spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / iwlegacy / 4965-calib.c
blobd3248e3ef23bb6c917e709f56c90c11c93ca1482
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "common.h"
67 #include "4965.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct stats_general_data {
74 u32 beacon_silence_rssi_a;
75 u32 beacon_silence_rssi_b;
76 u32 beacon_silence_rssi_c;
77 u32 beacon_energy_a;
78 u32 beacon_energy_b;
79 u32 beacon_energy_c;
82 void
83 il4965_calib_free_results(struct il_priv *il)
85 int i;
87 for (i = 0; i < IL_CALIB_MAX; i++) {
88 kfree(il->calib_results[i].buf);
89 il->calib_results[i].buf = NULL;
90 il->calib_results[i].buf_len = 0;
94 /*****************************************************************************
95 * RUNTIME calibrations framework
96 *****************************************************************************/
98 /* "false alarms" are signals that our DSP tries to lock onto,
99 * but then determines that they are either noise, or transmissions
100 * from a distant wireless network (also "noise", really) that get
101 * "stepped on" by stronger transmissions within our own network.
102 * This algorithm attempts to set a sensitivity level that is high
103 * enough to receive all of our own network traffic, but not so
104 * high that our DSP gets too busy trying to lock onto non-network
105 * activity/noise. */
106 static int
107 il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
108 struct stats_general_data *rx_info)
110 u32 max_nrg_cck = 0;
111 int i = 0;
112 u8 max_silence_rssi = 0;
113 u32 silence_ref = 0;
114 u8 silence_rssi_a = 0;
115 u8 silence_rssi_b = 0;
116 u8 silence_rssi_c = 0;
117 u32 val;
119 /* "false_alarms" values below are cross-multiplications to assess the
120 * numbers of false alarms within the measured period of actual Rx
121 * (Rx is off when we're txing), vs the min/max expected false alarms
122 * (some should be expected if rx is sensitive enough) in a
123 * hypothetical listening period of 200 time units (TU), 204.8 msec:
125 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
127 * */
128 u32 false_alarms = norm_fa * 200 * 1024;
129 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
130 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
131 struct il_sensitivity_data *data = NULL;
132 const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
134 data = &(il->sensitivity_data);
136 data->nrg_auto_corr_silence_diff = 0;
138 /* Find max silence rssi among all 3 receivers.
139 * This is background noise, which may include transmissions from other
140 * networks, measured during silence before our network's beacon */
141 silence_rssi_a =
142 (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
143 silence_rssi_b =
144 (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
145 silence_rssi_c =
146 (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
148 val = max(silence_rssi_b, silence_rssi_c);
149 max_silence_rssi = max(silence_rssi_a, (u8) val);
151 /* Store silence rssi in 20-beacon history table */
152 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
153 data->nrg_silence_idx++;
154 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
155 data->nrg_silence_idx = 0;
157 /* Find max silence rssi across 20 beacon history */
158 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
159 val = data->nrg_silence_rssi[i];
160 silence_ref = max(silence_ref, val);
162 D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
163 silence_rssi_b, silence_rssi_c, silence_ref);
165 /* Find max rx energy (min value!) among all 3 receivers,
166 * measured during beacon frame.
167 * Save it in 10-beacon history table. */
168 i = data->nrg_energy_idx;
169 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
170 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
172 data->nrg_energy_idx++;
173 if (data->nrg_energy_idx >= 10)
174 data->nrg_energy_idx = 0;
176 /* Find min rx energy (max value) across 10 beacon history.
177 * This is the minimum signal level that we want to receive well.
178 * Add backoff (margin so we don't miss slightly lower energy frames).
179 * This establishes an upper bound (min value) for energy threshold. */
180 max_nrg_cck = data->nrg_value[0];
181 for (i = 1; i < 10; i++)
182 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
183 max_nrg_cck += 6;
185 D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
186 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
187 rx_info->beacon_energy_c, max_nrg_cck - 6);
189 /* Count number of consecutive beacons with fewer-than-desired
190 * false alarms. */
191 if (false_alarms < min_false_alarms)
192 data->num_in_cck_no_fa++;
193 else
194 data->num_in_cck_no_fa = 0;
195 D_CALIB("consecutive bcns with few false alarms = %u\n",
196 data->num_in_cck_no_fa);
198 /* If we got too many false alarms this time, reduce sensitivity */
199 if (false_alarms > max_false_alarms &&
200 data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
201 D_CALIB("norm FA %u > max FA %u\n", false_alarms,
202 max_false_alarms);
203 D_CALIB("... reducing sensitivity\n");
204 data->nrg_curr_state = IL_FA_TOO_MANY;
205 /* Store for "fewer than desired" on later beacon */
206 data->nrg_silence_ref = silence_ref;
208 /* increase energy threshold (reduce nrg value)
209 * to decrease sensitivity */
210 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
211 /* Else if we got fewer than desired, increase sensitivity */
212 } else if (false_alarms < min_false_alarms) {
213 data->nrg_curr_state = IL_FA_TOO_FEW;
215 /* Compare silence level with silence level for most recent
216 * healthy number or too many false alarms */
217 data->nrg_auto_corr_silence_diff =
218 (s32) data->nrg_silence_ref - (s32) silence_ref;
220 D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
221 false_alarms, min_false_alarms,
222 data->nrg_auto_corr_silence_diff);
224 /* Increase value to increase sensitivity, but only if:
225 * 1a) previous beacon did *not* have *too many* false alarms
226 * 1b) AND there's a significant difference in Rx levels
227 * from a previous beacon with too many, or healthy # FAs
228 * OR 2) We've seen a lot of beacons (100) with too few
229 * false alarms */
230 if (data->nrg_prev_state != IL_FA_TOO_MANY &&
231 (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
232 data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
234 D_CALIB("... increasing sensitivity\n");
235 /* Increase nrg value to increase sensitivity */
236 val = data->nrg_th_cck + NRG_STEP_CCK;
237 data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
238 } else {
239 D_CALIB("... but not changing sensitivity\n");
242 /* Else we got a healthy number of false alarms, keep status quo */
243 } else {
244 D_CALIB(" FA in safe zone\n");
245 data->nrg_curr_state = IL_FA_GOOD_RANGE;
247 /* Store for use in "fewer than desired" with later beacon */
248 data->nrg_silence_ref = silence_ref;
250 /* If previous beacon had too many false alarms,
251 * give it some extra margin by reducing sensitivity again
252 * (but don't go below measured energy of desired Rx) */
253 if (IL_FA_TOO_MANY == data->nrg_prev_state) {
254 D_CALIB("... increasing margin\n");
255 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
256 data->nrg_th_cck -= NRG_MARGIN;
257 else
258 data->nrg_th_cck = max_nrg_cck;
262 /* Make sure the energy threshold does not go above the measured
263 * energy of the desired Rx signals (reduced by backoff margin),
264 * or else we might start missing Rx frames.
265 * Lower value is higher energy, so we use max()!
267 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
268 D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
270 data->nrg_prev_state = data->nrg_curr_state;
272 /* Auto-correlation CCK algorithm */
273 if (false_alarms > min_false_alarms) {
275 /* increase auto_corr values to decrease sensitivity
276 * so the DSP won't be disturbed by the noise
278 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
279 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
280 else {
281 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
282 data->auto_corr_cck =
283 min((u32) ranges->auto_corr_max_cck, val);
285 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
286 data->auto_corr_cck_mrc =
287 min((u32) ranges->auto_corr_max_cck_mrc, val);
288 } else if (false_alarms < min_false_alarms &&
289 (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
290 data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
292 /* Decrease auto_corr values to increase sensitivity */
293 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
294 data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
295 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
296 data->auto_corr_cck_mrc =
297 max((u32) ranges->auto_corr_min_cck_mrc, val);
300 return 0;
303 static int
304 il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
306 u32 val;
307 u32 false_alarms = norm_fa * 200 * 1024;
308 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
309 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
310 struct il_sensitivity_data *data = NULL;
311 const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
313 data = &(il->sensitivity_data);
315 /* If we got too many false alarms this time, reduce sensitivity */
316 if (false_alarms > max_false_alarms) {
318 D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
319 max_false_alarms);
321 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
322 data->auto_corr_ofdm =
323 min((u32) ranges->auto_corr_max_ofdm, val);
325 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
326 data->auto_corr_ofdm_mrc =
327 min((u32) ranges->auto_corr_max_ofdm_mrc, val);
329 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
330 data->auto_corr_ofdm_x1 =
331 min((u32) ranges->auto_corr_max_ofdm_x1, val);
333 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
334 data->auto_corr_ofdm_mrc_x1 =
335 min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
338 /* Else if we got fewer than desired, increase sensitivity */
339 else if (false_alarms < min_false_alarms) {
341 D_CALIB("norm FA %u < min FA %u\n", false_alarms,
342 min_false_alarms);
344 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
345 data->auto_corr_ofdm =
346 max((u32) ranges->auto_corr_min_ofdm, val);
348 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
349 data->auto_corr_ofdm_mrc =
350 max((u32) ranges->auto_corr_min_ofdm_mrc, val);
352 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
353 data->auto_corr_ofdm_x1 =
354 max((u32) ranges->auto_corr_min_ofdm_x1, val);
356 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
357 data->auto_corr_ofdm_mrc_x1 =
358 max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
359 } else {
360 D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
361 min_false_alarms, false_alarms, max_false_alarms);
363 return 0;
366 static void
367 il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
368 struct il_sensitivity_data *data,
369 __le16 *tbl)
371 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
372 cpu_to_le16((u16) data->auto_corr_ofdm);
373 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
374 cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
375 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
376 cpu_to_le16((u16) data->auto_corr_ofdm_x1);
377 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
378 cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
380 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
381 cpu_to_le16((u16) data->auto_corr_cck);
382 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
383 cpu_to_le16((u16) data->auto_corr_cck_mrc);
385 tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
386 tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
388 tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
389 cpu_to_le16(data->barker_corr_th_min);
390 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
391 cpu_to_le16(data->barker_corr_th_min_mrc);
392 tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
394 D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
395 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
396 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
397 data->nrg_th_ofdm);
399 D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
400 data->auto_corr_cck_mrc, data->nrg_th_cck);
403 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
404 static int
405 il4965_sensitivity_write(struct il_priv *il)
407 struct il_sensitivity_cmd cmd;
408 struct il_sensitivity_data *data = NULL;
409 struct il_host_cmd cmd_out = {
410 .id = C_SENSITIVITY,
411 .len = sizeof(struct il_sensitivity_cmd),
412 .flags = CMD_ASYNC,
413 .data = &cmd,
416 data = &(il->sensitivity_data);
418 memset(&cmd, 0, sizeof(cmd));
420 il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
422 /* Update uCode's "work" table, and copy it to DSP */
423 cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
425 /* Don't send command to uCode if nothing has changed */
426 if (!memcmp
427 (&cmd.table[0], &(il->sensitivity_tbl[0]),
428 sizeof(u16) * HD_TBL_SIZE)) {
429 D_CALIB("No change in C_SENSITIVITY\n");
430 return 0;
433 /* Copy table for comparison next time */
434 memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
435 sizeof(u16) * HD_TBL_SIZE);
437 return il_send_cmd(il, &cmd_out);
440 void
441 il4965_init_sensitivity(struct il_priv *il)
443 int ret = 0;
444 int i;
445 struct il_sensitivity_data *data = NULL;
446 const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
448 if (il->disable_sens_cal)
449 return;
451 D_CALIB("Start il4965_init_sensitivity\n");
453 /* Clear driver's sensitivity algo data */
454 data = &(il->sensitivity_data);
456 if (ranges == NULL)
457 return;
459 memset(data, 0, sizeof(struct il_sensitivity_data));
461 data->num_in_cck_no_fa = 0;
462 data->nrg_curr_state = IL_FA_TOO_MANY;
463 data->nrg_prev_state = IL_FA_TOO_MANY;
464 data->nrg_silence_ref = 0;
465 data->nrg_silence_idx = 0;
466 data->nrg_energy_idx = 0;
468 for (i = 0; i < 10; i++)
469 data->nrg_value[i] = 0;
471 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
472 data->nrg_silence_rssi[i] = 0;
474 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
475 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
476 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
477 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
478 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
479 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
480 data->nrg_th_cck = ranges->nrg_th_cck;
481 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
482 data->barker_corr_th_min = ranges->barker_corr_th_min;
483 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
484 data->nrg_th_cca = ranges->nrg_th_cca;
486 data->last_bad_plcp_cnt_ofdm = 0;
487 data->last_fa_cnt_ofdm = 0;
488 data->last_bad_plcp_cnt_cck = 0;
489 data->last_fa_cnt_cck = 0;
491 ret |= il4965_sensitivity_write(il);
492 D_CALIB("<<return 0x%X\n", ret);
495 void
496 il4965_sensitivity_calibration(struct il_priv *il, void *resp)
498 u32 rx_enable_time;
499 u32 fa_cck;
500 u32 fa_ofdm;
501 u32 bad_plcp_cck;
502 u32 bad_plcp_ofdm;
503 u32 norm_fa_ofdm;
504 u32 norm_fa_cck;
505 struct il_sensitivity_data *data = NULL;
506 struct stats_rx_non_phy *rx_info;
507 struct stats_rx_phy *ofdm, *cck;
508 unsigned long flags;
509 struct stats_general_data statis;
511 if (il->disable_sens_cal)
512 return;
514 data = &(il->sensitivity_data);
516 if (!il_is_any_associated(il)) {
517 D_CALIB("<< - not associated\n");
518 return;
521 spin_lock_irqsave(&il->lock, flags);
523 rx_info = &(((struct il_notif_stats *)resp)->rx.general);
524 ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
525 cck = &(((struct il_notif_stats *)resp)->rx.cck);
527 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
528 D_CALIB("<< invalid data.\n");
529 spin_unlock_irqrestore(&il->lock, flags);
530 return;
533 /* Extract Statistics: */
534 rx_enable_time = le32_to_cpu(rx_info->channel_load);
535 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
536 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
537 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
538 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
540 statis.beacon_silence_rssi_a =
541 le32_to_cpu(rx_info->beacon_silence_rssi_a);
542 statis.beacon_silence_rssi_b =
543 le32_to_cpu(rx_info->beacon_silence_rssi_b);
544 statis.beacon_silence_rssi_c =
545 le32_to_cpu(rx_info->beacon_silence_rssi_c);
546 statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
547 statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
548 statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
550 spin_unlock_irqrestore(&il->lock, flags);
552 D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
554 if (!rx_enable_time) {
555 D_CALIB("<< RX Enable Time == 0!\n");
556 return;
559 /* These stats increase monotonically, and do not reset
560 * at each beacon. Calculate difference from last value, or just
561 * use the new stats value if it has reset or wrapped around. */
562 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
563 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
564 else {
565 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
566 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
569 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
570 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
571 else {
572 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
573 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
576 if (data->last_fa_cnt_ofdm > fa_ofdm)
577 data->last_fa_cnt_ofdm = fa_ofdm;
578 else {
579 fa_ofdm -= data->last_fa_cnt_ofdm;
580 data->last_fa_cnt_ofdm += fa_ofdm;
583 if (data->last_fa_cnt_cck > fa_cck)
584 data->last_fa_cnt_cck = fa_cck;
585 else {
586 fa_cck -= data->last_fa_cnt_cck;
587 data->last_fa_cnt_cck += fa_cck;
590 /* Total aborted signal locks */
591 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
592 norm_fa_cck = fa_cck + bad_plcp_cck;
594 D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
595 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
597 il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
598 il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
600 il4965_sensitivity_write(il);
603 static inline u8
604 il4965_find_first_chain(u8 mask)
606 if (mask & ANT_A)
607 return CHAIN_A;
608 if (mask & ANT_B)
609 return CHAIN_B;
610 return CHAIN_C;
614 * Run disconnected antenna algorithm to find out which antennas are
615 * disconnected.
617 static void
618 il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
619 struct il_chain_noise_data *data)
621 u32 active_chains = 0;
622 u32 max_average_sig;
623 u16 max_average_sig_antenna_i;
624 u8 num_tx_chains;
625 u8 first_chain;
626 u16 i = 0;
628 average_sig[0] =
629 data->chain_signal_a /
630 il->cfg->base_params->chain_noise_num_beacons;
631 average_sig[1] =
632 data->chain_signal_b /
633 il->cfg->base_params->chain_noise_num_beacons;
634 average_sig[2] =
635 data->chain_signal_c /
636 il->cfg->base_params->chain_noise_num_beacons;
638 if (average_sig[0] >= average_sig[1]) {
639 max_average_sig = average_sig[0];
640 max_average_sig_antenna_i = 0;
641 active_chains = (1 << max_average_sig_antenna_i);
642 } else {
643 max_average_sig = average_sig[1];
644 max_average_sig_antenna_i = 1;
645 active_chains = (1 << max_average_sig_antenna_i);
648 if (average_sig[2] >= max_average_sig) {
649 max_average_sig = average_sig[2];
650 max_average_sig_antenna_i = 2;
651 active_chains = (1 << max_average_sig_antenna_i);
654 D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
655 average_sig[2]);
656 D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
657 max_average_sig_antenna_i);
659 /* Compare signal strengths for all 3 receivers. */
660 for (i = 0; i < NUM_RX_CHAINS; i++) {
661 if (i != max_average_sig_antenna_i) {
662 s32 rssi_delta = (max_average_sig - average_sig[i]);
664 /* If signal is very weak, compared with
665 * strongest, mark it as disconnected. */
666 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
667 data->disconn_array[i] = 1;
668 else
669 active_chains |= (1 << i);
670 D_CALIB("i = %d rssiDelta = %d "
671 "disconn_array[i] = %d\n", i, rssi_delta,
672 data->disconn_array[i]);
677 * The above algorithm sometimes fails when the ucode
678 * reports 0 for all chains. It's not clear why that
679 * happens to start with, but it is then causing trouble
680 * because this can make us enable more chains than the
681 * hardware really has.
683 * To be safe, simply mask out any chains that we know
684 * are not on the device.
686 active_chains &= il->hw_params.valid_rx_ant;
688 num_tx_chains = 0;
689 for (i = 0; i < NUM_RX_CHAINS; i++) {
690 /* loops on all the bits of
691 * il->hw_setting.valid_tx_ant */
692 u8 ant_msk = (1 << i);
693 if (!(il->hw_params.valid_tx_ant & ant_msk))
694 continue;
696 num_tx_chains++;
697 if (data->disconn_array[i] == 0)
698 /* there is a Tx antenna connected */
699 break;
700 if (num_tx_chains == il->hw_params.tx_chains_num &&
701 data->disconn_array[i]) {
703 * If all chains are disconnected
704 * connect the first valid tx chain
706 first_chain =
707 il4965_find_first_chain(il->cfg->valid_tx_ant);
708 data->disconn_array[first_chain] = 0;
709 active_chains |= BIT(first_chain);
710 D_CALIB("All Tx chains are disconnected"
711 "- declare %d as connected\n", first_chain);
712 break;
716 if (active_chains != il->hw_params.valid_rx_ant &&
717 active_chains != il->chain_noise_data.active_chains)
718 D_CALIB("Detected that not all antennas are connected! "
719 "Connected: %#x, valid: %#x.\n", active_chains,
720 il->hw_params.valid_rx_ant);
722 /* Save for use within RXON, TX, SCAN commands, etc. */
723 data->active_chains = active_chains;
724 D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
727 static void
728 il4965_gain_computation(struct il_priv *il, u32 * average_noise,
729 u16 min_average_noise_antenna_i, u32 min_average_noise,
730 u8 default_chain)
732 int i, ret;
733 struct il_chain_noise_data *data = &il->chain_noise_data;
735 data->delta_gain_code[min_average_noise_antenna_i] = 0;
737 for (i = default_chain; i < NUM_RX_CHAINS; i++) {
738 s32 delta_g = 0;
740 if (!data->disconn_array[i] &&
741 data->delta_gain_code[i] ==
742 CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
743 delta_g = average_noise[i] - min_average_noise;
744 data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
745 data->delta_gain_code[i] =
746 min(data->delta_gain_code[i],
747 (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
749 data->delta_gain_code[i] =
750 (data->delta_gain_code[i] | (1 << 2));
751 } else {
752 data->delta_gain_code[i] = 0;
755 D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
756 data->delta_gain_code[1], data->delta_gain_code[2]);
758 /* Differential gain gets sent to uCode only once */
759 if (!data->radio_write) {
760 struct il_calib_diff_gain_cmd cmd;
761 data->radio_write = 1;
763 memset(&cmd, 0, sizeof(cmd));
764 cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
765 cmd.diff_gain_a = data->delta_gain_code[0];
766 cmd.diff_gain_b = data->delta_gain_code[1];
767 cmd.diff_gain_c = data->delta_gain_code[2];
768 ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
769 if (ret)
770 D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
772 /* TODO we might want recalculate
773 * rx_chain in rxon cmd */
775 /* Mark so we run this algo only once! */
776 data->state = IL_CHAIN_NOISE_CALIBRATED;
781 * Accumulate 16 beacons of signal and noise stats for each of
782 * 3 receivers/antennas/rx-chains, then figure out:
783 * 1) Which antennas are connected.
784 * 2) Differential rx gain settings to balance the 3 receivers.
786 void
787 il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
789 struct il_chain_noise_data *data = NULL;
791 u32 chain_noise_a;
792 u32 chain_noise_b;
793 u32 chain_noise_c;
794 u32 chain_sig_a;
795 u32 chain_sig_b;
796 u32 chain_sig_c;
797 u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
798 u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
799 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
800 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
801 u16 i = 0;
802 u16 rxon_chnum = INITIALIZATION_VALUE;
803 u16 stat_chnum = INITIALIZATION_VALUE;
804 u8 rxon_band24;
805 u8 stat_band24;
806 unsigned long flags;
807 struct stats_rx_non_phy *rx_info;
809 struct il_rxon_context *ctx = &il->ctx;
811 if (il->disable_chain_noise_cal)
812 return;
814 data = &(il->chain_noise_data);
817 * Accumulate just the first "chain_noise_num_beacons" after
818 * the first association, then we're done forever.
820 if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
821 if (data->state == IL_CHAIN_NOISE_ALIVE)
822 D_CALIB("Wait for noise calib reset\n");
823 return;
826 spin_lock_irqsave(&il->lock, flags);
828 rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
830 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
831 D_CALIB(" << Interference data unavailable\n");
832 spin_unlock_irqrestore(&il->lock, flags);
833 return;
836 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
837 rxon_chnum = le16_to_cpu(ctx->staging.channel);
839 stat_band24 =
840 !!(((struct il_notif_stats *)stat_resp)->
841 flag & STATS_REPLY_FLG_BAND_24G_MSK);
842 stat_chnum =
843 le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
845 /* Make sure we accumulate data for just the associated channel
846 * (even if scanning). */
847 if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
848 D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
849 rxon_band24);
850 spin_unlock_irqrestore(&il->lock, flags);
851 return;
855 * Accumulate beacon stats values across
856 * "chain_noise_num_beacons"
858 chain_noise_a =
859 le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
860 chain_noise_b =
861 le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
862 chain_noise_c =
863 le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
865 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
866 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
867 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
869 spin_unlock_irqrestore(&il->lock, flags);
871 data->beacon_count++;
873 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
874 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
875 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
877 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
878 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
879 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
881 D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
882 data->beacon_count);
883 D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
884 chain_sig_c);
885 D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
886 chain_noise_c);
888 /* If this is the "chain_noise_num_beacons", determine:
889 * 1) Disconnected antennas (using signal strengths)
890 * 2) Differential gain (using silence noise) to balance receivers */
891 if (data->beacon_count != il->cfg->base_params->chain_noise_num_beacons)
892 return;
894 /* Analyze signal for disconnected antenna */
895 il4965_find_disconn_antenna(il, average_sig, data);
897 /* Analyze noise for rx balance */
898 average_noise[0] =
899 data->chain_noise_a / il->cfg->base_params->chain_noise_num_beacons;
900 average_noise[1] =
901 data->chain_noise_b / il->cfg->base_params->chain_noise_num_beacons;
902 average_noise[2] =
903 data->chain_noise_c / il->cfg->base_params->chain_noise_num_beacons;
905 for (i = 0; i < NUM_RX_CHAINS; i++) {
906 if (!data->disconn_array[i] &&
907 average_noise[i] <= min_average_noise) {
908 /* This means that chain i is active and has
909 * lower noise values so far: */
910 min_average_noise = average_noise[i];
911 min_average_noise_antenna_i = i;
915 D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
916 average_noise[1], average_noise[2]);
918 D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
919 min_average_noise_antenna_i);
921 il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
922 min_average_noise,
923 il4965_find_first_chain(il->cfg->valid_rx_ant));
925 /* Some power changes may have been made during the calibration.
926 * Update and commit the RXON
928 if (il->cfg->ops->lib->update_chain_flags)
929 il->cfg->ops->lib->update_chain_flags(il);
931 data->state = IL_CHAIN_NOISE_DONE;
932 il_power_update_mode(il, false);
935 void
936 il4965_reset_run_time_calib(struct il_priv *il)
938 int i;
939 memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
940 memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
941 for (i = 0; i < NUM_RX_CHAINS; i++)
942 il->chain_noise_data.delta_gain_code[i] =
943 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
945 /* Ask for stats now, the uCode will send notification
946 * periodically after association */
947 il_send_stats_request(il, CMD_ASYNC, true);