Merge branch 'for-next/gadget' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[zen-stable.git] / arch / x86 / kernel / cpu / perf_event.c
blob2bda212a0010ca561e8f34a9d56c2502b47ff70b
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
35 #include "perf_event.h"
37 #if 0
38 #undef wrmsrl
39 #define wrmsrl(msr, val) \
40 do { \
41 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 (unsigned long)(val)); \
43 native_write_msr((msr), (u32)((u64)(val)), \
44 (u32)((u64)(val) >> 32)); \
45 } while (0)
46 #endif
48 struct x86_pmu x86_pmu __read_mostly;
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 s64 delta;
76 if (idx == X86_PMC_IDX_FIXED_BTS)
77 return 0;
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdmsrl(hwc->event_base, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
122 return 0;
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
130 reg->idx = er->idx;
131 reg->config = event->attr.config1;
132 reg->reg = er->msr;
133 break;
135 return 0;
138 static atomic_t active_events;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
141 #ifdef CONFIG_X86_LOCAL_APIC
143 static bool reserve_pmc_hardware(void)
145 int i;
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
157 return true;
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
163 i = x86_pmu.num_counters;
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
169 return false;
172 static void release_pmc_hardware(void)
174 int i;
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
182 #else
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
187 #endif
189 static bool check_hw_exists(void)
191 u64 val, val_new = 0;
192 int i, reg, ret = 0;
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
198 for (i = 0; i < x86_pmu.num_counters; i++) {
199 reg = x86_pmu_config_addr(i);
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
204 goto bios_fail;
207 if (x86_pmu.num_counters_fixed) {
208 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
209 ret = rdmsrl_safe(reg, &val);
210 if (ret)
211 goto msr_fail;
212 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
213 if (val & (0x03 << i*4))
214 goto bios_fail;
219 * Now write a value and read it back to see if it matches,
220 * this is needed to detect certain hardware emulators (qemu/kvm)
221 * that don't trap on the MSR access and always return 0s.
223 val = 0xabcdUL;
224 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
225 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
226 if (ret || val != val_new)
227 goto msr_fail;
229 return true;
231 bios_fail:
233 * We still allow the PMU driver to operate:
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238 return true;
240 msr_fail:
241 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 return false;
246 static void hw_perf_event_destroy(struct perf_event *event)
248 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
249 release_pmc_hardware();
250 release_ds_buffers();
251 mutex_unlock(&pmc_reserve_mutex);
255 static inline int x86_pmu_initialized(void)
257 return x86_pmu.handle_irq != NULL;
260 static inline int
261 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 struct perf_event_attr *attr = &event->attr;
264 unsigned int cache_type, cache_op, cache_result;
265 u64 config, val;
267 config = attr->config;
269 cache_type = (config >> 0) & 0xff;
270 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
271 return -EINVAL;
273 cache_op = (config >> 8) & 0xff;
274 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
275 return -EINVAL;
277 cache_result = (config >> 16) & 0xff;
278 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
279 return -EINVAL;
281 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283 if (val == 0)
284 return -ENOENT;
286 if (val == -1)
287 return -EINVAL;
289 hwc->config |= val;
290 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
291 return x86_pmu_extra_regs(val, event);
294 int x86_setup_perfctr(struct perf_event *event)
296 struct perf_event_attr *attr = &event->attr;
297 struct hw_perf_event *hwc = &event->hw;
298 u64 config;
300 if (!is_sampling_event(event)) {
301 hwc->sample_period = x86_pmu.max_period;
302 hwc->last_period = hwc->sample_period;
303 local64_set(&hwc->period_left, hwc->sample_period);
304 } else {
306 * If we have a PMU initialized but no APIC
307 * interrupts, we cannot sample hardware
308 * events (user-space has to fall back and
309 * sample via a hrtimer based software event):
311 if (!x86_pmu.apic)
312 return -EOPNOTSUPP;
315 if (attr->type == PERF_TYPE_RAW)
316 return x86_pmu_extra_regs(event->attr.config, event);
318 if (attr->type == PERF_TYPE_HW_CACHE)
319 return set_ext_hw_attr(hwc, event);
321 if (attr->config >= x86_pmu.max_events)
322 return -EINVAL;
325 * The generic map:
327 config = x86_pmu.event_map(attr->config);
329 if (config == 0)
330 return -ENOENT;
332 if (config == -1LL)
333 return -EINVAL;
336 * Branch tracing:
338 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
339 !attr->freq && hwc->sample_period == 1) {
340 /* BTS is not supported by this architecture. */
341 if (!x86_pmu.bts_active)
342 return -EOPNOTSUPP;
344 /* BTS is currently only allowed for user-mode. */
345 if (!attr->exclude_kernel)
346 return -EOPNOTSUPP;
349 hwc->config |= config;
351 return 0;
354 int x86_pmu_hw_config(struct perf_event *event)
356 if (event->attr.precise_ip) {
357 int precise = 0;
359 /* Support for constant skid */
360 if (x86_pmu.pebs_active) {
361 precise++;
363 /* Support for IP fixup */
364 if (x86_pmu.lbr_nr)
365 precise++;
368 if (event->attr.precise_ip > precise)
369 return -EOPNOTSUPP;
373 * Generate PMC IRQs:
374 * (keep 'enabled' bit clear for now)
376 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
379 * Count user and OS events unless requested not to
381 if (!event->attr.exclude_user)
382 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
383 if (!event->attr.exclude_kernel)
384 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
386 if (event->attr.type == PERF_TYPE_RAW)
387 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
389 return x86_setup_perfctr(event);
393 * Setup the hardware configuration for a given attr_type
395 static int __x86_pmu_event_init(struct perf_event *event)
397 int err;
399 if (!x86_pmu_initialized())
400 return -ENODEV;
402 err = 0;
403 if (!atomic_inc_not_zero(&active_events)) {
404 mutex_lock(&pmc_reserve_mutex);
405 if (atomic_read(&active_events) == 0) {
406 if (!reserve_pmc_hardware())
407 err = -EBUSY;
408 else
409 reserve_ds_buffers();
411 if (!err)
412 atomic_inc(&active_events);
413 mutex_unlock(&pmc_reserve_mutex);
415 if (err)
416 return err;
418 event->destroy = hw_perf_event_destroy;
420 event->hw.idx = -1;
421 event->hw.last_cpu = -1;
422 event->hw.last_tag = ~0ULL;
424 /* mark unused */
425 event->hw.extra_reg.idx = EXTRA_REG_NONE;
427 return x86_pmu.hw_config(event);
430 void x86_pmu_disable_all(void)
432 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
433 int idx;
435 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
436 u64 val;
438 if (!test_bit(idx, cpuc->active_mask))
439 continue;
440 rdmsrl(x86_pmu_config_addr(idx), val);
441 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
442 continue;
443 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
444 wrmsrl(x86_pmu_config_addr(idx), val);
448 static void x86_pmu_disable(struct pmu *pmu)
450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
452 if (!x86_pmu_initialized())
453 return;
455 if (!cpuc->enabled)
456 return;
458 cpuc->n_added = 0;
459 cpuc->enabled = 0;
460 barrier();
462 x86_pmu.disable_all();
465 void x86_pmu_enable_all(int added)
467 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
468 int idx;
470 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
471 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
473 if (!test_bit(idx, cpuc->active_mask))
474 continue;
476 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
480 static struct pmu pmu;
482 static inline int is_x86_event(struct perf_event *event)
484 return event->pmu == &pmu;
487 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
489 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
490 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
491 int i, j, w, wmax, num = 0;
492 struct hw_perf_event *hwc;
494 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
496 for (i = 0; i < n; i++) {
497 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
498 constraints[i] = c;
502 * fastpath, try to reuse previous register
504 for (i = 0; i < n; i++) {
505 hwc = &cpuc->event_list[i]->hw;
506 c = constraints[i];
508 /* never assigned */
509 if (hwc->idx == -1)
510 break;
512 /* constraint still honored */
513 if (!test_bit(hwc->idx, c->idxmsk))
514 break;
516 /* not already used */
517 if (test_bit(hwc->idx, used_mask))
518 break;
520 __set_bit(hwc->idx, used_mask);
521 if (assign)
522 assign[i] = hwc->idx;
524 if (i == n)
525 goto done;
528 * begin slow path
531 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
534 * weight = number of possible counters
536 * 1 = most constrained, only works on one counter
537 * wmax = least constrained, works on any counter
539 * assign events to counters starting with most
540 * constrained events.
542 wmax = x86_pmu.num_counters;
545 * when fixed event counters are present,
546 * wmax is incremented by 1 to account
547 * for one more choice
549 if (x86_pmu.num_counters_fixed)
550 wmax++;
552 for (w = 1, num = n; num && w <= wmax; w++) {
553 /* for each event */
554 for (i = 0; num && i < n; i++) {
555 c = constraints[i];
556 hwc = &cpuc->event_list[i]->hw;
558 if (c->weight != w)
559 continue;
561 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
562 if (!test_bit(j, used_mask))
563 break;
566 if (j == X86_PMC_IDX_MAX)
567 break;
569 __set_bit(j, used_mask);
571 if (assign)
572 assign[i] = j;
573 num--;
576 done:
578 * scheduling failed or is just a simulation,
579 * free resources if necessary
581 if (!assign || num) {
582 for (i = 0; i < n; i++) {
583 if (x86_pmu.put_event_constraints)
584 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
587 return num ? -EINVAL : 0;
591 * dogrp: true if must collect siblings events (group)
592 * returns total number of events and error code
594 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
596 struct perf_event *event;
597 int n, max_count;
599 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
601 /* current number of events already accepted */
602 n = cpuc->n_events;
604 if (is_x86_event(leader)) {
605 if (n >= max_count)
606 return -EINVAL;
607 cpuc->event_list[n] = leader;
608 n++;
610 if (!dogrp)
611 return n;
613 list_for_each_entry(event, &leader->sibling_list, group_entry) {
614 if (!is_x86_event(event) ||
615 event->state <= PERF_EVENT_STATE_OFF)
616 continue;
618 if (n >= max_count)
619 return -EINVAL;
621 cpuc->event_list[n] = event;
622 n++;
624 return n;
627 static inline void x86_assign_hw_event(struct perf_event *event,
628 struct cpu_hw_events *cpuc, int i)
630 struct hw_perf_event *hwc = &event->hw;
632 hwc->idx = cpuc->assign[i];
633 hwc->last_cpu = smp_processor_id();
634 hwc->last_tag = ++cpuc->tags[i];
636 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
637 hwc->config_base = 0;
638 hwc->event_base = 0;
639 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
640 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
641 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
642 } else {
643 hwc->config_base = x86_pmu_config_addr(hwc->idx);
644 hwc->event_base = x86_pmu_event_addr(hwc->idx);
648 static inline int match_prev_assignment(struct hw_perf_event *hwc,
649 struct cpu_hw_events *cpuc,
650 int i)
652 return hwc->idx == cpuc->assign[i] &&
653 hwc->last_cpu == smp_processor_id() &&
654 hwc->last_tag == cpuc->tags[i];
657 static void x86_pmu_start(struct perf_event *event, int flags);
659 static void x86_pmu_enable(struct pmu *pmu)
661 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
662 struct perf_event *event;
663 struct hw_perf_event *hwc;
664 int i, added = cpuc->n_added;
666 if (!x86_pmu_initialized())
667 return;
669 if (cpuc->enabled)
670 return;
672 if (cpuc->n_added) {
673 int n_running = cpuc->n_events - cpuc->n_added;
675 * apply assignment obtained either from
676 * hw_perf_group_sched_in() or x86_pmu_enable()
678 * step1: save events moving to new counters
679 * step2: reprogram moved events into new counters
681 for (i = 0; i < n_running; i++) {
682 event = cpuc->event_list[i];
683 hwc = &event->hw;
686 * we can avoid reprogramming counter if:
687 * - assigned same counter as last time
688 * - running on same CPU as last time
689 * - no other event has used the counter since
691 if (hwc->idx == -1 ||
692 match_prev_assignment(hwc, cpuc, i))
693 continue;
696 * Ensure we don't accidentally enable a stopped
697 * counter simply because we rescheduled.
699 if (hwc->state & PERF_HES_STOPPED)
700 hwc->state |= PERF_HES_ARCH;
702 x86_pmu_stop(event, PERF_EF_UPDATE);
705 for (i = 0; i < cpuc->n_events; i++) {
706 event = cpuc->event_list[i];
707 hwc = &event->hw;
709 if (!match_prev_assignment(hwc, cpuc, i))
710 x86_assign_hw_event(event, cpuc, i);
711 else if (i < n_running)
712 continue;
714 if (hwc->state & PERF_HES_ARCH)
715 continue;
717 x86_pmu_start(event, PERF_EF_RELOAD);
719 cpuc->n_added = 0;
720 perf_events_lapic_init();
723 cpuc->enabled = 1;
724 barrier();
726 x86_pmu.enable_all(added);
729 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
732 * Set the next IRQ period, based on the hwc->period_left value.
733 * To be called with the event disabled in hw:
735 int x86_perf_event_set_period(struct perf_event *event)
737 struct hw_perf_event *hwc = &event->hw;
738 s64 left = local64_read(&hwc->period_left);
739 s64 period = hwc->sample_period;
740 int ret = 0, idx = hwc->idx;
742 if (idx == X86_PMC_IDX_FIXED_BTS)
743 return 0;
746 * If we are way outside a reasonable range then just skip forward:
748 if (unlikely(left <= -period)) {
749 left = period;
750 local64_set(&hwc->period_left, left);
751 hwc->last_period = period;
752 ret = 1;
755 if (unlikely(left <= 0)) {
756 left += period;
757 local64_set(&hwc->period_left, left);
758 hwc->last_period = period;
759 ret = 1;
762 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
764 if (unlikely(left < 2))
765 left = 2;
767 if (left > x86_pmu.max_period)
768 left = x86_pmu.max_period;
770 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
773 * The hw event starts counting from this event offset,
774 * mark it to be able to extra future deltas:
776 local64_set(&hwc->prev_count, (u64)-left);
778 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
781 * Due to erratum on certan cpu we need
782 * a second write to be sure the register
783 * is updated properly
785 if (x86_pmu.perfctr_second_write) {
786 wrmsrl(hwc->event_base,
787 (u64)(-left) & x86_pmu.cntval_mask);
790 perf_event_update_userpage(event);
792 return ret;
795 void x86_pmu_enable_event(struct perf_event *event)
797 if (__this_cpu_read(cpu_hw_events.enabled))
798 __x86_pmu_enable_event(&event->hw,
799 ARCH_PERFMON_EVENTSEL_ENABLE);
803 * Add a single event to the PMU.
805 * The event is added to the group of enabled events
806 * but only if it can be scehduled with existing events.
808 static int x86_pmu_add(struct perf_event *event, int flags)
810 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
811 struct hw_perf_event *hwc;
812 int assign[X86_PMC_IDX_MAX];
813 int n, n0, ret;
815 hwc = &event->hw;
817 perf_pmu_disable(event->pmu);
818 n0 = cpuc->n_events;
819 ret = n = collect_events(cpuc, event, false);
820 if (ret < 0)
821 goto out;
823 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
824 if (!(flags & PERF_EF_START))
825 hwc->state |= PERF_HES_ARCH;
828 * If group events scheduling transaction was started,
829 * skip the schedulability test here, it will be performed
830 * at commit time (->commit_txn) as a whole
832 if (cpuc->group_flag & PERF_EVENT_TXN)
833 goto done_collect;
835 ret = x86_pmu.schedule_events(cpuc, n, assign);
836 if (ret)
837 goto out;
839 * copy new assignment, now we know it is possible
840 * will be used by hw_perf_enable()
842 memcpy(cpuc->assign, assign, n*sizeof(int));
844 done_collect:
845 cpuc->n_events = n;
846 cpuc->n_added += n - n0;
847 cpuc->n_txn += n - n0;
849 ret = 0;
850 out:
851 perf_pmu_enable(event->pmu);
852 return ret;
855 static void x86_pmu_start(struct perf_event *event, int flags)
857 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
858 int idx = event->hw.idx;
860 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
861 return;
863 if (WARN_ON_ONCE(idx == -1))
864 return;
866 if (flags & PERF_EF_RELOAD) {
867 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
868 x86_perf_event_set_period(event);
871 event->hw.state = 0;
873 cpuc->events[idx] = event;
874 __set_bit(idx, cpuc->active_mask);
875 __set_bit(idx, cpuc->running);
876 x86_pmu.enable(event);
877 perf_event_update_userpage(event);
880 void perf_event_print_debug(void)
882 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
883 u64 pebs;
884 struct cpu_hw_events *cpuc;
885 unsigned long flags;
886 int cpu, idx;
888 if (!x86_pmu.num_counters)
889 return;
891 local_irq_save(flags);
893 cpu = smp_processor_id();
894 cpuc = &per_cpu(cpu_hw_events, cpu);
896 if (x86_pmu.version >= 2) {
897 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
898 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
899 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
900 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
901 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
903 pr_info("\n");
904 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
905 pr_info("CPU#%d: status: %016llx\n", cpu, status);
906 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
907 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
908 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
910 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
912 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
913 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
914 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
916 prev_left = per_cpu(pmc_prev_left[idx], cpu);
918 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
919 cpu, idx, pmc_ctrl);
920 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
921 cpu, idx, pmc_count);
922 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
923 cpu, idx, prev_left);
925 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
926 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
928 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
929 cpu, idx, pmc_count);
931 local_irq_restore(flags);
934 void x86_pmu_stop(struct perf_event *event, int flags)
936 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
937 struct hw_perf_event *hwc = &event->hw;
939 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
940 x86_pmu.disable(event);
941 cpuc->events[hwc->idx] = NULL;
942 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
943 hwc->state |= PERF_HES_STOPPED;
946 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
948 * Drain the remaining delta count out of a event
949 * that we are disabling:
951 x86_perf_event_update(event);
952 hwc->state |= PERF_HES_UPTODATE;
956 static void x86_pmu_del(struct perf_event *event, int flags)
958 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
959 int i;
962 * If we're called during a txn, we don't need to do anything.
963 * The events never got scheduled and ->cancel_txn will truncate
964 * the event_list.
966 if (cpuc->group_flag & PERF_EVENT_TXN)
967 return;
969 x86_pmu_stop(event, PERF_EF_UPDATE);
971 for (i = 0; i < cpuc->n_events; i++) {
972 if (event == cpuc->event_list[i]) {
974 if (x86_pmu.put_event_constraints)
975 x86_pmu.put_event_constraints(cpuc, event);
977 while (++i < cpuc->n_events)
978 cpuc->event_list[i-1] = cpuc->event_list[i];
980 --cpuc->n_events;
981 break;
984 perf_event_update_userpage(event);
987 int x86_pmu_handle_irq(struct pt_regs *regs)
989 struct perf_sample_data data;
990 struct cpu_hw_events *cpuc;
991 struct perf_event *event;
992 int idx, handled = 0;
993 u64 val;
995 perf_sample_data_init(&data, 0);
997 cpuc = &__get_cpu_var(cpu_hw_events);
1000 * Some chipsets need to unmask the LVTPC in a particular spot
1001 * inside the nmi handler. As a result, the unmasking was pushed
1002 * into all the nmi handlers.
1004 * This generic handler doesn't seem to have any issues where the
1005 * unmasking occurs so it was left at the top.
1007 apic_write(APIC_LVTPC, APIC_DM_NMI);
1009 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1010 if (!test_bit(idx, cpuc->active_mask)) {
1012 * Though we deactivated the counter some cpus
1013 * might still deliver spurious interrupts still
1014 * in flight. Catch them:
1016 if (__test_and_clear_bit(idx, cpuc->running))
1017 handled++;
1018 continue;
1021 event = cpuc->events[idx];
1023 val = x86_perf_event_update(event);
1024 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1025 continue;
1028 * event overflow
1030 handled++;
1031 data.period = event->hw.last_period;
1033 if (!x86_perf_event_set_period(event))
1034 continue;
1036 if (perf_event_overflow(event, &data, regs))
1037 x86_pmu_stop(event, 0);
1040 if (handled)
1041 inc_irq_stat(apic_perf_irqs);
1043 return handled;
1046 void perf_events_lapic_init(void)
1048 if (!x86_pmu.apic || !x86_pmu_initialized())
1049 return;
1052 * Always use NMI for PMU
1054 apic_write(APIC_LVTPC, APIC_DM_NMI);
1057 static int __kprobes
1058 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1060 if (!atomic_read(&active_events))
1061 return NMI_DONE;
1063 return x86_pmu.handle_irq(regs);
1066 struct event_constraint emptyconstraint;
1067 struct event_constraint unconstrained;
1069 static int __cpuinit
1070 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1072 unsigned int cpu = (long)hcpu;
1073 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1074 int ret = NOTIFY_OK;
1076 switch (action & ~CPU_TASKS_FROZEN) {
1077 case CPU_UP_PREPARE:
1078 cpuc->kfree_on_online = NULL;
1079 if (x86_pmu.cpu_prepare)
1080 ret = x86_pmu.cpu_prepare(cpu);
1081 break;
1083 case CPU_STARTING:
1084 if (x86_pmu.cpu_starting)
1085 x86_pmu.cpu_starting(cpu);
1086 break;
1088 case CPU_ONLINE:
1089 kfree(cpuc->kfree_on_online);
1090 break;
1092 case CPU_DYING:
1093 if (x86_pmu.cpu_dying)
1094 x86_pmu.cpu_dying(cpu);
1095 break;
1097 case CPU_UP_CANCELED:
1098 case CPU_DEAD:
1099 if (x86_pmu.cpu_dead)
1100 x86_pmu.cpu_dead(cpu);
1101 break;
1103 default:
1104 break;
1107 return ret;
1110 static void __init pmu_check_apic(void)
1112 if (cpu_has_apic)
1113 return;
1115 x86_pmu.apic = 0;
1116 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1117 pr_info("no hardware sampling interrupt available.\n");
1120 static int __init init_hw_perf_events(void)
1122 struct event_constraint *c;
1123 int err;
1125 pr_info("Performance Events: ");
1127 switch (boot_cpu_data.x86_vendor) {
1128 case X86_VENDOR_INTEL:
1129 err = intel_pmu_init();
1130 break;
1131 case X86_VENDOR_AMD:
1132 err = amd_pmu_init();
1133 break;
1134 default:
1135 return 0;
1137 if (err != 0) {
1138 pr_cont("no PMU driver, software events only.\n");
1139 return 0;
1142 pmu_check_apic();
1144 /* sanity check that the hardware exists or is emulated */
1145 if (!check_hw_exists())
1146 return 0;
1148 pr_cont("%s PMU driver.\n", x86_pmu.name);
1150 if (x86_pmu.quirks)
1151 x86_pmu.quirks();
1153 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1154 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1155 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1156 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1158 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1160 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1161 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1162 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1163 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1166 x86_pmu.intel_ctrl |=
1167 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1169 perf_events_lapic_init();
1170 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1172 unconstrained = (struct event_constraint)
1173 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1174 0, x86_pmu.num_counters);
1176 if (x86_pmu.event_constraints) {
1177 for_each_event_constraint(c, x86_pmu.event_constraints) {
1178 if (c->cmask != X86_RAW_EVENT_MASK)
1179 continue;
1181 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1182 c->weight += x86_pmu.num_counters;
1186 pr_info("... version: %d\n", x86_pmu.version);
1187 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1188 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1189 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1190 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1191 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1192 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1194 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1195 perf_cpu_notifier(x86_pmu_notifier);
1197 return 0;
1199 early_initcall(init_hw_perf_events);
1201 static inline void x86_pmu_read(struct perf_event *event)
1203 x86_perf_event_update(event);
1207 * Start group events scheduling transaction
1208 * Set the flag to make pmu::enable() not perform the
1209 * schedulability test, it will be performed at commit time
1211 static void x86_pmu_start_txn(struct pmu *pmu)
1213 perf_pmu_disable(pmu);
1214 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1215 __this_cpu_write(cpu_hw_events.n_txn, 0);
1219 * Stop group events scheduling transaction
1220 * Clear the flag and pmu::enable() will perform the
1221 * schedulability test.
1223 static void x86_pmu_cancel_txn(struct pmu *pmu)
1225 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1227 * Truncate the collected events.
1229 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1230 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1231 perf_pmu_enable(pmu);
1235 * Commit group events scheduling transaction
1236 * Perform the group schedulability test as a whole
1237 * Return 0 if success
1239 static int x86_pmu_commit_txn(struct pmu *pmu)
1241 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1242 int assign[X86_PMC_IDX_MAX];
1243 int n, ret;
1245 n = cpuc->n_events;
1247 if (!x86_pmu_initialized())
1248 return -EAGAIN;
1250 ret = x86_pmu.schedule_events(cpuc, n, assign);
1251 if (ret)
1252 return ret;
1255 * copy new assignment, now we know it is possible
1256 * will be used by hw_perf_enable()
1258 memcpy(cpuc->assign, assign, n*sizeof(int));
1260 cpuc->group_flag &= ~PERF_EVENT_TXN;
1261 perf_pmu_enable(pmu);
1262 return 0;
1265 * a fake_cpuc is used to validate event groups. Due to
1266 * the extra reg logic, we need to also allocate a fake
1267 * per_core and per_cpu structure. Otherwise, group events
1268 * using extra reg may conflict without the kernel being
1269 * able to catch this when the last event gets added to
1270 * the group.
1272 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1274 kfree(cpuc->shared_regs);
1275 kfree(cpuc);
1278 static struct cpu_hw_events *allocate_fake_cpuc(void)
1280 struct cpu_hw_events *cpuc;
1281 int cpu = raw_smp_processor_id();
1283 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1284 if (!cpuc)
1285 return ERR_PTR(-ENOMEM);
1287 /* only needed, if we have extra_regs */
1288 if (x86_pmu.extra_regs) {
1289 cpuc->shared_regs = allocate_shared_regs(cpu);
1290 if (!cpuc->shared_regs)
1291 goto error;
1293 return cpuc;
1294 error:
1295 free_fake_cpuc(cpuc);
1296 return ERR_PTR(-ENOMEM);
1300 * validate that we can schedule this event
1302 static int validate_event(struct perf_event *event)
1304 struct cpu_hw_events *fake_cpuc;
1305 struct event_constraint *c;
1306 int ret = 0;
1308 fake_cpuc = allocate_fake_cpuc();
1309 if (IS_ERR(fake_cpuc))
1310 return PTR_ERR(fake_cpuc);
1312 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1314 if (!c || !c->weight)
1315 ret = -EINVAL;
1317 if (x86_pmu.put_event_constraints)
1318 x86_pmu.put_event_constraints(fake_cpuc, event);
1320 free_fake_cpuc(fake_cpuc);
1322 return ret;
1326 * validate a single event group
1328 * validation include:
1329 * - check events are compatible which each other
1330 * - events do not compete for the same counter
1331 * - number of events <= number of counters
1333 * validation ensures the group can be loaded onto the
1334 * PMU if it was the only group available.
1336 static int validate_group(struct perf_event *event)
1338 struct perf_event *leader = event->group_leader;
1339 struct cpu_hw_events *fake_cpuc;
1340 int ret = -EINVAL, n;
1342 fake_cpuc = allocate_fake_cpuc();
1343 if (IS_ERR(fake_cpuc))
1344 return PTR_ERR(fake_cpuc);
1346 * the event is not yet connected with its
1347 * siblings therefore we must first collect
1348 * existing siblings, then add the new event
1349 * before we can simulate the scheduling
1351 n = collect_events(fake_cpuc, leader, true);
1352 if (n < 0)
1353 goto out;
1355 fake_cpuc->n_events = n;
1356 n = collect_events(fake_cpuc, event, false);
1357 if (n < 0)
1358 goto out;
1360 fake_cpuc->n_events = n;
1362 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1364 out:
1365 free_fake_cpuc(fake_cpuc);
1366 return ret;
1369 static int x86_pmu_event_init(struct perf_event *event)
1371 struct pmu *tmp;
1372 int err;
1374 switch (event->attr.type) {
1375 case PERF_TYPE_RAW:
1376 case PERF_TYPE_HARDWARE:
1377 case PERF_TYPE_HW_CACHE:
1378 break;
1380 default:
1381 return -ENOENT;
1384 err = __x86_pmu_event_init(event);
1385 if (!err) {
1387 * we temporarily connect event to its pmu
1388 * such that validate_group() can classify
1389 * it as an x86 event using is_x86_event()
1391 tmp = event->pmu;
1392 event->pmu = &pmu;
1394 if (event->group_leader != event)
1395 err = validate_group(event);
1396 else
1397 err = validate_event(event);
1399 event->pmu = tmp;
1401 if (err) {
1402 if (event->destroy)
1403 event->destroy(event);
1406 return err;
1409 static struct pmu pmu = {
1410 .pmu_enable = x86_pmu_enable,
1411 .pmu_disable = x86_pmu_disable,
1413 .event_init = x86_pmu_event_init,
1415 .add = x86_pmu_add,
1416 .del = x86_pmu_del,
1417 .start = x86_pmu_start,
1418 .stop = x86_pmu_stop,
1419 .read = x86_pmu_read,
1421 .start_txn = x86_pmu_start_txn,
1422 .cancel_txn = x86_pmu_cancel_txn,
1423 .commit_txn = x86_pmu_commit_txn,
1427 * callchain support
1430 static int backtrace_stack(void *data, char *name)
1432 return 0;
1435 static void backtrace_address(void *data, unsigned long addr, int reliable)
1437 struct perf_callchain_entry *entry = data;
1439 perf_callchain_store(entry, addr);
1442 static const struct stacktrace_ops backtrace_ops = {
1443 .stack = backtrace_stack,
1444 .address = backtrace_address,
1445 .walk_stack = print_context_stack_bp,
1448 void
1449 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1451 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1452 /* TODO: We don't support guest os callchain now */
1453 return;
1456 perf_callchain_store(entry, regs->ip);
1458 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1461 #ifdef CONFIG_COMPAT
1462 static inline int
1463 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1465 /* 32-bit process in 64-bit kernel. */
1466 struct stack_frame_ia32 frame;
1467 const void __user *fp;
1469 if (!test_thread_flag(TIF_IA32))
1470 return 0;
1472 fp = compat_ptr(regs->bp);
1473 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1474 unsigned long bytes;
1475 frame.next_frame = 0;
1476 frame.return_address = 0;
1478 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1479 if (bytes != sizeof(frame))
1480 break;
1482 if (fp < compat_ptr(regs->sp))
1483 break;
1485 perf_callchain_store(entry, frame.return_address);
1486 fp = compat_ptr(frame.next_frame);
1488 return 1;
1490 #else
1491 static inline int
1492 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1494 return 0;
1496 #endif
1498 void
1499 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1501 struct stack_frame frame;
1502 const void __user *fp;
1504 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1505 /* TODO: We don't support guest os callchain now */
1506 return;
1509 fp = (void __user *)regs->bp;
1511 perf_callchain_store(entry, regs->ip);
1513 if (!current->mm)
1514 return;
1516 if (perf_callchain_user32(regs, entry))
1517 return;
1519 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1520 unsigned long bytes;
1521 frame.next_frame = NULL;
1522 frame.return_address = 0;
1524 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1525 if (bytes != sizeof(frame))
1526 break;
1528 if ((unsigned long)fp < regs->sp)
1529 break;
1531 perf_callchain_store(entry, frame.return_address);
1532 fp = frame.next_frame;
1536 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1538 unsigned long ip;
1540 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1541 ip = perf_guest_cbs->get_guest_ip();
1542 else
1543 ip = instruction_pointer(regs);
1545 return ip;
1548 unsigned long perf_misc_flags(struct pt_regs *regs)
1550 int misc = 0;
1552 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1553 if (perf_guest_cbs->is_user_mode())
1554 misc |= PERF_RECORD_MISC_GUEST_USER;
1555 else
1556 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1557 } else {
1558 if (user_mode(regs))
1559 misc |= PERF_RECORD_MISC_USER;
1560 else
1561 misc |= PERF_RECORD_MISC_KERNEL;
1564 if (regs->flags & PERF_EFLAGS_EXACT)
1565 misc |= PERF_RECORD_MISC_EXACT_IP;
1567 return misc;