spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / media / video / mt9v011.c
blobdb74dd27c722d987b07a4e625499d86061c3b4e2
1 /*
2 * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
4 * Copyright (c) 2009 Mauro Carvalho Chehab (mchehab@redhat.com)
5 * This code is placed under the terms of the GNU General Public License v2
6 */
8 #include <linux/i2c.h>
9 #include <linux/slab.h>
10 #include <linux/videodev2.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <asm/div64.h>
14 #include <media/v4l2-device.h>
15 #include <media/v4l2-chip-ident.h>
16 #include <media/mt9v011.h>
18 MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
19 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
20 MODULE_LICENSE("GPL");
22 static int debug;
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0-2)");
26 #define R00_MT9V011_CHIP_VERSION 0x00
27 #define R01_MT9V011_ROWSTART 0x01
28 #define R02_MT9V011_COLSTART 0x02
29 #define R03_MT9V011_HEIGHT 0x03
30 #define R04_MT9V011_WIDTH 0x04
31 #define R05_MT9V011_HBLANK 0x05
32 #define R06_MT9V011_VBLANK 0x06
33 #define R07_MT9V011_OUT_CTRL 0x07
34 #define R09_MT9V011_SHUTTER_WIDTH 0x09
35 #define R0A_MT9V011_CLK_SPEED 0x0a
36 #define R0B_MT9V011_RESTART 0x0b
37 #define R0C_MT9V011_SHUTTER_DELAY 0x0c
38 #define R0D_MT9V011_RESET 0x0d
39 #define R1E_MT9V011_DIGITAL_ZOOM 0x1e
40 #define R20_MT9V011_READ_MODE 0x20
41 #define R2B_MT9V011_GREEN_1_GAIN 0x2b
42 #define R2C_MT9V011_BLUE_GAIN 0x2c
43 #define R2D_MT9V011_RED_GAIN 0x2d
44 #define R2E_MT9V011_GREEN_2_GAIN 0x2e
45 #define R35_MT9V011_GLOBAL_GAIN 0x35
46 #define RF1_MT9V011_CHIP_ENABLE 0xf1
48 #define MT9V011_VERSION 0x8232
49 #define MT9V011_REV_B_VERSION 0x8243
51 /* supported controls */
52 static struct v4l2_queryctrl mt9v011_qctrl[] = {
54 .id = V4L2_CID_GAIN,
55 .type = V4L2_CTRL_TYPE_INTEGER,
56 .name = "Gain",
57 .minimum = 0,
58 .maximum = (1 << 12) - 1 - 0x0020,
59 .step = 1,
60 .default_value = 0x0020,
61 .flags = 0,
62 }, {
63 .id = V4L2_CID_EXPOSURE,
64 .type = V4L2_CTRL_TYPE_INTEGER,
65 .name = "Exposure",
66 .minimum = 0,
67 .maximum = 2047,
68 .step = 1,
69 .default_value = 0x01fc,
70 .flags = 0,
71 }, {
72 .id = V4L2_CID_RED_BALANCE,
73 .type = V4L2_CTRL_TYPE_INTEGER,
74 .name = "Red Balance",
75 .minimum = -1 << 9,
76 .maximum = (1 << 9) - 1,
77 .step = 1,
78 .default_value = 0,
79 .flags = 0,
80 }, {
81 .id = V4L2_CID_BLUE_BALANCE,
82 .type = V4L2_CTRL_TYPE_INTEGER,
83 .name = "Blue Balance",
84 .minimum = -1 << 9,
85 .maximum = (1 << 9) - 1,
86 .step = 1,
87 .default_value = 0,
88 .flags = 0,
89 }, {
90 .id = V4L2_CID_HFLIP,
91 .type = V4L2_CTRL_TYPE_BOOLEAN,
92 .name = "Mirror",
93 .minimum = 0,
94 .maximum = 1,
95 .step = 1,
96 .default_value = 0,
97 .flags = 0,
98 }, {
99 .id = V4L2_CID_VFLIP,
100 .type = V4L2_CTRL_TYPE_BOOLEAN,
101 .name = "Vflip",
102 .minimum = 0,
103 .maximum = 1,
104 .step = 1,
105 .default_value = 0,
106 .flags = 0,
107 }, {
111 struct mt9v011 {
112 struct v4l2_subdev sd;
113 unsigned width, height;
114 unsigned xtal;
115 unsigned hflip:1;
116 unsigned vflip:1;
118 u16 global_gain, exposure;
119 s16 red_bal, blue_bal;
122 static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
124 return container_of(sd, struct mt9v011, sd);
127 static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
129 struct i2c_client *c = v4l2_get_subdevdata(sd);
130 __be16 buffer;
131 int rc, val;
133 rc = i2c_master_send(c, &addr, 1);
134 if (rc != 1)
135 v4l2_dbg(0, debug, sd,
136 "i2c i/o error: rc == %d (should be 1)\n", rc);
138 msleep(10);
140 rc = i2c_master_recv(c, (char *)&buffer, 2);
141 if (rc != 2)
142 v4l2_dbg(0, debug, sd,
143 "i2c i/o error: rc == %d (should be 2)\n", rc);
145 val = be16_to_cpu(buffer);
147 v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
149 return val;
152 static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
153 u16 value)
155 struct i2c_client *c = v4l2_get_subdevdata(sd);
156 unsigned char buffer[3];
157 int rc;
159 buffer[0] = addr;
160 buffer[1] = value >> 8;
161 buffer[2] = value & 0xff;
163 v4l2_dbg(2, debug, sd,
164 "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
165 rc = i2c_master_send(c, buffer, 3);
166 if (rc != 3)
167 v4l2_dbg(0, debug, sd,
168 "i2c i/o error: rc == %d (should be 3)\n", rc);
172 struct i2c_reg_value {
173 unsigned char reg;
174 u16 value;
178 * Values used at the original driver
179 * Some values are marked as Reserved at the datasheet
181 static const struct i2c_reg_value mt9v011_init_default[] = {
182 { R0D_MT9V011_RESET, 0x0001 },
183 { R0D_MT9V011_RESET, 0x0000 },
185 { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
186 { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
188 { R0A_MT9V011_CLK_SPEED, 0x0000 },
189 { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
191 { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
195 static u16 calc_mt9v011_gain(s16 lineargain)
198 u16 digitalgain = 0;
199 u16 analogmult = 0;
200 u16 analoginit = 0;
202 if (lineargain < 0)
203 lineargain = 0;
205 /* recommended minimum */
206 lineargain += 0x0020;
208 if (lineargain > 2047)
209 lineargain = 2047;
211 if (lineargain > 1023) {
212 digitalgain = 3;
213 analogmult = 3;
214 analoginit = lineargain / 16;
215 } else if (lineargain > 511) {
216 digitalgain = 1;
217 analogmult = 3;
218 analoginit = lineargain / 8;
219 } else if (lineargain > 255) {
220 analogmult = 3;
221 analoginit = lineargain / 4;
222 } else if (lineargain > 127) {
223 analogmult = 1;
224 analoginit = lineargain / 2;
225 } else
226 analoginit = lineargain;
228 return analoginit + (analogmult << 7) + (digitalgain << 9);
232 static void set_balance(struct v4l2_subdev *sd)
234 struct mt9v011 *core = to_mt9v011(sd);
235 u16 green_gain, blue_gain, red_gain;
236 u16 exposure;
237 s16 bal;
239 exposure = core->exposure;
241 green_gain = calc_mt9v011_gain(core->global_gain);
243 bal = core->global_gain;
244 bal += (core->blue_bal * core->global_gain / (1 << 7));
245 blue_gain = calc_mt9v011_gain(bal);
247 bal = core->global_gain;
248 bal += (core->red_bal * core->global_gain / (1 << 7));
249 red_gain = calc_mt9v011_gain(bal);
251 mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
252 mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
253 mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
254 mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
255 mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
258 static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
260 struct mt9v011 *core = to_mt9v011(sd);
261 unsigned height, width, hblank, vblank, speed;
262 unsigned row_time, t_time;
263 u64 frames_per_ms;
264 unsigned tmp;
266 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
267 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
268 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
269 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
270 speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
272 row_time = (width + 113 + hblank) * (speed + 2);
273 t_time = row_time * (height + vblank + 1);
275 frames_per_ms = core->xtal * 1000l;
276 do_div(frames_per_ms, t_time);
277 tmp = frames_per_ms;
279 v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
280 tmp / 1000, tmp % 1000, t_time);
282 if (numerator && denominator) {
283 *numerator = 1000;
284 *denominator = (u32)frames_per_ms;
288 static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
290 struct mt9v011 *core = to_mt9v011(sd);
291 unsigned height, width, hblank, vblank;
292 unsigned row_time, line_time;
293 u64 t_time, speed;
295 /* Avoid bogus calculus */
296 if (!numerator || !denominator)
297 return 0;
299 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
300 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
301 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
302 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
304 row_time = width + 113 + hblank;
305 line_time = height + vblank + 1;
307 t_time = core->xtal * ((u64)numerator);
308 /* round to the closest value */
309 t_time += denominator / 2;
310 do_div(t_time, denominator);
312 speed = t_time;
313 do_div(speed, row_time * line_time);
315 /* Avoid having a negative value for speed */
316 if (speed < 2)
317 speed = 0;
318 else
319 speed -= 2;
321 /* Avoid speed overflow */
322 if (speed > 15)
323 return 15;
325 return (u16)speed;
328 static void set_res(struct v4l2_subdev *sd)
330 struct mt9v011 *core = to_mt9v011(sd);
331 unsigned vstart, hstart;
334 * The mt9v011 doesn't have scaling. So, in order to select the desired
335 * resolution, we're cropping at the middle of the sensor.
336 * hblank and vblank should be adjusted, in order to warrant that
337 * we'll preserve the line timings for 30 fps, no matter what resolution
338 * is selected.
339 * NOTE: datasheet says that width (and height) should be filled with
340 * width-1. However, this doesn't work, since one pixel per line will
341 * be missing.
344 hstart = 20 + (640 - core->width) / 2;
345 mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
346 mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
347 mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
349 vstart = 8 + (480 - core->height) / 2;
350 mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
351 mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
352 mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
354 calc_fps(sd, NULL, NULL);
357 static void set_read_mode(struct v4l2_subdev *sd)
359 struct mt9v011 *core = to_mt9v011(sd);
360 unsigned mode = 0x1000;
362 if (core->hflip)
363 mode |= 0x4000;
365 if (core->vflip)
366 mode |= 0x8000;
368 mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
371 static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
373 int i;
375 for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
376 mt9v011_write(sd, mt9v011_init_default[i].reg,
377 mt9v011_init_default[i].value);
379 set_balance(sd);
380 set_res(sd);
381 set_read_mode(sd);
383 return 0;
386 static int mt9v011_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
388 struct mt9v011 *core = to_mt9v011(sd);
390 v4l2_dbg(1, debug, sd, "g_ctrl called\n");
392 switch (ctrl->id) {
393 case V4L2_CID_GAIN:
394 ctrl->value = core->global_gain;
395 return 0;
396 case V4L2_CID_EXPOSURE:
397 ctrl->value = core->exposure;
398 return 0;
399 case V4L2_CID_RED_BALANCE:
400 ctrl->value = core->red_bal;
401 return 0;
402 case V4L2_CID_BLUE_BALANCE:
403 ctrl->value = core->blue_bal;
404 return 0;
405 case V4L2_CID_HFLIP:
406 ctrl->value = core->hflip ? 1 : 0;
407 return 0;
408 case V4L2_CID_VFLIP:
409 ctrl->value = core->vflip ? 1 : 0;
410 return 0;
412 return -EINVAL;
415 static int mt9v011_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
417 int i;
419 v4l2_dbg(1, debug, sd, "queryctrl called\n");
421 for (i = 0; i < ARRAY_SIZE(mt9v011_qctrl); i++)
422 if (qc->id && qc->id == mt9v011_qctrl[i].id) {
423 memcpy(qc, &(mt9v011_qctrl[i]),
424 sizeof(*qc));
425 return 0;
428 return -EINVAL;
432 static int mt9v011_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
434 struct mt9v011 *core = to_mt9v011(sd);
435 u8 i, n;
436 n = ARRAY_SIZE(mt9v011_qctrl);
438 for (i = 0; i < n; i++) {
439 if (ctrl->id != mt9v011_qctrl[i].id)
440 continue;
441 if (ctrl->value < mt9v011_qctrl[i].minimum ||
442 ctrl->value > mt9v011_qctrl[i].maximum)
443 return -ERANGE;
444 v4l2_dbg(1, debug, sd, "s_ctrl: id=%d, value=%d\n",
445 ctrl->id, ctrl->value);
446 break;
449 switch (ctrl->id) {
450 case V4L2_CID_GAIN:
451 core->global_gain = ctrl->value;
452 break;
453 case V4L2_CID_EXPOSURE:
454 core->exposure = ctrl->value;
455 break;
456 case V4L2_CID_RED_BALANCE:
457 core->red_bal = ctrl->value;
458 break;
459 case V4L2_CID_BLUE_BALANCE:
460 core->blue_bal = ctrl->value;
461 break;
462 case V4L2_CID_HFLIP:
463 core->hflip = ctrl->value;
464 set_read_mode(sd);
465 return 0;
466 case V4L2_CID_VFLIP:
467 core->vflip = ctrl->value;
468 set_read_mode(sd);
469 return 0;
470 default:
471 return -EINVAL;
474 set_balance(sd);
476 return 0;
479 static int mt9v011_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
480 enum v4l2_mbus_pixelcode *code)
482 if (index > 0)
483 return -EINVAL;
485 *code = V4L2_MBUS_FMT_SGRBG8_1X8;
486 return 0;
489 static int mt9v011_try_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
491 if (fmt->code != V4L2_MBUS_FMT_SGRBG8_1X8)
492 return -EINVAL;
494 v4l_bound_align_image(&fmt->width, 48, 639, 1,
495 &fmt->height, 32, 480, 1, 0);
496 fmt->field = V4L2_FIELD_NONE;
497 fmt->colorspace = V4L2_COLORSPACE_SRGB;
499 return 0;
502 static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
504 struct v4l2_captureparm *cp = &parms->parm.capture;
506 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
507 return -EINVAL;
509 memset(cp, 0, sizeof(struct v4l2_captureparm));
510 cp->capability = V4L2_CAP_TIMEPERFRAME;
511 calc_fps(sd,
512 &cp->timeperframe.numerator,
513 &cp->timeperframe.denominator);
515 return 0;
518 static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
520 struct v4l2_captureparm *cp = &parms->parm.capture;
521 struct v4l2_fract *tpf = &cp->timeperframe;
522 u16 speed;
524 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
525 return -EINVAL;
526 if (cp->extendedmode != 0)
527 return -EINVAL;
529 speed = calc_speed(sd, tpf->numerator, tpf->denominator);
531 mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
532 v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
534 /* Recalculate and update fps info */
535 calc_fps(sd, &tpf->numerator, &tpf->denominator);
537 return 0;
540 static int mt9v011_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
542 struct mt9v011 *core = to_mt9v011(sd);
543 int rc;
545 rc = mt9v011_try_mbus_fmt(sd, fmt);
546 if (rc < 0)
547 return -EINVAL;
549 core->width = fmt->width;
550 core->height = fmt->height;
552 set_res(sd);
554 return 0;
557 #ifdef CONFIG_VIDEO_ADV_DEBUG
558 static int mt9v011_g_register(struct v4l2_subdev *sd,
559 struct v4l2_dbg_register *reg)
561 struct i2c_client *client = v4l2_get_subdevdata(sd);
563 if (!v4l2_chip_match_i2c_client(client, &reg->match))
564 return -EINVAL;
565 if (!capable(CAP_SYS_ADMIN))
566 return -EPERM;
568 reg->val = mt9v011_read(sd, reg->reg & 0xff);
569 reg->size = 2;
571 return 0;
574 static int mt9v011_s_register(struct v4l2_subdev *sd,
575 struct v4l2_dbg_register *reg)
577 struct i2c_client *client = v4l2_get_subdevdata(sd);
579 if (!v4l2_chip_match_i2c_client(client, &reg->match))
580 return -EINVAL;
581 if (!capable(CAP_SYS_ADMIN))
582 return -EPERM;
584 mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
586 return 0;
588 #endif
590 static int mt9v011_g_chip_ident(struct v4l2_subdev *sd,
591 struct v4l2_dbg_chip_ident *chip)
593 u16 version;
594 struct i2c_client *client = v4l2_get_subdevdata(sd);
596 version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
598 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_MT9V011,
599 version);
602 static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
603 .queryctrl = mt9v011_queryctrl,
604 .g_ctrl = mt9v011_g_ctrl,
605 .s_ctrl = mt9v011_s_ctrl,
606 .reset = mt9v011_reset,
607 .g_chip_ident = mt9v011_g_chip_ident,
608 #ifdef CONFIG_VIDEO_ADV_DEBUG
609 .g_register = mt9v011_g_register,
610 .s_register = mt9v011_s_register,
611 #endif
614 static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
615 .enum_mbus_fmt = mt9v011_enum_mbus_fmt,
616 .try_mbus_fmt = mt9v011_try_mbus_fmt,
617 .s_mbus_fmt = mt9v011_s_mbus_fmt,
618 .g_parm = mt9v011_g_parm,
619 .s_parm = mt9v011_s_parm,
622 static const struct v4l2_subdev_ops mt9v011_ops = {
623 .core = &mt9v011_core_ops,
624 .video = &mt9v011_video_ops,
628 /****************************************************************************
629 I2C Client & Driver
630 ****************************************************************************/
632 static int mt9v011_probe(struct i2c_client *c,
633 const struct i2c_device_id *id)
635 u16 version;
636 struct mt9v011 *core;
637 struct v4l2_subdev *sd;
639 /* Check if the adapter supports the needed features */
640 if (!i2c_check_functionality(c->adapter,
641 I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
642 return -EIO;
644 core = kzalloc(sizeof(struct mt9v011), GFP_KERNEL);
645 if (!core)
646 return -ENOMEM;
648 sd = &core->sd;
649 v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
651 /* Check if the sensor is really a MT9V011 */
652 version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
653 if ((version != MT9V011_VERSION) &&
654 (version != MT9V011_REV_B_VERSION)) {
655 v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
656 version);
657 kfree(core);
658 return -EINVAL;
661 core->global_gain = 0x0024;
662 core->exposure = 0x01fc;
663 core->width = 640;
664 core->height = 480;
665 core->xtal = 27000000; /* Hz */
667 if (c->dev.platform_data) {
668 struct mt9v011_platform_data *pdata = c->dev.platform_data;
670 core->xtal = pdata->xtal;
671 v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
672 core->xtal / 1000000, (core->xtal / 1000) % 1000);
675 v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
676 c->addr << 1, c->adapter->name, version);
678 return 0;
681 static int mt9v011_remove(struct i2c_client *c)
683 struct v4l2_subdev *sd = i2c_get_clientdata(c);
685 v4l2_dbg(1, debug, sd,
686 "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
687 c->addr << 1);
689 v4l2_device_unregister_subdev(sd);
690 kfree(to_mt9v011(sd));
691 return 0;
694 /* ----------------------------------------------------------------------- */
696 static const struct i2c_device_id mt9v011_id[] = {
697 { "mt9v011", 0 },
700 MODULE_DEVICE_TABLE(i2c, mt9v011_id);
702 static struct i2c_driver mt9v011_driver = {
703 .driver = {
704 .owner = THIS_MODULE,
705 .name = "mt9v011",
707 .probe = mt9v011_probe,
708 .remove = mt9v011_remove,
709 .id_table = mt9v011_id,
712 static __init int init_mt9v011(void)
714 return i2c_add_driver(&mt9v011_driver);
717 static __exit void exit_mt9v011(void)
719 i2c_del_driver(&mt9v011_driver);
722 module_init(init_mt9v011);
723 module_exit(exit_mt9v011);