spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / kernel / time / tick-sched.c
blob4aa1d7b7cfd9e26b5287fea61b597cfb8b136169
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update;
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now)
48 unsigned long ticks = 0;
49 ktime_t delta;
52 * Do a quick check without holding xtime_lock:
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
72 ticks = ktime_divns(delta, incr);
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
77 do_timer(++ticks);
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 write_sequnlock(&xtime_lock);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t tick_init_jiffy_update(void)
90 ktime_t period;
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
102 * NOHZ - aka dynamic tick functionality
104 #ifdef CONFIG_NO_HZ
106 * NO HZ enabled ?
108 static int tick_nohz_enabled __read_mostly = 1;
111 * Enable / Disable tickless mode
113 static int __init setup_tick_nohz(char *str)
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
124 __setup("nohz=", setup_tick_nohz);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now)
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
142 ts->idle_waketime = now;
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
148 touch_softlockup_watchdog();
152 * Updates the per cpu time idle statistics counters
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157 ktime_t delta;
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185 ktime_t now;
187 now = ktime_get();
189 update_ts_time_stats(cpu, ts, now, NULL);
191 ts->idle_entrytime = now;
192 ts->idle_active = 1;
193 sched_clock_idle_sleep_event();
194 return now;
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in. Do not update
201 * counters if NULL.
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds.
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
209 * This function returns -1 if NOHZ is not enabled.
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 ktime_t now, idle;
216 if (!tick_nohz_enabled)
217 return -1;
219 now = ktime_get();
220 if (last_update_time) {
221 update_ts_time_stats(cpu, ts, now, last_update_time);
222 idle = ts->idle_sleeptime;
223 } else {
224 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
227 idle = ktime_add(ts->idle_sleeptime, delta);
228 } else {
229 idle = ts->idle_sleeptime;
233 return ktime_to_us(idle);
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
241 * @last_update_time: variable to store update time in. Do not update
242 * counters if NULL.
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
250 * This function returns -1 if NOHZ is not enabled.
252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255 ktime_t now, iowait;
257 if (!tick_nohz_enabled)
258 return -1;
260 now = ktime_get();
261 if (last_update_time) {
262 update_ts_time_stats(cpu, ts, now, last_update_time);
263 iowait = ts->iowait_sleeptime;
264 } else {
265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
268 iowait = ktime_add(ts->iowait_sleeptime, delta);
269 } else {
270 iowait = ts->iowait_sleeptime;
274 return ktime_to_us(iowait);
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
280 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
281 ktime_t last_update, expires, now;
282 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
283 u64 time_delta;
284 int cpu;
286 cpu = smp_processor_id();
287 ts = &per_cpu(tick_cpu_sched, cpu);
289 now = tick_nohz_start_idle(cpu, ts);
292 * If this cpu is offline and it is the one which updates
293 * jiffies, then give up the assignment and let it be taken by
294 * the cpu which runs the tick timer next. If we don't drop
295 * this here the jiffies might be stale and do_timer() never
296 * invoked.
298 if (unlikely(!cpu_online(cpu))) {
299 if (cpu == tick_do_timer_cpu)
300 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
303 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
304 return;
306 if (need_resched())
307 return;
309 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
310 static int ratelimit;
312 if (ratelimit < 10) {
313 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
314 (unsigned int) local_softirq_pending());
315 ratelimit++;
317 return;
320 ts->idle_calls++;
321 /* Read jiffies and the time when jiffies were updated last */
322 do {
323 seq = read_seqbegin(&xtime_lock);
324 last_update = last_jiffies_update;
325 last_jiffies = jiffies;
326 time_delta = timekeeping_max_deferment();
327 } while (read_seqretry(&xtime_lock, seq));
329 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
330 arch_needs_cpu(cpu)) {
331 next_jiffies = last_jiffies + 1;
332 delta_jiffies = 1;
333 } else {
334 /* Get the next timer wheel timer */
335 next_jiffies = get_next_timer_interrupt(last_jiffies);
336 delta_jiffies = next_jiffies - last_jiffies;
339 * Do not stop the tick, if we are only one off
340 * or if the cpu is required for rcu
342 if (!ts->tick_stopped && delta_jiffies == 1)
343 goto out;
345 /* Schedule the tick, if we are at least one jiffie off */
346 if ((long)delta_jiffies >= 1) {
349 * If this cpu is the one which updates jiffies, then
350 * give up the assignment and let it be taken by the
351 * cpu which runs the tick timer next, which might be
352 * this cpu as well. If we don't drop this here the
353 * jiffies might be stale and do_timer() never
354 * invoked. Keep track of the fact that it was the one
355 * which had the do_timer() duty last. If this cpu is
356 * the one which had the do_timer() duty last, we
357 * limit the sleep time to the timekeeping
358 * max_deferement value which we retrieved
359 * above. Otherwise we can sleep as long as we want.
361 if (cpu == tick_do_timer_cpu) {
362 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
363 ts->do_timer_last = 1;
364 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
365 time_delta = KTIME_MAX;
366 ts->do_timer_last = 0;
367 } else if (!ts->do_timer_last) {
368 time_delta = KTIME_MAX;
372 * calculate the expiry time for the next timer wheel
373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
374 * that there is no timer pending or at least extremely
375 * far into the future (12 days for HZ=1000). In this
376 * case we set the expiry to the end of time.
378 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
380 * Calculate the time delta for the next timer event.
381 * If the time delta exceeds the maximum time delta
382 * permitted by the current clocksource then adjust
383 * the time delta accordingly to ensure the
384 * clocksource does not wrap.
386 time_delta = min_t(u64, time_delta,
387 tick_period.tv64 * delta_jiffies);
390 if (time_delta < KTIME_MAX)
391 expires = ktime_add_ns(last_update, time_delta);
392 else
393 expires.tv64 = KTIME_MAX;
395 /* Skip reprogram of event if its not changed */
396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397 goto out;
400 * nohz_stop_sched_tick can be called several times before
401 * the nohz_restart_sched_tick is called. This happens when
402 * interrupts arrive which do not cause a reschedule. In the
403 * first call we save the current tick time, so we can restart
404 * the scheduler tick in nohz_restart_sched_tick.
406 if (!ts->tick_stopped) {
407 select_nohz_load_balancer(1);
409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 ts->tick_stopped = 1;
411 ts->idle_jiffies = last_jiffies;
414 ts->idle_sleeps++;
416 /* Mark expires */
417 ts->idle_expires = expires;
420 * If the expiration time == KTIME_MAX, then
421 * in this case we simply stop the tick timer.
423 if (unlikely(expires.tv64 == KTIME_MAX)) {
424 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
425 hrtimer_cancel(&ts->sched_timer);
426 goto out;
429 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
430 hrtimer_start(&ts->sched_timer, expires,
431 HRTIMER_MODE_ABS_PINNED);
432 /* Check, if the timer was already in the past */
433 if (hrtimer_active(&ts->sched_timer))
434 goto out;
435 } else if (!tick_program_event(expires, 0))
436 goto out;
438 * We are past the event already. So we crossed a
439 * jiffie boundary. Update jiffies and raise the
440 * softirq.
442 tick_do_update_jiffies64(ktime_get());
444 raise_softirq_irqoff(TIMER_SOFTIRQ);
445 out:
446 ts->next_jiffies = next_jiffies;
447 ts->last_jiffies = last_jiffies;
448 ts->sleep_length = ktime_sub(dev->next_event, now);
452 * tick_nohz_idle_enter - stop the idle tick from the idle task
454 * When the next event is more than a tick into the future, stop the idle tick
455 * Called when we start the idle loop.
457 * The arch is responsible of calling:
459 * - rcu_idle_enter() after its last use of RCU before the CPU is put
460 * to sleep.
461 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
463 void tick_nohz_idle_enter(void)
465 struct tick_sched *ts;
467 WARN_ON_ONCE(irqs_disabled());
470 * Update the idle state in the scheduler domain hierarchy
471 * when tick_nohz_stop_sched_tick() is called from the idle loop.
472 * State will be updated to busy during the first busy tick after
473 * exiting idle.
475 set_cpu_sd_state_idle();
477 local_irq_disable();
479 ts = &__get_cpu_var(tick_cpu_sched);
481 * set ts->inidle unconditionally. even if the system did not
482 * switch to nohz mode the cpu frequency governers rely on the
483 * update of the idle time accounting in tick_nohz_start_idle().
485 ts->inidle = 1;
486 tick_nohz_stop_sched_tick(ts);
488 local_irq_enable();
492 * tick_nohz_irq_exit - update next tick event from interrupt exit
494 * When an interrupt fires while we are idle and it doesn't cause
495 * a reschedule, it may still add, modify or delete a timer, enqueue
496 * an RCU callback, etc...
497 * So we need to re-calculate and reprogram the next tick event.
499 void tick_nohz_irq_exit(void)
501 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
503 if (!ts->inidle)
504 return;
506 tick_nohz_stop_sched_tick(ts);
510 * tick_nohz_get_sleep_length - return the length of the current sleep
512 * Called from power state control code with interrupts disabled
514 ktime_t tick_nohz_get_sleep_length(void)
516 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
518 return ts->sleep_length;
521 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
523 hrtimer_cancel(&ts->sched_timer);
524 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
526 while (1) {
527 /* Forward the time to expire in the future */
528 hrtimer_forward(&ts->sched_timer, now, tick_period);
530 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
531 hrtimer_start_expires(&ts->sched_timer,
532 HRTIMER_MODE_ABS_PINNED);
533 /* Check, if the timer was already in the past */
534 if (hrtimer_active(&ts->sched_timer))
535 break;
536 } else {
537 if (!tick_program_event(
538 hrtimer_get_expires(&ts->sched_timer), 0))
539 break;
541 /* Reread time and update jiffies */
542 now = ktime_get();
543 tick_do_update_jiffies64(now);
548 * tick_nohz_idle_exit - restart the idle tick from the idle task
550 * Restart the idle tick when the CPU is woken up from idle
551 * This also exit the RCU extended quiescent state. The CPU
552 * can use RCU again after this function is called.
554 void tick_nohz_idle_exit(void)
556 int cpu = smp_processor_id();
557 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
559 unsigned long ticks;
560 #endif
561 ktime_t now;
563 local_irq_disable();
565 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
566 now = ktime_get();
568 if (ts->idle_active)
569 tick_nohz_stop_idle(cpu, now);
571 if (!ts->inidle || !ts->tick_stopped) {
572 ts->inidle = 0;
573 local_irq_enable();
574 return;
577 ts->inidle = 0;
579 /* Update jiffies first */
580 select_nohz_load_balancer(0);
581 tick_do_update_jiffies64(now);
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
585 * We stopped the tick in idle. Update process times would miss the
586 * time we slept as update_process_times does only a 1 tick
587 * accounting. Enforce that this is accounted to idle !
589 ticks = jiffies - ts->idle_jiffies;
591 * We might be one off. Do not randomly account a huge number of ticks!
593 if (ticks && ticks < LONG_MAX)
594 account_idle_ticks(ticks);
595 #endif
597 touch_softlockup_watchdog();
599 * Cancel the scheduled timer and restore the tick
601 ts->tick_stopped = 0;
602 ts->idle_exittime = now;
604 tick_nohz_restart(ts, now);
606 local_irq_enable();
609 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
611 hrtimer_forward(&ts->sched_timer, now, tick_period);
612 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
616 * The nohz low res interrupt handler
618 static void tick_nohz_handler(struct clock_event_device *dev)
620 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
621 struct pt_regs *regs = get_irq_regs();
622 int cpu = smp_processor_id();
623 ktime_t now = ktime_get();
625 dev->next_event.tv64 = KTIME_MAX;
628 * Check if the do_timer duty was dropped. We don't care about
629 * concurrency: This happens only when the cpu in charge went
630 * into a long sleep. If two cpus happen to assign themself to
631 * this duty, then the jiffies update is still serialized by
632 * xtime_lock.
634 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
635 tick_do_timer_cpu = cpu;
637 /* Check, if the jiffies need an update */
638 if (tick_do_timer_cpu == cpu)
639 tick_do_update_jiffies64(now);
642 * When we are idle and the tick is stopped, we have to touch
643 * the watchdog as we might not schedule for a really long
644 * time. This happens on complete idle SMP systems while
645 * waiting on the login prompt. We also increment the "start
646 * of idle" jiffy stamp so the idle accounting adjustment we
647 * do when we go busy again does not account too much ticks.
649 if (ts->tick_stopped) {
650 touch_softlockup_watchdog();
651 ts->idle_jiffies++;
654 update_process_times(user_mode(regs));
655 profile_tick(CPU_PROFILING);
657 while (tick_nohz_reprogram(ts, now)) {
658 now = ktime_get();
659 tick_do_update_jiffies64(now);
664 * tick_nohz_switch_to_nohz - switch to nohz mode
666 static void tick_nohz_switch_to_nohz(void)
668 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
669 ktime_t next;
671 if (!tick_nohz_enabled)
672 return;
674 local_irq_disable();
675 if (tick_switch_to_oneshot(tick_nohz_handler)) {
676 local_irq_enable();
677 return;
680 ts->nohz_mode = NOHZ_MODE_LOWRES;
683 * Recycle the hrtimer in ts, so we can share the
684 * hrtimer_forward with the highres code.
686 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
687 /* Get the next period */
688 next = tick_init_jiffy_update();
690 for (;;) {
691 hrtimer_set_expires(&ts->sched_timer, next);
692 if (!tick_program_event(next, 0))
693 break;
694 next = ktime_add(next, tick_period);
696 local_irq_enable();
700 * When NOHZ is enabled and the tick is stopped, we need to kick the
701 * tick timer from irq_enter() so that the jiffies update is kept
702 * alive during long running softirqs. That's ugly as hell, but
703 * correctness is key even if we need to fix the offending softirq in
704 * the first place.
706 * Note, this is different to tick_nohz_restart. We just kick the
707 * timer and do not touch the other magic bits which need to be done
708 * when idle is left.
710 static void tick_nohz_kick_tick(int cpu, ktime_t now)
712 #if 0
713 /* Switch back to 2.6.27 behaviour */
715 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
716 ktime_t delta;
719 * Do not touch the tick device, when the next expiry is either
720 * already reached or less/equal than the tick period.
722 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
723 if (delta.tv64 <= tick_period.tv64)
724 return;
726 tick_nohz_restart(ts, now);
727 #endif
730 static inline void tick_check_nohz(int cpu)
732 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
733 ktime_t now;
735 if (!ts->idle_active && !ts->tick_stopped)
736 return;
737 now = ktime_get();
738 if (ts->idle_active)
739 tick_nohz_stop_idle(cpu, now);
740 if (ts->tick_stopped) {
741 tick_nohz_update_jiffies(now);
742 tick_nohz_kick_tick(cpu, now);
746 #else
748 static inline void tick_nohz_switch_to_nohz(void) { }
749 static inline void tick_check_nohz(int cpu) { }
751 #endif /* NO_HZ */
754 * Called from irq_enter to notify about the possible interruption of idle()
756 void tick_check_idle(int cpu)
758 tick_check_oneshot_broadcast(cpu);
759 tick_check_nohz(cpu);
763 * High resolution timer specific code
765 #ifdef CONFIG_HIGH_RES_TIMERS
767 * We rearm the timer until we get disabled by the idle code.
768 * Called with interrupts disabled and timer->base->cpu_base->lock held.
770 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
772 struct tick_sched *ts =
773 container_of(timer, struct tick_sched, sched_timer);
774 struct pt_regs *regs = get_irq_regs();
775 ktime_t now = ktime_get();
776 int cpu = smp_processor_id();
778 #ifdef CONFIG_NO_HZ
780 * Check if the do_timer duty was dropped. We don't care about
781 * concurrency: This happens only when the cpu in charge went
782 * into a long sleep. If two cpus happen to assign themself to
783 * this duty, then the jiffies update is still serialized by
784 * xtime_lock.
786 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
787 tick_do_timer_cpu = cpu;
788 #endif
790 /* Check, if the jiffies need an update */
791 if (tick_do_timer_cpu == cpu)
792 tick_do_update_jiffies64(now);
795 * Do not call, when we are not in irq context and have
796 * no valid regs pointer
798 if (regs) {
800 * When we are idle and the tick is stopped, we have to touch
801 * the watchdog as we might not schedule for a really long
802 * time. This happens on complete idle SMP systems while
803 * waiting on the login prompt. We also increment the "start of
804 * idle" jiffy stamp so the idle accounting adjustment we do
805 * when we go busy again does not account too much ticks.
807 if (ts->tick_stopped) {
808 touch_softlockup_watchdog();
809 ts->idle_jiffies++;
811 update_process_times(user_mode(regs));
812 profile_tick(CPU_PROFILING);
815 hrtimer_forward(timer, now, tick_period);
817 return HRTIMER_RESTART;
821 * tick_setup_sched_timer - setup the tick emulation timer
823 void tick_setup_sched_timer(void)
825 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
826 ktime_t now = ktime_get();
829 * Emulate tick processing via per-CPU hrtimers:
831 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
832 ts->sched_timer.function = tick_sched_timer;
834 /* Get the next period (per cpu) */
835 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
837 for (;;) {
838 hrtimer_forward(&ts->sched_timer, now, tick_period);
839 hrtimer_start_expires(&ts->sched_timer,
840 HRTIMER_MODE_ABS_PINNED);
841 /* Check, if the timer was already in the past */
842 if (hrtimer_active(&ts->sched_timer))
843 break;
844 now = ktime_get();
847 #ifdef CONFIG_NO_HZ
848 if (tick_nohz_enabled)
849 ts->nohz_mode = NOHZ_MODE_HIGHRES;
850 #endif
852 #endif /* HIGH_RES_TIMERS */
854 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
855 void tick_cancel_sched_timer(int cpu)
857 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
859 # ifdef CONFIG_HIGH_RES_TIMERS
860 if (ts->sched_timer.base)
861 hrtimer_cancel(&ts->sched_timer);
862 # endif
864 ts->nohz_mode = NOHZ_MODE_INACTIVE;
866 #endif
869 * Async notification about clocksource changes
871 void tick_clock_notify(void)
873 int cpu;
875 for_each_possible_cpu(cpu)
876 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
880 * Async notification about clock event changes
882 void tick_oneshot_notify(void)
884 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
886 set_bit(0, &ts->check_clocks);
890 * Check, if a change happened, which makes oneshot possible.
892 * Called cyclic from the hrtimer softirq (driven by the timer
893 * softirq) allow_nohz signals, that we can switch into low-res nohz
894 * mode, because high resolution timers are disabled (either compile
895 * or runtime).
897 int tick_check_oneshot_change(int allow_nohz)
899 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
901 if (!test_and_clear_bit(0, &ts->check_clocks))
902 return 0;
904 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
905 return 0;
907 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
908 return 0;
910 if (!allow_nohz)
911 return 1;
913 tick_nohz_switch_to_nohz();
914 return 0;