
1311 break;
1312 case ELF_GR_OFFSET(2):
1313 case ELF_GR_OFFSET(3):
1314 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1315 break;
1316 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1317 if (write_access) {
1318 /* read NaT bit first: */
1319 unsigned long dummy;
1321 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1322 if (ret < 0)
1323 return ret;
1325 return unw_access_gr(info, addr/8, data, &nat, write_access);
1326 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1327 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1328 break;
1329 case ELF_GR_OFFSET(12):
1330 case ELF_GR_OFFSET(13):
1331 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1332 break;
1333 case ELF_GR_OFFSET(14):
1334 ptr = &pt->r14;
1335 break;
1336 case ELF_GR_OFFSET(15):
1337 ptr = &pt->r15;
1339 if (write_access)
1340 *ptr = *data;
1341 else
1342 *data = *ptr;
1343 return 0;
1346 static int
1347 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1348 unsigned long addr, unsigned long *data, int write_access)
1350 struct pt_regs *pt;
1351 unsigned long *ptr = NULL;
1353 pt = task_pt_regs(target);
1354 switch (addr) {
1355 case ELF_BR_OFFSET(0):
1356 ptr = &pt->b0;
1357 break;
1358 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1359 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1360 data, write_access);
1361 case ELF_BR_OFFSET(6):
1362 ptr = &pt->b6;
1363 break;
1364 case ELF_BR_OFFSET(7):
1365 ptr = &pt->b7;
1367 if (write_access)
1368 *ptr = *data;
1369 else
1370 *data = *ptr;
1371 return 0;
1374 static int
1375 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1376 unsigned long addr, unsigned long *data, int write_access)
1378 struct pt_regs *pt;
1379 unsigned long cfm, urbs_end;
1380 unsigned long *ptr = NULL;
1382 pt = task_pt_regs(target);
1383 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1384 switch (addr) {
1385 case ELF_AR_RSC_OFFSET:
1386 /* force PL3 */
1387 if (write_access)
1388 pt->ar_rsc = *data | (3 << 2);
1389 else
1390 *data = pt->ar_rsc;
1391 return 0;
1392 case ELF_AR_BSP_OFFSET:
1394 * By convention, we use PT_AR_BSP to refer to
1395 * the end of the user-level backing store.
1396 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1397 * to get the real value of ar.bsp at the time
1398 * the kernel was entered.
1400 * Furthermore, when changing the contents of
1401 * PT_AR_BSP (or PT_CFM) while the task is
1402 * blocked in a system call, convert the state
1403 * so that the non-system-call exit
1404 * path is used. This ensures that the proper
1405 * state will be picked up when resuming
1406 * execution. However, it *also* means that
1407 * once we write PT_AR_BSP/PT_CFM, it won't be
1408 * possible to modify the syscall arguments of
1409 * the pending system call any longer. This
1410 * shouldn't be an issue because modifying
1411 * PT_AR_BSP/PT_CFM generally implies that
1412 * we're either abandoning the pending system
1413 * call or that we defer it's re-execution
1414 * (e.g., due to GDB doing an inferior
1415 * function call).
1417 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1418 if (write_access) {
1419 if (*data != urbs_end) {
1420 if (in_syscall(pt))
1421 convert_to_non_syscall(target,
1423 cfm);
1425 * Simulate user-level write
1426 * of ar.bsp:
1428 pt->loadrs = 0;
1429 pt->ar_bspstore = *data;
1431 } else
1432 *data = urbs_end;
1433 return 0;
1434 case ELF_AR_BSPSTORE_OFFSET:
1435 ptr = &pt->ar_bspstore;
1436 break;
1437 case ELF_AR_RNAT_OFFSET:
1438 ptr = &pt->ar_rnat;
1439 break;
1440 case ELF_AR_CCV_OFFSET:
1441 ptr = &pt->ar_ccv;
1442 break;
1443 case ELF_AR_UNAT_OFFSET:
1444 ptr = &pt->ar_unat;
1445 break;
1446 case ELF_AR_FPSR_OFFSET:
1447 ptr = &pt->ar_fpsr;
1448 break;
1449 case ELF_AR_PFS_OFFSET:
1450 ptr = &pt->ar_pfs;
1451 break;
1452 case ELF_AR_LC_OFFSET:
1453 return unw_access_ar(info, UNW_AR_LC, data,
1454 write_access);
1455 case ELF_AR_EC_OFFSET:
1456 return unw_access_ar(info, UNW_AR_EC, data,
1457 write_access);
1458 case ELF_AR_CSD_OFFSET:
1459 ptr = &pt->ar_csd;
1460 break;
1461 case ELF_AR_SSD_OFFSET:
1462 ptr = &pt->ar_ssd;
1464 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1465 switch (addr) {
1466 case ELF_CR_IIP_OFFSET:
1467 ptr = &pt->cr_iip;
1468 break;
1469 case ELF_CFM_OFFSET:
1470 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1471 if (write_access) {
1472 if (((cfm ^ *data) & PFM_MASK) != 0) {
1473 if (in_syscall(pt))
1474 convert_to_non_syscall(target,
1476 cfm);
1477 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1478 | (*data & PFM_MASK));
1480 } else
1481 *data = cfm;
1482 return 0;
1483 case ELF_CR_IPSR_OFFSET:
1484 if (write_access) {
1485 unsigned long tmp = *data;
1486 /* psr.ri==3 is a reserved value: SDM 2:25 */
1487 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1488 tmp &= ~IA64_PSR_RI;
1489 pt->cr_ipsr = ((tmp & IPSR_MASK)
1490 | (pt->cr_ipsr & ~IPSR_MASK));
1491 } else
1492 *data = (pt->cr_ipsr & IPSR_MASK);
1493 return 0;
1495 } else if (addr == ELF_NAT_OFFSET)
1496 return access_nat_bits(target, pt, info,
1497 data, write_access);
1498 else if (addr == ELF_PR_OFFSET)
1499 ptr = &pt->pr;
1500 else
1501 return -1;
1503 if (write_access)
1504 *ptr = *data;
1505 else
1506 *data = *ptr;
1508 return 0;
1511 static int
1512 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1513 unsigned long addr, unsigned long *data, int write_access)
1515 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1516 return access_elf_gpreg(target, info, addr, data, write_access);
1517 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1518 return access_elf_breg(target, info, addr, data, write_access);
1519 else
1520 return access_elf_areg(target, info, addr, data, write_access);
1523 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1525 struct pt_regs *pt;
1526 struct regset_getset *dst = arg;
1527 elf_greg_t tmp[16];
1528 unsigned int i, index, min_copy;
1530 if (unw_unwind_to_user(info) < 0)
1531 return;
1534 * coredump format:
1535 * r0-r31
1536 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1537 * predicate registers (p0-p63)
1538 * b0-b7
1539 * ip cfm user-mask
1540 * ar.rsc ar.bsp ar.bspstore ar.rnat
1541 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1545 /* Skip r0 */
1546 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1547 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1548 &dst->u.get.kbuf,
1549 &dst->u.get.ubuf,
1550 0, ELF_GR_OFFSET(1));
1551 if (dst->ret || dst->count == 0)
1552 return;
1555 /* gr1 - gr15 */
1556 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1557 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1558 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1559 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1560 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1561 index++)
1562 if (access_elf_reg(dst->target, info, i,
1563 &tmp[index], 0) < 0) {
1564 dst->ret = -EIO;
1565 return;
1567 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1568 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1569 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1570 if (dst->ret || dst->count == 0)
1571 return;
1574 /* r16-r31 */
1575 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1576 pt = task_pt_regs(dst->target);
1577 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1578 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1579 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1580 if (dst->ret || dst->count == 0)
1581 return;
1584 /* nat, pr, b0 - b7 */
1585 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1586 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1587 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1588 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1589 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1590 index++)
1591 if (access_elf_reg(dst->target, info, i,
1592 &tmp[index], 0) < 0) {
1593 dst->ret = -EIO;
1594 return;
1596 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1597 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1598 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1599 if (dst->ret || dst->count == 0)
1600 return;
1603 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1604 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1606 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1607 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1608 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1609 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1610 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1611 index++)
1612 if (access_elf_reg(dst->target, info, i,
1613 &tmp[index], 0) < 0) {
1614 dst->ret = -EIO;
1615 return;
1617 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1618 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1619 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1623 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1625 struct pt_regs *pt;
1626 struct regset_getset *dst = arg;
1627 elf_greg_t tmp[16];
1628 unsigned int i, index;
1630 if (unw_unwind_to_user(info) < 0)
1631 return;
1633 /* Skip r0 */
1634 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1635 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1636 &dst->u.set.kbuf,
1637 &dst->u.set.ubuf,
1638 0, ELF_GR_OFFSET(1));
1639 if (dst->ret || dst->count == 0)
1640 return;
1643 /* gr1-gr15 */
1644 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1645 i = dst->pos;
1646 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1647 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1648 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1649 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1650 if (dst->ret)
1651 return;
1652 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1653 if (access_elf_reg(dst->target, info, i,
1654 &tmp[index], 1) < 0) {
1655 dst->ret = -EIO;
1656 return;
1658 if (dst->count == 0)
1659 return;
1662 /* gr16-gr31 */
1663 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1664 pt = task_pt_regs(dst->target);
1665 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1666 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1667 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1668 if (dst->ret || dst->count == 0)
1669 return;
1672 /* nat, pr, b0 - b7 */
1673 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1674 i = dst->pos;
1675 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1676 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1677 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1678 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1679 if (dst->ret)
1680 return;
1681 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1682 if (access_elf_reg(dst->target, info, i,
1683 &tmp[index], 1) < 0) {
1684 dst->ret = -EIO;
1685 return;
1687 if (dst->count == 0)
1688 return;
1691 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1692 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1694 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1695 i = dst->pos;
1696 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1697 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1698 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1699 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1700 if (dst->ret)
1701 return;
1702 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1703 if (access_elf_reg(dst->target, info, i,
1704 &tmp[index], 1) < 0) {
1705 dst->ret = -EIO;
1706 return;
1711 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1713 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1715 struct regset_getset *dst = arg;
1716 struct task_struct *task = dst->target;
1717 elf_fpreg_t tmp[30];
1718 int index, min_copy, i;
1720 if (unw_unwind_to_user(info) < 0)
1721 return;
1723 /* Skip pos 0 and 1 */
1724 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1725 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1726 &dst->u.get.kbuf,
1727 &dst->u.get.ubuf,
1728 0, ELF_FP_OFFSET(2));
1729 if (dst->count == 0 || dst->ret)
1730 return;
1733 /* fr2-fr31 */
1734 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1735 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1737 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1738 dst->pos + dst->count);
1739 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1740 index++)
1741 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1742 &tmp[index])) {
1743 dst->ret = -EIO;
1744 return;
1746 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1747 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1748 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1749 if (dst->count == 0 || dst->ret)
1750 return;
1753 /* fph */
1754 if (dst->count > 0) {
1755 ia64_flush_fph(dst->target);
1756 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1757 dst->ret = user_regset_copyout(
1758 &dst->pos, &dst->count,
1759 &dst->u.get.kbuf, &dst->u.get.ubuf,
1760 &dst->target->thread.fph,
1761 ELF_FP_OFFSET(32), -1);
1762 else
1763 /* Zero fill instead. */
1764 dst->ret = user_regset_copyout_zero(
1765 &dst->pos, &dst->count,
1766 &dst->u.get.kbuf, &dst->u.get.ubuf,
1767 ELF_FP_OFFSET(32), -1);
1771 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1773 struct regset_getset *dst = arg;
1774 elf_fpreg_t fpreg, tmp[30];
1775 int index, start, end;
1777 if (unw_unwind_to_user(info) < 0)
1778 return;
1780 /* Skip pos 0 and 1 */
1781 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1782 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1783 &dst->u.set.kbuf,
1784 &dst->u.set.ubuf,
1785 0, ELF_FP_OFFSET(2));
1786 if (dst->count == 0 || dst->ret)
1787 return;
1790 /* fr2-fr31 */
1791 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1792 start = dst->pos;
1793 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1794 dst->pos + dst->count);
1795 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1796 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1797 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1798 if (dst->ret)
1799 return;
1801 if (start & 0xF) { /* only write high part */
1802 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1803 &fpreg)) {
1804 dst->ret = -EIO;
1805 return;
1807 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1808 = fpreg.u.bits[0];
1809 start &= ~0xFUL;
1811 if (end & 0xF) { /* only write low part */
1812 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1813 &fpreg)) {
1814 dst->ret = -EIO;
1815 return;
1817 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1818 = fpreg.u.bits[1];
1819 end = (end + 0xF) & ~0xFUL;
1822 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1823 index = start / sizeof(elf_fpreg_t);
1824 if (unw_set_fr(info, index, tmp[index - 2])) {
1825 dst->ret = -EIO;
1826 return;
1829 if (dst->ret || dst->count == 0)
1830 return;
1833 /* fph */
1834 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1835 ia64_sync_fph(dst->target);
1836 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1837 &dst->u.set.kbuf,
1838 &dst->u.set.ubuf,
1839 &dst->target->thread.fph,
1840 ELF_FP_OFFSET(32), -1);
1844 static int
1845 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1846 struct task_struct *target,
1847 const struct user_regset *regset,
1848 unsigned int pos, unsigned int count,
1849 const void *kbuf, const void __user *ubuf)
1851 struct regset_getset info = { .target = target, .regset = regset,
1852 .pos = pos, .count = count,
1853 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1854 .ret = 0 };
1856 if (target == current)
1857 unw_init_running(call, &info);
1858 else {
1859 struct unw_frame_info ufi;
1860 memset(&ufi, 0, sizeof(ufi));
1861 unw_init_from_blocked_task(&ufi, target);
1862 (*call)(&ufi, &info);
1865 return info.ret;
1868 static int
1869 gpregs_get(struct task_struct *target,
1870 const struct user_regset *regset,
1871 unsigned int pos, unsigned int count,
1872 void *kbuf, void __user *ubuf)
1874 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1875 kbuf, ubuf);
1878 static int gpregs_set(struct task_struct *target,
1879 const struct user_regset *regset,
1880 unsigned int pos, unsigned int count,
1881 const void *kbuf, const void __user *ubuf)
1883 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1884 kbuf, ubuf);
1887 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1889 do_sync_rbs(info, ia64_sync_user_rbs);
1893 * This is called to write back the register backing store.
1894 * ptrace does this before it stops, so that a tracer reading the user
1895 * memory after the thread stops will get the current register data.
1897 static int
1898 gpregs_writeback(struct task_struct *target,
1899 const struct user_regset *regset,
1900 int now)
1902 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1903 return 0;
1904 set_notify_resume(target);
1905 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1906 NULL, NULL);
1909 static int
1910 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1912 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1915 static int fpregs_get(struct task_struct *target,
1916 const struct user_regset *regset,
1917 unsigned int pos, unsigned int count,
1918 void *kbuf, void __user *ubuf)
1920 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1921 kbuf, ubuf);
1924 static int fpregs_set(struct task_struct *target,
1925 const struct user_regset *regset,
1926 unsigned int pos, unsigned int count,
1927 const void *kbuf, const void __user *ubuf)
1929 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1930 kbuf, ubuf);
1933 static int
1934 access_uarea(struct task_struct *child, unsigned long addr,
1935 unsigned long *data, int write_access)
1937 unsigned int pos = -1; /* an invalid value */
1938 int ret;
1939 unsigned long *ptr, regnum;
1941 if ((addr & 0x7) != 0) {
1942 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1943 return -1;
1945 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1946 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1947 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1948 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1949 dprintk("ptrace: rejecting access to register "
1950 "address 0x%lx\n", addr);
1951 return -1;
1954 switch (addr) {
1955 case PT_F32 ... (PT_F127 + 15):
1956 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1957 break;
1958 case PT_F2 ... (PT_F5 + 15):
1959 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1960 break;
1961 case PT_F10 ... (PT_F31 + 15):
1962 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1963 break;
1964 case PT_F6 ... (PT_F9 + 15):
1965 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1966 break;
1969 if (pos != -1) {
1970 if (write_access)
1971 ret = fpregs_set(child, NULL, pos,
1972 sizeof(unsigned long), data, NULL);
1973 else
1974 ret = fpregs_get(child, NULL, pos,
1975 sizeof(unsigned long), data, NULL);
1976 if (ret != 0)
1977 return -1;
1978 return 0;
1981 switch (addr) {
1982 case PT_NAT_BITS:
1983 pos = ELF_NAT_OFFSET;
1984 break;
1985 case PT_R4 ... PT_R7:
1986 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1987 break;
1988 case PT_B1 ... PT_B5:
1989 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1990 break;
1991 case PT_AR_EC:
1992 pos = ELF_AR_EC_OFFSET;
1993 break;
1994 case PT_AR_LC:
1995 pos = ELF_AR_LC_OFFSET;
1996 break;
1997 case PT_CR_IPSR:
1998 pos = ELF_CR_IPSR_OFFSET;
1999 break;
2000 case PT_CR_IIP:
2001 pos = ELF_CR_IIP_OFFSET;
2002 break;
2003 case PT_CFM:
2004 pos = ELF_CFM_OFFSET;
2005 break;
2006 case PT_AR_UNAT:
2007 pos = ELF_AR_UNAT_OFFSET;
2008 break;
2009 case PT_AR_PFS:
2010 pos = ELF_AR_PFS_OFFSET;
2011 break;
2012 case PT_AR_RSC:
2013 pos = ELF_AR_RSC_OFFSET;
2014 break;
2015 case PT_AR_RNAT:
2016 pos = ELF_AR_RNAT_OFFSET;
2017 break;
2018 case PT_AR_BSPSTORE:
2019 pos = ELF_AR_BSPSTORE_OFFSET;
2020 break;
2021 case PT_PR:
2022 pos = ELF_PR_OFFSET;
2023 break;
2024 case PT_B6:
2025 pos = ELF_BR_OFFSET(6);
2026 break;
2027 case PT_AR_BSP:
2028 pos = ELF_AR_BSP_OFFSET;
2029 break;
2030 case PT_R1 ... PT_R3:
2031 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2032 break;
2033 case PT_R12 ... PT_R15:
2034 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2035 break;
2036 case PT_R8 ... PT_R11:
2037 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2038 break;
2039 case PT_R16 ... PT_R31:
2040 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2041 break;
2042 case PT_AR_CCV:
2043 pos = ELF_AR_CCV_OFFSET;
2044 break;
2045 case PT_AR_FPSR:
2046 pos = ELF_AR_FPSR_OFFSET;
2047 break;
2048 case PT_B0:
2049 pos = ELF_BR_OFFSET(0);
2050 break;
2051 case PT_B7:
2052 pos = ELF_BR_OFFSET(7);
2053 break;
2054 case PT_AR_CSD:
2055 pos = ELF_AR_CSD_OFFSET;
2056 break;
2057 case PT_AR_SSD:
2058 pos = ELF_AR_SSD_OFFSET;
2059 break;
2062 if (pos != -1) {
2063 if (write_access)
2064 ret = gpregs_set(child, NULL, pos,
2065 sizeof(unsigned long), data, NULL);
2066 else
2067 ret = gpregs_get(child, NULL, pos,
2068 sizeof(unsigned long), data, NULL);
2069 if (ret != 0)
2070 return -1;
2071 return 0;
2074 /* access debug registers */
2075 if (addr >= PT_IBR) {
2076 regnum = (addr - PT_IBR) >> 3;
2077 ptr = &child->thread.ibr[0];
2078 } else {
2079 regnum = (addr - PT_DBR) >> 3;
2080 ptr = &child->thread.dbr[0];
2083 if (regnum >= 8) {
2084 dprintk("ptrace: rejecting access to register "
2085 "address 0x%lx\n", addr);
2086 return -1;
2088 #ifdef CONFIG_PERFMON
2090 * Check if debug registers are used by perfmon. This
2091 * test must be done once we know that we can do the
2092 * operation, i.e. the arguments are all valid, but
2093 * before we start modifying the state.
2095 * Perfmon needs to keep a count of how many processes
2096 * are trying to modify the debug registers for system
2097 * wide monitoring sessions.
2099 * We also include read access here, because they may
2100 * cause the PMU-installed debug register state
2101 * (dbr[], ibr[]) to be reset. The two arrays are also
2102 * used by perfmon, but we do not use
2103 * IA64_THREAD_DBG_VALID. The registers are restored
2104 * by the PMU context switch code.
2106 if (pfm_use_debug_registers(child))
2107 return -1;
2108 #endif
2110 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2111 child->thread.flags |= IA64_THREAD_DBG_VALID;
2112 memset(child->thread.dbr, 0,
2113 sizeof(child->thread.dbr));
2114 memset(child->thread.ibr, 0,
2115 sizeof(child->thread.ibr));
2118 ptr += regnum;
2120 if ((regnum & 1) && write_access) {
2121 /* don't let the user set kernel-level breakpoints: */
2122 *ptr = *data & ~(7UL << 56);
2123 return 0;
2125 if (write_access)
2126 *ptr = *data;
2127 else
2128 *data = *ptr;
2129 return 0;
2132 static const struct user_regset native_regsets[] = {
2134 .core_note_type = NT_PRSTATUS,
2135 .n = ELF_NGREG,
2136 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2137 .get = gpregs_get, .set = gpregs_set,
2138 .writeback = gpregs_writeback
2141 .core_note_type = NT_PRFPREG,
2142 .n = ELF_NFPREG,
2143 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2144 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2148 static const struct user_regset_view user_ia64_view = {
2149 .name = "ia64",
2150 .e_machine = EM_IA_64,
2151 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2154 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2156 return &user_ia64_view;
2159 struct syscall_get_set_args {
2160 unsigned int i;
2161 unsigned int n;
2162 unsigned long *args;
2163 struct pt_regs *regs;
2164 int rw;
2167 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2169 struct syscall_get_set_args *args = data;
2170 struct pt_regs *pt = args->regs;
2171 unsigned long *krbs, cfm, ndirty;
2172 int i, count;
2174 if (unw_unwind_to_user(info) < 0)
2175 return;
2177 cfm = pt->cr_ifs;
2178 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2179 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2181 count = 0;
2182 if (in_syscall(pt))
2183 count = min_t(int, args->n, cfm & 0x7f);
2185 for (i = 0; i < count; i++) {
2186 if (args->rw)
2187 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2188 args->args[i];
2189 else
2190 args->args[i] = *ia64_rse_skip_regs(krbs,
2191 ndirty + i + args->i);
2194 if (!args->rw) {
2195 while (i < args->n) {
2196 args->args[i] = 0;
2197 i++;
2202 void ia64_syscall_get_set_arguments(struct task_struct *task,
2203 struct pt_regs *regs, unsigned int i, unsigned int n,
2204 unsigned long *args, int rw)
2206 struct syscall_get_set_args data = {
2207 .i = i,
2208 .n = n,
2209 .args = args,
2210 .regs = regs,
2211 .rw = rw,
2214 if (task == current)
2215 unw_init_running(syscall_get_set_args_cb, &data);
2216 else {
2217 struct unw_frame_info ufi;
2218 memset(&ufi, 0, sizeof(ufi));
2219 unw_init_from_blocked_task(&ufi, task);
2220 syscall_get_set_args_cb(&ufi, &data);