1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name
[] = "Neterion";
96 static const char s2io_driver_version
[] = DRV_VERSION
;
98 static const int rxd_size
[2] = {32, 48};
99 static const int rxd_count
[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
105 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
106 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
126 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
140 {"tmac_data_octets"},
144 {"tmac_pause_ctrl_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
217 {"new_rd_req_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
222 {"new_wr_req_rtry_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
235 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
254 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
322 {"prc_pcix_err_cnt"},
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
351 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
352 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
353 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
354 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
355 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
356 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
360 * Constants to be programmed into the Xena's registers, to configure
365 static const u64 herc_act_dtx_cfg
[] = {
367 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
369 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
371 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
373 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
375 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
377 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
379 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
381 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
386 static const u64 xena_dtx_cfg
[] = {
388 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
390 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
392 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
394 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
396 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
398 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
403 * Constants for Fixing the MacAddress problem seen mostly on
406 static const u64 fix_mac
[] = {
407 0x0060000000000000ULL
, 0x0060600000000000ULL
,
408 0x0040600000000000ULL
, 0x0000600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0060600000000000ULL
,
412 0x0020600000000000ULL
, 0x0060600000000000ULL
,
413 0x0020600000000000ULL
, 0x0060600000000000ULL
,
414 0x0020600000000000ULL
, 0x0060600000000000ULL
,
415 0x0020600000000000ULL
, 0x0060600000000000ULL
,
416 0x0020600000000000ULL
, 0x0060600000000000ULL
,
417 0x0020600000000000ULL
, 0x0060600000000000ULL
,
418 0x0020600000000000ULL
, 0x0060600000000000ULL
,
419 0x0020600000000000ULL
, 0x0000600000000000ULL
,
420 0x0040600000000000ULL
, 0x0060600000000000ULL
,
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION
);
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
430 S2IO_PARM_INT(rx_ring_num
, 1);
431 S2IO_PARM_INT(multiq
, 0);
432 S2IO_PARM_INT(rx_ring_mode
, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
434 S2IO_PARM_INT(rmac_pause_time
, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
437 S2IO_PARM_INT(shared_splits
, 0);
438 S2IO_PARM_INT(tmac_util_period
, 5);
439 S2IO_PARM_INT(rmac_util_period
, 5);
440 S2IO_PARM_INT(l3l4hdr_size
, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency
, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type
, 2);
447 /* Large receive offload feature */
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
452 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts
, 0);
455 S2IO_PARM_INT(napi
, 1);
456 S2IO_PARM_INT(ufo
, 0);
457 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
459 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
460 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
461 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
462 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
463 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
464 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
466 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
467 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
468 module_param_array(rts_frm_len
, uint
, NULL
, 0);
472 * This table lists all the devices that this driver supports.
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
475 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
476 PCI_ANY_ID
, PCI_ANY_ID
},
477 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
478 PCI_ANY_ID
, PCI_ANY_ID
},
479 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
480 PCI_ANY_ID
, PCI_ANY_ID
},
481 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
482 PCI_ANY_ID
, PCI_ANY_ID
},
486 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
488 static struct pci_error_handlers s2io_err_handler
= {
489 .error_detected
= s2io_io_error_detected
,
490 .slot_reset
= s2io_io_slot_reset
,
491 .resume
= s2io_io_resume
,
494 static struct pci_driver s2io_driver
= {
496 .id_table
= s2io_tbl
,
497 .probe
= s2io_init_nic
,
498 .remove
= __devexit_p(s2io_rem_nic
),
499 .err_handler
= &s2io_err_handler
,
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
508 if (!sp
->config
.multiq
) {
511 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
512 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
514 netif_tx_stop_all_queues(sp
->dev
);
517 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
519 if (!sp
->config
.multiq
)
520 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
523 netif_tx_stop_all_queues(sp
->dev
);
526 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
528 if (!sp
->config
.multiq
) {
531 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
532 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
534 netif_tx_start_all_queues(sp
->dev
);
537 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
539 if (!sp
->config
.multiq
)
540 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
543 netif_tx_start_all_queues(sp
->dev
);
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
548 if (!sp
->config
.multiq
) {
551 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
552 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
554 netif_tx_wake_all_queues(sp
->dev
);
557 static inline void s2io_wake_tx_queue(
558 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
562 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
563 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
564 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
565 if (netif_queue_stopped(fifo
->dev
)) {
566 fifo
->queue_state
= FIFO_QUEUE_START
;
567 netif_wake_queue(fifo
->dev
);
573 * init_shared_mem - Allocation and Initialization of Memory
574 * @nic: Device private variable.
575 * Description: The function allocates all the memory areas shared
576 * between the NIC and the driver. This includes Tx descriptors,
577 * Rx descriptors and the statistics block.
580 static int init_shared_mem(struct s2io_nic
*nic
)
583 void *tmp_v_addr
, *tmp_v_addr_next
;
584 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
585 struct RxD_block
*pre_rxd_blk
= NULL
;
587 int lst_size
, lst_per_page
;
588 struct net_device
*dev
= nic
->dev
;
591 struct config_param
*config
= &nic
->config
;
592 struct mac_info
*mac_control
= &nic
->mac_control
;
593 unsigned long long mem_allocated
= 0;
595 /* Allocation and initialization of TXDLs in FIFOs */
597 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
598 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
600 size
+= tx_cfg
->fifo_len
;
602 if (size
> MAX_AVAILABLE_TXDS
) {
604 "Too many TxDs requested: %d, max supported: %d\n",
605 size
, MAX_AVAILABLE_TXDS
);
610 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
611 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
613 size
= tx_cfg
->fifo_len
;
615 * Legal values are from 2 to 8192
618 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
619 "Valid lengths are 2 through 8192\n",
625 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
626 lst_per_page
= PAGE_SIZE
/ lst_size
;
628 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
629 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
630 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
631 int fifo_len
= tx_cfg
->fifo_len
;
632 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
634 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
635 if (!fifo
->list_info
) {
636 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
639 mem_allocated
+= list_holder_size
;
641 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
642 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
644 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
645 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
647 fifo
->tx_curr_put_info
.offset
= 0;
648 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
649 fifo
->tx_curr_get_info
.offset
= 0;
650 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
653 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
656 for (j
= 0; j
< page_num
; j
++) {
660 tmp_v
= pci_alloc_consistent(nic
->pdev
,
664 "pci_alloc_consistent failed for TxDL\n");
667 /* If we got a zero DMA address(can happen on
668 * certain platforms like PPC), reallocate.
669 * Store virtual address of page we don't want,
673 mac_control
->zerodma_virt_addr
= tmp_v
;
675 "%s: Zero DMA address for TxDL. "
676 "Virtual address %p\n",
678 tmp_v
= pci_alloc_consistent(nic
->pdev
,
682 "pci_alloc_consistent failed for TxDL\n");
685 mem_allocated
+= PAGE_SIZE
;
687 while (k
< lst_per_page
) {
688 int l
= (j
* lst_per_page
) + k
;
689 if (l
== tx_cfg
->fifo_len
)
691 fifo
->list_info
[l
].list_virt_addr
=
692 tmp_v
+ (k
* lst_size
);
693 fifo
->list_info
[l
].list_phy_addr
=
694 tmp_p
+ (k
* lst_size
);
700 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
701 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
702 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
704 size
= tx_cfg
->fifo_len
;
705 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
706 if (!fifo
->ufo_in_band_v
)
708 mem_allocated
+= (size
* sizeof(u64
));
711 /* Allocation and initialization of RXDs in Rings */
713 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
714 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
715 struct ring_info
*ring
= &mac_control
->rings
[i
];
717 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
718 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
719 "multiple of RxDs per Block\n",
723 size
+= rx_cfg
->num_rxd
;
724 ring
->block_count
= rx_cfg
->num_rxd
/
725 (rxd_count
[nic
->rxd_mode
] + 1);
726 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
728 if (nic
->rxd_mode
== RXD_MODE_1
)
729 size
= (size
* (sizeof(struct RxD1
)));
731 size
= (size
* (sizeof(struct RxD3
)));
733 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
734 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
735 struct ring_info
*ring
= &mac_control
->rings
[i
];
737 ring
->rx_curr_get_info
.block_index
= 0;
738 ring
->rx_curr_get_info
.offset
= 0;
739 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
740 ring
->rx_curr_put_info
.block_index
= 0;
741 ring
->rx_curr_put_info
.offset
= 0;
742 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
746 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
747 /* Allocating all the Rx blocks */
748 for (j
= 0; j
< blk_cnt
; j
++) {
749 struct rx_block_info
*rx_blocks
;
752 rx_blocks
= &ring
->rx_blocks
[j
];
753 size
= SIZE_OF_BLOCK
; /* size is always page size */
754 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
756 if (tmp_v_addr
== NULL
) {
758 * In case of failure, free_shared_mem()
759 * is called, which should free any
760 * memory that was alloced till the
763 rx_blocks
->block_virt_addr
= tmp_v_addr
;
766 mem_allocated
+= size
;
767 memset(tmp_v_addr
, 0, size
);
769 size
= sizeof(struct rxd_info
) *
770 rxd_count
[nic
->rxd_mode
];
771 rx_blocks
->block_virt_addr
= tmp_v_addr
;
772 rx_blocks
->block_dma_addr
= tmp_p_addr
;
773 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
774 if (!rx_blocks
->rxds
)
776 mem_allocated
+= size
;
777 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
778 rx_blocks
->rxds
[l
].virt_addr
=
779 rx_blocks
->block_virt_addr
+
780 (rxd_size
[nic
->rxd_mode
] * l
);
781 rx_blocks
->rxds
[l
].dma_addr
=
782 rx_blocks
->block_dma_addr
+
783 (rxd_size
[nic
->rxd_mode
] * l
);
786 /* Interlinking all Rx Blocks */
787 for (j
= 0; j
< blk_cnt
; j
++) {
788 int next
= (j
+ 1) % blk_cnt
;
789 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
790 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
791 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
792 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
794 pre_rxd_blk
= tmp_v_addr
;
795 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
796 (unsigned long)tmp_v_addr_next
;
797 pre_rxd_blk
->pNext_RxD_Blk_physical
=
798 (u64
)tmp_p_addr_next
;
801 if (nic
->rxd_mode
== RXD_MODE_3B
) {
803 * Allocation of Storages for buffer addresses in 2BUFF mode
804 * and the buffers as well.
806 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
807 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
808 struct ring_info
*ring
= &mac_control
->rings
[i
];
810 blk_cnt
= rx_cfg
->num_rxd
/
811 (rxd_count
[nic
->rxd_mode
] + 1);
812 size
= sizeof(struct buffAdd
*) * blk_cnt
;
813 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
816 mem_allocated
+= size
;
817 for (j
= 0; j
< blk_cnt
; j
++) {
820 size
= sizeof(struct buffAdd
) *
821 (rxd_count
[nic
->rxd_mode
] + 1);
822 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
825 mem_allocated
+= size
;
826 while (k
!= rxd_count
[nic
->rxd_mode
]) {
827 ba
= &ring
->ba
[j
][k
];
828 size
= BUF0_LEN
+ ALIGN_SIZE
;
829 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
832 mem_allocated
+= size
;
833 tmp
= (unsigned long)ba
->ba_0_org
;
835 tmp
&= ~((unsigned long)ALIGN_SIZE
);
836 ba
->ba_0
= (void *)tmp
;
838 size
= BUF1_LEN
+ ALIGN_SIZE
;
839 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
842 mem_allocated
+= size
;
843 tmp
= (unsigned long)ba
->ba_1_org
;
845 tmp
&= ~((unsigned long)ALIGN_SIZE
);
846 ba
->ba_1
= (void *)tmp
;
853 /* Allocation and initialization of Statistics block */
854 size
= sizeof(struct stat_block
);
855 mac_control
->stats_mem
=
856 pci_alloc_consistent(nic
->pdev
, size
,
857 &mac_control
->stats_mem_phy
);
859 if (!mac_control
->stats_mem
) {
861 * In case of failure, free_shared_mem() is called, which
862 * should free any memory that was alloced till the
867 mem_allocated
+= size
;
868 mac_control
->stats_mem_sz
= size
;
870 tmp_v_addr
= mac_control
->stats_mem
;
871 mac_control
->stats_info
= tmp_v_addr
;
872 memset(tmp_v_addr
, 0, size
);
873 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
874 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
875 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
880 * free_shared_mem - Free the allocated Memory
881 * @nic: Device private variable.
882 * Description: This function is to free all memory locations allocated by
883 * the init_shared_mem() function and return it to the kernel.
886 static void free_shared_mem(struct s2io_nic
*nic
)
888 int i
, j
, blk_cnt
, size
;
890 dma_addr_t tmp_p_addr
;
891 int lst_size
, lst_per_page
;
892 struct net_device
*dev
;
894 struct config_param
*config
;
895 struct mac_info
*mac_control
;
896 struct stat_block
*stats
;
897 struct swStat
*swstats
;
904 config
= &nic
->config
;
905 mac_control
= &nic
->mac_control
;
906 stats
= mac_control
->stats_info
;
907 swstats
= &stats
->sw_stat
;
909 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
910 lst_per_page
= PAGE_SIZE
/ lst_size
;
912 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
913 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
914 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
916 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
917 for (j
= 0; j
< page_num
; j
++) {
918 int mem_blks
= (j
* lst_per_page
);
919 struct list_info_hold
*fli
;
921 if (!fifo
->list_info
)
924 fli
= &fifo
->list_info
[mem_blks
];
925 if (!fli
->list_virt_addr
)
927 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
930 swstats
->mem_freed
+= PAGE_SIZE
;
932 /* If we got a zero DMA address during allocation,
935 if (mac_control
->zerodma_virt_addr
) {
936 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
937 mac_control
->zerodma_virt_addr
,
940 "%s: Freeing TxDL with zero DMA address. "
941 "Virtual address %p\n",
942 dev
->name
, mac_control
->zerodma_virt_addr
);
943 swstats
->mem_freed
+= PAGE_SIZE
;
945 kfree(fifo
->list_info
);
946 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
947 sizeof(struct list_info_hold
);
950 size
= SIZE_OF_BLOCK
;
951 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
952 struct ring_info
*ring
= &mac_control
->rings
[i
];
954 blk_cnt
= ring
->block_count
;
955 for (j
= 0; j
< blk_cnt
; j
++) {
956 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
957 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
958 if (tmp_v_addr
== NULL
)
960 pci_free_consistent(nic
->pdev
, size
,
961 tmp_v_addr
, tmp_p_addr
);
962 swstats
->mem_freed
+= size
;
963 kfree(ring
->rx_blocks
[j
].rxds
);
964 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
965 rxd_count
[nic
->rxd_mode
];
969 if (nic
->rxd_mode
== RXD_MODE_3B
) {
970 /* Freeing buffer storage addresses in 2BUFF mode. */
971 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
972 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
973 struct ring_info
*ring
= &mac_control
->rings
[i
];
975 blk_cnt
= rx_cfg
->num_rxd
/
976 (rxd_count
[nic
->rxd_mode
] + 1);
977 for (j
= 0; j
< blk_cnt
; j
++) {
981 while (k
!= rxd_count
[nic
->rxd_mode
]) {
982 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
984 swstats
->mem_freed
+=
985 BUF0_LEN
+ ALIGN_SIZE
;
987 swstats
->mem_freed
+=
988 BUF1_LEN
+ ALIGN_SIZE
;
992 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
993 (rxd_count
[nic
->rxd_mode
] + 1);
996 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1001 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1002 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1003 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1005 if (fifo
->ufo_in_band_v
) {
1006 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1008 kfree(fifo
->ufo_in_band_v
);
1012 if (mac_control
->stats_mem
) {
1013 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1014 pci_free_consistent(nic
->pdev
,
1015 mac_control
->stats_mem_sz
,
1016 mac_control
->stats_mem
,
1017 mac_control
->stats_mem_phy
);
1022 * s2io_verify_pci_mode -
1025 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1027 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1028 register u64 val64
= 0;
1031 val64
= readq(&bar0
->pci_mode
);
1032 mode
= (u8
)GET_PCI_MODE(val64
);
1034 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1035 return -1; /* Unknown PCI mode */
1039 #define NEC_VENID 0x1033
1040 #define NEC_DEVID 0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1043 struct pci_dev
*tdev
= NULL
;
1044 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1045 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1046 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1055 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1057 * s2io_print_pci_mode -
1059 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1061 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1062 register u64 val64
= 0;
1064 struct config_param
*config
= &nic
->config
;
1065 const char *pcimode
;
1067 val64
= readq(&bar0
->pci_mode
);
1068 mode
= (u8
)GET_PCI_MODE(val64
);
1070 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1071 return -1; /* Unknown PCI mode */
1073 config
->bus_speed
= bus_speed
[mode
];
1075 if (s2io_on_nec_bridge(nic
->pdev
)) {
1076 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1082 case PCI_MODE_PCI_33
:
1083 pcimode
= "33MHz PCI bus";
1085 case PCI_MODE_PCI_66
:
1086 pcimode
= "66MHz PCI bus";
1088 case PCI_MODE_PCIX_M1_66
:
1089 pcimode
= "66MHz PCIX(M1) bus";
1091 case PCI_MODE_PCIX_M1_100
:
1092 pcimode
= "100MHz PCIX(M1) bus";
1094 case PCI_MODE_PCIX_M1_133
:
1095 pcimode
= "133MHz PCIX(M1) bus";
1097 case PCI_MODE_PCIX_M2_66
:
1098 pcimode
= "133MHz PCIX(M2) bus";
1100 case PCI_MODE_PCIX_M2_100
:
1101 pcimode
= "200MHz PCIX(M2) bus";
1103 case PCI_MODE_PCIX_M2_133
:
1104 pcimode
= "266MHz PCIX(M2) bus";
1107 pcimode
= "unsupported bus!";
1111 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1112 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1118 * init_tti - Initialization transmit traffic interrupt scheme
1119 * @nic: device private variable
1120 * @link: link status (UP/DOWN) used to enable/disable continuous
1121 * transmit interrupts
1122 * Description: The function configures transmit traffic interrupts
1123 * Return Value: SUCCESS on success and
1127 static int init_tti(struct s2io_nic
*nic
, int link
)
1129 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1130 register u64 val64
= 0;
1132 struct config_param
*config
= &nic
->config
;
1134 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1136 * TTI Initialization. Default Tx timer gets us about
1137 * 250 interrupts per sec. Continuous interrupts are enabled
1140 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1141 int count
= (nic
->config
.bus_speed
* 125)/2;
1142 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1144 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1146 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1151 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1152 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1153 writeq(val64
, &bar0
->tti_data1_mem
);
1155 if (nic
->config
.intr_type
== MSI_X
) {
1156 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 TTI_DATA2_MEM_TX_UFC_D(0x300);
1161 if ((nic
->config
.tx_steering_type
==
1162 TX_DEFAULT_STEERING
) &&
1163 (config
->tx_fifo_num
> 1) &&
1164 (i
>= nic
->udp_fifo_idx
) &&
1165 (i
< (nic
->udp_fifo_idx
+
1166 nic
->total_udp_fifos
)))
1167 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 TTI_DATA2_MEM_TX_UFC_D(0x120);
1172 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 TTI_DATA2_MEM_TX_UFC_D(0x80);
1178 writeq(val64
, &bar0
->tti_data2_mem
);
1180 val64
= TTI_CMD_MEM_WE
|
1181 TTI_CMD_MEM_STROBE_NEW_CMD
|
1182 TTI_CMD_MEM_OFFSET(i
);
1183 writeq(val64
, &bar0
->tti_command_mem
);
1185 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1186 TTI_CMD_MEM_STROBE_NEW_CMD
,
1187 S2IO_BIT_RESET
) != SUCCESS
)
1195 * init_nic - Initialization of hardware
1196 * @nic: device private variable
1197 * Description: The function sequentially configures every block
1198 * of the H/W from their reset values.
1199 * Return Value: SUCCESS on success and
1200 * '-1' on failure (endian settings incorrect).
1203 static int init_nic(struct s2io_nic
*nic
)
1205 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1206 struct net_device
*dev
= nic
->dev
;
1207 register u64 val64
= 0;
1212 unsigned long long mem_share
;
1214 struct config_param
*config
= &nic
->config
;
1215 struct mac_info
*mac_control
= &nic
->mac_control
;
1217 /* to set the swapper controle on the card */
1218 if (s2io_set_swapper(nic
)) {
1219 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1224 * Herc requires EOI to be removed from reset before XGXS, so..
1226 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1227 val64
= 0xA500000000ULL
;
1228 writeq(val64
, &bar0
->sw_reset
);
1230 val64
= readq(&bar0
->sw_reset
);
1233 /* Remove XGXS from reset state */
1235 writeq(val64
, &bar0
->sw_reset
);
1237 val64
= readq(&bar0
->sw_reset
);
1239 /* Ensure that it's safe to access registers by checking
1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1242 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1243 for (i
= 0; i
< 50; i
++) {
1244 val64
= readq(&bar0
->adapter_status
);
1245 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1253 /* Enable Receiving broadcasts */
1254 add
= &bar0
->mac_cfg
;
1255 val64
= readq(&bar0
->mac_cfg
);
1256 val64
|= MAC_RMAC_BCAST_ENABLE
;
1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1258 writel((u32
)val64
, add
);
1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1260 writel((u32
) (val64
>> 32), (add
+ 4));
1262 /* Read registers in all blocks */
1263 val64
= readq(&bar0
->mac_int_mask
);
1264 val64
= readq(&bar0
->mc_int_mask
);
1265 val64
= readq(&bar0
->xgxs_int_mask
);
1269 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1271 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1272 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1274 &bar0
->dtx_control
, UF
);
1276 msleep(1); /* Necessary!! */
1280 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1281 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1282 &bar0
->dtx_control
, UF
);
1283 val64
= readq(&bar0
->dtx_control
);
1288 /* Tx DMA Initialization */
1290 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1291 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1292 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1293 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1295 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1296 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1298 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1299 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1301 if (i
== (config
->tx_fifo_num
- 1)) {
1308 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1313 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1318 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1323 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1337 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1338 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1340 val64
= readq(&bar0
->tx_fifo_partition_0
);
1341 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1342 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1345 * Initialization of Tx_PA_CONFIG register to ignore packet
1346 * integrity checking.
1348 val64
= readq(&bar0
->tx_pa_cfg
);
1349 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1350 TX_PA_CFG_IGNORE_SNAP_OUI
|
1351 TX_PA_CFG_IGNORE_LLC_CTRL
|
1352 TX_PA_CFG_IGNORE_L2_ERR
;
1353 writeq(val64
, &bar0
->tx_pa_cfg
);
1355 /* Rx DMA intialization. */
1357 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1358 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1360 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1362 writeq(val64
, &bar0
->rx_queue_priority
);
1365 * Allocating equal share of memory to all the
1369 if (nic
->device_type
& XFRAME_II_DEVICE
)
1374 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1377 mem_share
= (mem_size
/ config
->rx_ring_num
+
1378 mem_size
% config
->rx_ring_num
);
1379 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1382 mem_share
= (mem_size
/ config
->rx_ring_num
);
1383 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1386 mem_share
= (mem_size
/ config
->rx_ring_num
);
1387 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1390 mem_share
= (mem_size
/ config
->rx_ring_num
);
1391 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1394 mem_share
= (mem_size
/ config
->rx_ring_num
);
1395 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1398 mem_share
= (mem_size
/ config
->rx_ring_num
);
1399 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1402 mem_share
= (mem_size
/ config
->rx_ring_num
);
1403 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1406 mem_share
= (mem_size
/ config
->rx_ring_num
);
1407 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1411 writeq(val64
, &bar0
->rx_queue_cfg
);
1414 * Filling Tx round robin registers
1415 * as per the number of FIFOs for equal scheduling priority
1417 switch (config
->tx_fifo_num
) {
1420 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1421 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1422 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1423 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1424 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1427 val64
= 0x0001000100010001ULL
;
1428 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1429 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1430 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1431 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1432 val64
= 0x0001000100000000ULL
;
1433 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1436 val64
= 0x0001020001020001ULL
;
1437 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1438 val64
= 0x0200010200010200ULL
;
1439 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1440 val64
= 0x0102000102000102ULL
;
1441 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1442 val64
= 0x0001020001020001ULL
;
1443 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1444 val64
= 0x0200010200000000ULL
;
1445 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1448 val64
= 0x0001020300010203ULL
;
1449 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1450 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1451 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1452 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1453 val64
= 0x0001020300000000ULL
;
1454 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1457 val64
= 0x0001020304000102ULL
;
1458 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1459 val64
= 0x0304000102030400ULL
;
1460 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1461 val64
= 0x0102030400010203ULL
;
1462 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1463 val64
= 0x0400010203040001ULL
;
1464 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1465 val64
= 0x0203040000000000ULL
;
1466 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1469 val64
= 0x0001020304050001ULL
;
1470 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1471 val64
= 0x0203040500010203ULL
;
1472 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1473 val64
= 0x0405000102030405ULL
;
1474 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1475 val64
= 0x0001020304050001ULL
;
1476 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1477 val64
= 0x0203040500000000ULL
;
1478 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1481 val64
= 0x0001020304050600ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1483 val64
= 0x0102030405060001ULL
;
1484 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1485 val64
= 0x0203040506000102ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1487 val64
= 0x0304050600010203ULL
;
1488 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1489 val64
= 0x0405060000000000ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1493 val64
= 0x0001020304050607ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1495 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1496 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1497 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1498 val64
= 0x0001020300000000ULL
;
1499 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1503 /* Enable all configured Tx FIFO partitions */
1504 val64
= readq(&bar0
->tx_fifo_partition_0
);
1505 val64
|= (TX_FIFO_PARTITION_EN
);
1506 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1508 /* Filling the Rx round robin registers as per the
1509 * number of Rings and steering based on QoS with
1512 switch (config
->rx_ring_num
) {
1515 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1516 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1517 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1518 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1519 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1521 val64
= 0x8080808080808080ULL
;
1522 writeq(val64
, &bar0
->rts_qos_steering
);
1525 val64
= 0x0001000100010001ULL
;
1526 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1527 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1528 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1529 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1530 val64
= 0x0001000100000000ULL
;
1531 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1533 val64
= 0x8080808040404040ULL
;
1534 writeq(val64
, &bar0
->rts_qos_steering
);
1537 val64
= 0x0001020001020001ULL
;
1538 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1539 val64
= 0x0200010200010200ULL
;
1540 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1541 val64
= 0x0102000102000102ULL
;
1542 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1543 val64
= 0x0001020001020001ULL
;
1544 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1545 val64
= 0x0200010200000000ULL
;
1546 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1548 val64
= 0x8080804040402020ULL
;
1549 writeq(val64
, &bar0
->rts_qos_steering
);
1552 val64
= 0x0001020300010203ULL
;
1553 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1554 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1555 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1556 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1557 val64
= 0x0001020300000000ULL
;
1558 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1560 val64
= 0x8080404020201010ULL
;
1561 writeq(val64
, &bar0
->rts_qos_steering
);
1564 val64
= 0x0001020304000102ULL
;
1565 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1566 val64
= 0x0304000102030400ULL
;
1567 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1568 val64
= 0x0102030400010203ULL
;
1569 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1570 val64
= 0x0400010203040001ULL
;
1571 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1572 val64
= 0x0203040000000000ULL
;
1573 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1575 val64
= 0x8080404020201008ULL
;
1576 writeq(val64
, &bar0
->rts_qos_steering
);
1579 val64
= 0x0001020304050001ULL
;
1580 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1581 val64
= 0x0203040500010203ULL
;
1582 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1583 val64
= 0x0405000102030405ULL
;
1584 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1585 val64
= 0x0001020304050001ULL
;
1586 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1587 val64
= 0x0203040500000000ULL
;
1588 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1590 val64
= 0x8080404020100804ULL
;
1591 writeq(val64
, &bar0
->rts_qos_steering
);
1594 val64
= 0x0001020304050600ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1596 val64
= 0x0102030405060001ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1598 val64
= 0x0203040506000102ULL
;
1599 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1600 val64
= 0x0304050600010203ULL
;
1601 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1602 val64
= 0x0405060000000000ULL
;
1603 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1605 val64
= 0x8080402010080402ULL
;
1606 writeq(val64
, &bar0
->rts_qos_steering
);
1609 val64
= 0x0001020304050607ULL
;
1610 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1611 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1612 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1613 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1614 val64
= 0x0001020300000000ULL
;
1615 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1617 val64
= 0x8040201008040201ULL
;
1618 writeq(val64
, &bar0
->rts_qos_steering
);
1624 for (i
= 0; i
< 8; i
++)
1625 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1627 /* Set the default rts frame length for the rings configured */
1628 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1629 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1630 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1632 /* Set the frame length for the configured rings
1633 * desired by the user
1635 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1636 /* If rts_frm_len[i] == 0 then it is assumed that user not
1637 * specified frame length steering.
1638 * If the user provides the frame length then program
1639 * the rts_frm_len register for those values or else
1640 * leave it as it is.
1642 if (rts_frm_len
[i
] != 0) {
1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1644 &bar0
->rts_frm_len_n
[i
]);
1648 /* Disable differentiated services steering logic */
1649 for (i
= 0; i
< 64; i
++) {
1650 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1652 "%s: rts_ds_steer failed on codepoint %d\n",
1658 /* Program statistics memory */
1659 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1661 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1662 val64
= STAT_BC(0x320);
1663 writeq(val64
, &bar0
->stat_byte_cnt
);
1667 * Initializing the sampling rate for the device to calculate the
1668 * bandwidth utilization.
1670 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1672 writeq(val64
, &bar0
->mac_link_util
);
1675 * Initializing the Transmit and Receive Traffic Interrupt
1679 /* Initialize TTI */
1680 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1683 /* RTI Initialization */
1684 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1686 * Programmed to generate Apprx 500 Intrs per
1689 int count
= (nic
->config
.bus_speed
* 125)/4;
1690 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1692 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1698 writeq(val64
, &bar0
->rti_data1_mem
);
1700 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 if (nic
->config
.intr_type
== MSI_X
)
1703 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 RTI_DATA2_MEM_RX_UFC_D(0x40));
1706 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 RTI_DATA2_MEM_RX_UFC_D(0x80));
1708 writeq(val64
, &bar0
->rti_data2_mem
);
1710 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1711 val64
= RTI_CMD_MEM_WE
|
1712 RTI_CMD_MEM_STROBE_NEW_CMD
|
1713 RTI_CMD_MEM_OFFSET(i
);
1714 writeq(val64
, &bar0
->rti_command_mem
);
1717 * Once the operation completes, the Strobe bit of the
1718 * command register will be reset. We poll for this
1719 * particular condition. We wait for a maximum of 500ms
1720 * for the operation to complete, if it's not complete
1721 * by then we return error.
1725 val64
= readq(&bar0
->rti_command_mem
);
1726 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1730 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1740 * Initializing proper values as Pause threshold into all
1741 * the 8 Queues on Rx side.
1743 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1744 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1746 /* Disable RMAC PAD STRIPPING */
1747 add
= &bar0
->mac_cfg
;
1748 val64
= readq(&bar0
->mac_cfg
);
1749 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1751 writel((u32
) (val64
), add
);
1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1753 writel((u32
) (val64
>> 32), (add
+ 4));
1754 val64
= readq(&bar0
->mac_cfg
);
1756 /* Enable FCS stripping by adapter */
1757 add
= &bar0
->mac_cfg
;
1758 val64
= readq(&bar0
->mac_cfg
);
1759 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1760 if (nic
->device_type
== XFRAME_II_DEVICE
)
1761 writeq(val64
, &bar0
->mac_cfg
);
1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1764 writel((u32
) (val64
), add
);
1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1766 writel((u32
) (val64
>> 32), (add
+ 4));
1770 * Set the time value to be inserted in the pause frame
1771 * generated by xena.
1773 val64
= readq(&bar0
->rmac_pause_cfg
);
1774 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1776 writeq(val64
, &bar0
->rmac_pause_cfg
);
1779 * Set the Threshold Limit for Generating the pause frame
1780 * If the amount of data in any Queue exceeds ratio of
1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 * pause frame is generated
1785 for (i
= 0; i
< 4; i
++) {
1786 val64
|= (((u64
)0xFF00 |
1787 nic
->mac_control
.mc_pause_threshold_q0q3
)
1790 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1793 for (i
= 0; i
< 4; i
++) {
1794 val64
|= (((u64
)0xFF00 |
1795 nic
->mac_control
.mc_pause_threshold_q4q7
)
1798 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1801 * TxDMA will stop Read request if the number of read split has
1802 * exceeded the limit pointed by shared_splits
1804 val64
= readq(&bar0
->pic_control
);
1805 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1806 writeq(val64
, &bar0
->pic_control
);
1808 if (nic
->config
.bus_speed
== 266) {
1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1810 writeq(0x0, &bar0
->read_retry_delay
);
1811 writeq(0x0, &bar0
->write_retry_delay
);
1815 * Programming the Herc to split every write transaction
1816 * that does not start on an ADB to reduce disconnects.
1818 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1819 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1820 MISC_LINK_STABILITY_PRD(3);
1821 writeq(val64
, &bar0
->misc_control
);
1822 val64
= readq(&bar0
->pic_control2
);
1823 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824 writeq(val64
, &bar0
->pic_control2
);
1826 if (strstr(nic
->product_name
, "CX4")) {
1827 val64
= TMAC_AVG_IPG(0x17);
1828 writeq(val64
, &bar0
->tmac_avg_ipg
);
1833 #define LINK_UP_DOWN_INTERRUPT 1
1834 #define MAC_RMAC_ERR_TIMER 2
1836 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1838 if (nic
->device_type
== XFRAME_II_DEVICE
)
1839 return LINK_UP_DOWN_INTERRUPT
;
1841 return MAC_RMAC_ERR_TIMER
;
1845 * do_s2io_write_bits - update alarm bits in alarm register
1846 * @value: alarm bits
1847 * @flag: interrupt status
1848 * @addr: address value
1849 * Description: update alarm bits in alarm register
1853 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1857 temp64
= readq(addr
);
1859 if (flag
== ENABLE_INTRS
)
1860 temp64
&= ~((u64
)value
);
1862 temp64
|= ((u64
)value
);
1863 writeq(temp64
, addr
);
1866 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1868 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1869 register u64 gen_int_mask
= 0;
1872 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1873 if (mask
& TX_DMA_INTR
) {
1874 gen_int_mask
|= TXDMA_INT_M
;
1876 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1877 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1878 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1879 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1881 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1882 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1883 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1884 &bar0
->pfc_err_mask
);
1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1887 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1888 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1891 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1892 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1893 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1894 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1896 flag
, &bar0
->pcc_err_mask
);
1898 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1899 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1901 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1902 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1903 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1904 flag
, &bar0
->lso_err_mask
);
1906 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1907 flag
, &bar0
->tpa_err_mask
);
1909 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1912 if (mask
& TX_MAC_INTR
) {
1913 gen_int_mask
|= TXMAC_INT_M
;
1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1915 &bar0
->mac_int_mask
);
1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1917 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1918 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1919 flag
, &bar0
->mac_tmac_err_mask
);
1922 if (mask
& TX_XGXS_INTR
) {
1923 gen_int_mask
|= TXXGXS_INT_M
;
1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1925 &bar0
->xgxs_int_mask
);
1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1927 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1928 flag
, &bar0
->xgxs_txgxs_err_mask
);
1931 if (mask
& RX_DMA_INTR
) {
1932 gen_int_mask
|= RXDMA_INT_M
;
1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1934 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1935 flag
, &bar0
->rxdma_int_mask
);
1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1937 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1938 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1939 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1941 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1942 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1943 &bar0
->prc_pcix_err_mask
);
1944 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1945 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1946 &bar0
->rpa_err_mask
);
1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1948 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1949 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1950 RDA_FRM_ECC_SG_ERR
|
1951 RDA_MISC_ERR
|RDA_PCIX_ERR
,
1952 flag
, &bar0
->rda_err_mask
);
1953 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1954 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1955 flag
, &bar0
->rti_err_mask
);
1958 if (mask
& RX_MAC_INTR
) {
1959 gen_int_mask
|= RXMAC_INT_M
;
1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1961 &bar0
->mac_int_mask
);
1962 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1963 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1964 RMAC_DOUBLE_ECC_ERR
);
1965 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
1966 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
1967 do_s2io_write_bits(interruptible
,
1968 flag
, &bar0
->mac_rmac_err_mask
);
1971 if (mask
& RX_XGXS_INTR
) {
1972 gen_int_mask
|= RXXGXS_INT_M
;
1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1974 &bar0
->xgxs_int_mask
);
1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1976 &bar0
->xgxs_rxgxs_err_mask
);
1979 if (mask
& MC_INTR
) {
1980 gen_int_mask
|= MC_INT_M
;
1981 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
1982 flag
, &bar0
->mc_int_mask
);
1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1984 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1985 &bar0
->mc_err_mask
);
1987 nic
->general_int_mask
= gen_int_mask
;
1989 /* Remove this line when alarm interrupts are enabled */
1990 nic
->general_int_mask
= 0;
1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1995 * @nic: device private variable,
1996 * @mask: A mask indicating which Intr block must be modified and,
1997 * @flag: A flag indicating whether to enable or disable the Intrs.
1998 * Description: This function will either disable or enable the interrupts
1999 * depending on the flag argument. The mask argument can be used to
2000 * enable/disable any Intr block.
2001 * Return Value: NONE.
2004 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2006 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2007 register u64 temp64
= 0, intr_mask
= 0;
2009 intr_mask
= nic
->general_int_mask
;
2011 /* Top level interrupt classification */
2012 /* PIC Interrupts */
2013 if (mask
& TX_PIC_INTR
) {
2014 /* Enable PIC Intrs in the general intr mask register */
2015 intr_mask
|= TXPIC_INT_M
;
2016 if (flag
== ENABLE_INTRS
) {
2018 * If Hercules adapter enable GPIO otherwise
2019 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020 * interrupts for now.
2023 if (s2io_link_fault_indication(nic
) ==
2024 LINK_UP_DOWN_INTERRUPT
) {
2025 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2026 &bar0
->pic_int_mask
);
2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2028 &bar0
->gpio_int_mask
);
2030 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2031 } else if (flag
== DISABLE_INTRS
) {
2033 * Disable PIC Intrs in the general
2034 * intr mask register
2036 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2040 /* Tx traffic interrupts */
2041 if (mask
& TX_TRAFFIC_INTR
) {
2042 intr_mask
|= TXTRAFFIC_INT_M
;
2043 if (flag
== ENABLE_INTRS
) {
2045 * Enable all the Tx side interrupts
2046 * writing 0 Enables all 64 TX interrupt levels
2048 writeq(0x0, &bar0
->tx_traffic_mask
);
2049 } else if (flag
== DISABLE_INTRS
) {
2051 * Disable Tx Traffic Intrs in the general intr mask
2054 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2058 /* Rx traffic interrupts */
2059 if (mask
& RX_TRAFFIC_INTR
) {
2060 intr_mask
|= RXTRAFFIC_INT_M
;
2061 if (flag
== ENABLE_INTRS
) {
2062 /* writing 0 Enables all 8 RX interrupt levels */
2063 writeq(0x0, &bar0
->rx_traffic_mask
);
2064 } else if (flag
== DISABLE_INTRS
) {
2066 * Disable Rx Traffic Intrs in the general intr mask
2069 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2073 temp64
= readq(&bar0
->general_int_mask
);
2074 if (flag
== ENABLE_INTRS
)
2075 temp64
&= ~((u64
)intr_mask
);
2077 temp64
= DISABLE_ALL_INTRS
;
2078 writeq(temp64
, &bar0
->general_int_mask
);
2080 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2084 * verify_pcc_quiescent- Checks for PCC quiescent state
2085 * Return: 1 If PCC is quiescence
2086 * 0 If PCC is not quiescence
2088 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2091 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2092 u64 val64
= readq(&bar0
->adapter_status
);
2094 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2096 if (flag
== false) {
2097 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2098 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2101 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2105 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2106 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2107 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2110 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2119 * verify_xena_quiescence - Checks whether the H/W is ready
2120 * Description: Returns whether the H/W is ready to go or not. Depending
2121 * on whether adapter enable bit was written or not the comparison
2122 * differs and the calling function passes the input argument flag to
2124 * Return: 1 If xena is quiescence
2125 * 0 If Xena is not quiescence
2128 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2131 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2132 u64 val64
= readq(&bar0
->adapter_status
);
2133 mode
= s2io_verify_pci_mode(sp
);
2135 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2136 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2139 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2140 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2143 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2144 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2147 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2148 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2151 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2152 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2155 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2156 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2159 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2160 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2163 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2164 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2169 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 * the the P_PLL_LOCK bit in the adapter_status register will
2173 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2174 sp
->device_type
== XFRAME_II_DEVICE
&&
2175 mode
!= PCI_MODE_PCI_33
) {
2176 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2179 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2180 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2181 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
2191 * New procedure to clear mac address reading problems on Alpha platforms
2195 static void fix_mac_address(struct s2io_nic
*sp
)
2197 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2200 while (fix_mac
[i
] != END_SIGN
) {
2201 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2203 (void) readq(&bar0
->gpio_control
);
2208 * start_nic - Turns the device on
2209 * @nic : device private variable.
2211 * This function actually turns the device on. Before this function is
2212 * called,all Registers are configured from their reset states
2213 * and shared memory is allocated but the NIC is still quiescent. On
2214 * calling this function, the device interrupts are cleared and the NIC is
2215 * literally switched on by writing into the adapter control register.
2217 * SUCCESS on success and -1 on failure.
2220 static int start_nic(struct s2io_nic
*nic
)
2222 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2223 struct net_device
*dev
= nic
->dev
;
2224 register u64 val64
= 0;
2226 struct config_param
*config
= &nic
->config
;
2227 struct mac_info
*mac_control
= &nic
->mac_control
;
2229 /* PRC Initialization and configuration */
2230 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2231 struct ring_info
*ring
= &mac_control
->rings
[i
];
2233 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2234 &bar0
->prc_rxd0_n
[i
]);
2236 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2237 if (nic
->rxd_mode
== RXD_MODE_1
)
2238 val64
|= PRC_CTRL_RC_ENABLED
;
2240 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2241 if (nic
->device_type
== XFRAME_II_DEVICE
)
2242 val64
|= PRC_CTRL_GROUP_READS
;
2243 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2248 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 val64
= readq(&bar0
->rx_pa_cfg
);
2251 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2252 writeq(val64
, &bar0
->rx_pa_cfg
);
2255 if (vlan_tag_strip
== 0) {
2256 val64
= readq(&bar0
->rx_pa_cfg
);
2257 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2258 writeq(val64
, &bar0
->rx_pa_cfg
);
2259 nic
->vlan_strip_flag
= 0;
2263 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 * for around 100ms, which is approximately the time required
2265 * for the device to be ready for operation.
2267 val64
= readq(&bar0
->mc_rldram_mrs
);
2268 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2269 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2270 val64
= readq(&bar0
->mc_rldram_mrs
);
2272 msleep(100); /* Delay by around 100 ms. */
2274 /* Enabling ECC Protection. */
2275 val64
= readq(&bar0
->adapter_control
);
2276 val64
&= ~ADAPTER_ECC_EN
;
2277 writeq(val64
, &bar0
->adapter_control
);
2280 * Verify if the device is ready to be enabled, if so enable
2283 val64
= readq(&bar0
->adapter_status
);
2284 if (!verify_xena_quiescence(nic
)) {
2285 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2286 "Adapter status reads: 0x%llx\n",
2287 dev
->name
, (unsigned long long)val64
);
2292 * With some switches, link might be already up at this point.
2293 * Because of this weird behavior, when we enable laser,
2294 * we may not get link. We need to handle this. We cannot
2295 * figure out which switch is misbehaving. So we are forced to
2296 * make a global change.
2299 /* Enabling Laser. */
2300 val64
= readq(&bar0
->adapter_control
);
2301 val64
|= ADAPTER_EOI_TX_ON
;
2302 writeq(val64
, &bar0
->adapter_control
);
2304 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2306 * Dont see link state interrupts initially on some switches,
2307 * so directly scheduling the link state task here.
2309 schedule_work(&nic
->set_link_task
);
2311 /* SXE-002: Initialize link and activity LED */
2312 subid
= nic
->pdev
->subsystem_device
;
2313 if (((subid
& 0xFF) >= 0x07) &&
2314 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2315 val64
= readq(&bar0
->gpio_control
);
2316 val64
|= 0x0000800000000000ULL
;
2317 writeq(val64
, &bar0
->gpio_control
);
2318 val64
= 0x0411040400000000ULL
;
2319 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2327 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2328 struct TxD
*txdlp
, int get_off
)
2330 struct s2io_nic
*nic
= fifo_data
->nic
;
2331 struct sk_buff
*skb
;
2336 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2337 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2338 sizeof(u64
), PCI_DMA_TODEVICE
);
2342 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2344 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2347 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2348 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2349 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2352 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2353 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2354 if (!txds
->Buffer_Pointer
)
2356 pci_unmap_page(nic
->pdev
,
2357 (dma_addr_t
)txds
->Buffer_Pointer
,
2358 skb_frag_size(frag
), PCI_DMA_TODEVICE
);
2361 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2366 * free_tx_buffers - Free all queued Tx buffers
2367 * @nic : device private variable.
2369 * Free all queued Tx buffers.
2370 * Return Value: void
2373 static void free_tx_buffers(struct s2io_nic
*nic
)
2375 struct net_device
*dev
= nic
->dev
;
2376 struct sk_buff
*skb
;
2380 struct config_param
*config
= &nic
->config
;
2381 struct mac_info
*mac_control
= &nic
->mac_control
;
2382 struct stat_block
*stats
= mac_control
->stats_info
;
2383 struct swStat
*swstats
= &stats
->sw_stat
;
2385 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2386 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2387 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2388 unsigned long flags
;
2390 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2391 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2392 txdp
= fifo
->list_info
[j
].list_virt_addr
;
2393 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2395 swstats
->mem_freed
+= skb
->truesize
;
2401 "%s: forcibly freeing %d skbs on FIFO%d\n",
2403 fifo
->tx_curr_get_info
.offset
= 0;
2404 fifo
->tx_curr_put_info
.offset
= 0;
2405 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2410 * stop_nic - To stop the nic
2411 * @nic ; device private variable.
2413 * This function does exactly the opposite of what the start_nic()
2414 * function does. This function is called to stop the device.
2419 static void stop_nic(struct s2io_nic
*nic
)
2421 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2422 register u64 val64
= 0;
2425 /* Disable all interrupts */
2426 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2427 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2428 interruptible
|= TX_PIC_INTR
;
2429 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 val64
= readq(&bar0
->adapter_control
);
2433 val64
&= ~(ADAPTER_CNTL_EN
);
2434 writeq(val64
, &bar0
->adapter_control
);
2438 * fill_rx_buffers - Allocates the Rx side skbs
2439 * @ring_info: per ring structure
2440 * @from_card_up: If this is true, we will map the buffer to get
2441 * the dma address for buf0 and buf1 to give it to the card.
2442 * Else we will sync the already mapped buffer to give it to the card.
2444 * The function allocates Rx side skbs and puts the physical
2445 * address of these buffers into the RxD buffer pointers, so that the NIC
2446 * can DMA the received frame into these locations.
2447 * The NIC supports 3 receive modes, viz
2449 * 2. three buffer and
2450 * 3. Five buffer modes.
2451 * Each mode defines how many fragments the received frame will be split
2452 * up into by the NIC. The frame is split into L3 header, L4 Header,
2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 * is split into 3 fragments. As of now only single buffer mode is
2457 * SUCCESS on success or an appropriate -ve value on failure.
2459 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2462 struct sk_buff
*skb
;
2464 int off
, size
, block_no
, block_no1
;
2469 struct RxD_t
*first_rxdp
= NULL
;
2470 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2474 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2476 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2478 block_no1
= ring
->rx_curr_get_info
.block_index
;
2479 while (alloc_tab
< alloc_cnt
) {
2480 block_no
= ring
->rx_curr_put_info
.block_index
;
2482 off
= ring
->rx_curr_put_info
.offset
;
2484 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2486 rxd_index
= off
+ 1;
2488 rxd_index
+= (block_no
* ring
->rxd_count
);
2490 if ((block_no
== block_no1
) &&
2491 (off
== ring
->rx_curr_get_info
.offset
) &&
2492 (rxdp
->Host_Control
)) {
2493 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2497 if (off
&& (off
== ring
->rxd_count
)) {
2498 ring
->rx_curr_put_info
.block_index
++;
2499 if (ring
->rx_curr_put_info
.block_index
==
2501 ring
->rx_curr_put_info
.block_index
= 0;
2502 block_no
= ring
->rx_curr_put_info
.block_index
;
2504 ring
->rx_curr_put_info
.offset
= off
;
2505 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2506 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2507 ring
->dev
->name
, rxdp
);
2511 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2512 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2513 (rxdp
->Control_2
& s2BIT(0)))) {
2514 ring
->rx_curr_put_info
.offset
= off
;
2517 /* calculate size of skb based on ring mode */
2519 HEADER_ETHERNET_II_802_3_SIZE
+
2520 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2521 if (ring
->rxd_mode
== RXD_MODE_1
)
2522 size
+= NET_IP_ALIGN
;
2524 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2527 skb
= dev_alloc_skb(size
);
2529 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2533 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2535 swstats
->mem_alloc_fail_cnt
++;
2539 swstats
->mem_allocated
+= skb
->truesize
;
2541 if (ring
->rxd_mode
== RXD_MODE_1
) {
2542 /* 1 buffer mode - normal operation mode */
2543 rxdp1
= (struct RxD1
*)rxdp
;
2544 memset(rxdp
, 0, sizeof(struct RxD1
));
2545 skb_reserve(skb
, NET_IP_ALIGN
);
2546 rxdp1
->Buffer0_ptr
=
2547 pci_map_single(ring
->pdev
, skb
->data
,
2548 size
- NET_IP_ALIGN
,
2549 PCI_DMA_FROMDEVICE
);
2550 if (pci_dma_mapping_error(nic
->pdev
,
2551 rxdp1
->Buffer0_ptr
))
2552 goto pci_map_failed
;
2555 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2556 rxdp
->Host_Control
= (unsigned long)skb
;
2557 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2560 * 2 buffer mode provides 128
2561 * byte aligned receive buffers.
2564 rxdp3
= (struct RxD3
*)rxdp
;
2565 /* save buffer pointers to avoid frequent dma mapping */
2566 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2567 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2568 memset(rxdp
, 0, sizeof(struct RxD3
));
2569 /* restore the buffer pointers for dma sync*/
2570 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2571 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2573 ba
= &ring
->ba
[block_no
][off
];
2574 skb_reserve(skb
, BUF0_LEN
);
2575 tmp
= (u64
)(unsigned long)skb
->data
;
2578 skb
->data
= (void *) (unsigned long)tmp
;
2579 skb_reset_tail_pointer(skb
);
2582 rxdp3
->Buffer0_ptr
=
2583 pci_map_single(ring
->pdev
, ba
->ba_0
,
2585 PCI_DMA_FROMDEVICE
);
2586 if (pci_dma_mapping_error(nic
->pdev
,
2587 rxdp3
->Buffer0_ptr
))
2588 goto pci_map_failed
;
2590 pci_dma_sync_single_for_device(ring
->pdev
,
2591 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2593 PCI_DMA_FROMDEVICE
);
2595 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2596 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2597 /* Two buffer mode */
2600 * Buffer2 will have L3/L4 header plus
2603 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2606 PCI_DMA_FROMDEVICE
);
2608 if (pci_dma_mapping_error(nic
->pdev
,
2609 rxdp3
->Buffer2_ptr
))
2610 goto pci_map_failed
;
2613 rxdp3
->Buffer1_ptr
=
2614 pci_map_single(ring
->pdev
,
2617 PCI_DMA_FROMDEVICE
);
2619 if (pci_dma_mapping_error(nic
->pdev
,
2620 rxdp3
->Buffer1_ptr
)) {
2621 pci_unmap_single(ring
->pdev
,
2622 (dma_addr_t
)(unsigned long)
2625 PCI_DMA_FROMDEVICE
);
2626 goto pci_map_failed
;
2629 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2630 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2633 rxdp
->Control_2
|= s2BIT(0);
2634 rxdp
->Host_Control
= (unsigned long) (skb
);
2636 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2637 rxdp
->Control_1
|= RXD_OWN_XENA
;
2639 if (off
== (ring
->rxd_count
+ 1))
2641 ring
->rx_curr_put_info
.offset
= off
;
2643 rxdp
->Control_2
|= SET_RXD_MARKER
;
2644 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2647 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2651 ring
->rx_bufs_left
+= 1;
2656 /* Transfer ownership of first descriptor to adapter just before
2657 * exiting. Before that, use memory barrier so that ownership
2658 * and other fields are seen by adapter correctly.
2662 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2668 swstats
->pci_map_fail_cnt
++;
2669 swstats
->mem_freed
+= skb
->truesize
;
2670 dev_kfree_skb_irq(skb
);
2674 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2676 struct net_device
*dev
= sp
->dev
;
2678 struct sk_buff
*skb
;
2682 struct mac_info
*mac_control
= &sp
->mac_control
;
2683 struct stat_block
*stats
= mac_control
->stats_info
;
2684 struct swStat
*swstats
= &stats
->sw_stat
;
2686 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2687 rxdp
= mac_control
->rings
[ring_no
].
2688 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2689 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2692 if (sp
->rxd_mode
== RXD_MODE_1
) {
2693 rxdp1
= (struct RxD1
*)rxdp
;
2694 pci_unmap_single(sp
->pdev
,
2695 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2697 HEADER_ETHERNET_II_802_3_SIZE
+
2698 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2699 PCI_DMA_FROMDEVICE
);
2700 memset(rxdp
, 0, sizeof(struct RxD1
));
2701 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2702 rxdp3
= (struct RxD3
*)rxdp
;
2703 pci_unmap_single(sp
->pdev
,
2704 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2706 PCI_DMA_FROMDEVICE
);
2707 pci_unmap_single(sp
->pdev
,
2708 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2710 PCI_DMA_FROMDEVICE
);
2711 pci_unmap_single(sp
->pdev
,
2712 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2714 PCI_DMA_FROMDEVICE
);
2715 memset(rxdp
, 0, sizeof(struct RxD3
));
2717 swstats
->mem_freed
+= skb
->truesize
;
2719 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2724 * free_rx_buffers - Frees all Rx buffers
2725 * @sp: device private variable.
2727 * This function will free all Rx buffers allocated by host.
2732 static void free_rx_buffers(struct s2io_nic
*sp
)
2734 struct net_device
*dev
= sp
->dev
;
2735 int i
, blk
= 0, buf_cnt
= 0;
2736 struct config_param
*config
= &sp
->config
;
2737 struct mac_info
*mac_control
= &sp
->mac_control
;
2739 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2740 struct ring_info
*ring
= &mac_control
->rings
[i
];
2742 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2743 free_rxd_blk(sp
, i
, blk
);
2745 ring
->rx_curr_put_info
.block_index
= 0;
2746 ring
->rx_curr_get_info
.block_index
= 0;
2747 ring
->rx_curr_put_info
.offset
= 0;
2748 ring
->rx_curr_get_info
.offset
= 0;
2749 ring
->rx_bufs_left
= 0;
2750 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751 dev
->name
, buf_cnt
, i
);
2755 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2757 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2758 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2765 * s2io_poll - Rx interrupt handler for NAPI support
2766 * @napi : pointer to the napi structure.
2767 * @budget : The number of packets that were budgeted to be processed
2768 * during one pass through the 'Poll" function.
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2777 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2779 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2780 struct net_device
*dev
= ring
->dev
;
2781 int pkts_processed
= 0;
2782 u8 __iomem
*addr
= NULL
;
2784 struct s2io_nic
*nic
= netdev_priv(dev
);
2785 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2786 int budget_org
= budget
;
2788 if (unlikely(!is_s2io_card_up(nic
)))
2791 pkts_processed
= rx_intr_handler(ring
, budget
);
2792 s2io_chk_rx_buffers(nic
, ring
);
2794 if (pkts_processed
< budget_org
) {
2795 napi_complete(napi
);
2796 /*Re Enable MSI-Rx Vector*/
2797 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2798 addr
+= 7 - ring
->ring_no
;
2799 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2803 return pkts_processed
;
2806 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2808 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2809 int pkts_processed
= 0;
2810 int ring_pkts_processed
, i
;
2811 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2812 int budget_org
= budget
;
2813 struct config_param
*config
= &nic
->config
;
2814 struct mac_info
*mac_control
= &nic
->mac_control
;
2816 if (unlikely(!is_s2io_card_up(nic
)))
2819 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2820 struct ring_info
*ring
= &mac_control
->rings
[i
];
2821 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2822 s2io_chk_rx_buffers(nic
, ring
);
2823 pkts_processed
+= ring_pkts_processed
;
2824 budget
-= ring_pkts_processed
;
2828 if (pkts_processed
< budget_org
) {
2829 napi_complete(napi
);
2830 /* Re enable the Rx interrupts for the ring */
2831 writeq(0, &bar0
->rx_traffic_mask
);
2832 readl(&bar0
->rx_traffic_mask
);
2834 return pkts_processed
;
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2839 * s2io_netpoll - netpoll event handler entry point
2840 * @dev : pointer to the device structure.
2842 * This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
2847 static void s2io_netpoll(struct net_device
*dev
)
2849 struct s2io_nic
*nic
= netdev_priv(dev
);
2850 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2851 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2853 struct config_param
*config
= &nic
->config
;
2854 struct mac_info
*mac_control
= &nic
->mac_control
;
2856 if (pci_channel_offline(nic
->pdev
))
2859 disable_irq(dev
->irq
);
2861 writeq(val64
, &bar0
->rx_traffic_int
);
2862 writeq(val64
, &bar0
->tx_traffic_int
);
2864 /* we need to free up the transmitted skbufs or else netpoll will
2865 * run out of skbs and will fail and eventually netpoll application such
2866 * as netdump will fail.
2868 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2869 tx_intr_handler(&mac_control
->fifos
[i
]);
2871 /* check for received packet and indicate up to network */
2872 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2873 struct ring_info
*ring
= &mac_control
->rings
[i
];
2875 rx_intr_handler(ring
, 0);
2878 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2879 struct ring_info
*ring
= &mac_control
->rings
[i
];
2881 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2883 "%s: Out of memory in Rx Netpoll!!\n",
2888 enable_irq(dev
->irq
);
2893 * rx_intr_handler - Rx interrupt handler
2894 * @ring_info: per ring structure.
2895 * @budget: budget for napi processing.
2897 * If the interrupt is because of a received frame or if the
2898 * receive ring contains fresh as yet un-processed frames,this function is
2899 * called. It picks out the RxD at which place the last Rx processing had
2900 * stopped and sends the skb to the OSM's Rx handler and then increments
2903 * No. of napi packets processed.
2905 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2907 int get_block
, put_block
;
2908 struct rx_curr_get_info get_info
, put_info
;
2910 struct sk_buff
*skb
;
2911 int pkt_cnt
= 0, napi_pkts
= 0;
2916 get_info
= ring_data
->rx_curr_get_info
;
2917 get_block
= get_info
.block_index
;
2918 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2919 put_block
= put_info
.block_index
;
2920 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2922 while (RXD_IS_UP2DT(rxdp
)) {
2924 * If your are next to put index then it's
2925 * FIFO full condition
2927 if ((get_block
== put_block
) &&
2928 (get_info
.offset
+ 1) == put_info
.offset
) {
2929 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2930 ring_data
->dev
->name
);
2933 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2935 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2936 ring_data
->dev
->name
);
2939 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2940 rxdp1
= (struct RxD1
*)rxdp
;
2941 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2944 HEADER_ETHERNET_II_802_3_SIZE
+
2947 PCI_DMA_FROMDEVICE
);
2948 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2949 rxdp3
= (struct RxD3
*)rxdp
;
2950 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
2951 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2953 PCI_DMA_FROMDEVICE
);
2954 pci_unmap_single(ring_data
->pdev
,
2955 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2957 PCI_DMA_FROMDEVICE
);
2959 prefetch(skb
->data
);
2960 rx_osm_handler(ring_data
, rxdp
);
2962 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2963 rxdp
= ring_data
->rx_blocks
[get_block
].
2964 rxds
[get_info
.offset
].virt_addr
;
2965 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
2966 get_info
.offset
= 0;
2967 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2969 if (get_block
== ring_data
->block_count
)
2971 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2972 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2975 if (ring_data
->nic
->config
.napi
) {
2982 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2985 if (ring_data
->lro
) {
2986 /* Clear all LRO sessions before exiting */
2987 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
2988 struct lro
*lro
= &ring_data
->lro0_n
[i
];
2990 update_L3L4_header(ring_data
->nic
, lro
);
2991 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
2992 clear_lro_session(lro
);
3000 * tx_intr_handler - Transmit interrupt handler
3001 * @nic : device private variable
3003 * If an interrupt was raised to indicate DMA complete of the
3004 * Tx packet, this function is called. It identifies the last TxD
3005 * whose buffer was freed and frees all skbs whose data have already
3006 * DMA'ed into the NICs internal memory.
3011 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3013 struct s2io_nic
*nic
= fifo_data
->nic
;
3014 struct tx_curr_get_info get_info
, put_info
;
3015 struct sk_buff
*skb
= NULL
;
3018 unsigned long flags
= 0;
3020 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3021 struct swStat
*swstats
= &stats
->sw_stat
;
3023 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3026 get_info
= fifo_data
->tx_curr_get_info
;
3027 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3028 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3029 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3030 (get_info
.offset
!= put_info
.offset
) &&
3031 (txdlp
->Host_Control
)) {
3032 /* Check for TxD errors */
3033 if (txdlp
->Control_1
& TXD_T_CODE
) {
3034 unsigned long long err
;
3035 err
= txdlp
->Control_1
& TXD_T_CODE
;
3037 swstats
->parity_err_cnt
++;
3040 /* update t_code statistics */
3041 err_mask
= err
>> 48;
3044 swstats
->tx_buf_abort_cnt
++;
3048 swstats
->tx_desc_abort_cnt
++;
3052 swstats
->tx_parity_err_cnt
++;
3056 swstats
->tx_link_loss_cnt
++;
3060 swstats
->tx_list_proc_err_cnt
++;
3065 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3067 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3068 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3074 /* Updating the statistics block */
3075 swstats
->mem_freed
+= skb
->truesize
;
3076 dev_kfree_skb_irq(skb
);
3079 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3080 get_info
.offset
= 0;
3081 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3082 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3085 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3087 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3091 * s2io_mdio_write - Function to write in to MDIO registers
3092 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 * @addr : address value
3094 * @value : data value
3095 * @dev : pointer to net_device structure
3097 * This function is used to write values to the MDIO registers
3100 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3101 struct net_device
*dev
)
3104 struct s2io_nic
*sp
= netdev_priv(dev
);
3105 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3107 /* address transaction */
3108 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3109 MDIO_MMD_DEV_ADDR(mmd_type
) |
3110 MDIO_MMS_PRT_ADDR(0x0);
3111 writeq(val64
, &bar0
->mdio_control
);
3112 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3113 writeq(val64
, &bar0
->mdio_control
);
3116 /* Data transaction */
3117 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3118 MDIO_MMD_DEV_ADDR(mmd_type
) |
3119 MDIO_MMS_PRT_ADDR(0x0) |
3120 MDIO_MDIO_DATA(value
) |
3121 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3122 writeq(val64
, &bar0
->mdio_control
);
3123 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3124 writeq(val64
, &bar0
->mdio_control
);
3127 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3128 MDIO_MMD_DEV_ADDR(mmd_type
) |
3129 MDIO_MMS_PRT_ADDR(0x0) |
3130 MDIO_OP(MDIO_OP_READ_TRANS
);
3131 writeq(val64
, &bar0
->mdio_control
);
3132 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3133 writeq(val64
, &bar0
->mdio_control
);
3138 * s2io_mdio_read - Function to write in to MDIO registers
3139 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 * @addr : address value
3141 * @dev : pointer to net_device structure
3143 * This function is used to read values to the MDIO registers
3146 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3150 struct s2io_nic
*sp
= netdev_priv(dev
);
3151 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3153 /* address transaction */
3154 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3155 | MDIO_MMD_DEV_ADDR(mmd_type
)
3156 | MDIO_MMS_PRT_ADDR(0x0));
3157 writeq(val64
, &bar0
->mdio_control
);
3158 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3159 writeq(val64
, &bar0
->mdio_control
);
3162 /* Data transaction */
3163 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3164 MDIO_MMD_DEV_ADDR(mmd_type
) |
3165 MDIO_MMS_PRT_ADDR(0x0) |
3166 MDIO_OP(MDIO_OP_READ_TRANS
);
3167 writeq(val64
, &bar0
->mdio_control
);
3168 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3169 writeq(val64
, &bar0
->mdio_control
);
3172 /* Read the value from regs */
3173 rval64
= readq(&bar0
->mdio_control
);
3174 rval64
= rval64
& 0xFFFF0000;
3175 rval64
= rval64
>> 16;
3180 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181 * @counter : counter value to be updated
3182 * @flag : flag to indicate the status
3183 * @type : counter type
3185 * This function is to check the status of the xpak counters value
3189 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3195 for (i
= 0; i
< index
; i
++)
3199 *counter
= *counter
+ 1;
3200 val64
= *regs_stat
& mask
;
3201 val64
= val64
>> (index
* 0x2);
3207 "Take Xframe NIC out of service.\n");
3209 "Excessive temperatures may result in premature transceiver failure.\n");
3213 "Take Xframe NIC out of service.\n");
3215 "Excessive bias currents may indicate imminent laser diode failure.\n");
3219 "Take Xframe NIC out of service.\n");
3221 "Excessive laser output power may saturate far-end receiver.\n");
3225 "Incorrect XPAK Alarm type\n");
3229 val64
= val64
<< (index
* 0x2);
3230 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3233 *regs_stat
= *regs_stat
& (~mask
);
3238 * s2io_updt_xpak_counter - Function to update the xpak counters
3239 * @dev : pointer to net_device struct
3241 * This function is to upate the status of the xpak counters value
3244 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3252 struct s2io_nic
*sp
= netdev_priv(dev
);
3253 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3254 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3256 /* Check the communication with the MDIO slave */
3259 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3260 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3262 "ERR: MDIO slave access failed - Returned %llx\n",
3263 (unsigned long long)val64
);
3267 /* Check for the expected value of control reg 1 */
3268 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3269 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3270 "Returned: %llx- Expected: 0x%x\n",
3271 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3275 /* Loading the DOM register to MDIO register */
3277 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3278 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3280 /* Reading the Alarm flags */
3283 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3285 flag
= CHECKBIT(val64
, 0x7);
3287 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3288 &xstats
->xpak_regs_stat
,
3291 if (CHECKBIT(val64
, 0x6))
3292 xstats
->alarm_transceiver_temp_low
++;
3294 flag
= CHECKBIT(val64
, 0x3);
3296 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3297 &xstats
->xpak_regs_stat
,
3300 if (CHECKBIT(val64
, 0x2))
3301 xstats
->alarm_laser_bias_current_low
++;
3303 flag
= CHECKBIT(val64
, 0x1);
3305 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3306 &xstats
->xpak_regs_stat
,
3309 if (CHECKBIT(val64
, 0x0))
3310 xstats
->alarm_laser_output_power_low
++;
3312 /* Reading the Warning flags */
3315 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3317 if (CHECKBIT(val64
, 0x7))
3318 xstats
->warn_transceiver_temp_high
++;
3320 if (CHECKBIT(val64
, 0x6))
3321 xstats
->warn_transceiver_temp_low
++;
3323 if (CHECKBIT(val64
, 0x3))
3324 xstats
->warn_laser_bias_current_high
++;
3326 if (CHECKBIT(val64
, 0x2))
3327 xstats
->warn_laser_bias_current_low
++;
3329 if (CHECKBIT(val64
, 0x1))
3330 xstats
->warn_laser_output_power_high
++;
3332 if (CHECKBIT(val64
, 0x0))
3333 xstats
->warn_laser_output_power_low
++;
3337 * wait_for_cmd_complete - waits for a command to complete.
3338 * @sp : private member of the device structure, which is a pointer to the
3339 * s2io_nic structure.
3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
3344 * SUCCESS on success and FAILURE on failure.
3347 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3350 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3353 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3357 val64
= readq(addr
);
3358 if (bit_state
== S2IO_BIT_RESET
) {
3359 if (!(val64
& busy_bit
)) {
3364 if (val64
& busy_bit
) {
3381 * check_pci_device_id - Checks if the device id is supported
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3386 static u16
check_pci_device_id(u16 id
)
3389 case PCI_DEVICE_ID_HERC_WIN
:
3390 case PCI_DEVICE_ID_HERC_UNI
:
3391 return XFRAME_II_DEVICE
;
3392 case PCI_DEVICE_ID_S2IO_UNI
:
3393 case PCI_DEVICE_ID_S2IO_WIN
:
3394 return XFRAME_I_DEVICE
;
3401 * s2io_reset - Resets the card.
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
3404 * restores the previously saved PCI configuration space registers as
3405 * the card reset also resets the configuration space.
3410 static void s2io_reset(struct s2io_nic
*sp
)
3412 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3417 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3418 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3419 struct stat_block
*stats
;
3420 struct swStat
*swstats
;
3422 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3423 __func__
, pci_name(sp
->pdev
));
3425 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3428 val64
= SW_RESET_ALL
;
3429 writeq(val64
, &bar0
->sw_reset
);
3430 if (strstr(sp
->product_name
, "CX4"))
3433 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3435 /* Restore the PCI state saved during initialization. */
3436 pci_restore_state(sp
->pdev
);
3437 pci_save_state(sp
->pdev
);
3438 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3439 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3444 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3445 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3447 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3451 /* Set swapper to enable I/O register access */
3452 s2io_set_swapper(sp
);
3454 /* restore mac_addr entries */
3455 do_s2io_restore_unicast_mc(sp
);
3457 /* Restore the MSIX table entries from local variables */
3458 restore_xmsi_data(sp
);
3460 /* Clear certain PCI/PCI-X fields after reset */
3461 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3462 /* Clear "detected parity error" bit */
3463 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3465 /* Clearing PCIX Ecc status register */
3466 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3468 /* Clearing PCI_STATUS error reflected here */
3469 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3472 /* Reset device statistics maintained by OS */
3473 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3475 stats
= sp
->mac_control
.stats_info
;
3476 swstats
= &stats
->sw_stat
;
3478 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3479 up_cnt
= swstats
->link_up_cnt
;
3480 down_cnt
= swstats
->link_down_cnt
;
3481 up_time
= swstats
->link_up_time
;
3482 down_time
= swstats
->link_down_time
;
3483 reset_cnt
= swstats
->soft_reset_cnt
;
3484 mem_alloc_cnt
= swstats
->mem_allocated
;
3485 mem_free_cnt
= swstats
->mem_freed
;
3486 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3488 memset(stats
, 0, sizeof(struct stat_block
));
3490 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491 swstats
->link_up_cnt
= up_cnt
;
3492 swstats
->link_down_cnt
= down_cnt
;
3493 swstats
->link_up_time
= up_time
;
3494 swstats
->link_down_time
= down_time
;
3495 swstats
->soft_reset_cnt
= reset_cnt
;
3496 swstats
->mem_allocated
= mem_alloc_cnt
;
3497 swstats
->mem_freed
= mem_free_cnt
;
3498 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3500 /* SXE-002: Configure link and activity LED to turn it off */
3501 subid
= sp
->pdev
->subsystem_device
;
3502 if (((subid
& 0xFF) >= 0x07) &&
3503 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3504 val64
= readq(&bar0
->gpio_control
);
3505 val64
|= 0x0000800000000000ULL
;
3506 writeq(val64
, &bar0
->gpio_control
);
3507 val64
= 0x0411040400000000ULL
;
3508 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3512 * Clear spurious ECC interrupts that would have occurred on
3513 * XFRAME II cards after reset.
3515 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3516 val64
= readq(&bar0
->pcc_err_reg
);
3517 writeq(val64
, &bar0
->pcc_err_reg
);
3520 sp
->device_enabled_once
= false;
3524 * s2io_set_swapper - to set the swapper controle on the card
3525 * @sp : private member of the device structure,
3526 * pointer to the s2io_nic structure.
3527 * Description: Function to set the swapper control on the card
3528 * correctly depending on the 'endianness' of the system.
3530 * SUCCESS on success and FAILURE on failure.
3533 static int s2io_set_swapper(struct s2io_nic
*sp
)
3535 struct net_device
*dev
= sp
->dev
;
3536 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3537 u64 val64
, valt
, valr
;
3540 * Set proper endian settings and verify the same by reading
3541 * the PIF Feed-back register.
3544 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3545 if (val64
!= 0x0123456789ABCDEFULL
) {
3547 static const u64 value
[] = {
3548 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3549 0x8100008181000081ULL
, /* FE=1, SE=0 */
3550 0x4200004242000042ULL
, /* FE=0, SE=1 */
3555 writeq(value
[i
], &bar0
->swapper_ctrl
);
3556 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3557 if (val64
== 0x0123456789ABCDEFULL
)
3562 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3563 "feedback read %llx\n",
3564 dev
->name
, (unsigned long long)val64
);
3569 valr
= readq(&bar0
->swapper_ctrl
);
3572 valt
= 0x0123456789ABCDEFULL
;
3573 writeq(valt
, &bar0
->xmsi_address
);
3574 val64
= readq(&bar0
->xmsi_address
);
3576 if (val64
!= valt
) {
3578 static const u64 value
[] = {
3579 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3580 0x0081810000818100ULL
, /* FE=1, SE=0 */
3581 0x0042420000424200ULL
, /* FE=0, SE=1 */
3586 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3587 writeq(valt
, &bar0
->xmsi_address
);
3588 val64
= readq(&bar0
->xmsi_address
);
3594 unsigned long long x
= val64
;
3596 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3600 val64
= readq(&bar0
->swapper_ctrl
);
3601 val64
&= 0xFFFF000000000000ULL
;
3605 * The device by default set to a big endian format, so a
3606 * big endian driver need not set anything.
3608 val64
|= (SWAPPER_CTRL_TXP_FE
|
3609 SWAPPER_CTRL_TXP_SE
|
3610 SWAPPER_CTRL_TXD_R_FE
|
3611 SWAPPER_CTRL_TXD_W_FE
|
3612 SWAPPER_CTRL_TXF_R_FE
|
3613 SWAPPER_CTRL_RXD_R_FE
|
3614 SWAPPER_CTRL_RXD_W_FE
|
3615 SWAPPER_CTRL_RXF_W_FE
|
3616 SWAPPER_CTRL_XMSI_FE
|
3617 SWAPPER_CTRL_STATS_FE
|
3618 SWAPPER_CTRL_STATS_SE
);
3619 if (sp
->config
.intr_type
== INTA
)
3620 val64
|= SWAPPER_CTRL_XMSI_SE
;
3621 writeq(val64
, &bar0
->swapper_ctrl
);
3624 * Initially we enable all bits to make it accessible by the
3625 * driver, then we selectively enable only those bits that
3628 val64
|= (SWAPPER_CTRL_TXP_FE
|
3629 SWAPPER_CTRL_TXP_SE
|
3630 SWAPPER_CTRL_TXD_R_FE
|
3631 SWAPPER_CTRL_TXD_R_SE
|
3632 SWAPPER_CTRL_TXD_W_FE
|
3633 SWAPPER_CTRL_TXD_W_SE
|
3634 SWAPPER_CTRL_TXF_R_FE
|
3635 SWAPPER_CTRL_RXD_R_FE
|
3636 SWAPPER_CTRL_RXD_R_SE
|
3637 SWAPPER_CTRL_RXD_W_FE
|
3638 SWAPPER_CTRL_RXD_W_SE
|
3639 SWAPPER_CTRL_RXF_W_FE
|
3640 SWAPPER_CTRL_XMSI_FE
|
3641 SWAPPER_CTRL_STATS_FE
|
3642 SWAPPER_CTRL_STATS_SE
);
3643 if (sp
->config
.intr_type
== INTA
)
3644 val64
|= SWAPPER_CTRL_XMSI_SE
;
3645 writeq(val64
, &bar0
->swapper_ctrl
);
3647 val64
= readq(&bar0
->swapper_ctrl
);
3650 * Verifying if endian settings are accurate by reading a
3651 * feedback register.
3653 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3654 if (val64
!= 0x0123456789ABCDEFULL
) {
3655 /* Endian settings are incorrect, calls for another dekko. */
3657 "%s: Endian settings are wrong, feedback read %llx\n",
3658 dev
->name
, (unsigned long long)val64
);
3665 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3667 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3669 int ret
= 0, cnt
= 0;
3672 val64
= readq(&bar0
->xmsi_access
);
3673 if (!(val64
& s2BIT(15)))
3679 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3686 static void restore_xmsi_data(struct s2io_nic
*nic
)
3688 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3692 if (nic
->device_type
== XFRAME_I_DEVICE
)
3695 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3696 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3697 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3698 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3699 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3700 writeq(val64
, &bar0
->xmsi_access
);
3701 if (wait_for_msix_trans(nic
, msix_index
)) {
3702 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3703 __func__
, msix_index
);
3709 static void store_xmsi_data(struct s2io_nic
*nic
)
3711 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3712 u64 val64
, addr
, data
;
3715 if (nic
->device_type
== XFRAME_I_DEVICE
)
3718 /* Store and display */
3719 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3720 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3721 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3722 writeq(val64
, &bar0
->xmsi_access
);
3723 if (wait_for_msix_trans(nic
, msix_index
)) {
3724 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3725 __func__
, msix_index
);
3728 addr
= readq(&bar0
->xmsi_address
);
3729 data
= readq(&bar0
->xmsi_data
);
3731 nic
->msix_info
[i
].addr
= addr
;
3732 nic
->msix_info
[i
].data
= data
;
3737 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3739 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3741 u16 msi_control
; /* Temp variable */
3742 int ret
, i
, j
, msix_indx
= 1;
3744 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3745 struct swStat
*swstats
= &stats
->sw_stat
;
3747 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3748 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3749 if (!nic
->entries
) {
3750 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3752 swstats
->mem_alloc_fail_cnt
++;
3755 swstats
->mem_allocated
+= size
;
3757 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3758 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3759 if (!nic
->s2io_entries
) {
3760 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3762 swstats
->mem_alloc_fail_cnt
++;
3763 kfree(nic
->entries
);
3765 += (nic
->num_entries
* sizeof(struct msix_entry
));
3768 swstats
->mem_allocated
+= size
;
3770 nic
->entries
[0].entry
= 0;
3771 nic
->s2io_entries
[0].entry
= 0;
3772 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3773 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3774 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3776 for (i
= 1; i
< nic
->num_entries
; i
++) {
3777 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3778 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3779 nic
->s2io_entries
[i
].arg
= NULL
;
3780 nic
->s2io_entries
[i
].in_use
= 0;
3783 rx_mat
= readq(&bar0
->rx_mat
);
3784 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3785 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3786 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3787 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3788 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3791 writeq(rx_mat
, &bar0
->rx_mat
);
3792 readq(&bar0
->rx_mat
);
3794 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3795 /* We fail init if error or we get less vectors than min required */
3797 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3798 kfree(nic
->entries
);
3799 swstats
->mem_freed
+= nic
->num_entries
*
3800 sizeof(struct msix_entry
);
3801 kfree(nic
->s2io_entries
);
3802 swstats
->mem_freed
+= nic
->num_entries
*
3803 sizeof(struct s2io_msix_entry
);
3804 nic
->entries
= NULL
;
3805 nic
->s2io_entries
= NULL
;
3810 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 * in the herc NIC. (Temp change, needs to be removed later)
3813 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3814 msi_control
|= 0x1; /* Enable MSI */
3815 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3820 /* Handle software interrupt used during MSI(X) test */
3821 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3823 struct s2io_nic
*sp
= dev_id
;
3825 sp
->msi_detected
= 1;
3826 wake_up(&sp
->msi_wait
);
3831 /* Test interrupt path by forcing a a software IRQ */
3832 static int s2io_test_msi(struct s2io_nic
*sp
)
3834 struct pci_dev
*pdev
= sp
->pdev
;
3835 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3839 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3842 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3843 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3847 init_waitqueue_head(&sp
->msi_wait
);
3848 sp
->msi_detected
= 0;
3850 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3851 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3852 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3853 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3854 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3856 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3858 if (!sp
->msi_detected
) {
3859 /* MSI(X) test failed, go back to INTx mode */
3860 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3861 "using MSI(X) during test\n",
3862 sp
->dev
->name
, pci_name(pdev
));
3867 free_irq(sp
->entries
[1].vector
, sp
);
3869 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3874 static void remove_msix_isr(struct s2io_nic
*sp
)
3879 for (i
= 0; i
< sp
->num_entries
; i
++) {
3880 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3881 int vector
= sp
->entries
[i
].vector
;
3882 void *arg
= sp
->s2io_entries
[i
].arg
;
3883 free_irq(vector
, arg
);
3888 kfree(sp
->s2io_entries
);
3890 sp
->s2io_entries
= NULL
;
3892 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3893 msi_control
&= 0xFFFE; /* Disable MSI */
3894 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3896 pci_disable_msix(sp
->pdev
);
3899 static void remove_inta_isr(struct s2io_nic
*sp
)
3901 struct net_device
*dev
= sp
->dev
;
3903 free_irq(sp
->pdev
->irq
, dev
);
3906 /* ********************************************************* *
3907 * Functions defined below concern the OS part of the driver *
3908 * ********************************************************* */
3911 * s2io_open - open entry point of the driver
3912 * @dev : pointer to the device structure.
3914 * This function is the open entry point of the driver. It mainly calls a
3915 * function to allocate Rx buffers and inserts them into the buffer
3916 * descriptors and then enables the Rx part of the NIC.
3918 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3922 static int s2io_open(struct net_device
*dev
)
3924 struct s2io_nic
*sp
= netdev_priv(dev
);
3925 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3929 * Make sure you have link off by default every time
3930 * Nic is initialized
3932 netif_carrier_off(dev
);
3933 sp
->last_link_state
= 0;
3935 /* Initialize H/W and enable interrupts */
3936 err
= s2io_card_up(sp
);
3938 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3940 goto hw_init_failed
;
3943 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3944 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3947 goto hw_init_failed
;
3949 s2io_start_all_tx_queue(sp
);
3953 if (sp
->config
.intr_type
== MSI_X
) {
3956 swstats
->mem_freed
+= sp
->num_entries
*
3957 sizeof(struct msix_entry
);
3959 if (sp
->s2io_entries
) {
3960 kfree(sp
->s2io_entries
);
3961 swstats
->mem_freed
+= sp
->num_entries
*
3962 sizeof(struct s2io_msix_entry
);
3969 * s2io_close -close entry point of the driver
3970 * @dev : device pointer.
3972 * This is the stop entry point of the driver. It needs to undo exactly
3973 * whatever was done by the open entry point,thus it's usually referred to
3974 * as the close function.Among other things this function mainly stops the
3975 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3977 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3981 static int s2io_close(struct net_device
*dev
)
3983 struct s2io_nic
*sp
= netdev_priv(dev
);
3984 struct config_param
*config
= &sp
->config
;
3988 /* Return if the device is already closed *
3989 * Can happen when s2io_card_up failed in change_mtu *
3991 if (!is_s2io_card_up(sp
))
3994 s2io_stop_all_tx_queue(sp
);
3995 /* delete all populated mac entries */
3996 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3997 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3998 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3999 do_s2io_delete_unicast_mc(sp
, tmp64
);
4008 * s2io_xmit - Tx entry point of te driver
4009 * @skb : the socket buffer containing the Tx data.
4010 * @dev : device pointer.
4012 * This function is the Tx entry point of the driver. S2IO NIC supports
4013 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4014 * NOTE: when device can't queue the pkt,just the trans_start variable will
4017 * 0 on success & 1 on failure.
4020 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4022 struct s2io_nic
*sp
= netdev_priv(dev
);
4023 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4026 struct TxFIFO_element __iomem
*tx_fifo
;
4027 unsigned long flags
= 0;
4029 struct fifo_info
*fifo
= NULL
;
4030 int do_spin_lock
= 1;
4032 int enable_per_list_interrupt
= 0;
4033 struct config_param
*config
= &sp
->config
;
4034 struct mac_info
*mac_control
= &sp
->mac_control
;
4035 struct stat_block
*stats
= mac_control
->stats_info
;
4036 struct swStat
*swstats
= &stats
->sw_stat
;
4038 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4040 if (unlikely(skb
->len
<= 0)) {
4041 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4042 dev_kfree_skb_any(skb
);
4043 return NETDEV_TX_OK
;
4046 if (!is_s2io_card_up(sp
)) {
4047 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4050 return NETDEV_TX_OK
;
4054 if (vlan_tx_tag_present(skb
))
4055 vlan_tag
= vlan_tx_tag_get(skb
);
4056 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4057 if (skb
->protocol
== htons(ETH_P_IP
)) {
4062 if (!ip_is_fragment(ip
)) {
4063 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4066 if (ip
->protocol
== IPPROTO_TCP
) {
4067 queue_len
= sp
->total_tcp_fifos
;
4068 queue
= (ntohs(th
->source
) +
4070 sp
->fifo_selector
[queue_len
- 1];
4071 if (queue
>= queue_len
)
4072 queue
= queue_len
- 1;
4073 } else if (ip
->protocol
== IPPROTO_UDP
) {
4074 queue_len
= sp
->total_udp_fifos
;
4075 queue
= (ntohs(th
->source
) +
4077 sp
->fifo_selector
[queue_len
- 1];
4078 if (queue
>= queue_len
)
4079 queue
= queue_len
- 1;
4080 queue
+= sp
->udp_fifo_idx
;
4081 if (skb
->len
> 1024)
4082 enable_per_list_interrupt
= 1;
4087 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4088 /* get fifo number based on skb->priority value */
4089 queue
= config
->fifo_mapping
4090 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4091 fifo
= &mac_control
->fifos
[queue
];
4094 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4096 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4097 return NETDEV_TX_LOCKED
;
4100 if (sp
->config
.multiq
) {
4101 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4102 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4103 return NETDEV_TX_BUSY
;
4105 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4106 if (netif_queue_stopped(dev
)) {
4107 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4108 return NETDEV_TX_BUSY
;
4112 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4113 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4114 txdp
= fifo
->list_info
[put_off
].list_virt_addr
;
4116 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4117 /* Avoid "put" pointer going beyond "get" pointer */
4118 if (txdp
->Host_Control
||
4119 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4120 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4121 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4123 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4124 return NETDEV_TX_OK
;
4127 offload_type
= s2io_offload_type(skb
);
4128 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4129 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4130 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4132 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4133 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4137 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4138 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4139 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4140 if (enable_per_list_interrupt
)
4141 if (put_off
& (queue_len
>> 5))
4142 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4144 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4145 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4148 frg_len
= skb_headlen(skb
);
4149 if (offload_type
== SKB_GSO_UDP
) {
4152 ufo_size
= s2io_udp_mss(skb
);
4154 txdp
->Control_1
|= TXD_UFO_EN
;
4155 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4156 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4158 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4159 fifo
->ufo_in_band_v
[put_off
] =
4160 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4162 fifo
->ufo_in_band_v
[put_off
] =
4163 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4165 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4166 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4167 fifo
->ufo_in_band_v
,
4170 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4171 goto pci_map_failed
;
4175 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4176 frg_len
, PCI_DMA_TODEVICE
);
4177 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4178 goto pci_map_failed
;
4180 txdp
->Host_Control
= (unsigned long)skb
;
4181 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4182 if (offload_type
== SKB_GSO_UDP
)
4183 txdp
->Control_1
|= TXD_UFO_EN
;
4185 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4186 /* For fragmented SKB. */
4187 for (i
= 0; i
< frg_cnt
; i
++) {
4188 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4189 /* A '0' length fragment will be ignored */
4190 if (!skb_frag_size(frag
))
4193 txdp
->Buffer_Pointer
= (u64
)skb_frag_dma_map(&sp
->pdev
->dev
,
4195 skb_frag_size(frag
),
4197 txdp
->Control_1
= TXD_BUFFER0_SIZE(skb_frag_size(frag
));
4198 if (offload_type
== SKB_GSO_UDP
)
4199 txdp
->Control_1
|= TXD_UFO_EN
;
4201 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4203 if (offload_type
== SKB_GSO_UDP
)
4204 frg_cnt
++; /* as Txd0 was used for inband header */
4206 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4207 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4208 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4210 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4213 val64
|= TX_FIFO_SPECIAL_FUNC
;
4215 writeq(val64
, &tx_fifo
->List_Control
);
4220 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4222 fifo
->tx_curr_put_info
.offset
= put_off
;
4224 /* Avoid "put" pointer going beyond "get" pointer */
4225 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4226 swstats
->fifo_full_cnt
++;
4228 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4230 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4232 swstats
->mem_allocated
+= skb
->truesize
;
4233 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4235 if (sp
->config
.intr_type
== MSI_X
)
4236 tx_intr_handler(fifo
);
4238 return NETDEV_TX_OK
;
4241 swstats
->pci_map_fail_cnt
++;
4242 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4243 swstats
->mem_freed
+= skb
->truesize
;
4245 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4246 return NETDEV_TX_OK
;
4250 s2io_alarm_handle(unsigned long data
)
4252 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4253 struct net_device
*dev
= sp
->dev
;
4255 s2io_handle_errors(dev
);
4256 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4259 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4261 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4262 struct s2io_nic
*sp
= ring
->nic
;
4263 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4265 if (unlikely(!is_s2io_card_up(sp
)))
4268 if (sp
->config
.napi
) {
4269 u8 __iomem
*addr
= NULL
;
4272 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4273 addr
+= (7 - ring
->ring_no
);
4274 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4277 napi_schedule(&ring
->napi
);
4279 rx_intr_handler(ring
, 0);
4280 s2io_chk_rx_buffers(sp
, ring
);
4286 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4289 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4290 struct s2io_nic
*sp
= fifos
->nic
;
4291 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4292 struct config_param
*config
= &sp
->config
;
4295 if (unlikely(!is_s2io_card_up(sp
)))
4298 reason
= readq(&bar0
->general_int_status
);
4299 if (unlikely(reason
== S2IO_MINUS_ONE
))
4300 /* Nothing much can be done. Get out */
4303 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4304 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4306 if (reason
& GEN_INTR_TXPIC
)
4307 s2io_txpic_intr_handle(sp
);
4309 if (reason
& GEN_INTR_TXTRAFFIC
)
4310 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4312 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4313 tx_intr_handler(&fifos
[i
]);
4315 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4316 readl(&bar0
->general_int_status
);
4319 /* The interrupt was not raised by us */
4323 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4325 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4328 val64
= readq(&bar0
->pic_int_status
);
4329 if (val64
& PIC_INT_GPIO
) {
4330 val64
= readq(&bar0
->gpio_int_reg
);
4331 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4332 (val64
& GPIO_INT_REG_LINK_UP
)) {
4334 * This is unstable state so clear both up/down
4335 * interrupt and adapter to re-evaluate the link state.
4337 val64
|= GPIO_INT_REG_LINK_DOWN
;
4338 val64
|= GPIO_INT_REG_LINK_UP
;
4339 writeq(val64
, &bar0
->gpio_int_reg
);
4340 val64
= readq(&bar0
->gpio_int_mask
);
4341 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4342 GPIO_INT_MASK_LINK_DOWN
);
4343 writeq(val64
, &bar0
->gpio_int_mask
);
4344 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4345 val64
= readq(&bar0
->adapter_status
);
4346 /* Enable Adapter */
4347 val64
= readq(&bar0
->adapter_control
);
4348 val64
|= ADAPTER_CNTL_EN
;
4349 writeq(val64
, &bar0
->adapter_control
);
4350 val64
|= ADAPTER_LED_ON
;
4351 writeq(val64
, &bar0
->adapter_control
);
4352 if (!sp
->device_enabled_once
)
4353 sp
->device_enabled_once
= 1;
4355 s2io_link(sp
, LINK_UP
);
4357 * unmask link down interrupt and mask link-up
4360 val64
= readq(&bar0
->gpio_int_mask
);
4361 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4362 val64
|= GPIO_INT_MASK_LINK_UP
;
4363 writeq(val64
, &bar0
->gpio_int_mask
);
4365 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4366 val64
= readq(&bar0
->adapter_status
);
4367 s2io_link(sp
, LINK_DOWN
);
4368 /* Link is down so unmaks link up interrupt */
4369 val64
= readq(&bar0
->gpio_int_mask
);
4370 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4371 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4372 writeq(val64
, &bar0
->gpio_int_mask
);
4375 val64
= readq(&bar0
->adapter_control
);
4376 val64
= val64
& (~ADAPTER_LED_ON
);
4377 writeq(val64
, &bar0
->adapter_control
);
4380 val64
= readq(&bar0
->gpio_int_mask
);
4384 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4385 * @value: alarm bits
4386 * @addr: address value
4387 * @cnt: counter variable
4388 * Description: Check for alarm and increment the counter
4390 * 1 - if alarm bit set
4391 * 0 - if alarm bit is not set
4393 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4394 unsigned long long *cnt
)
4397 val64
= readq(addr
);
4398 if (val64
& value
) {
4399 writeq(val64
, addr
);
4408 * s2io_handle_errors - Xframe error indication handler
4409 * @nic: device private variable
4410 * Description: Handle alarms such as loss of link, single or
4411 * double ECC errors, critical and serious errors.
4415 static void s2io_handle_errors(void *dev_id
)
4417 struct net_device
*dev
= (struct net_device
*)dev_id
;
4418 struct s2io_nic
*sp
= netdev_priv(dev
);
4419 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4420 u64 temp64
= 0, val64
= 0;
4423 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4424 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4426 if (!is_s2io_card_up(sp
))
4429 if (pci_channel_offline(sp
->pdev
))
4432 memset(&sw_stat
->ring_full_cnt
, 0,
4433 sizeof(sw_stat
->ring_full_cnt
));
4435 /* Handling the XPAK counters update */
4436 if (stats
->xpak_timer_count
< 72000) {
4437 /* waiting for an hour */
4438 stats
->xpak_timer_count
++;
4440 s2io_updt_xpak_counter(dev
);
4441 /* reset the count to zero */
4442 stats
->xpak_timer_count
= 0;
4445 /* Handling link status change error Intr */
4446 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4447 val64
= readq(&bar0
->mac_rmac_err_reg
);
4448 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4449 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4450 schedule_work(&sp
->set_link_task
);
4453 /* In case of a serious error, the device will be Reset. */
4454 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4455 &sw_stat
->serious_err_cnt
))
4458 /* Check for data parity error */
4459 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4460 &sw_stat
->parity_err_cnt
))
4463 /* Check for ring full counter */
4464 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4465 val64
= readq(&bar0
->ring_bump_counter1
);
4466 for (i
= 0; i
< 4; i
++) {
4467 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4468 temp64
>>= 64 - ((i
+1)*16);
4469 sw_stat
->ring_full_cnt
[i
] += temp64
;
4472 val64
= readq(&bar0
->ring_bump_counter2
);
4473 for (i
= 0; i
< 4; i
++) {
4474 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4475 temp64
>>= 64 - ((i
+1)*16);
4476 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4480 val64
= readq(&bar0
->txdma_int_status
);
4481 /*check for pfc_err*/
4482 if (val64
& TXDMA_PFC_INT
) {
4483 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4484 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4487 &sw_stat
->pfc_err_cnt
))
4489 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4491 &sw_stat
->pfc_err_cnt
);
4494 /*check for tda_err*/
4495 if (val64
& TXDMA_TDA_INT
) {
4496 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4500 &sw_stat
->tda_err_cnt
))
4502 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4504 &sw_stat
->tda_err_cnt
);
4506 /*check for pcc_err*/
4507 if (val64
& TXDMA_PCC_INT
) {
4508 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4509 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4510 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4511 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4514 &sw_stat
->pcc_err_cnt
))
4516 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4518 &sw_stat
->pcc_err_cnt
);
4521 /*check for tti_err*/
4522 if (val64
& TXDMA_TTI_INT
) {
4523 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4525 &sw_stat
->tti_err_cnt
))
4527 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4529 &sw_stat
->tti_err_cnt
);
4532 /*check for lso_err*/
4533 if (val64
& TXDMA_LSO_INT
) {
4534 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4535 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4537 &sw_stat
->lso_err_cnt
))
4539 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4541 &sw_stat
->lso_err_cnt
);
4544 /*check for tpa_err*/
4545 if (val64
& TXDMA_TPA_INT
) {
4546 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4548 &sw_stat
->tpa_err_cnt
))
4550 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4552 &sw_stat
->tpa_err_cnt
);
4555 /*check for sm_err*/
4556 if (val64
& TXDMA_SM_INT
) {
4557 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4559 &sw_stat
->sm_err_cnt
))
4563 val64
= readq(&bar0
->mac_int_status
);
4564 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4565 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4566 &bar0
->mac_tmac_err_reg
,
4567 &sw_stat
->mac_tmac_err_cnt
))
4569 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4570 TMAC_DESC_ECC_SG_ERR
|
4571 TMAC_DESC_ECC_DB_ERR
,
4572 &bar0
->mac_tmac_err_reg
,
4573 &sw_stat
->mac_tmac_err_cnt
);
4576 val64
= readq(&bar0
->xgxs_int_status
);
4577 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4578 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4579 &bar0
->xgxs_txgxs_err_reg
,
4580 &sw_stat
->xgxs_txgxs_err_cnt
))
4582 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4583 &bar0
->xgxs_txgxs_err_reg
,
4584 &sw_stat
->xgxs_txgxs_err_cnt
);
4587 val64
= readq(&bar0
->rxdma_int_status
);
4588 if (val64
& RXDMA_INT_RC_INT_M
) {
4589 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4591 RC_PRCn_SM_ERR_ALARM
|
4592 RC_FTC_SM_ERR_ALARM
,
4594 &sw_stat
->rc_err_cnt
))
4596 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4598 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4599 &sw_stat
->rc_err_cnt
);
4600 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4603 &bar0
->prc_pcix_err_reg
,
4604 &sw_stat
->prc_pcix_err_cnt
))
4606 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4609 &bar0
->prc_pcix_err_reg
,
4610 &sw_stat
->prc_pcix_err_cnt
);
4613 if (val64
& RXDMA_INT_RPA_INT_M
) {
4614 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4616 &sw_stat
->rpa_err_cnt
))
4618 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4620 &sw_stat
->rpa_err_cnt
);
4623 if (val64
& RXDMA_INT_RDA_INT_M
) {
4624 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4625 RDA_FRM_ECC_DB_N_AERR
|
4628 RDA_RXD_ECC_DB_SERR
,
4630 &sw_stat
->rda_err_cnt
))
4632 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4633 RDA_FRM_ECC_SG_ERR
|
4637 &sw_stat
->rda_err_cnt
);
4640 if (val64
& RXDMA_INT_RTI_INT_M
) {
4641 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4643 &sw_stat
->rti_err_cnt
))
4645 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4647 &sw_stat
->rti_err_cnt
);
4650 val64
= readq(&bar0
->mac_int_status
);
4651 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4652 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4653 &bar0
->mac_rmac_err_reg
,
4654 &sw_stat
->mac_rmac_err_cnt
))
4656 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4657 RMAC_SINGLE_ECC_ERR
|
4658 RMAC_DOUBLE_ECC_ERR
,
4659 &bar0
->mac_rmac_err_reg
,
4660 &sw_stat
->mac_rmac_err_cnt
);
4663 val64
= readq(&bar0
->xgxs_int_status
);
4664 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4665 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4666 &bar0
->xgxs_rxgxs_err_reg
,
4667 &sw_stat
->xgxs_rxgxs_err_cnt
))
4671 val64
= readq(&bar0
->mc_int_status
);
4672 if (val64
& MC_INT_STATUS_MC_INT
) {
4673 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4675 &sw_stat
->mc_err_cnt
))
4678 /* Handling Ecc errors */
4679 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4680 writeq(val64
, &bar0
->mc_err_reg
);
4681 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4682 sw_stat
->double_ecc_errs
++;
4683 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4685 * Reset XframeI only if critical error
4688 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4689 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4693 sw_stat
->single_ecc_errs
++;
4699 s2io_stop_all_tx_queue(sp
);
4700 schedule_work(&sp
->rst_timer_task
);
4701 sw_stat
->soft_reset_cnt
++;
4705 * s2io_isr - ISR handler of the device .
4706 * @irq: the irq of the device.
4707 * @dev_id: a void pointer to the dev structure of the NIC.
4708 * Description: This function is the ISR handler of the device. It
4709 * identifies the reason for the interrupt and calls the relevant
4710 * service routines. As a contongency measure, this ISR allocates the
4711 * recv buffers, if their numbers are below the panic value which is
4712 * presently set to 25% of the original number of rcv buffers allocated.
4714 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4715 * IRQ_NONE: will be returned if interrupt is not from our device
4717 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4719 struct net_device
*dev
= (struct net_device
*)dev_id
;
4720 struct s2io_nic
*sp
= netdev_priv(dev
);
4721 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4724 struct mac_info
*mac_control
;
4725 struct config_param
*config
;
4727 /* Pretend we handled any irq's from a disconnected card */
4728 if (pci_channel_offline(sp
->pdev
))
4731 if (!is_s2io_card_up(sp
))
4734 config
= &sp
->config
;
4735 mac_control
= &sp
->mac_control
;
4738 * Identify the cause for interrupt and call the appropriate
4739 * interrupt handler. Causes for the interrupt could be;
4744 reason
= readq(&bar0
->general_int_status
);
4746 if (unlikely(reason
== S2IO_MINUS_ONE
))
4747 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4750 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4751 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4754 if (reason
& GEN_INTR_RXTRAFFIC
) {
4755 napi_schedule(&sp
->napi
);
4756 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4757 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4758 readl(&bar0
->rx_traffic_int
);
4762 * rx_traffic_int reg is an R1 register, writing all 1's
4763 * will ensure that the actual interrupt causing bit
4764 * get's cleared and hence a read can be avoided.
4766 if (reason
& GEN_INTR_RXTRAFFIC
)
4767 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4769 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4770 struct ring_info
*ring
= &mac_control
->rings
[i
];
4772 rx_intr_handler(ring
, 0);
4777 * tx_traffic_int reg is an R1 register, writing all 1's
4778 * will ensure that the actual interrupt causing bit get's
4779 * cleared and hence a read can be avoided.
4781 if (reason
& GEN_INTR_TXTRAFFIC
)
4782 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4784 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4785 tx_intr_handler(&mac_control
->fifos
[i
]);
4787 if (reason
& GEN_INTR_TXPIC
)
4788 s2io_txpic_intr_handle(sp
);
4791 * Reallocate the buffers from the interrupt handler itself.
4793 if (!config
->napi
) {
4794 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4795 struct ring_info
*ring
= &mac_control
->rings
[i
];
4797 s2io_chk_rx_buffers(sp
, ring
);
4800 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4801 readl(&bar0
->general_int_status
);
4805 } else if (!reason
) {
4806 /* The interrupt was not raised by us */
4816 static void s2io_updt_stats(struct s2io_nic
*sp
)
4818 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4822 if (is_s2io_card_up(sp
)) {
4823 /* Apprx 30us on a 133 MHz bus */
4824 val64
= SET_UPDT_CLICKS(10) |
4825 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4826 writeq(val64
, &bar0
->stat_cfg
);
4829 val64
= readq(&bar0
->stat_cfg
);
4830 if (!(val64
& s2BIT(0)))
4834 break; /* Updt failed */
4840 * s2io_get_stats - Updates the device statistics structure.
4841 * @dev : pointer to the device structure.
4843 * This function updates the device statistics structure in the s2io_nic
4844 * structure and returns a pointer to the same.
4846 * pointer to the updated net_device_stats structure.
4848 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4850 struct s2io_nic
*sp
= netdev_priv(dev
);
4851 struct mac_info
*mac_control
= &sp
->mac_control
;
4852 struct stat_block
*stats
= mac_control
->stats_info
;
4855 /* Configure Stats for immediate updt */
4856 s2io_updt_stats(sp
);
4858 /* A device reset will cause the on-adapter statistics to be zero'ed.
4859 * This can be done while running by changing the MTU. To prevent the
4860 * system from having the stats zero'ed, the driver keeps a copy of the
4861 * last update to the system (which is also zero'ed on reset). This
4862 * enables the driver to accurately know the delta between the last
4863 * update and the current update.
4865 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4866 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4867 sp
->stats
.rx_packets
+= delta
;
4868 dev
->stats
.rx_packets
+= delta
;
4870 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4871 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4872 sp
->stats
.tx_packets
+= delta
;
4873 dev
->stats
.tx_packets
+= delta
;
4875 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4876 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4877 sp
->stats
.rx_bytes
+= delta
;
4878 dev
->stats
.rx_bytes
+= delta
;
4880 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4881 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4882 sp
->stats
.tx_bytes
+= delta
;
4883 dev
->stats
.tx_bytes
+= delta
;
4885 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4886 sp
->stats
.rx_errors
+= delta
;
4887 dev
->stats
.rx_errors
+= delta
;
4889 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4890 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4891 sp
->stats
.tx_errors
+= delta
;
4892 dev
->stats
.tx_errors
+= delta
;
4894 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4895 sp
->stats
.rx_dropped
+= delta
;
4896 dev
->stats
.rx_dropped
+= delta
;
4898 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4899 sp
->stats
.tx_dropped
+= delta
;
4900 dev
->stats
.tx_dropped
+= delta
;
4902 /* The adapter MAC interprets pause frames as multicast packets, but
4903 * does not pass them up. This erroneously increases the multicast
4904 * packet count and needs to be deducted when the multicast frame count
4907 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4908 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4909 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4910 delta
-= sp
->stats
.multicast
;
4911 sp
->stats
.multicast
+= delta
;
4912 dev
->stats
.multicast
+= delta
;
4914 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4915 le32_to_cpu(stats
->rmac_usized_frms
)) +
4916 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4917 sp
->stats
.rx_length_errors
+= delta
;
4918 dev
->stats
.rx_length_errors
+= delta
;
4920 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4921 sp
->stats
.rx_crc_errors
+= delta
;
4922 dev
->stats
.rx_crc_errors
+= delta
;
4928 * s2io_set_multicast - entry point for multicast address enable/disable.
4929 * @dev : pointer to the device structure
4931 * This function is a driver entry point which gets called by the kernel
4932 * whenever multicast addresses must be enabled/disabled. This also gets
4933 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4934 * determine, if multicast address must be enabled or if promiscuous mode
4935 * is to be disabled etc.
4940 static void s2io_set_multicast(struct net_device
*dev
)
4943 struct netdev_hw_addr
*ha
;
4944 struct s2io_nic
*sp
= netdev_priv(dev
);
4945 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4946 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4948 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4950 struct config_param
*config
= &sp
->config
;
4952 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4953 /* Enable all Multicast addresses */
4954 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4955 &bar0
->rmac_addr_data0_mem
);
4956 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4957 &bar0
->rmac_addr_data1_mem
);
4958 val64
= RMAC_ADDR_CMD_MEM_WE
|
4959 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4960 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4961 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4962 /* Wait till command completes */
4963 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4964 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4968 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4969 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4970 /* Disable all Multicast addresses */
4971 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4972 &bar0
->rmac_addr_data0_mem
);
4973 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4974 &bar0
->rmac_addr_data1_mem
);
4975 val64
= RMAC_ADDR_CMD_MEM_WE
|
4976 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4977 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4978 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4979 /* Wait till command completes */
4980 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4981 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4985 sp
->all_multi_pos
= 0;
4988 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4989 /* Put the NIC into promiscuous mode */
4990 add
= &bar0
->mac_cfg
;
4991 val64
= readq(&bar0
->mac_cfg
);
4992 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4994 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4995 writel((u32
)val64
, add
);
4996 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4997 writel((u32
) (val64
>> 32), (add
+ 4));
4999 if (vlan_tag_strip
!= 1) {
5000 val64
= readq(&bar0
->rx_pa_cfg
);
5001 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5002 writeq(val64
, &bar0
->rx_pa_cfg
);
5003 sp
->vlan_strip_flag
= 0;
5006 val64
= readq(&bar0
->mac_cfg
);
5007 sp
->promisc_flg
= 1;
5008 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5010 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5011 /* Remove the NIC from promiscuous mode */
5012 add
= &bar0
->mac_cfg
;
5013 val64
= readq(&bar0
->mac_cfg
);
5014 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5017 writel((u32
)val64
, add
);
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5019 writel((u32
) (val64
>> 32), (add
+ 4));
5021 if (vlan_tag_strip
!= 0) {
5022 val64
= readq(&bar0
->rx_pa_cfg
);
5023 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5024 writeq(val64
, &bar0
->rx_pa_cfg
);
5025 sp
->vlan_strip_flag
= 1;
5028 val64
= readq(&bar0
->mac_cfg
);
5029 sp
->promisc_flg
= 0;
5030 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5033 /* Update individual M_CAST address list */
5034 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5035 if (netdev_mc_count(dev
) >
5036 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5038 "%s: No more Rx filters can be added - "
5039 "please enable ALL_MULTI instead\n",
5044 prev_cnt
= sp
->mc_addr_count
;
5045 sp
->mc_addr_count
= netdev_mc_count(dev
);
5047 /* Clear out the previous list of Mc in the H/W. */
5048 for (i
= 0; i
< prev_cnt
; i
++) {
5049 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5050 &bar0
->rmac_addr_data0_mem
);
5051 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5052 &bar0
->rmac_addr_data1_mem
);
5053 val64
= RMAC_ADDR_CMD_MEM_WE
|
5054 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5055 RMAC_ADDR_CMD_MEM_OFFSET
5056 (config
->mc_start_offset
+ i
);
5057 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5059 /* Wait for command completes */
5060 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5064 "%s: Adding Multicasts failed\n",
5070 /* Create the new Rx filter list and update the same in H/W. */
5072 netdev_for_each_mc_addr(ha
, dev
) {
5074 for (j
= 0; j
< ETH_ALEN
; j
++) {
5075 mac_addr
|= ha
->addr
[j
];
5079 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5080 &bar0
->rmac_addr_data0_mem
);
5081 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5082 &bar0
->rmac_addr_data1_mem
);
5083 val64
= RMAC_ADDR_CMD_MEM_WE
|
5084 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5085 RMAC_ADDR_CMD_MEM_OFFSET
5086 (i
+ config
->mc_start_offset
);
5087 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5089 /* Wait for command completes */
5090 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5091 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5094 "%s: Adding Multicasts failed\n",
5103 /* read from CAM unicast & multicast addresses and store it in
5104 * def_mac_addr structure
5106 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5110 struct config_param
*config
= &sp
->config
;
5112 /* store unicast & multicast mac addresses */
5113 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5114 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5115 /* if read fails disable the entry */
5116 if (mac_addr
== FAILURE
)
5117 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5118 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5122 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5123 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5126 struct config_param
*config
= &sp
->config
;
5127 /* restore unicast mac address */
5128 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5129 do_s2io_prog_unicast(sp
->dev
,
5130 sp
->def_mac_addr
[offset
].mac_addr
);
5132 /* restore multicast mac address */
5133 for (offset
= config
->mc_start_offset
;
5134 offset
< config
->max_mc_addr
; offset
++)
5135 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5138 /* add a multicast MAC address to CAM */
5139 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5143 struct config_param
*config
= &sp
->config
;
5145 for (i
= 0; i
< ETH_ALEN
; i
++) {
5147 mac_addr
|= addr
[i
];
5149 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5152 /* check if the multicast mac already preset in CAM */
5153 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5155 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5156 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5159 if (tmp64
== mac_addr
)
5162 if (i
== config
->max_mc_addr
) {
5164 "CAM full no space left for multicast MAC\n");
5167 /* Update the internal structure with this new mac address */
5168 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5170 return do_s2io_add_mac(sp
, mac_addr
, i
);
5173 /* add MAC address to CAM */
5174 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5177 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5179 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5180 &bar0
->rmac_addr_data0_mem
);
5182 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5183 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5184 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5186 /* Wait till command completes */
5187 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5188 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5190 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5195 /* deletes a specified unicast/multicast mac entry from CAM */
5196 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5199 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5200 struct config_param
*config
= &sp
->config
;
5203 offset
< config
->max_mc_addr
; offset
++) {
5204 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5205 if (tmp64
== addr
) {
5206 /* disable the entry by writing 0xffffffffffffULL */
5207 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5209 /* store the new mac list from CAM */
5210 do_s2io_store_unicast_mc(sp
);
5214 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5215 (unsigned long long)addr
);
5219 /* read mac entries from CAM */
5220 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5222 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5223 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5226 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5227 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5228 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5230 /* Wait till command completes */
5231 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5232 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5234 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5237 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5243 * s2io_set_mac_addr driver entry point
5246 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5248 struct sockaddr
*addr
= p
;
5250 if (!is_valid_ether_addr(addr
->sa_data
))
5253 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5255 /* store the MAC address in CAM */
5256 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5259 * do_s2io_prog_unicast - Programs the Xframe mac address
5260 * @dev : pointer to the device structure.
5261 * @addr: a uchar pointer to the new mac address which is to be set.
5262 * Description : This procedure will program the Xframe to receive
5263 * frames with new Mac Address
5264 * Return value: SUCCESS on success and an appropriate (-)ve integer
5265 * as defined in errno.h file on failure.
5268 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5270 struct s2io_nic
*sp
= netdev_priv(dev
);
5271 register u64 mac_addr
= 0, perm_addr
= 0;
5274 struct config_param
*config
= &sp
->config
;
5277 * Set the new MAC address as the new unicast filter and reflect this
5278 * change on the device address registered with the OS. It will be
5281 for (i
= 0; i
< ETH_ALEN
; i
++) {
5283 mac_addr
|= addr
[i
];
5285 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5288 /* check if the dev_addr is different than perm_addr */
5289 if (mac_addr
== perm_addr
)
5292 /* check if the mac already preset in CAM */
5293 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5294 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5295 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5298 if (tmp64
== mac_addr
) {
5300 "MAC addr:0x%llx already present in CAM\n",
5301 (unsigned long long)mac_addr
);
5305 if (i
== config
->max_mac_addr
) {
5306 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5309 /* Update the internal structure with this new mac address */
5310 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5312 return do_s2io_add_mac(sp
, mac_addr
, i
);
5316 * s2io_ethtool_sset - Sets different link parameters.
5317 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5318 * @info: pointer to the structure with parameters given by ethtool to set
5321 * The function sets different link parameters provided by the user onto
5327 static int s2io_ethtool_sset(struct net_device
*dev
,
5328 struct ethtool_cmd
*info
)
5330 struct s2io_nic
*sp
= netdev_priv(dev
);
5331 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5332 (ethtool_cmd_speed(info
) != SPEED_10000
) ||
5333 (info
->duplex
!= DUPLEX_FULL
))
5336 s2io_close(sp
->dev
);
5344 * s2io_ethtol_gset - Return link specific information.
5345 * @sp : private member of the device structure, pointer to the
5346 * s2io_nic structure.
5347 * @info : pointer to the structure with parameters given by ethtool
5348 * to return link information.
5350 * Returns link specific information like speed, duplex etc.. to ethtool.
5352 * return 0 on success.
5355 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5357 struct s2io_nic
*sp
= netdev_priv(dev
);
5358 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5359 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5360 info
->port
= PORT_FIBRE
;
5362 /* info->transceiver */
5363 info
->transceiver
= XCVR_EXTERNAL
;
5365 if (netif_carrier_ok(sp
->dev
)) {
5366 ethtool_cmd_speed_set(info
, SPEED_10000
);
5367 info
->duplex
= DUPLEX_FULL
;
5369 ethtool_cmd_speed_set(info
, -1);
5373 info
->autoneg
= AUTONEG_DISABLE
;
5378 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5379 * @sp : private member of the device structure, which is a pointer to the
5380 * s2io_nic structure.
5381 * @info : pointer to the structure with parameters given by ethtool to
5382 * return driver information.
5384 * Returns driver specefic information like name, version etc.. to ethtool.
5389 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5390 struct ethtool_drvinfo
*info
)
5392 struct s2io_nic
*sp
= netdev_priv(dev
);
5394 strlcpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5395 strlcpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5396 strlcpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5397 info
->regdump_len
= XENA_REG_SPACE
;
5398 info
->eedump_len
= XENA_EEPROM_SPACE
;
5402 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5403 * @sp: private member of the device structure, which is a pointer to the
5404 * s2io_nic structure.
5405 * @regs : pointer to the structure with parameters given by ethtool for
5406 * dumping the registers.
5407 * @reg_space: The input argumnet into which all the registers are dumped.
5409 * Dumps the entire register space of xFrame NIC into the user given
5415 static void s2io_ethtool_gregs(struct net_device
*dev
,
5416 struct ethtool_regs
*regs
, void *space
)
5420 u8
*reg_space
= (u8
*)space
;
5421 struct s2io_nic
*sp
= netdev_priv(dev
);
5423 regs
->len
= XENA_REG_SPACE
;
5424 regs
->version
= sp
->pdev
->subsystem_device
;
5426 for (i
= 0; i
< regs
->len
; i
+= 8) {
5427 reg
= readq(sp
->bar0
+ i
);
5428 memcpy((reg_space
+ i
), ®
, 8);
5433 * s2io_set_led - control NIC led
5435 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5437 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5438 u16 subid
= sp
->pdev
->subsystem_device
;
5441 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5442 ((subid
& 0xFF) >= 0x07)) {
5443 val64
= readq(&bar0
->gpio_control
);
5445 val64
|= GPIO_CTRL_GPIO_0
;
5447 val64
&= ~GPIO_CTRL_GPIO_0
;
5449 writeq(val64
, &bar0
->gpio_control
);
5451 val64
= readq(&bar0
->adapter_control
);
5453 val64
|= ADAPTER_LED_ON
;
5455 val64
&= ~ADAPTER_LED_ON
;
5457 writeq(val64
, &bar0
->adapter_control
);
5463 * s2io_ethtool_set_led - To physically identify the nic on the system.
5464 * @dev : network device
5465 * @state: led setting
5467 * Description: Used to physically identify the NIC on the system.
5468 * The Link LED will blink for a time specified by the user for
5470 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5471 * identification is possible only if it's link is up.
5474 static int s2io_ethtool_set_led(struct net_device
*dev
,
5475 enum ethtool_phys_id_state state
)
5477 struct s2io_nic
*sp
= netdev_priv(dev
);
5478 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5479 u16 subid
= sp
->pdev
->subsystem_device
;
5481 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5482 u64 val64
= readq(&bar0
->adapter_control
);
5483 if (!(val64
& ADAPTER_CNTL_EN
)) {
5484 pr_err("Adapter Link down, cannot blink LED\n");
5490 case ETHTOOL_ID_ACTIVE
:
5491 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5492 return 1; /* cycle on/off once per second */
5495 s2io_set_led(sp
, true);
5498 case ETHTOOL_ID_OFF
:
5499 s2io_set_led(sp
, false);
5502 case ETHTOOL_ID_INACTIVE
:
5503 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5504 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5510 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5511 struct ethtool_ringparam
*ering
)
5513 struct s2io_nic
*sp
= netdev_priv(dev
);
5514 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5516 if (sp
->rxd_mode
== RXD_MODE_1
) {
5517 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5518 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5520 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5521 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5524 ering
->tx_max_pending
= MAX_TX_DESC
;
5526 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5527 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5528 ering
->rx_pending
= rx_desc_count
;
5529 ering
->rx_jumbo_pending
= rx_desc_count
;
5531 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5532 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5533 ering
->tx_pending
= tx_desc_count
;
5534 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5538 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5539 * @sp : private member of the device structure, which is a pointer to the
5540 * s2io_nic structure.
5541 * @ep : pointer to the structure with pause parameters given by ethtool.
5543 * Returns the Pause frame generation and reception capability of the NIC.
5547 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5548 struct ethtool_pauseparam
*ep
)
5551 struct s2io_nic
*sp
= netdev_priv(dev
);
5552 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5554 val64
= readq(&bar0
->rmac_pause_cfg
);
5555 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5556 ep
->tx_pause
= true;
5557 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5558 ep
->rx_pause
= true;
5559 ep
->autoneg
= false;
5563 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5564 * @sp : private member of the device structure, which is a pointer to the
5565 * s2io_nic structure.
5566 * @ep : pointer to the structure with pause parameters given by ethtool.
5568 * It can be used to set or reset Pause frame generation or reception
5569 * support of the NIC.
5571 * int, returns 0 on Success
5574 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5575 struct ethtool_pauseparam
*ep
)
5578 struct s2io_nic
*sp
= netdev_priv(dev
);
5579 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5581 val64
= readq(&bar0
->rmac_pause_cfg
);
5583 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5585 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5587 val64
|= RMAC_PAUSE_RX_ENABLE
;
5589 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5590 writeq(val64
, &bar0
->rmac_pause_cfg
);
5595 * read_eeprom - reads 4 bytes of data from user given offset.
5596 * @sp : private member of the device structure, which is a pointer to the
5597 * s2io_nic structure.
5598 * @off : offset at which the data must be written
5599 * @data : Its an output parameter where the data read at the given
5602 * Will read 4 bytes of data from the user given offset and return the
5604 * NOTE: Will allow to read only part of the EEPROM visible through the
5607 * -1 on failure and 0 on success.
5610 #define S2IO_DEV_ID 5
5611 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5616 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5618 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5619 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5620 I2C_CONTROL_ADDR(off
) |
5621 I2C_CONTROL_BYTE_CNT(0x3) |
5623 I2C_CONTROL_CNTL_START
;
5624 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5626 while (exit_cnt
< 5) {
5627 val64
= readq(&bar0
->i2c_control
);
5628 if (I2C_CONTROL_CNTL_END(val64
)) {
5629 *data
= I2C_CONTROL_GET_DATA(val64
);
5638 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5639 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5640 SPI_CONTROL_BYTECNT(0x3) |
5641 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5642 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5643 val64
|= SPI_CONTROL_REQ
;
5644 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5645 while (exit_cnt
< 5) {
5646 val64
= readq(&bar0
->spi_control
);
5647 if (val64
& SPI_CONTROL_NACK
) {
5650 } else if (val64
& SPI_CONTROL_DONE
) {
5651 *data
= readq(&bar0
->spi_data
);
5664 * write_eeprom - actually writes the relevant part of the data value.
5665 * @sp : private member of the device structure, which is a pointer to the
5666 * s2io_nic structure.
5667 * @off : offset at which the data must be written
5668 * @data : The data that is to be written
5669 * @cnt : Number of bytes of the data that are actually to be written into
5670 * the Eeprom. (max of 3)
5672 * Actually writes the relevant part of the data value into the Eeprom
5673 * through the I2C bus.
5675 * 0 on success, -1 on failure.
5678 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5680 int exit_cnt
= 0, ret
= -1;
5682 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5684 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5685 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5686 I2C_CONTROL_ADDR(off
) |
5687 I2C_CONTROL_BYTE_CNT(cnt
) |
5688 I2C_CONTROL_SET_DATA((u32
)data
) |
5689 I2C_CONTROL_CNTL_START
;
5690 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5692 while (exit_cnt
< 5) {
5693 val64
= readq(&bar0
->i2c_control
);
5694 if (I2C_CONTROL_CNTL_END(val64
)) {
5695 if (!(val64
& I2C_CONTROL_NACK
))
5704 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5705 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5706 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5708 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5709 SPI_CONTROL_BYTECNT(write_cnt
) |
5710 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5711 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5712 val64
|= SPI_CONTROL_REQ
;
5713 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5714 while (exit_cnt
< 5) {
5715 val64
= readq(&bar0
->spi_control
);
5716 if (val64
& SPI_CONTROL_NACK
) {
5719 } else if (val64
& SPI_CONTROL_DONE
) {
5729 static void s2io_vpd_read(struct s2io_nic
*nic
)
5733 int i
= 0, cnt
, len
, fail
= 0;
5734 int vpd_addr
= 0x80;
5735 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5737 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5738 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5741 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5744 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5746 vpd_data
= kmalloc(256, GFP_KERNEL
);
5748 swstats
->mem_alloc_fail_cnt
++;
5751 swstats
->mem_allocated
+= 256;
5753 for (i
= 0; i
< 256; i
+= 4) {
5754 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5755 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5756 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5757 for (cnt
= 0; cnt
< 5; cnt
++) {
5759 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5764 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5768 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5769 (u32
*)&vpd_data
[i
]);
5773 /* read serial number of adapter */
5774 for (cnt
= 0; cnt
< 252; cnt
++) {
5775 if ((vpd_data
[cnt
] == 'S') &&
5776 (vpd_data
[cnt
+1] == 'N')) {
5777 len
= vpd_data
[cnt
+2];
5778 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5779 memcpy(nic
->serial_num
,
5782 memset(nic
->serial_num
+len
,
5784 VPD_STRING_LEN
-len
);
5791 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5793 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5794 nic
->product_name
[len
] = 0;
5797 swstats
->mem_freed
+= 256;
5801 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5802 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5803 * @eeprom : pointer to the user level structure provided by ethtool,
5804 * containing all relevant information.
5805 * @data_buf : user defined value to be written into Eeprom.
5806 * Description: Reads the values stored in the Eeprom at given offset
5807 * for a given length. Stores these values int the input argument data
5808 * buffer 'data_buf' and returns these to the caller (ethtool.)
5813 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5814 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5818 struct s2io_nic
*sp
= netdev_priv(dev
);
5820 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5822 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5823 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5825 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5826 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5827 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5831 memcpy((data_buf
+ i
), &valid
, 4);
5837 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5838 * @sp : private member of the device structure, which is a pointer to the
5839 * s2io_nic structure.
5840 * @eeprom : pointer to the user level structure provided by ethtool,
5841 * containing all relevant information.
5842 * @data_buf ; user defined value to be written into Eeprom.
5844 * Tries to write the user provided value in the Eeprom, at the offset
5845 * given by the user.
5847 * 0 on success, -EFAULT on failure.
5850 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5851 struct ethtool_eeprom
*eeprom
,
5854 int len
= eeprom
->len
, cnt
= 0;
5855 u64 valid
= 0, data
;
5856 struct s2io_nic
*sp
= netdev_priv(dev
);
5858 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5860 "ETHTOOL_WRITE_EEPROM Err: "
5861 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5862 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5868 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5870 valid
= (u32
)(data
<< 24);
5874 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5876 "ETHTOOL_WRITE_EEPROM Err: "
5877 "Cannot write into the specified offset\n");
5888 * s2io_register_test - reads and writes into all clock domains.
5889 * @sp : private member of the device structure, which is a pointer to the
5890 * s2io_nic structure.
5891 * @data : variable that returns the result of each of the test conducted b
5894 * Read and write into all clock domains. The NIC has 3 clock domains,
5895 * see that registers in all the three regions are accessible.
5900 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5902 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5903 u64 val64
= 0, exp_val
;
5906 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5907 if (val64
!= 0x123456789abcdefULL
) {
5909 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5912 val64
= readq(&bar0
->rmac_pause_cfg
);
5913 if (val64
!= 0xc000ffff00000000ULL
) {
5915 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5918 val64
= readq(&bar0
->rx_queue_cfg
);
5919 if (sp
->device_type
== XFRAME_II_DEVICE
)
5920 exp_val
= 0x0404040404040404ULL
;
5922 exp_val
= 0x0808080808080808ULL
;
5923 if (val64
!= exp_val
) {
5925 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5928 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5929 if (val64
!= 0x000000001923141EULL
) {
5931 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5934 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5935 writeq(val64
, &bar0
->xmsi_data
);
5936 val64
= readq(&bar0
->xmsi_data
);
5937 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5939 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5942 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5943 writeq(val64
, &bar0
->xmsi_data
);
5944 val64
= readq(&bar0
->xmsi_data
);
5945 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5947 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5955 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5956 * @sp : private member of the device structure, which is a pointer to the
5957 * s2io_nic structure.
5958 * @data:variable that returns the result of each of the test conducted by
5961 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5967 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5970 u64 ret_data
, org_4F0
, org_7F0
;
5971 u8 saved_4F0
= 0, saved_7F0
= 0;
5972 struct net_device
*dev
= sp
->dev
;
5974 /* Test Write Error at offset 0 */
5975 /* Note that SPI interface allows write access to all areas
5976 * of EEPROM. Hence doing all negative testing only for Xframe I.
5978 if (sp
->device_type
== XFRAME_I_DEVICE
)
5979 if (!write_eeprom(sp
, 0, 0, 3))
5982 /* Save current values at offsets 0x4F0 and 0x7F0 */
5983 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5985 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5988 /* Test Write at offset 4f0 */
5989 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5991 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5994 if (ret_data
!= 0x012345) {
5995 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5996 "Data written %llx Data read %llx\n",
5997 dev
->name
, (unsigned long long)0x12345,
5998 (unsigned long long)ret_data
);
6002 /* Reset the EEPROM data go FFFF */
6003 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6005 /* Test Write Request Error at offset 0x7c */
6006 if (sp
->device_type
== XFRAME_I_DEVICE
)
6007 if (!write_eeprom(sp
, 0x07C, 0, 3))
6010 /* Test Write Request at offset 0x7f0 */
6011 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6013 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6016 if (ret_data
!= 0x012345) {
6017 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6018 "Data written %llx Data read %llx\n",
6019 dev
->name
, (unsigned long long)0x12345,
6020 (unsigned long long)ret_data
);
6024 /* Reset the EEPROM data go FFFF */
6025 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6027 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6028 /* Test Write Error at offset 0x80 */
6029 if (!write_eeprom(sp
, 0x080, 0, 3))
6032 /* Test Write Error at offset 0xfc */
6033 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6036 /* Test Write Error at offset 0x100 */
6037 if (!write_eeprom(sp
, 0x100, 0, 3))
6040 /* Test Write Error at offset 4ec */
6041 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6045 /* Restore values at offsets 0x4F0 and 0x7F0 */
6047 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6049 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6056 * s2io_bist_test - invokes the MemBist test of the card .
6057 * @sp : private member of the device structure, which is a pointer to the
6058 * s2io_nic structure.
6059 * @data:variable that returns the result of each of the test conducted by
6062 * This invokes the MemBist test of the card. We give around
6063 * 2 secs time for the Test to complete. If it's still not complete
6064 * within this peiod, we consider that the test failed.
6066 * 0 on success and -1 on failure.
6069 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6072 int cnt
= 0, ret
= -1;
6074 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6075 bist
|= PCI_BIST_START
;
6076 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6079 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6080 if (!(bist
& PCI_BIST_START
)) {
6081 *data
= (bist
& PCI_BIST_CODE_MASK
);
6093 * s2io-link_test - verifies the link state of the nic
6094 * @sp ; private member of the device structure, which is a pointer to the
6095 * s2io_nic structure.
6096 * @data: variable that returns the result of each of the test conducted by
6099 * The function verifies the link state of the NIC and updates the input
6100 * argument 'data' appropriately.
6105 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6107 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6110 val64
= readq(&bar0
->adapter_status
);
6111 if (!(LINK_IS_UP(val64
)))
6120 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6121 * @sp - private member of the device structure, which is a pointer to the
6122 * s2io_nic structure.
6123 * @data - variable that returns the result of each of the test
6124 * conducted by the driver.
6126 * This is one of the offline test that tests the read and write
6127 * access to the RldRam chip on the NIC.
6132 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6134 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6136 int cnt
, iteration
= 0, test_fail
= 0;
6138 val64
= readq(&bar0
->adapter_control
);
6139 val64
&= ~ADAPTER_ECC_EN
;
6140 writeq(val64
, &bar0
->adapter_control
);
6142 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6143 val64
|= MC_RLDRAM_TEST_MODE
;
6144 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6146 val64
= readq(&bar0
->mc_rldram_mrs
);
6147 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6148 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6150 val64
|= MC_RLDRAM_MRS_ENABLE
;
6151 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6153 while (iteration
< 2) {
6154 val64
= 0x55555555aaaa0000ULL
;
6156 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6157 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6159 val64
= 0xaaaa5a5555550000ULL
;
6161 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6162 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6164 val64
= 0x55aaaaaaaa5a0000ULL
;
6166 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6167 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6169 val64
= (u64
) (0x0000003ffffe0100ULL
);
6170 writeq(val64
, &bar0
->mc_rldram_test_add
);
6172 val64
= MC_RLDRAM_TEST_MODE
|
6173 MC_RLDRAM_TEST_WRITE
|
6175 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6177 for (cnt
= 0; cnt
< 5; cnt
++) {
6178 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6179 if (val64
& MC_RLDRAM_TEST_DONE
)
6187 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6188 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6190 for (cnt
= 0; cnt
< 5; cnt
++) {
6191 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6192 if (val64
& MC_RLDRAM_TEST_DONE
)
6200 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6201 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6209 /* Bring the adapter out of test mode */
6210 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6216 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6217 * @sp : private member of the device structure, which is a pointer to the
6218 * s2io_nic structure.
6219 * @ethtest : pointer to a ethtool command specific structure that will be
6220 * returned to the user.
6221 * @data : variable that returns the result of each of the test
6222 * conducted by the driver.
6224 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6225 * the health of the card.
6230 static void s2io_ethtool_test(struct net_device
*dev
,
6231 struct ethtool_test
*ethtest
,
6234 struct s2io_nic
*sp
= netdev_priv(dev
);
6235 int orig_state
= netif_running(sp
->dev
);
6237 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6238 /* Offline Tests. */
6240 s2io_close(sp
->dev
);
6242 if (s2io_register_test(sp
, &data
[0]))
6243 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6247 if (s2io_rldram_test(sp
, &data
[3]))
6248 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6252 if (s2io_eeprom_test(sp
, &data
[1]))
6253 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6255 if (s2io_bist_test(sp
, &data
[4]))
6256 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6265 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6274 if (s2io_link_test(sp
, &data
[2]))
6275 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6284 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6285 struct ethtool_stats
*estats
,
6289 struct s2io_nic
*sp
= netdev_priv(dev
);
6290 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6291 struct swStat
*swstats
= &stats
->sw_stat
;
6292 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6294 s2io_updt_stats(sp
);
6296 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6297 le32_to_cpu(stats
->tmac_frms
);
6299 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6300 le32_to_cpu(stats
->tmac_data_octets
);
6301 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6303 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6304 le32_to_cpu(stats
->tmac_mcst_frms
);
6306 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6307 le32_to_cpu(stats
->tmac_bcst_frms
);
6308 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6310 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6311 le32_to_cpu(stats
->tmac_ttl_octets
);
6313 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6314 le32_to_cpu(stats
->tmac_ucst_frms
);
6316 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6317 le32_to_cpu(stats
->tmac_nucst_frms
);
6319 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6320 le32_to_cpu(stats
->tmac_any_err_frms
);
6321 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6322 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6324 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6325 le32_to_cpu(stats
->tmac_vld_ip
);
6327 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6328 le32_to_cpu(stats
->tmac_drop_ip
);
6330 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6331 le32_to_cpu(stats
->tmac_icmp
);
6333 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6334 le32_to_cpu(stats
->tmac_rst_tcp
);
6335 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6336 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6337 le32_to_cpu(stats
->tmac_udp
);
6339 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6340 le32_to_cpu(stats
->rmac_vld_frms
);
6342 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6343 le32_to_cpu(stats
->rmac_data_octets
);
6344 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6345 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6347 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6348 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6350 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6351 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6352 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6353 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6354 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6355 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6356 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6358 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6359 le32_to_cpu(stats
->rmac_ttl_octets
);
6361 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6362 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6364 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6365 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6367 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6368 le32_to_cpu(stats
->rmac_discarded_frms
);
6370 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6371 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6372 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6373 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6375 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6376 le32_to_cpu(stats
->rmac_usized_frms
);
6378 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6379 le32_to_cpu(stats
->rmac_osized_frms
);
6381 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6382 le32_to_cpu(stats
->rmac_frag_frms
);
6384 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6385 le32_to_cpu(stats
->rmac_jabber_frms
);
6386 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6387 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6388 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6389 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6390 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6391 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6393 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6394 le32_to_cpu(stats
->rmac_ip
);
6395 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6396 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6398 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6399 le32_to_cpu(stats
->rmac_drop_ip
);
6401 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6402 le32_to_cpu(stats
->rmac_icmp
);
6403 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6405 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6406 le32_to_cpu(stats
->rmac_udp
);
6408 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6409 le32_to_cpu(stats
->rmac_err_drp_udp
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6412 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6413 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6414 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6418 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6419 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6420 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6421 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6422 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6423 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6424 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6425 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6426 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6428 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6429 le32_to_cpu(stats
->rmac_pause_cnt
);
6430 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6431 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6433 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6434 le32_to_cpu(stats
->rmac_accepted_ip
);
6435 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6436 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6437 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6438 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6439 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6440 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6441 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6442 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6443 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6444 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6445 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6446 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6447 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6448 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6449 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6450 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6451 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6452 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6453 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6455 /* Enhanced statistics exist only for Hercules */
6456 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6458 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6460 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6462 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6463 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6464 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6465 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6466 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6467 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6470 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6471 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6472 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6473 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6474 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6475 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6479 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6480 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6481 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6482 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6483 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6484 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6485 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6486 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6487 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6488 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6489 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6490 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6491 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6492 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6493 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6494 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6495 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6496 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6497 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6498 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6499 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6500 tmp_stats
[i
++] = swstats
->sending_both
;
6501 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6502 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6503 if (swstats
->num_aggregations
) {
6504 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6507 * Since 64-bit divide does not work on all platforms,
6508 * do repeated subtraction.
6510 while (tmp
>= swstats
->num_aggregations
) {
6511 tmp
-= swstats
->num_aggregations
;
6514 tmp_stats
[i
++] = count
;
6517 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6518 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6519 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6520 tmp_stats
[i
++] = swstats
->mem_allocated
;
6521 tmp_stats
[i
++] = swstats
->mem_freed
;
6522 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6523 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6524 tmp_stats
[i
++] = swstats
->link_up_time
;
6525 tmp_stats
[i
++] = swstats
->link_down_time
;
6527 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6528 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6529 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6530 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6531 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6533 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6534 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6535 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6536 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6537 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6538 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6539 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6540 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6541 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6542 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6543 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6544 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6545 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6546 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6547 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6548 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6549 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6550 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6551 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6552 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6553 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6554 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6555 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6556 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6557 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6558 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6561 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6563 return XENA_REG_SPACE
;
6567 static int s2io_get_eeprom_len(struct net_device
*dev
)
6569 return XENA_EEPROM_SPACE
;
6572 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6574 struct s2io_nic
*sp
= netdev_priv(dev
);
6578 return S2IO_TEST_LEN
;
6580 switch (sp
->device_type
) {
6581 case XFRAME_I_DEVICE
:
6582 return XFRAME_I_STAT_LEN
;
6583 case XFRAME_II_DEVICE
:
6584 return XFRAME_II_STAT_LEN
;
6593 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6594 u32 stringset
, u8
*data
)
6597 struct s2io_nic
*sp
= netdev_priv(dev
);
6599 switch (stringset
) {
6601 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6604 stat_size
= sizeof(ethtool_xena_stats_keys
);
6605 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6606 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6607 memcpy(data
+ stat_size
,
6608 ðtool_enhanced_stats_keys
,
6609 sizeof(ethtool_enhanced_stats_keys
));
6610 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6613 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6614 sizeof(ethtool_driver_stats_keys
));
6618 static int s2io_set_features(struct net_device
*dev
, netdev_features_t features
)
6620 struct s2io_nic
*sp
= netdev_priv(dev
);
6621 netdev_features_t changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6623 if (changed
&& netif_running(dev
)) {
6626 s2io_stop_all_tx_queue(sp
);
6628 dev
->features
= features
;
6629 rc
= s2io_card_up(sp
);
6633 s2io_start_all_tx_queue(sp
);
6641 static const struct ethtool_ops netdev_ethtool_ops
= {
6642 .get_settings
= s2io_ethtool_gset
,
6643 .set_settings
= s2io_ethtool_sset
,
6644 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6645 .get_regs_len
= s2io_ethtool_get_regs_len
,
6646 .get_regs
= s2io_ethtool_gregs
,
6647 .get_link
= ethtool_op_get_link
,
6648 .get_eeprom_len
= s2io_get_eeprom_len
,
6649 .get_eeprom
= s2io_ethtool_geeprom
,
6650 .set_eeprom
= s2io_ethtool_seeprom
,
6651 .get_ringparam
= s2io_ethtool_gringparam
,
6652 .get_pauseparam
= s2io_ethtool_getpause_data
,
6653 .set_pauseparam
= s2io_ethtool_setpause_data
,
6654 .self_test
= s2io_ethtool_test
,
6655 .get_strings
= s2io_ethtool_get_strings
,
6656 .set_phys_id
= s2io_ethtool_set_led
,
6657 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6658 .get_sset_count
= s2io_get_sset_count
,
6662 * s2io_ioctl - Entry point for the Ioctl
6663 * @dev : Device pointer.
6664 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6665 * a proprietary structure used to pass information to the driver.
6666 * @cmd : This is used to distinguish between the different commands that
6667 * can be passed to the IOCTL functions.
6669 * Currently there are no special functionality supported in IOCTL, hence
6670 * function always return EOPNOTSUPPORTED
6673 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6679 * s2io_change_mtu - entry point to change MTU size for the device.
6680 * @dev : device pointer.
6681 * @new_mtu : the new MTU size for the device.
6682 * Description: A driver entry point to change MTU size for the device.
6683 * Before changing the MTU the device must be stopped.
6685 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6689 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6691 struct s2io_nic
*sp
= netdev_priv(dev
);
6694 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6695 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6700 if (netif_running(dev
)) {
6701 s2io_stop_all_tx_queue(sp
);
6703 ret
= s2io_card_up(sp
);
6705 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6709 s2io_wake_all_tx_queue(sp
);
6710 } else { /* Device is down */
6711 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6712 u64 val64
= new_mtu
;
6714 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6721 * s2io_set_link - Set the LInk status
6722 * @data: long pointer to device private structue
6723 * Description: Sets the link status for the adapter
6726 static void s2io_set_link(struct work_struct
*work
)
6728 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6730 struct net_device
*dev
= nic
->dev
;
6731 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6737 if (!netif_running(dev
))
6740 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6741 /* The card is being reset, no point doing anything */
6745 subid
= nic
->pdev
->subsystem_device
;
6746 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6748 * Allow a small delay for the NICs self initiated
6749 * cleanup to complete.
6754 val64
= readq(&bar0
->adapter_status
);
6755 if (LINK_IS_UP(val64
)) {
6756 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6757 if (verify_xena_quiescence(nic
)) {
6758 val64
= readq(&bar0
->adapter_control
);
6759 val64
|= ADAPTER_CNTL_EN
;
6760 writeq(val64
, &bar0
->adapter_control
);
6761 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6762 nic
->device_type
, subid
)) {
6763 val64
= readq(&bar0
->gpio_control
);
6764 val64
|= GPIO_CTRL_GPIO_0
;
6765 writeq(val64
, &bar0
->gpio_control
);
6766 val64
= readq(&bar0
->gpio_control
);
6768 val64
|= ADAPTER_LED_ON
;
6769 writeq(val64
, &bar0
->adapter_control
);
6771 nic
->device_enabled_once
= true;
6774 "%s: Error: device is not Quiescent\n",
6776 s2io_stop_all_tx_queue(nic
);
6779 val64
= readq(&bar0
->adapter_control
);
6780 val64
|= ADAPTER_LED_ON
;
6781 writeq(val64
, &bar0
->adapter_control
);
6782 s2io_link(nic
, LINK_UP
);
6784 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6786 val64
= readq(&bar0
->gpio_control
);
6787 val64
&= ~GPIO_CTRL_GPIO_0
;
6788 writeq(val64
, &bar0
->gpio_control
);
6789 val64
= readq(&bar0
->gpio_control
);
6792 val64
= readq(&bar0
->adapter_control
);
6793 val64
= val64
& (~ADAPTER_LED_ON
);
6794 writeq(val64
, &bar0
->adapter_control
);
6795 s2io_link(nic
, LINK_DOWN
);
6797 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6803 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6805 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6806 u64
*temp2
, int size
)
6808 struct net_device
*dev
= sp
->dev
;
6809 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6811 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6812 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6815 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6817 * As Rx frame are not going to be processed,
6818 * using same mapped address for the Rxd
6821 rxdp1
->Buffer0_ptr
= *temp0
;
6823 *skb
= dev_alloc_skb(size
);
6826 "%s: Out of memory to allocate %s\n",
6827 dev
->name
, "1 buf mode SKBs");
6828 stats
->mem_alloc_fail_cnt
++;
6831 stats
->mem_allocated
+= (*skb
)->truesize
;
6832 /* storing the mapped addr in a temp variable
6833 * such it will be used for next rxd whose
6834 * Host Control is NULL
6836 rxdp1
->Buffer0_ptr
= *temp0
=
6837 pci_map_single(sp
->pdev
, (*skb
)->data
,
6838 size
- NET_IP_ALIGN
,
6839 PCI_DMA_FROMDEVICE
);
6840 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6841 goto memalloc_failed
;
6842 rxdp
->Host_Control
= (unsigned long) (*skb
);
6844 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6845 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6846 /* Two buffer Mode */
6848 rxdp3
->Buffer2_ptr
= *temp2
;
6849 rxdp3
->Buffer0_ptr
= *temp0
;
6850 rxdp3
->Buffer1_ptr
= *temp1
;
6852 *skb
= dev_alloc_skb(size
);
6855 "%s: Out of memory to allocate %s\n",
6858 stats
->mem_alloc_fail_cnt
++;
6861 stats
->mem_allocated
+= (*skb
)->truesize
;
6862 rxdp3
->Buffer2_ptr
= *temp2
=
6863 pci_map_single(sp
->pdev
, (*skb
)->data
,
6865 PCI_DMA_FROMDEVICE
);
6866 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6867 goto memalloc_failed
;
6868 rxdp3
->Buffer0_ptr
= *temp0
=
6869 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6870 PCI_DMA_FROMDEVICE
);
6871 if (pci_dma_mapping_error(sp
->pdev
,
6872 rxdp3
->Buffer0_ptr
)) {
6873 pci_unmap_single(sp
->pdev
,
6874 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6876 PCI_DMA_FROMDEVICE
);
6877 goto memalloc_failed
;
6879 rxdp
->Host_Control
= (unsigned long) (*skb
);
6881 /* Buffer-1 will be dummy buffer not used */
6882 rxdp3
->Buffer1_ptr
= *temp1
=
6883 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6884 PCI_DMA_FROMDEVICE
);
6885 if (pci_dma_mapping_error(sp
->pdev
,
6886 rxdp3
->Buffer1_ptr
)) {
6887 pci_unmap_single(sp
->pdev
,
6888 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6889 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6890 pci_unmap_single(sp
->pdev
,
6891 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6893 PCI_DMA_FROMDEVICE
);
6894 goto memalloc_failed
;
6901 stats
->pci_map_fail_cnt
++;
6902 stats
->mem_freed
+= (*skb
)->truesize
;
6903 dev_kfree_skb(*skb
);
6907 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6910 struct net_device
*dev
= sp
->dev
;
6911 if (sp
->rxd_mode
== RXD_MODE_1
) {
6912 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6913 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6914 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6915 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6916 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6920 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6922 int i
, j
, k
, blk_cnt
= 0, size
;
6923 struct config_param
*config
= &sp
->config
;
6924 struct mac_info
*mac_control
= &sp
->mac_control
;
6925 struct net_device
*dev
= sp
->dev
;
6926 struct RxD_t
*rxdp
= NULL
;
6927 struct sk_buff
*skb
= NULL
;
6928 struct buffAdd
*ba
= NULL
;
6929 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6931 /* Calculate the size based on ring mode */
6932 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6933 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6934 if (sp
->rxd_mode
== RXD_MODE_1
)
6935 size
+= NET_IP_ALIGN
;
6936 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6937 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6939 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6940 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6941 struct ring_info
*ring
= &mac_control
->rings
[i
];
6943 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6945 for (j
= 0; j
< blk_cnt
; j
++) {
6946 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6947 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
6948 if (sp
->rxd_mode
== RXD_MODE_3B
)
6949 ba
= &ring
->ba
[j
][k
];
6950 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
6958 set_rxd_buffer_size(sp
, rxdp
, size
);
6960 /* flip the Ownership bit to Hardware */
6961 rxdp
->Control_1
|= RXD_OWN_XENA
;
6969 static int s2io_add_isr(struct s2io_nic
*sp
)
6972 struct net_device
*dev
= sp
->dev
;
6975 if (sp
->config
.intr_type
== MSI_X
)
6976 ret
= s2io_enable_msi_x(sp
);
6978 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6979 sp
->config
.intr_type
= INTA
;
6983 * Store the values of the MSIX table in
6984 * the struct s2io_nic structure
6986 store_xmsi_data(sp
);
6988 /* After proper initialization of H/W, register ISR */
6989 if (sp
->config
.intr_type
== MSI_X
) {
6990 int i
, msix_rx_cnt
= 0;
6992 for (i
= 0; i
< sp
->num_entries
; i
++) {
6993 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
6994 if (sp
->s2io_entries
[i
].type
==
6996 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6998 err
= request_irq(sp
->entries
[i
].vector
,
6999 s2io_msix_ring_handle
,
7002 sp
->s2io_entries
[i
].arg
);
7003 } else if (sp
->s2io_entries
[i
].type
==
7005 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7007 err
= request_irq(sp
->entries
[i
].vector
,
7008 s2io_msix_fifo_handle
,
7011 sp
->s2io_entries
[i
].arg
);
7014 /* if either data or addr is zero print it. */
7015 if (!(sp
->msix_info
[i
].addr
&&
7016 sp
->msix_info
[i
].data
)) {
7018 "%s @Addr:0x%llx Data:0x%llx\n",
7020 (unsigned long long)
7021 sp
->msix_info
[i
].addr
,
7022 (unsigned long long)
7023 ntohl(sp
->msix_info
[i
].data
));
7027 remove_msix_isr(sp
);
7030 "%s:MSI-X-%d registration "
7031 "failed\n", dev
->name
, i
);
7034 "%s: Defaulting to INTA\n",
7036 sp
->config
.intr_type
= INTA
;
7039 sp
->s2io_entries
[i
].in_use
=
7040 MSIX_REGISTERED_SUCCESS
;
7044 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7046 "MSI-X-TX entries enabled through alarm vector\n");
7049 if (sp
->config
.intr_type
== INTA
) {
7050 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7053 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7061 static void s2io_rem_isr(struct s2io_nic
*sp
)
7063 if (sp
->config
.intr_type
== MSI_X
)
7064 remove_msix_isr(sp
);
7066 remove_inta_isr(sp
);
7069 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7072 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7073 register u64 val64
= 0;
7074 struct config_param
*config
;
7075 config
= &sp
->config
;
7077 if (!is_s2io_card_up(sp
))
7080 del_timer_sync(&sp
->alarm_timer
);
7081 /* If s2io_set_link task is executing, wait till it completes. */
7082 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7084 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7087 if (sp
->config
.napi
) {
7089 if (config
->intr_type
== MSI_X
) {
7090 for (; off
< sp
->config
.rx_ring_num
; off
++)
7091 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7094 napi_disable(&sp
->napi
);
7097 /* disable Tx and Rx traffic on the NIC */
7103 /* stop the tx queue, indicate link down */
7104 s2io_link(sp
, LINK_DOWN
);
7106 /* Check if the device is Quiescent and then Reset the NIC */
7108 /* As per the HW requirement we need to replenish the
7109 * receive buffer to avoid the ring bump. Since there is
7110 * no intention of processing the Rx frame at this pointwe are
7111 * just setting the ownership bit of rxd in Each Rx
7112 * ring to HW and set the appropriate buffer size
7113 * based on the ring mode
7115 rxd_owner_bit_reset(sp
);
7117 val64
= readq(&bar0
->adapter_status
);
7118 if (verify_xena_quiescence(sp
)) {
7119 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7126 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7127 "adapter status reads 0x%llx\n",
7128 (unsigned long long)val64
);
7135 /* Free all Tx buffers */
7136 free_tx_buffers(sp
);
7138 /* Free all Rx buffers */
7139 free_rx_buffers(sp
);
7141 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7144 static void s2io_card_down(struct s2io_nic
*sp
)
7146 do_s2io_card_down(sp
, 1);
7149 static int s2io_card_up(struct s2io_nic
*sp
)
7152 struct config_param
*config
;
7153 struct mac_info
*mac_control
;
7154 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7157 /* Initialize the H/W I/O registers */
7160 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7168 * Initializing the Rx buffers. For now we are considering only 1
7169 * Rx ring and initializing buffers into 30 Rx blocks
7171 config
= &sp
->config
;
7172 mac_control
= &sp
->mac_control
;
7174 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7175 struct ring_info
*ring
= &mac_control
->rings
[i
];
7177 ring
->mtu
= dev
->mtu
;
7178 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7179 ret
= fill_rx_buffers(sp
, ring
, 1);
7181 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7184 free_rx_buffers(sp
);
7187 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7188 ring
->rx_bufs_left
);
7191 /* Initialise napi */
7193 if (config
->intr_type
== MSI_X
) {
7194 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7195 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7197 napi_enable(&sp
->napi
);
7201 /* Maintain the state prior to the open */
7202 if (sp
->promisc_flg
)
7203 sp
->promisc_flg
= 0;
7204 if (sp
->m_cast_flg
) {
7206 sp
->all_multi_pos
= 0;
7209 /* Setting its receive mode */
7210 s2io_set_multicast(dev
);
7212 if (dev
->features
& NETIF_F_LRO
) {
7213 /* Initialize max aggregatable pkts per session based on MTU */
7214 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7215 /* Check if we can use (if specified) user provided value */
7216 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7217 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7220 /* Enable Rx Traffic and interrupts on the NIC */
7221 if (start_nic(sp
)) {
7222 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7224 free_rx_buffers(sp
);
7228 /* Add interrupt service routine */
7229 if (s2io_add_isr(sp
) != 0) {
7230 if (sp
->config
.intr_type
== MSI_X
)
7233 free_rx_buffers(sp
);
7237 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7239 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7241 /* Enable select interrupts */
7242 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7243 if (sp
->config
.intr_type
!= INTA
) {
7244 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7245 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7247 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7248 interruptible
|= TX_PIC_INTR
;
7249 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7256 * s2io_restart_nic - Resets the NIC.
7257 * @data : long pointer to the device private structure
7259 * This function is scheduled to be run by the s2io_tx_watchdog
7260 * function after 0.5 secs to reset the NIC. The idea is to reduce
7261 * the run time of the watch dog routine which is run holding a
7265 static void s2io_restart_nic(struct work_struct
*work
)
7267 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7268 struct net_device
*dev
= sp
->dev
;
7272 if (!netif_running(dev
))
7276 if (s2io_card_up(sp
)) {
7277 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7279 s2io_wake_all_tx_queue(sp
);
7280 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7286 * s2io_tx_watchdog - Watchdog for transmit side.
7287 * @dev : Pointer to net device structure
7289 * This function is triggered if the Tx Queue is stopped
7290 * for a pre-defined amount of time when the Interface is still up.
7291 * If the Interface is jammed in such a situation, the hardware is
7292 * reset (by s2io_close) and restarted again (by s2io_open) to
7293 * overcome any problem that might have been caused in the hardware.
7298 static void s2io_tx_watchdog(struct net_device
*dev
)
7300 struct s2io_nic
*sp
= netdev_priv(dev
);
7301 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7303 if (netif_carrier_ok(dev
)) {
7304 swstats
->watchdog_timer_cnt
++;
7305 schedule_work(&sp
->rst_timer_task
);
7306 swstats
->soft_reset_cnt
++;
7311 * rx_osm_handler - To perform some OS related operations on SKB.
7312 * @sp: private member of the device structure,pointer to s2io_nic structure.
7313 * @skb : the socket buffer pointer.
7314 * @len : length of the packet
7315 * @cksum : FCS checksum of the frame.
7316 * @ring_no : the ring from which this RxD was extracted.
7318 * This function is called by the Rx interrupt serivce routine to perform
7319 * some OS related operations on the SKB before passing it to the upper
7320 * layers. It mainly checks if the checksum is OK, if so adds it to the
7321 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7322 * to the upper layer. If the checksum is wrong, it increments the Rx
7323 * packet error count, frees the SKB and returns error.
7325 * SUCCESS on success and -1 on failure.
7327 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7329 struct s2io_nic
*sp
= ring_data
->nic
;
7330 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7331 struct sk_buff
*skb
= (struct sk_buff
*)
7332 ((unsigned long)rxdp
->Host_Control
);
7333 int ring_no
= ring_data
->ring_no
;
7334 u16 l3_csum
, l4_csum
;
7335 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7336 struct lro
*uninitialized_var(lro
);
7338 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7343 /* Check for parity error */
7345 swstats
->parity_err_cnt
++;
7347 err_mask
= err
>> 48;
7350 swstats
->rx_parity_err_cnt
++;
7354 swstats
->rx_abort_cnt
++;
7358 swstats
->rx_parity_abort_cnt
++;
7362 swstats
->rx_rda_fail_cnt
++;
7366 swstats
->rx_unkn_prot_cnt
++;
7370 swstats
->rx_fcs_err_cnt
++;
7374 swstats
->rx_buf_size_err_cnt
++;
7378 swstats
->rx_rxd_corrupt_cnt
++;
7382 swstats
->rx_unkn_err_cnt
++;
7386 * Drop the packet if bad transfer code. Exception being
7387 * 0x5, which could be due to unsupported IPv6 extension header.
7388 * In this case, we let stack handle the packet.
7389 * Note that in this case, since checksum will be incorrect,
7390 * stack will validate the same.
7392 if (err_mask
!= 0x5) {
7393 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7394 dev
->name
, err_mask
);
7395 dev
->stats
.rx_crc_errors
++;
7399 ring_data
->rx_bufs_left
-= 1;
7400 rxdp
->Host_Control
= 0;
7405 rxdp
->Host_Control
= 0;
7406 if (sp
->rxd_mode
== RXD_MODE_1
) {
7407 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7410 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7411 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7412 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7413 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7414 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7415 unsigned char *buff
= skb_push(skb
, buf0_len
);
7417 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7418 memcpy(buff
, ba
->ba_0
, buf0_len
);
7419 skb_put(skb
, buf2_len
);
7422 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7423 ((!ring_data
->lro
) ||
7424 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7425 (dev
->features
& NETIF_F_RXCSUM
)) {
7426 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7427 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7428 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7430 * NIC verifies if the Checksum of the received
7431 * frame is Ok or not and accordingly returns
7432 * a flag in the RxD.
7434 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7435 if (ring_data
->lro
) {
7440 ret
= s2io_club_tcp_session(ring_data
,
7445 case 3: /* Begin anew */
7448 case 1: /* Aggregate */
7449 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7451 case 4: /* Flush session */
7452 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7453 queue_rx_frame(lro
->parent
,
7455 clear_lro_session(lro
);
7456 swstats
->flush_max_pkts
++;
7458 case 2: /* Flush both */
7459 lro
->parent
->data_len
= lro
->frags_len
;
7460 swstats
->sending_both
++;
7461 queue_rx_frame(lro
->parent
,
7463 clear_lro_session(lro
);
7465 case 0: /* sessions exceeded */
7466 case -1: /* non-TCP or not L2 aggregatable */
7468 * First pkt in session not
7469 * L3/L4 aggregatable
7474 "%s: Samadhana!!\n",
7481 * Packet with erroneous checksum, let the
7482 * upper layers deal with it.
7484 skb_checksum_none_assert(skb
);
7487 skb_checksum_none_assert(skb
);
7489 swstats
->mem_freed
+= skb
->truesize
;
7491 skb_record_rx_queue(skb
, ring_no
);
7492 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7494 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7499 * s2io_link - stops/starts the Tx queue.
7500 * @sp : private member of the device structure, which is a pointer to the
7501 * s2io_nic structure.
7502 * @link : inidicates whether link is UP/DOWN.
7504 * This function stops/starts the Tx queue depending on whether the link
7505 * status of the NIC is is down or up. This is called by the Alarm
7506 * interrupt handler whenever a link change interrupt comes up.
7511 static void s2io_link(struct s2io_nic
*sp
, int link
)
7513 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7514 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7516 if (link
!= sp
->last_link_state
) {
7518 if (link
== LINK_DOWN
) {
7519 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7520 s2io_stop_all_tx_queue(sp
);
7521 netif_carrier_off(dev
);
7522 if (swstats
->link_up_cnt
)
7523 swstats
->link_up_time
=
7524 jiffies
- sp
->start_time
;
7525 swstats
->link_down_cnt
++;
7527 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7528 if (swstats
->link_down_cnt
)
7529 swstats
->link_down_time
=
7530 jiffies
- sp
->start_time
;
7531 swstats
->link_up_cnt
++;
7532 netif_carrier_on(dev
);
7533 s2io_wake_all_tx_queue(sp
);
7536 sp
->last_link_state
= link
;
7537 sp
->start_time
= jiffies
;
7541 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7542 * @sp : private member of the device structure, which is a pointer to the
7543 * s2io_nic structure.
7545 * This function initializes a few of the PCI and PCI-X configuration registers
7546 * with recommended values.
7551 static void s2io_init_pci(struct s2io_nic
*sp
)
7553 u16 pci_cmd
= 0, pcix_cmd
= 0;
7555 /* Enable Data Parity Error Recovery in PCI-X command register. */
7556 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7558 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7560 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7563 /* Set the PErr Response bit in PCI command register. */
7564 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7565 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7566 (pci_cmd
| PCI_COMMAND_PARITY
));
7567 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7570 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7575 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7576 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7577 "(%d) not supported\n", tx_fifo_num
);
7579 if (tx_fifo_num
< 1)
7582 tx_fifo_num
= MAX_TX_FIFOS
;
7584 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7588 *dev_multiq
= multiq
;
7590 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7591 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7593 "Tx steering is not supported with "
7594 "one fifo. Disabling Tx steering.\n");
7595 tx_steering_type
= NO_STEERING
;
7598 if ((tx_steering_type
< NO_STEERING
) ||
7599 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7601 "Requested transmit steering not supported\n");
7602 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7603 tx_steering_type
= NO_STEERING
;
7606 if (rx_ring_num
> MAX_RX_RINGS
) {
7608 "Requested number of rx rings not supported\n");
7609 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7611 rx_ring_num
= MAX_RX_RINGS
;
7614 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7615 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7616 "Defaulting to INTA\n");
7617 *dev_intr_type
= INTA
;
7620 if ((*dev_intr_type
== MSI_X
) &&
7621 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7622 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7623 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7624 "Defaulting to INTA\n");
7625 *dev_intr_type
= INTA
;
7628 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7629 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7630 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7634 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7635 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7636 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7637 "supported\nDefaulting to %d\n",
7638 MAX_RX_BLOCKS_PER_RING
);
7639 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7646 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7647 * or Traffic class respectively.
7648 * @nic: device private variable
7649 * Description: The function configures the receive steering to
7650 * desired receive ring.
7651 * Return Value: SUCCESS on success and
7652 * '-1' on failure (endian settings incorrect).
7654 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7656 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7657 register u64 val64
= 0;
7659 if (ds_codepoint
> 63)
7662 val64
= RTS_DS_MEM_DATA(ring
);
7663 writeq(val64
, &bar0
->rts_ds_mem_data
);
7665 val64
= RTS_DS_MEM_CTRL_WE
|
7666 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7667 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7669 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7671 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7672 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7676 static const struct net_device_ops s2io_netdev_ops
= {
7677 .ndo_open
= s2io_open
,
7678 .ndo_stop
= s2io_close
,
7679 .ndo_get_stats
= s2io_get_stats
,
7680 .ndo_start_xmit
= s2io_xmit
,
7681 .ndo_validate_addr
= eth_validate_addr
,
7682 .ndo_set_rx_mode
= s2io_set_multicast
,
7683 .ndo_do_ioctl
= s2io_ioctl
,
7684 .ndo_set_mac_address
= s2io_set_mac_addr
,
7685 .ndo_change_mtu
= s2io_change_mtu
,
7686 .ndo_set_features
= s2io_set_features
,
7687 .ndo_tx_timeout
= s2io_tx_watchdog
,
7688 #ifdef CONFIG_NET_POLL_CONTROLLER
7689 .ndo_poll_controller
= s2io_netpoll
,
7694 * s2io_init_nic - Initialization of the adapter .
7695 * @pdev : structure containing the PCI related information of the device.
7696 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7698 * The function initializes an adapter identified by the pci_dec structure.
7699 * All OS related initialization including memory and device structure and
7700 * initlaization of the device private variable is done. Also the swapper
7701 * control register is initialized to enable read and write into the I/O
7702 * registers of the device.
7704 * returns 0 on success and negative on failure.
7707 static int __devinit
7708 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7710 struct s2io_nic
*sp
;
7711 struct net_device
*dev
;
7713 int dma_flag
= false;
7714 u32 mac_up
, mac_down
;
7715 u64 val64
= 0, tmp64
= 0;
7716 struct XENA_dev_config __iomem
*bar0
= NULL
;
7718 struct config_param
*config
;
7719 struct mac_info
*mac_control
;
7721 u8 dev_intr_type
= intr_type
;
7724 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7728 ret
= pci_enable_device(pdev
);
7731 "%s: pci_enable_device failed\n", __func__
);
7735 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7736 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7738 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7740 "Unable to obtain 64bit DMA "
7741 "for consistent allocations\n");
7742 pci_disable_device(pdev
);
7745 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7746 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7748 pci_disable_device(pdev
);
7751 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7753 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7755 pci_disable_device(pdev
);
7759 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7761 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7763 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7764 pci_disable_device(pdev
);
7765 pci_release_regions(pdev
);
7769 pci_set_master(pdev
);
7770 pci_set_drvdata(pdev
, dev
);
7771 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7773 /* Private member variable initialized to s2io NIC structure */
7774 sp
= netdev_priv(dev
);
7777 sp
->high_dma_flag
= dma_flag
;
7778 sp
->device_enabled_once
= false;
7779 if (rx_ring_mode
== 1)
7780 sp
->rxd_mode
= RXD_MODE_1
;
7781 if (rx_ring_mode
== 2)
7782 sp
->rxd_mode
= RXD_MODE_3B
;
7784 sp
->config
.intr_type
= dev_intr_type
;
7786 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7787 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7788 sp
->device_type
= XFRAME_II_DEVICE
;
7790 sp
->device_type
= XFRAME_I_DEVICE
;
7793 /* Initialize some PCI/PCI-X fields of the NIC. */
7797 * Setting the device configuration parameters.
7798 * Most of these parameters can be specified by the user during
7799 * module insertion as they are module loadable parameters. If
7800 * these parameters are not not specified during load time, they
7801 * are initialized with default values.
7803 config
= &sp
->config
;
7804 mac_control
= &sp
->mac_control
;
7806 config
->napi
= napi
;
7807 config
->tx_steering_type
= tx_steering_type
;
7809 /* Tx side parameters. */
7810 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7811 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7813 config
->tx_fifo_num
= tx_fifo_num
;
7815 /* Initialize the fifos used for tx steering */
7816 if (config
->tx_fifo_num
< 5) {
7817 if (config
->tx_fifo_num
== 1)
7818 sp
->total_tcp_fifos
= 1;
7820 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7821 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7822 sp
->total_udp_fifos
= 1;
7823 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7825 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7826 FIFO_OTHER_MAX_NUM
);
7827 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7828 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7829 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7832 config
->multiq
= dev_multiq
;
7833 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7834 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7836 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7837 tx_cfg
->fifo_priority
= i
;
7840 /* mapping the QoS priority to the configured fifos */
7841 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7842 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7844 /* map the hashing selector table to the configured fifos */
7845 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7846 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7849 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7850 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7851 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7853 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7854 if (tx_cfg
->fifo_len
< 65) {
7855 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7859 /* + 2 because one Txd for skb->data and one Txd for UFO */
7860 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7862 /* Rx side parameters. */
7863 config
->rx_ring_num
= rx_ring_num
;
7864 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7865 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7866 struct ring_info
*ring
= &mac_control
->rings
[i
];
7868 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7869 rx_cfg
->ring_priority
= i
;
7870 ring
->rx_bufs_left
= 0;
7871 ring
->rxd_mode
= sp
->rxd_mode
;
7872 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7873 ring
->pdev
= sp
->pdev
;
7874 ring
->dev
= sp
->dev
;
7877 for (i
= 0; i
< rx_ring_num
; i
++) {
7878 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7880 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7881 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7884 /* Setting Mac Control parameters */
7885 mac_control
->rmac_pause_time
= rmac_pause_time
;
7886 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7887 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7890 /* initialize the shared memory used by the NIC and the host */
7891 if (init_shared_mem(sp
)) {
7892 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7894 goto mem_alloc_failed
;
7897 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7899 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7902 goto bar0_remap_failed
;
7905 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7907 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7910 goto bar1_remap_failed
;
7913 dev
->irq
= pdev
->irq
;
7914 dev
->base_addr
= (unsigned long)sp
->bar0
;
7916 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7917 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7918 mac_control
->tx_FIFO_start
[j
] = sp
->bar1
+ (j
* 0x00020000);
7921 /* Driver entry points */
7922 dev
->netdev_ops
= &s2io_netdev_ops
;
7923 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7924 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7925 NETIF_F_TSO
| NETIF_F_TSO6
|
7926 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7927 dev
->features
|= dev
->hw_features
|
7928 NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7929 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7930 dev
->hw_features
|= NETIF_F_UFO
;
7932 dev
->features
|= NETIF_F_UFO
;
7934 if (sp
->high_dma_flag
== true)
7935 dev
->features
|= NETIF_F_HIGHDMA
;
7936 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7937 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7938 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7940 pci_save_state(sp
->pdev
);
7942 /* Setting swapper control on the NIC, for proper reset operation */
7943 if (s2io_set_swapper(sp
)) {
7944 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7947 goto set_swap_failed
;
7950 /* Verify if the Herc works on the slot its placed into */
7951 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7952 mode
= s2io_verify_pci_mode(sp
);
7954 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
7957 goto set_swap_failed
;
7961 if (sp
->config
.intr_type
== MSI_X
) {
7962 sp
->num_entries
= config
->rx_ring_num
+ 1;
7963 ret
= s2io_enable_msi_x(sp
);
7966 ret
= s2io_test_msi(sp
);
7967 /* rollback MSI-X, will re-enable during add_isr() */
7968 remove_msix_isr(sp
);
7973 "MSI-X requested but failed to enable\n");
7974 sp
->config
.intr_type
= INTA
;
7978 if (config
->intr_type
== MSI_X
) {
7979 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7980 struct ring_info
*ring
= &mac_control
->rings
[i
];
7982 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
7985 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
7988 /* Not needed for Herc */
7989 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7991 * Fix for all "FFs" MAC address problems observed on
7994 fix_mac_address(sp
);
7999 * MAC address initialization.
8000 * For now only one mac address will be read and used.
8003 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8004 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8005 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8006 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8007 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8009 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8010 mac_down
= (u32
)tmp64
;
8011 mac_up
= (u32
) (tmp64
>> 32);
8013 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8014 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8015 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8016 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8017 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8018 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8020 /* Set the factory defined MAC address initially */
8021 dev
->addr_len
= ETH_ALEN
;
8022 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8023 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8025 /* initialize number of multicast & unicast MAC entries variables */
8026 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8027 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8028 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8029 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8030 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8031 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8032 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8033 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8036 /* store mac addresses from CAM to s2io_nic structure */
8037 do_s2io_store_unicast_mc(sp
);
8039 /* Configure MSIX vector for number of rings configured plus one */
8040 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8041 (config
->intr_type
== MSI_X
))
8042 sp
->num_entries
= config
->rx_ring_num
+ 1;
8044 /* Store the values of the MSIX table in the s2io_nic structure */
8045 store_xmsi_data(sp
);
8046 /* reset Nic and bring it to known state */
8050 * Initialize link state flags
8051 * and the card state parameter
8055 /* Initialize spinlocks */
8056 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8057 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8059 spin_lock_init(&fifo
->tx_lock
);
8063 * SXE-002: Configure link and activity LED to init state
8066 subid
= sp
->pdev
->subsystem_device
;
8067 if ((subid
& 0xFF) >= 0x07) {
8068 val64
= readq(&bar0
->gpio_control
);
8069 val64
|= 0x0000800000000000ULL
;
8070 writeq(val64
, &bar0
->gpio_control
);
8071 val64
= 0x0411040400000000ULL
;
8072 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8073 val64
= readq(&bar0
->gpio_control
);
8076 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8078 if (register_netdev(dev
)) {
8079 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8081 goto register_failed
;
8084 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8085 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8086 sp
->product_name
, pdev
->revision
);
8087 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8088 s2io_driver_version
);
8089 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8090 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8091 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8092 mode
= s2io_print_pci_mode(sp
);
8095 unregister_netdev(dev
);
8096 goto set_swap_failed
;
8099 switch (sp
->rxd_mode
) {
8101 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8105 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8110 switch (sp
->config
.napi
) {
8112 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8115 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8119 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8120 sp
->config
.tx_fifo_num
);
8122 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8123 sp
->config
.rx_ring_num
);
8125 switch (sp
->config
.intr_type
) {
8127 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8130 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8133 if (sp
->config
.multiq
) {
8134 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8135 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8137 fifo
->multiq
= config
->multiq
;
8139 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8142 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8145 switch (sp
->config
.tx_steering_type
) {
8147 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8150 case TX_PRIORITY_STEERING
:
8152 "%s: Priority steering enabled for transmit\n",
8155 case TX_DEFAULT_STEERING
:
8157 "%s: Default steering enabled for transmit\n",
8161 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8165 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8167 /* Initialize device name */
8168 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8171 sp
->vlan_strip_flag
= 1;
8173 sp
->vlan_strip_flag
= 0;
8176 * Make Link state as off at this point, when the Link change
8177 * interrupt comes the state will be automatically changed to
8180 netif_carrier_off(dev
);
8191 free_shared_mem(sp
);
8192 pci_disable_device(pdev
);
8193 pci_release_regions(pdev
);
8194 pci_set_drvdata(pdev
, NULL
);
8201 * s2io_rem_nic - Free the PCI device
8202 * @pdev: structure containing the PCI related information of the device.
8203 * Description: This function is called by the Pci subsystem to release a
8204 * PCI device and free up all resource held up by the device. This could
8205 * be in response to a Hot plug event or when the driver is to be removed
8209 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8211 struct net_device
*dev
= pci_get_drvdata(pdev
);
8212 struct s2io_nic
*sp
;
8215 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8219 sp
= netdev_priv(dev
);
8221 cancel_work_sync(&sp
->rst_timer_task
);
8222 cancel_work_sync(&sp
->set_link_task
);
8224 unregister_netdev(dev
);
8226 free_shared_mem(sp
);
8229 pci_release_regions(pdev
);
8230 pci_set_drvdata(pdev
, NULL
);
8232 pci_disable_device(pdev
);
8236 * s2io_starter - Entry point for the driver
8237 * Description: This function is the entry point for the driver. It verifies
8238 * the module loadable parameters and initializes PCI configuration space.
8241 static int __init
s2io_starter(void)
8243 return pci_register_driver(&s2io_driver
);
8247 * s2io_closer - Cleanup routine for the driver
8248 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8251 static __exit
void s2io_closer(void)
8253 pci_unregister_driver(&s2io_driver
);
8254 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8257 module_init(s2io_starter
);
8258 module_exit(s2io_closer
);
8260 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8261 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8262 struct s2io_nic
*sp
)
8265 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8267 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8269 "%s: Non-TCP frames not supported for LRO\n",
8274 /* Checking for DIX type or DIX type with VLAN */
8275 if ((l2_type
== 0) || (l2_type
== 4)) {
8276 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8278 * If vlan stripping is disabled and the frame is VLAN tagged,
8279 * shift the offset by the VLAN header size bytes.
8281 if ((!sp
->vlan_strip_flag
) &&
8282 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8283 ip_off
+= HEADER_VLAN_SIZE
;
8285 /* LLC, SNAP etc are considered non-mergeable */
8289 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8290 ip_len
= (u8
)((*ip
)->ihl
);
8292 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8297 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8300 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8301 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8302 (lro
->iph
->daddr
!= ip
->daddr
) ||
8303 (lro
->tcph
->source
!= tcp
->source
) ||
8304 (lro
->tcph
->dest
!= tcp
->dest
))
8309 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8311 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8314 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8315 struct iphdr
*ip
, struct tcphdr
*tcp
,
8316 u32 tcp_pyld_len
, u16 vlan_tag
)
8318 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8322 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8323 lro
->tcp_ack
= tcp
->ack_seq
;
8325 lro
->total_len
= ntohs(ip
->tot_len
);
8327 lro
->vlan_tag
= vlan_tag
;
8329 * Check if we saw TCP timestamp.
8330 * Other consistency checks have already been done.
8332 if (tcp
->doff
== 8) {
8334 ptr
= (__be32
*)(tcp
+1);
8336 lro
->cur_tsval
= ntohl(*(ptr
+1));
8337 lro
->cur_tsecr
= *(ptr
+2);
8342 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8344 struct iphdr
*ip
= lro
->iph
;
8345 struct tcphdr
*tcp
= lro
->tcph
;
8347 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8349 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8351 /* Update L3 header */
8352 ip
->tot_len
= htons(lro
->total_len
);
8354 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8357 /* Update L4 header */
8358 tcp
->ack_seq
= lro
->tcp_ack
;
8359 tcp
->window
= lro
->window
;
8361 /* Update tsecr field if this session has timestamps enabled */
8363 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8364 *(ptr
+2) = lro
->cur_tsecr
;
8367 /* Update counters required for calculation of
8368 * average no. of packets aggregated.
8370 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8371 swstats
->num_aggregations
++;
8374 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8375 struct tcphdr
*tcp
, u32 l4_pyld
)
8377 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8378 lro
->total_len
+= l4_pyld
;
8379 lro
->frags_len
+= l4_pyld
;
8380 lro
->tcp_next_seq
+= l4_pyld
;
8383 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8384 lro
->tcp_ack
= tcp
->ack_seq
;
8385 lro
->window
= tcp
->window
;
8389 /* Update tsecr and tsval from this packet */
8390 ptr
= (__be32
*)(tcp
+1);
8391 lro
->cur_tsval
= ntohl(*(ptr
+1));
8392 lro
->cur_tsecr
= *(ptr
+ 2);
8396 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8397 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8401 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8403 if (!tcp_pyld_len
) {
8404 /* Runt frame or a pure ack */
8408 if (ip
->ihl
!= 5) /* IP has options */
8411 /* If we see CE codepoint in IP header, packet is not mergeable */
8412 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8415 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8416 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8417 tcp
->syn
|| tcp
->fin
||
8418 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8420 * Currently recognize only the ack control word and
8421 * any other control field being set would result in
8422 * flushing the LRO session
8428 * Allow only one TCP timestamp option. Don't aggregate if
8429 * any other options are detected.
8431 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8434 if (tcp
->doff
== 8) {
8435 ptr
= (u8
*)(tcp
+ 1);
8436 while (*ptr
== TCPOPT_NOP
)
8438 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8441 /* Ensure timestamp value increases monotonically */
8443 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8446 /* timestamp echo reply should be non-zero */
8447 if (*((__be32
*)(ptr
+6)) == 0)
8454 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8455 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8456 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8459 struct tcphdr
*tcph
;
8462 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8464 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8469 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8471 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8472 tcph
= (struct tcphdr
*)*tcp
;
8473 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8474 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8475 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8476 if (l_lro
->in_use
) {
8477 if (check_for_socket_match(l_lro
, ip
, tcph
))
8479 /* Sock pair matched */
8482 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8483 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8484 "expected 0x%x, actual 0x%x\n",
8486 (*lro
)->tcp_next_seq
,
8489 swstats
->outof_sequence_pkts
++;
8494 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8496 ret
= 1; /* Aggregate */
8498 ret
= 2; /* Flush both */
8504 /* Before searching for available LRO objects,
8505 * check if the pkt is L3/L4 aggregatable. If not
8506 * don't create new LRO session. Just send this
8509 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8512 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8513 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8514 if (!(l_lro
->in_use
)) {
8516 ret
= 3; /* Begin anew */
8522 if (ret
== 0) { /* sessions exceeded */
8523 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8531 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8535 update_L3L4_header(sp
, *lro
);
8538 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8539 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8540 update_L3L4_header(sp
, *lro
);
8541 ret
= 4; /* Flush the LRO */
8545 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8552 static void clear_lro_session(struct lro
*lro
)
8554 static u16 lro_struct_size
= sizeof(struct lro
);
8556 memset(lro
, 0, lro_struct_size
);
8559 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8561 struct net_device
*dev
= skb
->dev
;
8562 struct s2io_nic
*sp
= netdev_priv(dev
);
8564 skb
->protocol
= eth_type_trans(skb
, dev
);
8565 if (vlan_tag
&& sp
->vlan_strip_flag
)
8566 __vlan_hwaccel_put_tag(skb
, vlan_tag
);
8567 if (sp
->config
.napi
)
8568 netif_receive_skb(skb
);
8573 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8574 struct sk_buff
*skb
, u32 tcp_len
)
8576 struct sk_buff
*first
= lro
->parent
;
8577 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8579 first
->len
+= tcp_len
;
8580 first
->data_len
= lro
->frags_len
;
8581 skb_pull(skb
, (skb
->len
- tcp_len
));
8582 if (skb_shinfo(first
)->frag_list
)
8583 lro
->last_frag
->next
= skb
;
8585 skb_shinfo(first
)->frag_list
= skb
;
8586 first
->truesize
+= skb
->truesize
;
8587 lro
->last_frag
= skb
;
8588 swstats
->clubbed_frms_cnt
++;
8592 * s2io_io_error_detected - called when PCI error is detected
8593 * @pdev: Pointer to PCI device
8594 * @state: The current pci connection state
8596 * This function is called after a PCI bus error affecting
8597 * this device has been detected.
8599 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8600 pci_channel_state_t state
)
8602 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8603 struct s2io_nic
*sp
= netdev_priv(netdev
);
8605 netif_device_detach(netdev
);
8607 if (state
== pci_channel_io_perm_failure
)
8608 return PCI_ERS_RESULT_DISCONNECT
;
8610 if (netif_running(netdev
)) {
8611 /* Bring down the card, while avoiding PCI I/O */
8612 do_s2io_card_down(sp
, 0);
8614 pci_disable_device(pdev
);
8616 return PCI_ERS_RESULT_NEED_RESET
;
8620 * s2io_io_slot_reset - called after the pci bus has been reset.
8621 * @pdev: Pointer to PCI device
8623 * Restart the card from scratch, as if from a cold-boot.
8624 * At this point, the card has exprienced a hard reset,
8625 * followed by fixups by BIOS, and has its config space
8626 * set up identically to what it was at cold boot.
8628 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8630 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8631 struct s2io_nic
*sp
= netdev_priv(netdev
);
8633 if (pci_enable_device(pdev
)) {
8634 pr_err("Cannot re-enable PCI device after reset.\n");
8635 return PCI_ERS_RESULT_DISCONNECT
;
8638 pci_set_master(pdev
);
8641 return PCI_ERS_RESULT_RECOVERED
;
8645 * s2io_io_resume - called when traffic can start flowing again.
8646 * @pdev: Pointer to PCI device
8648 * This callback is called when the error recovery driver tells
8649 * us that its OK to resume normal operation.
8651 static void s2io_io_resume(struct pci_dev
*pdev
)
8653 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8654 struct s2io_nic
*sp
= netdev_priv(netdev
);
8656 if (netif_running(netdev
)) {
8657 if (s2io_card_up(sp
)) {
8658 pr_err("Can't bring device back up after reset.\n");
8662 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8664 pr_err("Can't restore mac addr after reset.\n");
8669 netif_device_attach(netdev
);
8670 netif_tx_wake_all_queues(netdev
);