1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct stats_general_data
{
74 u32 beacon_silence_rssi_a
;
75 u32 beacon_silence_rssi_b
;
76 u32 beacon_silence_rssi_c
;
83 il4965_calib_free_results(struct il_priv
*il
)
87 for (i
= 0; i
< IL_CALIB_MAX
; i
++) {
88 kfree(il
->calib_results
[i
].buf
);
89 il
->calib_results
[i
].buf
= NULL
;
90 il
->calib_results
[i
].buf_len
= 0;
94 /*****************************************************************************
95 * RUNTIME calibrations framework
96 *****************************************************************************/
98 /* "false alarms" are signals that our DSP tries to lock onto,
99 * but then determines that they are either noise, or transmissions
100 * from a distant wireless network (also "noise", really) that get
101 * "stepped on" by stronger transmissions within our own network.
102 * This algorithm attempts to set a sensitivity level that is high
103 * enough to receive all of our own network traffic, but not so
104 * high that our DSP gets too busy trying to lock onto non-network
107 il4965_sens_energy_cck(struct il_priv
*il
, u32 norm_fa
, u32 rx_enable_time
,
108 struct stats_general_data
*rx_info
)
112 u8 max_silence_rssi
= 0;
114 u8 silence_rssi_a
= 0;
115 u8 silence_rssi_b
= 0;
116 u8 silence_rssi_c
= 0;
119 /* "false_alarms" values below are cross-multiplications to assess the
120 * numbers of false alarms within the measured period of actual Rx
121 * (Rx is off when we're txing), vs the min/max expected false alarms
122 * (some should be expected if rx is sensitive enough) in a
123 * hypothetical listening period of 200 time units (TU), 204.8 msec:
125 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
128 u32 false_alarms
= norm_fa
* 200 * 1024;
129 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
130 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
131 struct il_sensitivity_data
*data
= NULL
;
132 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
134 data
= &(il
->sensitivity_data
);
136 data
->nrg_auto_corr_silence_diff
= 0;
138 /* Find max silence rssi among all 3 receivers.
139 * This is background noise, which may include transmissions from other
140 * networks, measured during silence before our network's beacon */
142 (u8
) ((rx_info
->beacon_silence_rssi_a
& ALL_BAND_FILTER
) >> 8);
144 (u8
) ((rx_info
->beacon_silence_rssi_b
& ALL_BAND_FILTER
) >> 8);
146 (u8
) ((rx_info
->beacon_silence_rssi_c
& ALL_BAND_FILTER
) >> 8);
148 val
= max(silence_rssi_b
, silence_rssi_c
);
149 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
151 /* Store silence rssi in 20-beacon history table */
152 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
153 data
->nrg_silence_idx
++;
154 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
155 data
->nrg_silence_idx
= 0;
157 /* Find max silence rssi across 20 beacon history */
158 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
159 val
= data
->nrg_silence_rssi
[i
];
160 silence_ref
= max(silence_ref
, val
);
162 D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a
,
163 silence_rssi_b
, silence_rssi_c
, silence_ref
);
165 /* Find max rx energy (min value!) among all 3 receivers,
166 * measured during beacon frame.
167 * Save it in 10-beacon history table. */
168 i
= data
->nrg_energy_idx
;
169 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
170 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
172 data
->nrg_energy_idx
++;
173 if (data
->nrg_energy_idx
>= 10)
174 data
->nrg_energy_idx
= 0;
176 /* Find min rx energy (max value) across 10 beacon history.
177 * This is the minimum signal level that we want to receive well.
178 * Add backoff (margin so we don't miss slightly lower energy frames).
179 * This establishes an upper bound (min value) for energy threshold. */
180 max_nrg_cck
= data
->nrg_value
[0];
181 for (i
= 1; i
< 10; i
++)
182 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
185 D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
186 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
187 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
189 /* Count number of consecutive beacons with fewer-than-desired
191 if (false_alarms
< min_false_alarms
)
192 data
->num_in_cck_no_fa
++;
194 data
->num_in_cck_no_fa
= 0;
195 D_CALIB("consecutive bcns with few false alarms = %u\n",
196 data
->num_in_cck_no_fa
);
198 /* If we got too many false alarms this time, reduce sensitivity */
199 if (false_alarms
> max_false_alarms
&&
200 data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
) {
201 D_CALIB("norm FA %u > max FA %u\n", false_alarms
,
203 D_CALIB("... reducing sensitivity\n");
204 data
->nrg_curr_state
= IL_FA_TOO_MANY
;
205 /* Store for "fewer than desired" on later beacon */
206 data
->nrg_silence_ref
= silence_ref
;
208 /* increase energy threshold (reduce nrg value)
209 * to decrease sensitivity */
210 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
211 /* Else if we got fewer than desired, increase sensitivity */
212 } else if (false_alarms
< min_false_alarms
) {
213 data
->nrg_curr_state
= IL_FA_TOO_FEW
;
215 /* Compare silence level with silence level for most recent
216 * healthy number or too many false alarms */
217 data
->nrg_auto_corr_silence_diff
=
218 (s32
) data
->nrg_silence_ref
- (s32
) silence_ref
;
220 D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
221 false_alarms
, min_false_alarms
,
222 data
->nrg_auto_corr_silence_diff
);
224 /* Increase value to increase sensitivity, but only if:
225 * 1a) previous beacon did *not* have *too many* false alarms
226 * 1b) AND there's a significant difference in Rx levels
227 * from a previous beacon with too many, or healthy # FAs
228 * OR 2) We've seen a lot of beacons (100) with too few
230 if (data
->nrg_prev_state
!= IL_FA_TOO_MANY
&&
231 (data
->nrg_auto_corr_silence_diff
> NRG_DIFF
||
232 data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
)) {
234 D_CALIB("... increasing sensitivity\n");
235 /* Increase nrg value to increase sensitivity */
236 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
237 data
->nrg_th_cck
= min((u32
) ranges
->min_nrg_cck
, val
);
239 D_CALIB("... but not changing sensitivity\n");
242 /* Else we got a healthy number of false alarms, keep status quo */
244 D_CALIB(" FA in safe zone\n");
245 data
->nrg_curr_state
= IL_FA_GOOD_RANGE
;
247 /* Store for use in "fewer than desired" with later beacon */
248 data
->nrg_silence_ref
= silence_ref
;
250 /* If previous beacon had too many false alarms,
251 * give it some extra margin by reducing sensitivity again
252 * (but don't go below measured energy of desired Rx) */
253 if (IL_FA_TOO_MANY
== data
->nrg_prev_state
) {
254 D_CALIB("... increasing margin\n");
255 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
256 data
->nrg_th_cck
-= NRG_MARGIN
;
258 data
->nrg_th_cck
= max_nrg_cck
;
262 /* Make sure the energy threshold does not go above the measured
263 * energy of the desired Rx signals (reduced by backoff margin),
264 * or else we might start missing Rx frames.
265 * Lower value is higher energy, so we use max()!
267 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
268 D_CALIB("new nrg_th_cck %u\n", data
->nrg_th_cck
);
270 data
->nrg_prev_state
= data
->nrg_curr_state
;
272 /* Auto-correlation CCK algorithm */
273 if (false_alarms
> min_false_alarms
) {
275 /* increase auto_corr values to decrease sensitivity
276 * so the DSP won't be disturbed by the noise
278 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
279 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
281 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
282 data
->auto_corr_cck
=
283 min((u32
) ranges
->auto_corr_max_cck
, val
);
285 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
286 data
->auto_corr_cck_mrc
=
287 min((u32
) ranges
->auto_corr_max_cck_mrc
, val
);
288 } else if (false_alarms
< min_false_alarms
&&
289 (data
->nrg_auto_corr_silence_diff
> NRG_DIFF
||
290 data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
)) {
292 /* Decrease auto_corr values to increase sensitivity */
293 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
294 data
->auto_corr_cck
= max((u32
) ranges
->auto_corr_min_cck
, val
);
295 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
296 data
->auto_corr_cck_mrc
=
297 max((u32
) ranges
->auto_corr_min_cck_mrc
, val
);
304 il4965_sens_auto_corr_ofdm(struct il_priv
*il
, u32 norm_fa
, u32 rx_enable_time
)
307 u32 false_alarms
= norm_fa
* 200 * 1024;
308 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
309 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
310 struct il_sensitivity_data
*data
= NULL
;
311 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
313 data
= &(il
->sensitivity_data
);
315 /* If we got too many false alarms this time, reduce sensitivity */
316 if (false_alarms
> max_false_alarms
) {
318 D_CALIB("norm FA %u > max FA %u)\n", false_alarms
,
321 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
322 data
->auto_corr_ofdm
=
323 min((u32
) ranges
->auto_corr_max_ofdm
, val
);
325 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
326 data
->auto_corr_ofdm_mrc
=
327 min((u32
) ranges
->auto_corr_max_ofdm_mrc
, val
);
329 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
330 data
->auto_corr_ofdm_x1
=
331 min((u32
) ranges
->auto_corr_max_ofdm_x1
, val
);
333 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
334 data
->auto_corr_ofdm_mrc_x1
=
335 min((u32
) ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
338 /* Else if we got fewer than desired, increase sensitivity */
339 else if (false_alarms
< min_false_alarms
) {
341 D_CALIB("norm FA %u < min FA %u\n", false_alarms
,
344 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
345 data
->auto_corr_ofdm
=
346 max((u32
) ranges
->auto_corr_min_ofdm
, val
);
348 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
349 data
->auto_corr_ofdm_mrc
=
350 max((u32
) ranges
->auto_corr_min_ofdm_mrc
, val
);
352 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
353 data
->auto_corr_ofdm_x1
=
354 max((u32
) ranges
->auto_corr_min_ofdm_x1
, val
);
356 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
357 data
->auto_corr_ofdm_mrc_x1
=
358 max((u32
) ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
360 D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
361 min_false_alarms
, false_alarms
, max_false_alarms
);
367 il4965_prepare_legacy_sensitivity_tbl(struct il_priv
*il
,
368 struct il_sensitivity_data
*data
,
371 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX
] =
372 cpu_to_le16((u16
) data
->auto_corr_ofdm
);
373 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX
] =
374 cpu_to_le16((u16
) data
->auto_corr_ofdm_mrc
);
375 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX
] =
376 cpu_to_le16((u16
) data
->auto_corr_ofdm_x1
);
377 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX
] =
378 cpu_to_le16((u16
) data
->auto_corr_ofdm_mrc_x1
);
380 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX
] =
381 cpu_to_le16((u16
) data
->auto_corr_cck
);
382 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX
] =
383 cpu_to_le16((u16
) data
->auto_corr_cck_mrc
);
385 tbl
[HD_MIN_ENERGY_CCK_DET_IDX
] = cpu_to_le16((u16
) data
->nrg_th_cck
);
386 tbl
[HD_MIN_ENERGY_OFDM_DET_IDX
] = cpu_to_le16((u16
) data
->nrg_th_ofdm
);
388 tbl
[HD_BARKER_CORR_TH_ADD_MIN_IDX
] =
389 cpu_to_le16(data
->barker_corr_th_min
);
390 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX
] =
391 cpu_to_le16(data
->barker_corr_th_min_mrc
);
392 tbl
[HD_OFDM_ENERGY_TH_IN_IDX
] = cpu_to_le16(data
->nrg_th_cca
);
394 D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
395 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
396 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
399 D_CALIB("cck: ac %u mrc %u thresh %u\n", data
->auto_corr_cck
,
400 data
->auto_corr_cck_mrc
, data
->nrg_th_cck
);
403 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
405 il4965_sensitivity_write(struct il_priv
*il
)
407 struct il_sensitivity_cmd cmd
;
408 struct il_sensitivity_data
*data
= NULL
;
409 struct il_host_cmd cmd_out
= {
411 .len
= sizeof(struct il_sensitivity_cmd
),
416 data
= &(il
->sensitivity_data
);
418 memset(&cmd
, 0, sizeof(cmd
));
420 il4965_prepare_legacy_sensitivity_tbl(il
, data
, &cmd
.table
[0]);
422 /* Update uCode's "work" table, and copy it to DSP */
423 cmd
.control
= C_SENSITIVITY_CONTROL_WORK_TBL
;
425 /* Don't send command to uCode if nothing has changed */
427 (&cmd
.table
[0], &(il
->sensitivity_tbl
[0]),
428 sizeof(u16
) * HD_TBL_SIZE
)) {
429 D_CALIB("No change in C_SENSITIVITY\n");
433 /* Copy table for comparison next time */
434 memcpy(&(il
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
435 sizeof(u16
) * HD_TBL_SIZE
);
437 return il_send_cmd(il
, &cmd_out
);
441 il4965_init_sensitivity(struct il_priv
*il
)
445 struct il_sensitivity_data
*data
= NULL
;
446 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
448 if (il
->disable_sens_cal
)
451 D_CALIB("Start il4965_init_sensitivity\n");
453 /* Clear driver's sensitivity algo data */
454 data
= &(il
->sensitivity_data
);
459 memset(data
, 0, sizeof(struct il_sensitivity_data
));
461 data
->num_in_cck_no_fa
= 0;
462 data
->nrg_curr_state
= IL_FA_TOO_MANY
;
463 data
->nrg_prev_state
= IL_FA_TOO_MANY
;
464 data
->nrg_silence_ref
= 0;
465 data
->nrg_silence_idx
= 0;
466 data
->nrg_energy_idx
= 0;
468 for (i
= 0; i
< 10; i
++)
469 data
->nrg_value
[i
] = 0;
471 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
472 data
->nrg_silence_rssi
[i
] = 0;
474 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
475 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
476 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
477 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
478 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
479 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
480 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
481 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
482 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
483 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
484 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
486 data
->last_bad_plcp_cnt_ofdm
= 0;
487 data
->last_fa_cnt_ofdm
= 0;
488 data
->last_bad_plcp_cnt_cck
= 0;
489 data
->last_fa_cnt_cck
= 0;
491 ret
|= il4965_sensitivity_write(il
);
492 D_CALIB("<<return 0x%X\n", ret
);
496 il4965_sensitivity_calibration(struct il_priv
*il
, void *resp
)
505 struct il_sensitivity_data
*data
= NULL
;
506 struct stats_rx_non_phy
*rx_info
;
507 struct stats_rx_phy
*ofdm
, *cck
;
509 struct stats_general_data statis
;
511 if (il
->disable_sens_cal
)
514 data
= &(il
->sensitivity_data
);
516 if (!il_is_any_associated(il
)) {
517 D_CALIB("<< - not associated\n");
521 spin_lock_irqsave(&il
->lock
, flags
);
523 rx_info
= &(((struct il_notif_stats
*)resp
)->rx
.general
);
524 ofdm
= &(((struct il_notif_stats
*)resp
)->rx
.ofdm
);
525 cck
= &(((struct il_notif_stats
*)resp
)->rx
.cck
);
527 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
528 D_CALIB("<< invalid data.\n");
529 spin_unlock_irqrestore(&il
->lock
, flags
);
533 /* Extract Statistics: */
534 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
535 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
536 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
537 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
538 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
540 statis
.beacon_silence_rssi_a
=
541 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
542 statis
.beacon_silence_rssi_b
=
543 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
544 statis
.beacon_silence_rssi_c
=
545 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
546 statis
.beacon_energy_a
= le32_to_cpu(rx_info
->beacon_energy_a
);
547 statis
.beacon_energy_b
= le32_to_cpu(rx_info
->beacon_energy_b
);
548 statis
.beacon_energy_c
= le32_to_cpu(rx_info
->beacon_energy_c
);
550 spin_unlock_irqrestore(&il
->lock
, flags
);
552 D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time
);
554 if (!rx_enable_time
) {
555 D_CALIB("<< RX Enable Time == 0!\n");
559 /* These stats increase monotonically, and do not reset
560 * at each beacon. Calculate difference from last value, or just
561 * use the new stats value if it has reset or wrapped around. */
562 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
563 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
565 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
566 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
569 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
570 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
572 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
573 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
576 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
577 data
->last_fa_cnt_ofdm
= fa_ofdm
;
579 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
580 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
583 if (data
->last_fa_cnt_cck
> fa_cck
)
584 data
->last_fa_cnt_cck
= fa_cck
;
586 fa_cck
-= data
->last_fa_cnt_cck
;
587 data
->last_fa_cnt_cck
+= fa_cck
;
590 /* Total aborted signal locks */
591 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
592 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
594 D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
595 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
597 il4965_sens_auto_corr_ofdm(il
, norm_fa_ofdm
, rx_enable_time
);
598 il4965_sens_energy_cck(il
, norm_fa_cck
, rx_enable_time
, &statis
);
600 il4965_sensitivity_write(il
);
604 il4965_find_first_chain(u8 mask
)
614 * Run disconnected antenna algorithm to find out which antennas are
618 il4965_find_disconn_antenna(struct il_priv
*il
, u32
* average_sig
,
619 struct il_chain_noise_data
*data
)
621 u32 active_chains
= 0;
623 u16 max_average_sig_antenna_i
;
629 data
->chain_signal_a
/
630 il
->cfg
->base_params
->chain_noise_num_beacons
;
632 data
->chain_signal_b
/
633 il
->cfg
->base_params
->chain_noise_num_beacons
;
635 data
->chain_signal_c
/
636 il
->cfg
->base_params
->chain_noise_num_beacons
;
638 if (average_sig
[0] >= average_sig
[1]) {
639 max_average_sig
= average_sig
[0];
640 max_average_sig_antenna_i
= 0;
641 active_chains
= (1 << max_average_sig_antenna_i
);
643 max_average_sig
= average_sig
[1];
644 max_average_sig_antenna_i
= 1;
645 active_chains
= (1 << max_average_sig_antenna_i
);
648 if (average_sig
[2] >= max_average_sig
) {
649 max_average_sig
= average_sig
[2];
650 max_average_sig_antenna_i
= 2;
651 active_chains
= (1 << max_average_sig_antenna_i
);
654 D_CALIB("average_sig: a %d b %d c %d\n", average_sig
[0], average_sig
[1],
656 D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig
,
657 max_average_sig_antenna_i
);
659 /* Compare signal strengths for all 3 receivers. */
660 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
661 if (i
!= max_average_sig_antenna_i
) {
662 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
664 /* If signal is very weak, compared with
665 * strongest, mark it as disconnected. */
666 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
667 data
->disconn_array
[i
] = 1;
669 active_chains
|= (1 << i
);
670 D_CALIB("i = %d rssiDelta = %d "
671 "disconn_array[i] = %d\n", i
, rssi_delta
,
672 data
->disconn_array
[i
]);
677 * The above algorithm sometimes fails when the ucode
678 * reports 0 for all chains. It's not clear why that
679 * happens to start with, but it is then causing trouble
680 * because this can make us enable more chains than the
681 * hardware really has.
683 * To be safe, simply mask out any chains that we know
684 * are not on the device.
686 active_chains
&= il
->hw_params
.valid_rx_ant
;
689 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
690 /* loops on all the bits of
691 * il->hw_setting.valid_tx_ant */
692 u8 ant_msk
= (1 << i
);
693 if (!(il
->hw_params
.valid_tx_ant
& ant_msk
))
697 if (data
->disconn_array
[i
] == 0)
698 /* there is a Tx antenna connected */
700 if (num_tx_chains
== il
->hw_params
.tx_chains_num
&&
701 data
->disconn_array
[i
]) {
703 * If all chains are disconnected
704 * connect the first valid tx chain
707 il4965_find_first_chain(il
->cfg
->valid_tx_ant
);
708 data
->disconn_array
[first_chain
] = 0;
709 active_chains
|= BIT(first_chain
);
710 D_CALIB("All Tx chains are disconnected"
711 "- declare %d as connected\n", first_chain
);
716 if (active_chains
!= il
->hw_params
.valid_rx_ant
&&
717 active_chains
!= il
->chain_noise_data
.active_chains
)
718 D_CALIB("Detected that not all antennas are connected! "
719 "Connected: %#x, valid: %#x.\n", active_chains
,
720 il
->hw_params
.valid_rx_ant
);
722 /* Save for use within RXON, TX, SCAN commands, etc. */
723 data
->active_chains
= active_chains
;
724 D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains
);
728 il4965_gain_computation(struct il_priv
*il
, u32
* average_noise
,
729 u16 min_average_noise_antenna_i
, u32 min_average_noise
,
733 struct il_chain_noise_data
*data
= &il
->chain_noise_data
;
735 data
->delta_gain_code
[min_average_noise_antenna_i
] = 0;
737 for (i
= default_chain
; i
< NUM_RX_CHAINS
; i
++) {
740 if (!data
->disconn_array
[i
] &&
741 data
->delta_gain_code
[i
] ==
742 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
) {
743 delta_g
= average_noise
[i
] - min_average_noise
;
744 data
->delta_gain_code
[i
] = (u8
) ((delta_g
* 10) / 15);
745 data
->delta_gain_code
[i
] =
746 min(data
->delta_gain_code
[i
],
747 (u8
) CHAIN_NOISE_MAX_DELTA_GAIN_CODE
);
749 data
->delta_gain_code
[i
] =
750 (data
->delta_gain_code
[i
] | (1 << 2));
752 data
->delta_gain_code
[i
] = 0;
755 D_CALIB("delta_gain_codes: a %d b %d c %d\n", data
->delta_gain_code
[0],
756 data
->delta_gain_code
[1], data
->delta_gain_code
[2]);
758 /* Differential gain gets sent to uCode only once */
759 if (!data
->radio_write
) {
760 struct il_calib_diff_gain_cmd cmd
;
761 data
->radio_write
= 1;
763 memset(&cmd
, 0, sizeof(cmd
));
764 cmd
.hdr
.op_code
= IL_PHY_CALIBRATE_DIFF_GAIN_CMD
;
765 cmd
.diff_gain_a
= data
->delta_gain_code
[0];
766 cmd
.diff_gain_b
= data
->delta_gain_code
[1];
767 cmd
.diff_gain_c
= data
->delta_gain_code
[2];
768 ret
= il_send_cmd_pdu(il
, C_PHY_CALIBRATION
, sizeof(cmd
), &cmd
);
770 D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
772 /* TODO we might want recalculate
773 * rx_chain in rxon cmd */
775 /* Mark so we run this algo only once! */
776 data
->state
= IL_CHAIN_NOISE_CALIBRATED
;
781 * Accumulate 16 beacons of signal and noise stats for each of
782 * 3 receivers/antennas/rx-chains, then figure out:
783 * 1) Which antennas are connected.
784 * 2) Differential rx gain settings to balance the 3 receivers.
787 il4965_chain_noise_calibration(struct il_priv
*il
, void *stat_resp
)
789 struct il_chain_noise_data
*data
= NULL
;
797 u32 average_sig
[NUM_RX_CHAINS
] = { INITIALIZATION_VALUE
};
798 u32 average_noise
[NUM_RX_CHAINS
] = { INITIALIZATION_VALUE
};
799 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
800 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
802 u16 rxon_chnum
= INITIALIZATION_VALUE
;
803 u16 stat_chnum
= INITIALIZATION_VALUE
;
807 struct stats_rx_non_phy
*rx_info
;
809 struct il_rxon_context
*ctx
= &il
->ctx
;
811 if (il
->disable_chain_noise_cal
)
814 data
= &(il
->chain_noise_data
);
817 * Accumulate just the first "chain_noise_num_beacons" after
818 * the first association, then we're done forever.
820 if (data
->state
!= IL_CHAIN_NOISE_ACCUMULATE
) {
821 if (data
->state
== IL_CHAIN_NOISE_ALIVE
)
822 D_CALIB("Wait for noise calib reset\n");
826 spin_lock_irqsave(&il
->lock
, flags
);
828 rx_info
= &(((struct il_notif_stats
*)stat_resp
)->rx
.general
);
830 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
831 D_CALIB(" << Interference data unavailable\n");
832 spin_unlock_irqrestore(&il
->lock
, flags
);
836 rxon_band24
= !!(ctx
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
837 rxon_chnum
= le16_to_cpu(ctx
->staging
.channel
);
840 !!(((struct il_notif_stats
*)stat_resp
)->
841 flag
& STATS_REPLY_FLG_BAND_24G_MSK
);
843 le32_to_cpu(((struct il_notif_stats
*)stat_resp
)->flag
) >> 16;
845 /* Make sure we accumulate data for just the associated channel
846 * (even if scanning). */
847 if (rxon_chnum
!= stat_chnum
|| rxon_band24
!= stat_band24
) {
848 D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum
,
850 spin_unlock_irqrestore(&il
->lock
, flags
);
855 * Accumulate beacon stats values across
856 * "chain_noise_num_beacons"
859 le32_to_cpu(rx_info
->beacon_silence_rssi_a
) & IN_BAND_FILTER
;
861 le32_to_cpu(rx_info
->beacon_silence_rssi_b
) & IN_BAND_FILTER
;
863 le32_to_cpu(rx_info
->beacon_silence_rssi_c
) & IN_BAND_FILTER
;
865 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
866 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
867 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
869 spin_unlock_irqrestore(&il
->lock
, flags
);
871 data
->beacon_count
++;
873 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
874 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
875 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
877 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
878 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
879 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
881 D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum
, rxon_band24
,
883 D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a
, chain_sig_b
,
885 D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a
, chain_noise_b
,
888 /* If this is the "chain_noise_num_beacons", determine:
889 * 1) Disconnected antennas (using signal strengths)
890 * 2) Differential gain (using silence noise) to balance receivers */
891 if (data
->beacon_count
!= il
->cfg
->base_params
->chain_noise_num_beacons
)
894 /* Analyze signal for disconnected antenna */
895 il4965_find_disconn_antenna(il
, average_sig
, data
);
897 /* Analyze noise for rx balance */
899 data
->chain_noise_a
/ il
->cfg
->base_params
->chain_noise_num_beacons
;
901 data
->chain_noise_b
/ il
->cfg
->base_params
->chain_noise_num_beacons
;
903 data
->chain_noise_c
/ il
->cfg
->base_params
->chain_noise_num_beacons
;
905 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
906 if (!data
->disconn_array
[i
] &&
907 average_noise
[i
] <= min_average_noise
) {
908 /* This means that chain i is active and has
909 * lower noise values so far: */
910 min_average_noise
= average_noise
[i
];
911 min_average_noise_antenna_i
= i
;
915 D_CALIB("average_noise: a %d b %d c %d\n", average_noise
[0],
916 average_noise
[1], average_noise
[2]);
918 D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise
,
919 min_average_noise_antenna_i
);
921 il4965_gain_computation(il
, average_noise
, min_average_noise_antenna_i
,
923 il4965_find_first_chain(il
->cfg
->valid_rx_ant
));
925 /* Some power changes may have been made during the calibration.
926 * Update and commit the RXON
928 if (il
->cfg
->ops
->lib
->update_chain_flags
)
929 il
->cfg
->ops
->lib
->update_chain_flags(il
);
931 data
->state
= IL_CHAIN_NOISE_DONE
;
932 il_power_update_mode(il
, false);
936 il4965_reset_run_time_calib(struct il_priv
*il
)
939 memset(&(il
->sensitivity_data
), 0, sizeof(struct il_sensitivity_data
));
940 memset(&(il
->chain_noise_data
), 0, sizeof(struct il_chain_noise_data
));
941 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
942 il
->chain_noise_data
.delta_gain_code
[i
] =
943 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
945 /* Ask for stats now, the uCode will send notification
946 * periodically after association */
947 il_send_stats_request(il
, CMD_ASYNC
, true);