spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / ath / ath6kl / sdio.c
blob9475e2d0d0b7943bee6dd60288821c95a8dc9588
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/module.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/sdio_func.h>
22 #include <linux/mmc/sdio_ids.h>
23 #include <linux/mmc/sdio.h>
24 #include <linux/mmc/sd.h>
25 #include "hif.h"
26 #include "hif-ops.h"
27 #include "target.h"
28 #include "debug.h"
29 #include "cfg80211.h"
31 struct ath6kl_sdio {
32 struct sdio_func *func;
34 spinlock_t lock;
36 /* free list */
37 struct list_head bus_req_freeq;
39 /* available bus requests */
40 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
42 struct ath6kl *ar;
44 u8 *dma_buffer;
46 /* protects access to dma_buffer */
47 struct mutex dma_buffer_mutex;
49 /* scatter request list head */
50 struct list_head scat_req;
52 spinlock_t scat_lock;
53 bool scatter_enabled;
55 bool is_disabled;
56 atomic_t irq_handling;
57 const struct sdio_device_id *id;
58 struct work_struct wr_async_work;
59 struct list_head wr_asyncq;
60 spinlock_t wr_async_lock;
63 #define CMD53_ARG_READ 0
64 #define CMD53_ARG_WRITE 1
65 #define CMD53_ARG_BLOCK_BASIS 1
66 #define CMD53_ARG_FIXED_ADDRESS 0
67 #define CMD53_ARG_INCR_ADDRESS 1
69 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
71 return ar->hif_priv;
75 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
76 * Most host controllers assume the buffer is DMA'able and will
77 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
78 * check fails on stack memory.
80 static inline bool buf_needs_bounce(u8 *buf)
82 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
85 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
87 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
89 /* EP1 has an extended range */
90 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
91 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
92 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
93 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
94 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
95 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
98 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
99 u8 mode, u8 opcode, u32 addr,
100 u16 blksz)
102 *arg = (((rw & 1) << 31) |
103 ((func & 0x7) << 28) |
104 ((mode & 1) << 27) |
105 ((opcode & 1) << 26) |
106 ((addr & 0x1FFFF) << 9) |
107 (blksz & 0x1FF));
110 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
111 unsigned int address,
112 unsigned char val)
114 const u8 func = 0;
116 *arg = ((write & 1) << 31) |
117 ((func & 0x7) << 28) |
118 ((raw & 1) << 27) |
119 (1 << 26) |
120 ((address & 0x1FFFF) << 9) |
121 (1 << 8) |
122 (val & 0xFF);
125 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
126 unsigned int address,
127 unsigned char byte)
129 struct mmc_command io_cmd;
131 memset(&io_cmd, 0, sizeof(io_cmd));
132 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
133 io_cmd.opcode = SD_IO_RW_DIRECT;
134 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
136 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
139 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
140 u8 *buf, u32 len)
142 int ret = 0;
144 sdio_claim_host(func);
146 if (request & HIF_WRITE) {
147 /* FIXME: looks like ugly workaround for something */
148 if (addr >= HIF_MBOX_BASE_ADDR &&
149 addr <= HIF_MBOX_END_ADDR)
150 addr += (HIF_MBOX_WIDTH - len);
152 /* FIXME: this also looks like ugly workaround */
153 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
154 addr += HIF_MBOX0_EXT_WIDTH - len;
156 if (request & HIF_FIXED_ADDRESS)
157 ret = sdio_writesb(func, addr, buf, len);
158 else
159 ret = sdio_memcpy_toio(func, addr, buf, len);
160 } else {
161 if (request & HIF_FIXED_ADDRESS)
162 ret = sdio_readsb(func, buf, addr, len);
163 else
164 ret = sdio_memcpy_fromio(func, buf, addr, len);
167 sdio_release_host(func);
169 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
170 request & HIF_WRITE ? "wr" : "rd", addr,
171 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
172 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
174 return ret;
177 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
179 struct bus_request *bus_req;
181 spin_lock_bh(&ar_sdio->lock);
183 if (list_empty(&ar_sdio->bus_req_freeq)) {
184 spin_unlock_bh(&ar_sdio->lock);
185 return NULL;
188 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
189 struct bus_request, list);
190 list_del(&bus_req->list);
192 spin_unlock_bh(&ar_sdio->lock);
193 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
194 __func__, bus_req);
196 return bus_req;
199 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
200 struct bus_request *bus_req)
202 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
203 __func__, bus_req);
205 spin_lock_bh(&ar_sdio->lock);
206 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
207 spin_unlock_bh(&ar_sdio->lock);
210 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
211 struct mmc_data *data)
213 struct scatterlist *sg;
214 int i;
216 data->blksz = HIF_MBOX_BLOCK_SIZE;
217 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
219 ath6kl_dbg(ATH6KL_DBG_SCATTER,
220 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
221 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
222 data->blksz, data->blocks, scat_req->len,
223 scat_req->scat_entries);
225 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
226 MMC_DATA_READ;
228 /* fill SG entries */
229 sg = scat_req->sgentries;
230 sg_init_table(sg, scat_req->scat_entries);
232 /* assemble SG list */
233 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
234 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
235 i, scat_req->scat_list[i].buf,
236 scat_req->scat_list[i].len);
238 sg_set_buf(sg, scat_req->scat_list[i].buf,
239 scat_req->scat_list[i].len);
242 /* set scatter-gather table for request */
243 data->sg = scat_req->sgentries;
244 data->sg_len = scat_req->scat_entries;
247 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
248 struct bus_request *req)
250 struct mmc_request mmc_req;
251 struct mmc_command cmd;
252 struct mmc_data data;
253 struct hif_scatter_req *scat_req;
254 u8 opcode, rw;
255 int status, len;
257 scat_req = req->scat_req;
259 if (scat_req->virt_scat) {
260 len = scat_req->len;
261 if (scat_req->req & HIF_BLOCK_BASIS)
262 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
264 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
265 scat_req->addr, scat_req->virt_dma_buf,
266 len);
267 goto scat_complete;
270 memset(&mmc_req, 0, sizeof(struct mmc_request));
271 memset(&cmd, 0, sizeof(struct mmc_command));
272 memset(&data, 0, sizeof(struct mmc_data));
274 ath6kl_sdio_setup_scat_data(scat_req, &data);
276 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
277 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
279 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
281 /* Fixup the address so that the last byte will fall on MBOX EOM */
282 if (scat_req->req & HIF_WRITE) {
283 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
284 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
285 else
286 /* Uses extended address range */
287 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
290 /* set command argument */
291 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
292 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
293 data.blocks);
295 cmd.opcode = SD_IO_RW_EXTENDED;
296 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
298 mmc_req.cmd = &cmd;
299 mmc_req.data = &data;
301 sdio_claim_host(ar_sdio->func);
303 mmc_set_data_timeout(&data, ar_sdio->func->card);
304 /* synchronous call to process request */
305 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
307 sdio_release_host(ar_sdio->func);
309 status = cmd.error ? cmd.error : data.error;
311 scat_complete:
312 scat_req->status = status;
314 if (scat_req->status)
315 ath6kl_err("Scatter write request failed:%d\n",
316 scat_req->status);
318 if (scat_req->req & HIF_ASYNCHRONOUS)
319 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
321 return status;
324 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
325 int n_scat_entry, int n_scat_req,
326 bool virt_scat)
328 struct hif_scatter_req *s_req;
329 struct bus_request *bus_req;
330 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
331 u8 *virt_buf;
333 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
334 scat_req_sz = sizeof(*s_req) + scat_list_sz;
336 if (!virt_scat)
337 sg_sz = sizeof(struct scatterlist) * n_scat_entry;
338 else
339 buf_sz = 2 * L1_CACHE_BYTES +
340 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
342 for (i = 0; i < n_scat_req; i++) {
343 /* allocate the scatter request */
344 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
345 if (!s_req)
346 return -ENOMEM;
348 if (virt_scat) {
349 virt_buf = kzalloc(buf_sz, GFP_KERNEL);
350 if (!virt_buf) {
351 kfree(s_req);
352 return -ENOMEM;
355 s_req->virt_dma_buf =
356 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
357 } else {
358 /* allocate sglist */
359 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
361 if (!s_req->sgentries) {
362 kfree(s_req);
363 return -ENOMEM;
367 /* allocate a bus request for this scatter request */
368 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
369 if (!bus_req) {
370 kfree(s_req->sgentries);
371 kfree(s_req->virt_dma_buf);
372 kfree(s_req);
373 return -ENOMEM;
376 /* assign the scatter request to this bus request */
377 bus_req->scat_req = s_req;
378 s_req->busrequest = bus_req;
380 s_req->virt_scat = virt_scat;
382 /* add it to the scatter pool */
383 hif_scatter_req_add(ar_sdio->ar, s_req);
386 return 0;
389 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
390 u32 len, u32 request)
392 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
393 u8 *tbuf = NULL;
394 int ret;
395 bool bounced = false;
397 if (request & HIF_BLOCK_BASIS)
398 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
400 if (buf_needs_bounce(buf)) {
401 if (!ar_sdio->dma_buffer)
402 return -ENOMEM;
403 mutex_lock(&ar_sdio->dma_buffer_mutex);
404 tbuf = ar_sdio->dma_buffer;
405 memcpy(tbuf, buf, len);
406 bounced = true;
407 } else
408 tbuf = buf;
410 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
411 if ((request & HIF_READ) && bounced)
412 memcpy(buf, tbuf, len);
414 if (bounced)
415 mutex_unlock(&ar_sdio->dma_buffer_mutex);
417 return ret;
420 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
421 struct bus_request *req)
423 if (req->scat_req)
424 ath6kl_sdio_scat_rw(ar_sdio, req);
425 else {
426 void *context;
427 int status;
429 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
430 req->buffer, req->length,
431 req->request);
432 context = req->packet;
433 ath6kl_sdio_free_bus_req(ar_sdio, req);
434 ath6kl_hif_rw_comp_handler(context, status);
438 static void ath6kl_sdio_write_async_work(struct work_struct *work)
440 struct ath6kl_sdio *ar_sdio;
441 struct bus_request *req, *tmp_req;
443 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
445 spin_lock_bh(&ar_sdio->wr_async_lock);
446 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
447 list_del(&req->list);
448 spin_unlock_bh(&ar_sdio->wr_async_lock);
449 __ath6kl_sdio_write_async(ar_sdio, req);
450 spin_lock_bh(&ar_sdio->wr_async_lock);
452 spin_unlock_bh(&ar_sdio->wr_async_lock);
455 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
457 int status;
458 struct ath6kl_sdio *ar_sdio;
460 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
462 ar_sdio = sdio_get_drvdata(func);
463 atomic_set(&ar_sdio->irq_handling, 1);
466 * Release the host during interrups so we can pick it back up when
467 * we process commands.
469 sdio_release_host(ar_sdio->func);
471 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
472 sdio_claim_host(ar_sdio->func);
473 atomic_set(&ar_sdio->irq_handling, 0);
474 WARN_ON(status && status != -ECANCELED);
477 static int ath6kl_sdio_power_on(struct ath6kl *ar)
479 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
480 struct sdio_func *func = ar_sdio->func;
481 int ret = 0;
483 if (!ar_sdio->is_disabled)
484 return 0;
486 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
488 sdio_claim_host(func);
490 ret = sdio_enable_func(func);
491 if (ret) {
492 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
493 sdio_release_host(func);
494 return ret;
497 sdio_release_host(func);
500 * Wait for hardware to initialise. It should take a lot less than
501 * 10 ms but let's be conservative here.
503 msleep(10);
505 ar_sdio->is_disabled = false;
507 return ret;
510 static int ath6kl_sdio_power_off(struct ath6kl *ar)
512 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
513 int ret;
515 if (ar_sdio->is_disabled)
516 return 0;
518 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
520 /* Disable the card */
521 sdio_claim_host(ar_sdio->func);
522 ret = sdio_disable_func(ar_sdio->func);
523 sdio_release_host(ar_sdio->func);
525 if (ret)
526 return ret;
528 ar_sdio->is_disabled = true;
530 return ret;
533 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
534 u32 length, u32 request,
535 struct htc_packet *packet)
537 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
538 struct bus_request *bus_req;
540 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
542 if (!bus_req)
543 return -ENOMEM;
545 bus_req->address = address;
546 bus_req->buffer = buffer;
547 bus_req->length = length;
548 bus_req->request = request;
549 bus_req->packet = packet;
551 spin_lock_bh(&ar_sdio->wr_async_lock);
552 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
553 spin_unlock_bh(&ar_sdio->wr_async_lock);
554 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
556 return 0;
559 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
561 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
562 int ret;
564 sdio_claim_host(ar_sdio->func);
566 /* Register the isr */
567 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
568 if (ret)
569 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
571 sdio_release_host(ar_sdio->func);
574 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
576 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
577 int ret;
579 sdio_claim_host(ar_sdio->func);
581 /* Mask our function IRQ */
582 while (atomic_read(&ar_sdio->irq_handling)) {
583 sdio_release_host(ar_sdio->func);
584 schedule_timeout(HZ / 10);
585 sdio_claim_host(ar_sdio->func);
588 ret = sdio_release_irq(ar_sdio->func);
589 if (ret)
590 ath6kl_err("Failed to release sdio irq: %d\n", ret);
592 sdio_release_host(ar_sdio->func);
595 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
597 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
598 struct hif_scatter_req *node = NULL;
600 spin_lock_bh(&ar_sdio->scat_lock);
602 if (!list_empty(&ar_sdio->scat_req)) {
603 node = list_first_entry(&ar_sdio->scat_req,
604 struct hif_scatter_req, list);
605 list_del(&node->list);
608 spin_unlock_bh(&ar_sdio->scat_lock);
610 return node;
613 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
614 struct hif_scatter_req *s_req)
616 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
618 spin_lock_bh(&ar_sdio->scat_lock);
620 list_add_tail(&s_req->list, &ar_sdio->scat_req);
622 spin_unlock_bh(&ar_sdio->scat_lock);
626 /* scatter gather read write request */
627 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
628 struct hif_scatter_req *scat_req)
630 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
631 u32 request = scat_req->req;
632 int status = 0;
634 if (!scat_req->len)
635 return -EINVAL;
637 ath6kl_dbg(ATH6KL_DBG_SCATTER,
638 "hif-scatter: total len: %d scatter entries: %d\n",
639 scat_req->len, scat_req->scat_entries);
641 if (request & HIF_SYNCHRONOUS)
642 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
643 else {
644 spin_lock_bh(&ar_sdio->wr_async_lock);
645 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
646 spin_unlock_bh(&ar_sdio->wr_async_lock);
647 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
650 return status;
653 /* clean up scatter support */
654 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
656 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
657 struct hif_scatter_req *s_req, *tmp_req;
659 /* empty the free list */
660 spin_lock_bh(&ar_sdio->scat_lock);
661 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
662 list_del(&s_req->list);
663 spin_unlock_bh(&ar_sdio->scat_lock);
666 * FIXME: should we also call completion handler with
667 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
668 * that the packet is properly freed?
670 if (s_req->busrequest)
671 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
672 kfree(s_req->virt_dma_buf);
673 kfree(s_req->sgentries);
674 kfree(s_req);
676 spin_lock_bh(&ar_sdio->scat_lock);
678 spin_unlock_bh(&ar_sdio->scat_lock);
681 /* setup of HIF scatter resources */
682 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
684 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
685 struct htc_target *target = ar->htc_target;
686 int ret;
687 bool virt_scat = false;
689 if (ar_sdio->scatter_enabled)
690 return 0;
692 ar_sdio->scatter_enabled = true;
694 /* check if host supports scatter and it meets our requirements */
695 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
696 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
697 ar_sdio->func->card->host->max_segs,
698 MAX_SCATTER_ENTRIES_PER_REQ);
699 virt_scat = true;
702 if (!virt_scat) {
703 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
704 MAX_SCATTER_ENTRIES_PER_REQ,
705 MAX_SCATTER_REQUESTS, virt_scat);
707 if (!ret) {
708 ath6kl_dbg(ATH6KL_DBG_BOOT,
709 "hif-scatter enabled requests %d entries %d\n",
710 MAX_SCATTER_REQUESTS,
711 MAX_SCATTER_ENTRIES_PER_REQ);
713 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
714 target->max_xfer_szper_scatreq =
715 MAX_SCATTER_REQ_TRANSFER_SIZE;
716 } else {
717 ath6kl_sdio_cleanup_scatter(ar);
718 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
722 if (virt_scat || ret) {
723 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
724 ATH6KL_SCATTER_ENTRIES_PER_REQ,
725 ATH6KL_SCATTER_REQS, virt_scat);
727 if (ret) {
728 ath6kl_err("failed to alloc virtual scatter resources !\n");
729 ath6kl_sdio_cleanup_scatter(ar);
730 return ret;
733 ath6kl_dbg(ATH6KL_DBG_BOOT,
734 "virtual scatter enabled requests %d entries %d\n",
735 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
737 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
738 target->max_xfer_szper_scatreq =
739 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
742 return 0;
745 static int ath6kl_sdio_config(struct ath6kl *ar)
747 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
748 struct sdio_func *func = ar_sdio->func;
749 int ret;
751 sdio_claim_host(func);
753 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
754 MANUFACTURER_ID_AR6003_BASE) {
755 /* enable 4-bit ASYNC interrupt on AR6003 or later */
756 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
757 CCCR_SDIO_IRQ_MODE_REG,
758 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
759 if (ret) {
760 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
761 ret);
762 goto out;
765 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
768 /* give us some time to enable, in ms */
769 func->enable_timeout = 100;
771 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
772 if (ret) {
773 ath6kl_err("Set sdio block size %d failed: %d)\n",
774 HIF_MBOX_BLOCK_SIZE, ret);
775 sdio_release_host(func);
776 goto out;
779 out:
780 sdio_release_host(func);
782 return ret;
785 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
787 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
788 struct sdio_func *func = ar_sdio->func;
789 mmc_pm_flag_t flags;
790 int ret;
792 flags = sdio_get_host_pm_caps(func);
794 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
796 if (!(flags & MMC_PM_KEEP_POWER) ||
797 (ar->conf_flags & ATH6KL_CONF_SUSPEND_CUTPOWER)) {
798 /* as host doesn't support keep power we need to cut power */
799 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER,
800 NULL);
803 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
804 if (ret) {
805 printk(KERN_ERR "ath6kl: set sdio pm flags failed: %d\n",
806 ret);
807 return ret;
810 if (!(flags & MMC_PM_WAKE_SDIO_IRQ))
811 goto deepsleep;
813 /* sdio irq wakes up host */
815 if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
816 ret = ath6kl_cfg80211_suspend(ar,
817 ATH6KL_CFG_SUSPEND_SCHED_SCAN,
818 NULL);
819 if (ret) {
820 ath6kl_warn("Schedule scan suspend failed: %d", ret);
821 return ret;
824 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
825 if (ret)
826 ath6kl_warn("set sdio wake irq flag failed: %d\n", ret);
828 return ret;
831 if (wow) {
833 * The host sdio controller is capable of keep power and
834 * sdio irq wake up at this point. It's fine to continue
835 * wow suspend operation.
837 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
838 if (ret)
839 return ret;
841 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
842 if (ret)
843 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
845 return ret;
848 deepsleep:
849 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, NULL);
852 static int ath6kl_sdio_resume(struct ath6kl *ar)
854 switch (ar->state) {
855 case ATH6KL_STATE_OFF:
856 case ATH6KL_STATE_CUTPOWER:
857 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
858 "sdio resume configuring sdio\n");
860 /* need to set sdio settings after power is cut from sdio */
861 ath6kl_sdio_config(ar);
862 break;
864 case ATH6KL_STATE_ON:
865 break;
867 case ATH6KL_STATE_DEEPSLEEP:
868 break;
870 case ATH6KL_STATE_WOW:
871 break;
872 case ATH6KL_STATE_SCHED_SCAN:
873 break;
876 ath6kl_cfg80211_resume(ar);
878 return 0;
881 /* set the window address register (using 4-byte register access ). */
882 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
884 int status;
885 u8 addr_val[4];
886 s32 i;
889 * Write bytes 1,2,3 of the register to set the upper address bytes,
890 * the LSB is written last to initiate the access cycle
893 for (i = 1; i <= 3; i++) {
895 * Fill the buffer with the address byte value we want to
896 * hit 4 times.
898 memset(addr_val, ((u8 *)&addr)[i], 4);
901 * Hit each byte of the register address with a 4-byte
902 * write operation to the same address, this is a harmless
903 * operation.
905 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
906 4, HIF_WR_SYNC_BYTE_FIX);
907 if (status)
908 break;
911 if (status) {
912 ath6kl_err("%s: failed to write initial bytes of 0x%x "
913 "to window reg: 0x%X\n", __func__,
914 addr, reg_addr);
915 return status;
919 * Write the address register again, this time write the whole
920 * 4-byte value. The effect here is that the LSB write causes the
921 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
922 * effect since we are writing the same values again
924 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
925 4, HIF_WR_SYNC_BYTE_INC);
927 if (status) {
928 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
929 __func__, addr, reg_addr);
930 return status;
933 return 0;
936 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
938 int status;
940 /* set window register to start read cycle */
941 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
942 address);
944 if (status)
945 return status;
947 /* read the data */
948 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
949 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
950 if (status) {
951 ath6kl_err("%s: failed to read from window data addr\n",
952 __func__);
953 return status;
956 return status;
959 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
960 __le32 data)
962 int status;
963 u32 val = (__force u32) data;
965 /* set write data */
966 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
967 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
968 if (status) {
969 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
970 __func__, data);
971 return status;
974 /* set window register, which starts the write cycle */
975 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
976 address);
979 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
981 u32 addr;
982 unsigned long timeout;
983 int ret;
985 ar->bmi.cmd_credits = 0;
987 /* Read the counter register to get the command credits */
988 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
990 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
991 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
994 * Hit the credit counter with a 4-byte access, the first byte
995 * read will hit the counter and cause a decrement, while the
996 * remaining 3 bytes has no effect. The rationale behind this
997 * is to make all HIF accesses 4-byte aligned.
999 ret = ath6kl_sdio_read_write_sync(ar, addr,
1000 (u8 *)&ar->bmi.cmd_credits, 4,
1001 HIF_RD_SYNC_BYTE_INC);
1002 if (ret) {
1003 ath6kl_err("Unable to decrement the command credit "
1004 "count register: %d\n", ret);
1005 return ret;
1008 /* The counter is only 8 bits.
1009 * Ignore anything in the upper 3 bytes
1011 ar->bmi.cmd_credits &= 0xFF;
1014 if (!ar->bmi.cmd_credits) {
1015 ath6kl_err("bmi communication timeout\n");
1016 return -ETIMEDOUT;
1019 return 0;
1022 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1024 unsigned long timeout;
1025 u32 rx_word = 0;
1026 int ret = 0;
1028 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1029 while ((time_before(jiffies, timeout)) && !rx_word) {
1030 ret = ath6kl_sdio_read_write_sync(ar,
1031 RX_LOOKAHEAD_VALID_ADDRESS,
1032 (u8 *)&rx_word, sizeof(rx_word),
1033 HIF_RD_SYNC_BYTE_INC);
1034 if (ret) {
1035 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1036 return ret;
1039 /* all we really want is one bit */
1040 rx_word &= (1 << ENDPOINT1);
1043 if (!rx_word) {
1044 ath6kl_err("bmi_recv_buf FIFO empty\n");
1045 return -EINVAL;
1048 return ret;
1051 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1053 int ret;
1054 u32 addr;
1056 ret = ath6kl_sdio_bmi_credits(ar);
1057 if (ret)
1058 return ret;
1060 addr = ar->mbox_info.htc_addr;
1062 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1063 HIF_WR_SYNC_BYTE_INC);
1064 if (ret)
1065 ath6kl_err("unable to send the bmi data to the device\n");
1067 return ret;
1070 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1072 int ret;
1073 u32 addr;
1076 * During normal bootup, small reads may be required.
1077 * Rather than issue an HIF Read and then wait as the Target
1078 * adds successive bytes to the FIFO, we wait here until
1079 * we know that response data is available.
1081 * This allows us to cleanly timeout on an unexpected
1082 * Target failure rather than risk problems at the HIF level.
1083 * In particular, this avoids SDIO timeouts and possibly garbage
1084 * data on some host controllers. And on an interconnect
1085 * such as Compact Flash (as well as some SDIO masters) which
1086 * does not provide any indication on data timeout, it avoids
1087 * a potential hang or garbage response.
1089 * Synchronization is more difficult for reads larger than the
1090 * size of the MBOX FIFO (128B), because the Target is unable
1091 * to push the 129th byte of data until AFTER the Host posts an
1092 * HIF Read and removes some FIFO data. So for large reads the
1093 * Host proceeds to post an HIF Read BEFORE all the data is
1094 * actually available to read. Fortunately, large BMI reads do
1095 * not occur in practice -- they're supported for debug/development.
1097 * So Host/Target BMI synchronization is divided into these cases:
1098 * CASE 1: length < 4
1099 * Should not happen
1101 * CASE 2: 4 <= length <= 128
1102 * Wait for first 4 bytes to be in FIFO
1103 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1104 * a BMI command credit, which indicates that the ENTIRE
1105 * response is available in the the FIFO
1107 * CASE 3: length > 128
1108 * Wait for the first 4 bytes to be in FIFO
1110 * For most uses, a small timeout should be sufficient and we will
1111 * usually see a response quickly; but there may be some unusual
1112 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1113 * For now, we use an unbounded busy loop while waiting for
1114 * BMI_EXECUTE.
1116 * If BMI_EXECUTE ever needs to support longer-latency execution,
1117 * especially in production, this code needs to be enhanced to sleep
1118 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1119 * a function of Host processor speed.
1121 if (len >= 4) { /* NB: Currently, always true */
1122 ret = ath6kl_bmi_get_rx_lkahd(ar);
1123 if (ret)
1124 return ret;
1127 addr = ar->mbox_info.htc_addr;
1128 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1129 HIF_RD_SYNC_BYTE_INC);
1130 if (ret) {
1131 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1132 ret);
1133 return ret;
1136 return 0;
1139 static void ath6kl_sdio_stop(struct ath6kl *ar)
1141 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1142 struct bus_request *req, *tmp_req;
1143 void *context;
1145 /* FIXME: make sure that wq is not queued again */
1147 cancel_work_sync(&ar_sdio->wr_async_work);
1149 spin_lock_bh(&ar_sdio->wr_async_lock);
1151 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1152 list_del(&req->list);
1154 if (req->scat_req) {
1155 /* this is a scatter gather request */
1156 req->scat_req->status = -ECANCELED;
1157 req->scat_req->complete(ar_sdio->ar->htc_target,
1158 req->scat_req);
1159 } else {
1160 context = req->packet;
1161 ath6kl_sdio_free_bus_req(ar_sdio, req);
1162 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1166 spin_unlock_bh(&ar_sdio->wr_async_lock);
1168 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1171 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1172 .read_write_sync = ath6kl_sdio_read_write_sync,
1173 .write_async = ath6kl_sdio_write_async,
1174 .irq_enable = ath6kl_sdio_irq_enable,
1175 .irq_disable = ath6kl_sdio_irq_disable,
1176 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1177 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1178 .enable_scatter = ath6kl_sdio_enable_scatter,
1179 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1180 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1181 .suspend = ath6kl_sdio_suspend,
1182 .resume = ath6kl_sdio_resume,
1183 .diag_read32 = ath6kl_sdio_diag_read32,
1184 .diag_write32 = ath6kl_sdio_diag_write32,
1185 .bmi_read = ath6kl_sdio_bmi_read,
1186 .bmi_write = ath6kl_sdio_bmi_write,
1187 .power_on = ath6kl_sdio_power_on,
1188 .power_off = ath6kl_sdio_power_off,
1189 .stop = ath6kl_sdio_stop,
1192 #ifdef CONFIG_PM_SLEEP
1195 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1196 * suspend. We instead follow cfg80211 suspend/resume handlers.
1198 static int ath6kl_sdio_pm_suspend(struct device *device)
1200 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1202 return 0;
1205 static int ath6kl_sdio_pm_resume(struct device *device)
1207 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1209 return 0;
1212 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1213 ath6kl_sdio_pm_resume);
1215 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1217 #else
1219 #define ATH6KL_SDIO_PM_OPS NULL
1221 #endif /* CONFIG_PM_SLEEP */
1223 static int ath6kl_sdio_probe(struct sdio_func *func,
1224 const struct sdio_device_id *id)
1226 int ret;
1227 struct ath6kl_sdio *ar_sdio;
1228 struct ath6kl *ar;
1229 int count;
1231 ath6kl_dbg(ATH6KL_DBG_BOOT,
1232 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1233 func->num, func->vendor, func->device,
1234 func->max_blksize, func->cur_blksize);
1236 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1237 if (!ar_sdio)
1238 return -ENOMEM;
1240 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1241 if (!ar_sdio->dma_buffer) {
1242 ret = -ENOMEM;
1243 goto err_hif;
1246 ar_sdio->func = func;
1247 sdio_set_drvdata(func, ar_sdio);
1249 ar_sdio->id = id;
1250 ar_sdio->is_disabled = true;
1252 spin_lock_init(&ar_sdio->lock);
1253 spin_lock_init(&ar_sdio->scat_lock);
1254 spin_lock_init(&ar_sdio->wr_async_lock);
1255 mutex_init(&ar_sdio->dma_buffer_mutex);
1257 INIT_LIST_HEAD(&ar_sdio->scat_req);
1258 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1259 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1261 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1263 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1264 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1266 ar = ath6kl_core_alloc(&ar_sdio->func->dev);
1267 if (!ar) {
1268 ath6kl_err("Failed to alloc ath6kl core\n");
1269 ret = -ENOMEM;
1270 goto err_dma;
1273 ar_sdio->ar = ar;
1274 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1275 ar->hif_priv = ar_sdio;
1276 ar->hif_ops = &ath6kl_sdio_ops;
1277 ar->bmi.max_data_size = 256;
1279 ath6kl_sdio_set_mbox_info(ar);
1281 ret = ath6kl_sdio_config(ar);
1282 if (ret) {
1283 ath6kl_err("Failed to config sdio: %d\n", ret);
1284 goto err_core_alloc;
1287 ret = ath6kl_core_init(ar);
1288 if (ret) {
1289 ath6kl_err("Failed to init ath6kl core\n");
1290 goto err_core_alloc;
1293 return ret;
1295 err_core_alloc:
1296 ath6kl_core_free(ar_sdio->ar);
1297 err_dma:
1298 kfree(ar_sdio->dma_buffer);
1299 err_hif:
1300 kfree(ar_sdio);
1302 return ret;
1305 static void ath6kl_sdio_remove(struct sdio_func *func)
1307 struct ath6kl_sdio *ar_sdio;
1309 ath6kl_dbg(ATH6KL_DBG_BOOT,
1310 "sdio removed func %d vendor 0x%x device 0x%x\n",
1311 func->num, func->vendor, func->device);
1313 ar_sdio = sdio_get_drvdata(func);
1315 ath6kl_stop_txrx(ar_sdio->ar);
1316 cancel_work_sync(&ar_sdio->wr_async_work);
1318 ath6kl_core_cleanup(ar_sdio->ar);
1320 kfree(ar_sdio->dma_buffer);
1321 kfree(ar_sdio);
1324 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1325 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1326 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1327 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1328 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1332 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1334 static struct sdio_driver ath6kl_sdio_driver = {
1335 .name = "ath6kl",
1336 .id_table = ath6kl_sdio_devices,
1337 .probe = ath6kl_sdio_probe,
1338 .remove = ath6kl_sdio_remove,
1339 .drv.pm = ATH6KL_SDIO_PM_OPS,
1342 static int __init ath6kl_sdio_init(void)
1344 int ret;
1346 ret = sdio_register_driver(&ath6kl_sdio_driver);
1347 if (ret)
1348 ath6kl_err("sdio driver registration failed: %d\n", ret);
1350 return ret;
1353 static void __exit ath6kl_sdio_exit(void)
1355 sdio_unregister_driver(&ath6kl_sdio_driver);
1358 module_init(ath6kl_sdio_init);
1359 module_exit(ath6kl_sdio_exit);
1361 MODULE_AUTHOR("Atheros Communications, Inc.");
1362 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1363 MODULE_LICENSE("Dual BSD/GPL");
1365 MODULE_FIRMWARE(AR6003_HW_2_0_OTP_FILE);
1366 MODULE_FIRMWARE(AR6003_HW_2_0_FIRMWARE_FILE);
1367 MODULE_FIRMWARE(AR6003_HW_2_0_PATCH_FILE);
1368 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1369 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1370 MODULE_FIRMWARE(AR6003_HW_2_1_1_OTP_FILE);
1371 MODULE_FIRMWARE(AR6003_HW_2_1_1_FIRMWARE_FILE);
1372 MODULE_FIRMWARE(AR6003_HW_2_1_1_PATCH_FILE);
1373 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1374 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1375 MODULE_FIRMWARE(AR6004_HW_1_0_FIRMWARE_FILE);
1376 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1377 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1378 MODULE_FIRMWARE(AR6004_HW_1_1_FIRMWARE_FILE);
1379 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1380 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);