2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
29 #include <asm/stacktrace.h>
31 #include <asm/compat.h>
33 #include <asm/alternative.h>
35 #include "perf_event.h"
39 #define wrmsrl(msr, val) \
41 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 (unsigned long)(val)); \
43 native_write_msr((msr), (u32)((u64)(val)), \
44 (u32)((u64)(val) >> 32)); \
48 struct x86_pmu x86_pmu __read_mostly
;
50 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX
]
56 [PERF_COUNT_HW_CACHE_OP_MAX
]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX
]
60 [PERF_COUNT_HW_CACHE_OP_MAX
]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64
x86_perf_event_update(struct perf_event
*event
)
70 struct hw_perf_event
*hwc
= &event
->hw
;
71 int shift
= 64 - x86_pmu
.cntval_bits
;
72 u64 prev_raw_count
, new_raw_count
;
76 if (idx
== X86_PMC_IDX_FIXED_BTS
)
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count
= local64_read(&hwc
->prev_count
);
88 rdmsrl(hwc
->event_base
, new_raw_count
);
90 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
91 new_raw_count
) != prev_raw_count
)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
105 local64_add(delta
, &event
->count
);
106 local64_sub(delta
, &hwc
->period_left
);
108 return new_raw_count
;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
116 struct hw_perf_event_extra
*reg
;
117 struct extra_reg
*er
;
119 reg
= &event
->hw
.extra_reg
;
121 if (!x86_pmu
.extra_regs
)
124 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
125 if (er
->event
!= (config
& er
->config_mask
))
127 if (event
->attr
.config1
& ~er
->valid_mask
)
131 reg
->config
= event
->attr
.config1
;
138 static atomic_t active_events
;
139 static DEFINE_MUTEX(pmc_reserve_mutex
);
141 #ifdef CONFIG_X86_LOCAL_APIC
143 static bool reserve_pmc_hardware(void)
147 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
152 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
160 for (i
--; i
>= 0; i
--)
161 release_evntsel_nmi(x86_pmu_config_addr(i
));
163 i
= x86_pmu
.num_counters
;
166 for (i
--; i
>= 0; i
--)
167 release_perfctr_nmi(x86_pmu_event_addr(i
));
172 static void release_pmc_hardware(void)
176 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i
));
178 release_evntsel_nmi(x86_pmu_config_addr(i
));
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
189 static bool check_hw_exists(void)
191 u64 val
, val_new
= 0;
195 * Check to see if the BIOS enabled any of the counters, if so
198 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
199 reg
= x86_pmu_config_addr(i
);
200 ret
= rdmsrl_safe(reg
, &val
);
203 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
)
207 if (x86_pmu
.num_counters_fixed
) {
208 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
209 ret
= rdmsrl_safe(reg
, &val
);
212 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
213 if (val
& (0x03 << i
*4))
219 * Now write a value and read it back to see if it matches,
220 * this is needed to detect certain hardware emulators (qemu/kvm)
221 * that don't trap on the MSR access and always return 0s.
224 ret
= checking_wrmsrl(x86_pmu_event_addr(0), val
);
225 ret
|= rdmsrl_safe(x86_pmu_event_addr(0), &val_new
);
226 if (ret
|| val
!= val_new
)
233 * We still allow the PMU driver to operate:
235 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg
, val
);
241 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
246 static void hw_perf_event_destroy(struct perf_event
*event
)
248 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
249 release_pmc_hardware();
250 release_ds_buffers();
251 mutex_unlock(&pmc_reserve_mutex
);
255 static inline int x86_pmu_initialized(void)
257 return x86_pmu
.handle_irq
!= NULL
;
261 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
263 struct perf_event_attr
*attr
= &event
->attr
;
264 unsigned int cache_type
, cache_op
, cache_result
;
267 config
= attr
->config
;
269 cache_type
= (config
>> 0) & 0xff;
270 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
273 cache_op
= (config
>> 8) & 0xff;
274 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
277 cache_result
= (config
>> 16) & 0xff;
278 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
281 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
290 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
291 return x86_pmu_extra_regs(val
, event
);
294 int x86_setup_perfctr(struct perf_event
*event
)
296 struct perf_event_attr
*attr
= &event
->attr
;
297 struct hw_perf_event
*hwc
= &event
->hw
;
300 if (!is_sampling_event(event
)) {
301 hwc
->sample_period
= x86_pmu
.max_period
;
302 hwc
->last_period
= hwc
->sample_period
;
303 local64_set(&hwc
->period_left
, hwc
->sample_period
);
306 * If we have a PMU initialized but no APIC
307 * interrupts, we cannot sample hardware
308 * events (user-space has to fall back and
309 * sample via a hrtimer based software event):
315 if (attr
->type
== PERF_TYPE_RAW
)
316 return x86_pmu_extra_regs(event
->attr
.config
, event
);
318 if (attr
->type
== PERF_TYPE_HW_CACHE
)
319 return set_ext_hw_attr(hwc
, event
);
321 if (attr
->config
>= x86_pmu
.max_events
)
327 config
= x86_pmu
.event_map(attr
->config
);
338 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
339 !attr
->freq
&& hwc
->sample_period
== 1) {
340 /* BTS is not supported by this architecture. */
341 if (!x86_pmu
.bts_active
)
344 /* BTS is currently only allowed for user-mode. */
345 if (!attr
->exclude_kernel
)
349 hwc
->config
|= config
;
354 int x86_pmu_hw_config(struct perf_event
*event
)
356 if (event
->attr
.precise_ip
) {
359 /* Support for constant skid */
360 if (x86_pmu
.pebs_active
) {
363 /* Support for IP fixup */
368 if (event
->attr
.precise_ip
> precise
)
374 * (keep 'enabled' bit clear for now)
376 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
379 * Count user and OS events unless requested not to
381 if (!event
->attr
.exclude_user
)
382 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
383 if (!event
->attr
.exclude_kernel
)
384 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
386 if (event
->attr
.type
== PERF_TYPE_RAW
)
387 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
389 return x86_setup_perfctr(event
);
393 * Setup the hardware configuration for a given attr_type
395 static int __x86_pmu_event_init(struct perf_event
*event
)
399 if (!x86_pmu_initialized())
403 if (!atomic_inc_not_zero(&active_events
)) {
404 mutex_lock(&pmc_reserve_mutex
);
405 if (atomic_read(&active_events
) == 0) {
406 if (!reserve_pmc_hardware())
409 reserve_ds_buffers();
412 atomic_inc(&active_events
);
413 mutex_unlock(&pmc_reserve_mutex
);
418 event
->destroy
= hw_perf_event_destroy
;
421 event
->hw
.last_cpu
= -1;
422 event
->hw
.last_tag
= ~0ULL;
425 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
427 return x86_pmu
.hw_config(event
);
430 void x86_pmu_disable_all(void)
432 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
435 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
438 if (!test_bit(idx
, cpuc
->active_mask
))
440 rdmsrl(x86_pmu_config_addr(idx
), val
);
441 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
443 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
444 wrmsrl(x86_pmu_config_addr(idx
), val
);
448 static void x86_pmu_disable(struct pmu
*pmu
)
450 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
452 if (!x86_pmu_initialized())
462 x86_pmu
.disable_all();
465 void x86_pmu_enable_all(int added
)
467 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
470 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
471 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
473 if (!test_bit(idx
, cpuc
->active_mask
))
476 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
480 static struct pmu pmu
;
482 static inline int is_x86_event(struct perf_event
*event
)
484 return event
->pmu
== &pmu
;
487 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
489 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
490 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
491 int i
, j
, w
, wmax
, num
= 0;
492 struct hw_perf_event
*hwc
;
494 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
496 for (i
= 0; i
< n
; i
++) {
497 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
502 * fastpath, try to reuse previous register
504 for (i
= 0; i
< n
; i
++) {
505 hwc
= &cpuc
->event_list
[i
]->hw
;
512 /* constraint still honored */
513 if (!test_bit(hwc
->idx
, c
->idxmsk
))
516 /* not already used */
517 if (test_bit(hwc
->idx
, used_mask
))
520 __set_bit(hwc
->idx
, used_mask
);
522 assign
[i
] = hwc
->idx
;
531 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
534 * weight = number of possible counters
536 * 1 = most constrained, only works on one counter
537 * wmax = least constrained, works on any counter
539 * assign events to counters starting with most
540 * constrained events.
542 wmax
= x86_pmu
.num_counters
;
545 * when fixed event counters are present,
546 * wmax is incremented by 1 to account
547 * for one more choice
549 if (x86_pmu
.num_counters_fixed
)
552 for (w
= 1, num
= n
; num
&& w
<= wmax
; w
++) {
554 for (i
= 0; num
&& i
< n
; i
++) {
556 hwc
= &cpuc
->event_list
[i
]->hw
;
561 for_each_set_bit(j
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
562 if (!test_bit(j
, used_mask
))
566 if (j
== X86_PMC_IDX_MAX
)
569 __set_bit(j
, used_mask
);
578 * scheduling failed or is just a simulation,
579 * free resources if necessary
581 if (!assign
|| num
) {
582 for (i
= 0; i
< n
; i
++) {
583 if (x86_pmu
.put_event_constraints
)
584 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
587 return num
? -EINVAL
: 0;
591 * dogrp: true if must collect siblings events (group)
592 * returns total number of events and error code
594 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
596 struct perf_event
*event
;
599 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
601 /* current number of events already accepted */
604 if (is_x86_event(leader
)) {
607 cpuc
->event_list
[n
] = leader
;
613 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
614 if (!is_x86_event(event
) ||
615 event
->state
<= PERF_EVENT_STATE_OFF
)
621 cpuc
->event_list
[n
] = event
;
627 static inline void x86_assign_hw_event(struct perf_event
*event
,
628 struct cpu_hw_events
*cpuc
, int i
)
630 struct hw_perf_event
*hwc
= &event
->hw
;
632 hwc
->idx
= cpuc
->assign
[i
];
633 hwc
->last_cpu
= smp_processor_id();
634 hwc
->last_tag
= ++cpuc
->tags
[i
];
636 if (hwc
->idx
== X86_PMC_IDX_FIXED_BTS
) {
637 hwc
->config_base
= 0;
639 } else if (hwc
->idx
>= X86_PMC_IDX_FIXED
) {
640 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
641 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- X86_PMC_IDX_FIXED
);
643 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
644 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
648 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
649 struct cpu_hw_events
*cpuc
,
652 return hwc
->idx
== cpuc
->assign
[i
] &&
653 hwc
->last_cpu
== smp_processor_id() &&
654 hwc
->last_tag
== cpuc
->tags
[i
];
657 static void x86_pmu_start(struct perf_event
*event
, int flags
);
659 static void x86_pmu_enable(struct pmu
*pmu
)
661 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
662 struct perf_event
*event
;
663 struct hw_perf_event
*hwc
;
664 int i
, added
= cpuc
->n_added
;
666 if (!x86_pmu_initialized())
673 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
675 * apply assignment obtained either from
676 * hw_perf_group_sched_in() or x86_pmu_enable()
678 * step1: save events moving to new counters
679 * step2: reprogram moved events into new counters
681 for (i
= 0; i
< n_running
; i
++) {
682 event
= cpuc
->event_list
[i
];
686 * we can avoid reprogramming counter if:
687 * - assigned same counter as last time
688 * - running on same CPU as last time
689 * - no other event has used the counter since
691 if (hwc
->idx
== -1 ||
692 match_prev_assignment(hwc
, cpuc
, i
))
696 * Ensure we don't accidentally enable a stopped
697 * counter simply because we rescheduled.
699 if (hwc
->state
& PERF_HES_STOPPED
)
700 hwc
->state
|= PERF_HES_ARCH
;
702 x86_pmu_stop(event
, PERF_EF_UPDATE
);
705 for (i
= 0; i
< cpuc
->n_events
; i
++) {
706 event
= cpuc
->event_list
[i
];
709 if (!match_prev_assignment(hwc
, cpuc
, i
))
710 x86_assign_hw_event(event
, cpuc
, i
);
711 else if (i
< n_running
)
714 if (hwc
->state
& PERF_HES_ARCH
)
717 x86_pmu_start(event
, PERF_EF_RELOAD
);
720 perf_events_lapic_init();
726 x86_pmu
.enable_all(added
);
729 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
732 * Set the next IRQ period, based on the hwc->period_left value.
733 * To be called with the event disabled in hw:
735 int x86_perf_event_set_period(struct perf_event
*event
)
737 struct hw_perf_event
*hwc
= &event
->hw
;
738 s64 left
= local64_read(&hwc
->period_left
);
739 s64 period
= hwc
->sample_period
;
740 int ret
= 0, idx
= hwc
->idx
;
742 if (idx
== X86_PMC_IDX_FIXED_BTS
)
746 * If we are way outside a reasonable range then just skip forward:
748 if (unlikely(left
<= -period
)) {
750 local64_set(&hwc
->period_left
, left
);
751 hwc
->last_period
= period
;
755 if (unlikely(left
<= 0)) {
757 local64_set(&hwc
->period_left
, left
);
758 hwc
->last_period
= period
;
762 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
764 if (unlikely(left
< 2))
767 if (left
> x86_pmu
.max_period
)
768 left
= x86_pmu
.max_period
;
770 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
773 * The hw event starts counting from this event offset,
774 * mark it to be able to extra future deltas:
776 local64_set(&hwc
->prev_count
, (u64
)-left
);
778 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
781 * Due to erratum on certan cpu we need
782 * a second write to be sure the register
783 * is updated properly
785 if (x86_pmu
.perfctr_second_write
) {
786 wrmsrl(hwc
->event_base
,
787 (u64
)(-left
) & x86_pmu
.cntval_mask
);
790 perf_event_update_userpage(event
);
795 void x86_pmu_enable_event(struct perf_event
*event
)
797 if (__this_cpu_read(cpu_hw_events
.enabled
))
798 __x86_pmu_enable_event(&event
->hw
,
799 ARCH_PERFMON_EVENTSEL_ENABLE
);
803 * Add a single event to the PMU.
805 * The event is added to the group of enabled events
806 * but only if it can be scehduled with existing events.
808 static int x86_pmu_add(struct perf_event
*event
, int flags
)
810 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
811 struct hw_perf_event
*hwc
;
812 int assign
[X86_PMC_IDX_MAX
];
817 perf_pmu_disable(event
->pmu
);
819 ret
= n
= collect_events(cpuc
, event
, false);
823 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
824 if (!(flags
& PERF_EF_START
))
825 hwc
->state
|= PERF_HES_ARCH
;
828 * If group events scheduling transaction was started,
829 * skip the schedulability test here, it will be performed
830 * at commit time (->commit_txn) as a whole
832 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
835 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
839 * copy new assignment, now we know it is possible
840 * will be used by hw_perf_enable()
842 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
846 cpuc
->n_added
+= n
- n0
;
847 cpuc
->n_txn
+= n
- n0
;
851 perf_pmu_enable(event
->pmu
);
855 static void x86_pmu_start(struct perf_event
*event
, int flags
)
857 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
858 int idx
= event
->hw
.idx
;
860 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
863 if (WARN_ON_ONCE(idx
== -1))
866 if (flags
& PERF_EF_RELOAD
) {
867 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
868 x86_perf_event_set_period(event
);
873 cpuc
->events
[idx
] = event
;
874 __set_bit(idx
, cpuc
->active_mask
);
875 __set_bit(idx
, cpuc
->running
);
876 x86_pmu
.enable(event
);
877 perf_event_update_userpage(event
);
880 void perf_event_print_debug(void)
882 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
884 struct cpu_hw_events
*cpuc
;
888 if (!x86_pmu
.num_counters
)
891 local_irq_save(flags
);
893 cpu
= smp_processor_id();
894 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
896 if (x86_pmu
.version
>= 2) {
897 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
898 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
899 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
900 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
901 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
904 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
905 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
906 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
907 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
908 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
910 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
912 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
913 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
914 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
916 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
918 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
920 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
921 cpu
, idx
, pmc_count
);
922 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
923 cpu
, idx
, prev_left
);
925 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
926 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
928 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
929 cpu
, idx
, pmc_count
);
931 local_irq_restore(flags
);
934 void x86_pmu_stop(struct perf_event
*event
, int flags
)
936 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
937 struct hw_perf_event
*hwc
= &event
->hw
;
939 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
940 x86_pmu
.disable(event
);
941 cpuc
->events
[hwc
->idx
] = NULL
;
942 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
943 hwc
->state
|= PERF_HES_STOPPED
;
946 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
948 * Drain the remaining delta count out of a event
949 * that we are disabling:
951 x86_perf_event_update(event
);
952 hwc
->state
|= PERF_HES_UPTODATE
;
956 static void x86_pmu_del(struct perf_event
*event
, int flags
)
958 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
962 * If we're called during a txn, we don't need to do anything.
963 * The events never got scheduled and ->cancel_txn will truncate
966 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
969 x86_pmu_stop(event
, PERF_EF_UPDATE
);
971 for (i
= 0; i
< cpuc
->n_events
; i
++) {
972 if (event
== cpuc
->event_list
[i
]) {
974 if (x86_pmu
.put_event_constraints
)
975 x86_pmu
.put_event_constraints(cpuc
, event
);
977 while (++i
< cpuc
->n_events
)
978 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
984 perf_event_update_userpage(event
);
987 int x86_pmu_handle_irq(struct pt_regs
*regs
)
989 struct perf_sample_data data
;
990 struct cpu_hw_events
*cpuc
;
991 struct perf_event
*event
;
992 int idx
, handled
= 0;
995 perf_sample_data_init(&data
, 0);
997 cpuc
= &__get_cpu_var(cpu_hw_events
);
1000 * Some chipsets need to unmask the LVTPC in a particular spot
1001 * inside the nmi handler. As a result, the unmasking was pushed
1002 * into all the nmi handlers.
1004 * This generic handler doesn't seem to have any issues where the
1005 * unmasking occurs so it was left at the top.
1007 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1009 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1010 if (!test_bit(idx
, cpuc
->active_mask
)) {
1012 * Though we deactivated the counter some cpus
1013 * might still deliver spurious interrupts still
1014 * in flight. Catch them:
1016 if (__test_and_clear_bit(idx
, cpuc
->running
))
1021 event
= cpuc
->events
[idx
];
1023 val
= x86_perf_event_update(event
);
1024 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1031 data
.period
= event
->hw
.last_period
;
1033 if (!x86_perf_event_set_period(event
))
1036 if (perf_event_overflow(event
, &data
, regs
))
1037 x86_pmu_stop(event
, 0);
1041 inc_irq_stat(apic_perf_irqs
);
1046 void perf_events_lapic_init(void)
1048 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1052 * Always use NMI for PMU
1054 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1057 static int __kprobes
1058 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1060 if (!atomic_read(&active_events
))
1063 return x86_pmu
.handle_irq(regs
);
1066 struct event_constraint emptyconstraint
;
1067 struct event_constraint unconstrained
;
1069 static int __cpuinit
1070 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1072 unsigned int cpu
= (long)hcpu
;
1073 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1074 int ret
= NOTIFY_OK
;
1076 switch (action
& ~CPU_TASKS_FROZEN
) {
1077 case CPU_UP_PREPARE
:
1078 cpuc
->kfree_on_online
= NULL
;
1079 if (x86_pmu
.cpu_prepare
)
1080 ret
= x86_pmu
.cpu_prepare(cpu
);
1084 if (x86_pmu
.cpu_starting
)
1085 x86_pmu
.cpu_starting(cpu
);
1089 kfree(cpuc
->kfree_on_online
);
1093 if (x86_pmu
.cpu_dying
)
1094 x86_pmu
.cpu_dying(cpu
);
1097 case CPU_UP_CANCELED
:
1099 if (x86_pmu
.cpu_dead
)
1100 x86_pmu
.cpu_dead(cpu
);
1110 static void __init
pmu_check_apic(void)
1116 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1117 pr_info("no hardware sampling interrupt available.\n");
1120 static int __init
init_hw_perf_events(void)
1122 struct event_constraint
*c
;
1125 pr_info("Performance Events: ");
1127 switch (boot_cpu_data
.x86_vendor
) {
1128 case X86_VENDOR_INTEL
:
1129 err
= intel_pmu_init();
1131 case X86_VENDOR_AMD
:
1132 err
= amd_pmu_init();
1138 pr_cont("no PMU driver, software events only.\n");
1144 /* sanity check that the hardware exists or is emulated */
1145 if (!check_hw_exists())
1148 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1153 if (x86_pmu
.num_counters
> X86_PMC_MAX_GENERIC
) {
1154 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
1155 x86_pmu
.num_counters
, X86_PMC_MAX_GENERIC
);
1156 x86_pmu
.num_counters
= X86_PMC_MAX_GENERIC
;
1158 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1160 if (x86_pmu
.num_counters_fixed
> X86_PMC_MAX_FIXED
) {
1161 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
1162 x86_pmu
.num_counters_fixed
, X86_PMC_MAX_FIXED
);
1163 x86_pmu
.num_counters_fixed
= X86_PMC_MAX_FIXED
;
1166 x86_pmu
.intel_ctrl
|=
1167 ((1LL << x86_pmu
.num_counters_fixed
)-1) << X86_PMC_IDX_FIXED
;
1169 perf_events_lapic_init();
1170 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1172 unconstrained
= (struct event_constraint
)
1173 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1174 0, x86_pmu
.num_counters
);
1176 if (x86_pmu
.event_constraints
) {
1177 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1178 if (c
->cmask
!= X86_RAW_EVENT_MASK
)
1181 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
1182 c
->weight
+= x86_pmu
.num_counters
;
1186 pr_info("... version: %d\n", x86_pmu
.version
);
1187 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1188 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1189 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1190 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1191 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1192 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1194 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1195 perf_cpu_notifier(x86_pmu_notifier
);
1199 early_initcall(init_hw_perf_events
);
1201 static inline void x86_pmu_read(struct perf_event
*event
)
1203 x86_perf_event_update(event
);
1207 * Start group events scheduling transaction
1208 * Set the flag to make pmu::enable() not perform the
1209 * schedulability test, it will be performed at commit time
1211 static void x86_pmu_start_txn(struct pmu
*pmu
)
1213 perf_pmu_disable(pmu
);
1214 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1215 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1219 * Stop group events scheduling transaction
1220 * Clear the flag and pmu::enable() will perform the
1221 * schedulability test.
1223 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1225 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1227 * Truncate the collected events.
1229 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1230 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1231 perf_pmu_enable(pmu
);
1235 * Commit group events scheduling transaction
1236 * Perform the group schedulability test as a whole
1237 * Return 0 if success
1239 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1241 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1242 int assign
[X86_PMC_IDX_MAX
];
1247 if (!x86_pmu_initialized())
1250 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1255 * copy new assignment, now we know it is possible
1256 * will be used by hw_perf_enable()
1258 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1260 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1261 perf_pmu_enable(pmu
);
1265 * a fake_cpuc is used to validate event groups. Due to
1266 * the extra reg logic, we need to also allocate a fake
1267 * per_core and per_cpu structure. Otherwise, group events
1268 * using extra reg may conflict without the kernel being
1269 * able to catch this when the last event gets added to
1272 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1274 kfree(cpuc
->shared_regs
);
1278 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1280 struct cpu_hw_events
*cpuc
;
1281 int cpu
= raw_smp_processor_id();
1283 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1285 return ERR_PTR(-ENOMEM
);
1287 /* only needed, if we have extra_regs */
1288 if (x86_pmu
.extra_regs
) {
1289 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1290 if (!cpuc
->shared_regs
)
1295 free_fake_cpuc(cpuc
);
1296 return ERR_PTR(-ENOMEM
);
1300 * validate that we can schedule this event
1302 static int validate_event(struct perf_event
*event
)
1304 struct cpu_hw_events
*fake_cpuc
;
1305 struct event_constraint
*c
;
1308 fake_cpuc
= allocate_fake_cpuc();
1309 if (IS_ERR(fake_cpuc
))
1310 return PTR_ERR(fake_cpuc
);
1312 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1314 if (!c
|| !c
->weight
)
1317 if (x86_pmu
.put_event_constraints
)
1318 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1320 free_fake_cpuc(fake_cpuc
);
1326 * validate a single event group
1328 * validation include:
1329 * - check events are compatible which each other
1330 * - events do not compete for the same counter
1331 * - number of events <= number of counters
1333 * validation ensures the group can be loaded onto the
1334 * PMU if it was the only group available.
1336 static int validate_group(struct perf_event
*event
)
1338 struct perf_event
*leader
= event
->group_leader
;
1339 struct cpu_hw_events
*fake_cpuc
;
1340 int ret
= -EINVAL
, n
;
1342 fake_cpuc
= allocate_fake_cpuc();
1343 if (IS_ERR(fake_cpuc
))
1344 return PTR_ERR(fake_cpuc
);
1346 * the event is not yet connected with its
1347 * siblings therefore we must first collect
1348 * existing siblings, then add the new event
1349 * before we can simulate the scheduling
1351 n
= collect_events(fake_cpuc
, leader
, true);
1355 fake_cpuc
->n_events
= n
;
1356 n
= collect_events(fake_cpuc
, event
, false);
1360 fake_cpuc
->n_events
= n
;
1362 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1365 free_fake_cpuc(fake_cpuc
);
1369 static int x86_pmu_event_init(struct perf_event
*event
)
1374 switch (event
->attr
.type
) {
1376 case PERF_TYPE_HARDWARE
:
1377 case PERF_TYPE_HW_CACHE
:
1384 err
= __x86_pmu_event_init(event
);
1387 * we temporarily connect event to its pmu
1388 * such that validate_group() can classify
1389 * it as an x86 event using is_x86_event()
1394 if (event
->group_leader
!= event
)
1395 err
= validate_group(event
);
1397 err
= validate_event(event
);
1403 event
->destroy(event
);
1409 static struct pmu pmu
= {
1410 .pmu_enable
= x86_pmu_enable
,
1411 .pmu_disable
= x86_pmu_disable
,
1413 .event_init
= x86_pmu_event_init
,
1417 .start
= x86_pmu_start
,
1418 .stop
= x86_pmu_stop
,
1419 .read
= x86_pmu_read
,
1421 .start_txn
= x86_pmu_start_txn
,
1422 .cancel_txn
= x86_pmu_cancel_txn
,
1423 .commit_txn
= x86_pmu_commit_txn
,
1430 static int backtrace_stack(void *data
, char *name
)
1435 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1437 struct perf_callchain_entry
*entry
= data
;
1439 perf_callchain_store(entry
, addr
);
1442 static const struct stacktrace_ops backtrace_ops
= {
1443 .stack
= backtrace_stack
,
1444 .address
= backtrace_address
,
1445 .walk_stack
= print_context_stack_bp
,
1449 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1451 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1452 /* TODO: We don't support guest os callchain now */
1456 perf_callchain_store(entry
, regs
->ip
);
1458 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
1461 #ifdef CONFIG_COMPAT
1463 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1465 /* 32-bit process in 64-bit kernel. */
1466 struct stack_frame_ia32 frame
;
1467 const void __user
*fp
;
1469 if (!test_thread_flag(TIF_IA32
))
1472 fp
= compat_ptr(regs
->bp
);
1473 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1474 unsigned long bytes
;
1475 frame
.next_frame
= 0;
1476 frame
.return_address
= 0;
1478 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1479 if (bytes
!= sizeof(frame
))
1482 if (fp
< compat_ptr(regs
->sp
))
1485 perf_callchain_store(entry
, frame
.return_address
);
1486 fp
= compat_ptr(frame
.next_frame
);
1492 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1499 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1501 struct stack_frame frame
;
1502 const void __user
*fp
;
1504 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1505 /* TODO: We don't support guest os callchain now */
1509 fp
= (void __user
*)regs
->bp
;
1511 perf_callchain_store(entry
, regs
->ip
);
1516 if (perf_callchain_user32(regs
, entry
))
1519 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1520 unsigned long bytes
;
1521 frame
.next_frame
= NULL
;
1522 frame
.return_address
= 0;
1524 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1525 if (bytes
!= sizeof(frame
))
1528 if ((unsigned long)fp
< regs
->sp
)
1531 perf_callchain_store(entry
, frame
.return_address
);
1532 fp
= frame
.next_frame
;
1536 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1540 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
1541 ip
= perf_guest_cbs
->get_guest_ip();
1543 ip
= instruction_pointer(regs
);
1548 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1552 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1553 if (perf_guest_cbs
->is_user_mode())
1554 misc
|= PERF_RECORD_MISC_GUEST_USER
;
1556 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
1558 if (user_mode(regs
))
1559 misc
|= PERF_RECORD_MISC_USER
;
1561 misc
|= PERF_RECORD_MISC_KERNEL
;
1564 if (regs
->flags
& PERF_EFLAGS_EXACT
)
1565 misc
|= PERF_RECORD_MISC_EXACT_IP
;