Merge branch 'gadget' into for-next
[zen-stable.git] / drivers / md / dm.c
blob0cf68b478878f327598fb756fe2da173d5443468
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name = DM_NAME;
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
40 static DEFINE_SPINLOCK(_minor_lock);
42 * For bio-based dm.
43 * One of these is allocated per bio.
45 struct dm_io {
46 struct mapped_device *md;
47 int error;
48 atomic_t io_count;
49 struct bio *bio;
50 unsigned long start_time;
51 spinlock_t endio_lock;
55 * For bio-based dm.
56 * One of these is allocated per target within a bio. Hopefully
57 * this will be simplified out one day.
59 struct dm_target_io {
60 struct dm_io *io;
61 struct dm_target *ti;
62 union map_info info;
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
78 * For request-based dm.
79 * One of these is allocated per bio.
81 struct dm_rq_clone_bio_info {
82 struct bio *orig;
83 struct dm_rq_target_io *tio;
86 union map_info *dm_get_mapinfo(struct bio *bio)
88 if (bio && bio->bi_private)
89 return &((struct dm_target_io *)bio->bi_private)->info;
90 return NULL;
93 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 if (rq && rq->end_io_data)
96 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
97 return NULL;
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101 #define MINOR_ALLOCED ((void *)-1)
104 * Bits for the md->flags field.
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
108 #define DMF_FROZEN 2
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
114 * Work processed by per-device workqueue.
116 struct mapped_device {
117 struct rw_semaphore io_lock;
118 struct mutex suspend_lock;
119 rwlock_t map_lock;
120 atomic_t holders;
121 atomic_t open_count;
123 unsigned long flags;
125 struct request_queue *queue;
126 unsigned type;
127 /* Protect queue and type against concurrent access. */
128 struct mutex type_lock;
130 struct gendisk *disk;
131 char name[16];
133 void *interface_ptr;
136 * A list of ios that arrived while we were suspended.
138 atomic_t pending[2];
139 wait_queue_head_t wait;
140 struct work_struct work;
141 struct bio_list deferred;
142 spinlock_t deferred_lock;
145 * Processing queue (flush)
147 struct workqueue_struct *wq;
150 * The current mapping.
152 struct dm_table *map;
155 * io objects are allocated from here.
157 mempool_t *io_pool;
158 mempool_t *tio_pool;
160 struct bio_set *bs;
163 * Event handling.
165 atomic_t event_nr;
166 wait_queue_head_t eventq;
167 atomic_t uevent_seq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block *frozen_sb;
175 struct block_device *bdev;
177 /* forced geometry settings */
178 struct hd_geometry geometry;
180 /* For saving the address of __make_request for request based dm */
181 make_request_fn *saved_make_request_fn;
183 /* sysfs handle */
184 struct kobject kobj;
186 /* zero-length flush that will be cloned and submitted to targets */
187 struct bio flush_bio;
191 * For mempools pre-allocation at the table loading time.
193 struct dm_md_mempools {
194 mempool_t *io_pool;
195 mempool_t *tio_pool;
196 struct bio_set *bs;
199 #define MIN_IOS 256
200 static struct kmem_cache *_io_cache;
201 static struct kmem_cache *_tio_cache;
202 static struct kmem_cache *_rq_tio_cache;
203 static struct kmem_cache *_rq_bio_info_cache;
205 static int __init local_init(void)
207 int r = -ENOMEM;
209 /* allocate a slab for the dm_ios */
210 _io_cache = KMEM_CACHE(dm_io, 0);
211 if (!_io_cache)
212 return r;
214 /* allocate a slab for the target ios */
215 _tio_cache = KMEM_CACHE(dm_target_io, 0);
216 if (!_tio_cache)
217 goto out_free_io_cache;
219 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
220 if (!_rq_tio_cache)
221 goto out_free_tio_cache;
223 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
224 if (!_rq_bio_info_cache)
225 goto out_free_rq_tio_cache;
227 r = dm_uevent_init();
228 if (r)
229 goto out_free_rq_bio_info_cache;
231 _major = major;
232 r = register_blkdev(_major, _name);
233 if (r < 0)
234 goto out_uevent_exit;
236 if (!_major)
237 _major = r;
239 return 0;
241 out_uevent_exit:
242 dm_uevent_exit();
243 out_free_rq_bio_info_cache:
244 kmem_cache_destroy(_rq_bio_info_cache);
245 out_free_rq_tio_cache:
246 kmem_cache_destroy(_rq_tio_cache);
247 out_free_tio_cache:
248 kmem_cache_destroy(_tio_cache);
249 out_free_io_cache:
250 kmem_cache_destroy(_io_cache);
252 return r;
255 static void local_exit(void)
257 kmem_cache_destroy(_rq_bio_info_cache);
258 kmem_cache_destroy(_rq_tio_cache);
259 kmem_cache_destroy(_tio_cache);
260 kmem_cache_destroy(_io_cache);
261 unregister_blkdev(_major, _name);
262 dm_uevent_exit();
264 _major = 0;
266 DMINFO("cleaned up");
269 static int (*_inits[])(void) __initdata = {
270 local_init,
271 dm_target_init,
272 dm_linear_init,
273 dm_stripe_init,
274 dm_io_init,
275 dm_kcopyd_init,
276 dm_interface_init,
279 static void (*_exits[])(void) = {
280 local_exit,
281 dm_target_exit,
282 dm_linear_exit,
283 dm_stripe_exit,
284 dm_io_exit,
285 dm_kcopyd_exit,
286 dm_interface_exit,
289 static int __init dm_init(void)
291 const int count = ARRAY_SIZE(_inits);
293 int r, i;
295 for (i = 0; i < count; i++) {
296 r = _inits[i]();
297 if (r)
298 goto bad;
301 return 0;
303 bad:
304 while (i--)
305 _exits[i]();
307 return r;
310 static void __exit dm_exit(void)
312 int i = ARRAY_SIZE(_exits);
314 while (i--)
315 _exits[i]();
319 * Block device functions
321 int dm_deleting_md(struct mapped_device *md)
323 return test_bit(DMF_DELETING, &md->flags);
326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
328 struct mapped_device *md;
330 spin_lock(&_minor_lock);
332 md = bdev->bd_disk->private_data;
333 if (!md)
334 goto out;
336 if (test_bit(DMF_FREEING, &md->flags) ||
337 dm_deleting_md(md)) {
338 md = NULL;
339 goto out;
342 dm_get(md);
343 atomic_inc(&md->open_count);
345 out:
346 spin_unlock(&_minor_lock);
348 return md ? 0 : -ENXIO;
351 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
353 struct mapped_device *md = disk->private_data;
355 spin_lock(&_minor_lock);
357 atomic_dec(&md->open_count);
358 dm_put(md);
360 spin_unlock(&_minor_lock);
362 return 0;
365 int dm_open_count(struct mapped_device *md)
367 return atomic_read(&md->open_count);
371 * Guarantees nothing is using the device before it's deleted.
373 int dm_lock_for_deletion(struct mapped_device *md)
375 int r = 0;
377 spin_lock(&_minor_lock);
379 if (dm_open_count(md))
380 r = -EBUSY;
381 else
382 set_bit(DMF_DELETING, &md->flags);
384 spin_unlock(&_minor_lock);
386 return r;
389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 struct mapped_device *md = bdev->bd_disk->private_data;
393 return dm_get_geometry(md, geo);
396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
397 unsigned int cmd, unsigned long arg)
399 struct mapped_device *md = bdev->bd_disk->private_data;
400 struct dm_table *map = dm_get_live_table(md);
401 struct dm_target *tgt;
402 int r = -ENOTTY;
404 if (!map || !dm_table_get_size(map))
405 goto out;
407 /* We only support devices that have a single target */
408 if (dm_table_get_num_targets(map) != 1)
409 goto out;
411 tgt = dm_table_get_target(map, 0);
413 if (dm_suspended_md(md)) {
414 r = -EAGAIN;
415 goto out;
418 if (tgt->type->ioctl)
419 r = tgt->type->ioctl(tgt, cmd, arg);
421 out:
422 dm_table_put(map);
424 return r;
427 static struct dm_io *alloc_io(struct mapped_device *md)
429 return mempool_alloc(md->io_pool, GFP_NOIO);
432 static void free_io(struct mapped_device *md, struct dm_io *io)
434 mempool_free(io, md->io_pool);
437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
439 mempool_free(tio, md->tio_pool);
442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
443 gfp_t gfp_mask)
445 return mempool_alloc(md->tio_pool, gfp_mask);
448 static void free_rq_tio(struct dm_rq_target_io *tio)
450 mempool_free(tio, tio->md->tio_pool);
453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
455 return mempool_alloc(md->io_pool, GFP_ATOMIC);
458 static void free_bio_info(struct dm_rq_clone_bio_info *info)
460 mempool_free(info, info->tio->md->io_pool);
463 static int md_in_flight(struct mapped_device *md)
465 return atomic_read(&md->pending[READ]) +
466 atomic_read(&md->pending[WRITE]);
469 static void start_io_acct(struct dm_io *io)
471 struct mapped_device *md = io->md;
472 int cpu;
473 int rw = bio_data_dir(io->bio);
475 io->start_time = jiffies;
477 cpu = part_stat_lock();
478 part_round_stats(cpu, &dm_disk(md)->part0);
479 part_stat_unlock();
480 atomic_set(&dm_disk(md)->part0.in_flight[rw],
481 atomic_inc_return(&md->pending[rw]));
484 static void end_io_acct(struct dm_io *io)
486 struct mapped_device *md = io->md;
487 struct bio *bio = io->bio;
488 unsigned long duration = jiffies - io->start_time;
489 int pending, cpu;
490 int rw = bio_data_dir(bio);
492 cpu = part_stat_lock();
493 part_round_stats(cpu, &dm_disk(md)->part0);
494 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 part_stat_unlock();
498 * After this is decremented the bio must not be touched if it is
499 * a flush.
501 pending = atomic_dec_return(&md->pending[rw]);
502 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
503 pending += atomic_read(&md->pending[rw^0x1]);
505 /* nudge anyone waiting on suspend queue */
506 if (!pending)
507 wake_up(&md->wait);
511 * Add the bio to the list of deferred io.
513 static void queue_io(struct mapped_device *md, struct bio *bio)
515 unsigned long flags;
517 spin_lock_irqsave(&md->deferred_lock, flags);
518 bio_list_add(&md->deferred, bio);
519 spin_unlock_irqrestore(&md->deferred_lock, flags);
520 queue_work(md->wq, &md->work);
524 * Everyone (including functions in this file), should use this
525 * function to access the md->map field, and make sure they call
526 * dm_table_put() when finished.
528 struct dm_table *dm_get_live_table(struct mapped_device *md)
530 struct dm_table *t;
531 unsigned long flags;
533 read_lock_irqsave(&md->map_lock, flags);
534 t = md->map;
535 if (t)
536 dm_table_get(t);
537 read_unlock_irqrestore(&md->map_lock, flags);
539 return t;
543 * Get the geometry associated with a dm device
545 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
547 *geo = md->geometry;
549 return 0;
553 * Set the geometry of a device.
555 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
557 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
559 if (geo->start > sz) {
560 DMWARN("Start sector is beyond the geometry limits.");
561 return -EINVAL;
564 md->geometry = *geo;
566 return 0;
569 /*-----------------------------------------------------------------
570 * CRUD START:
571 * A more elegant soln is in the works that uses the queue
572 * merge fn, unfortunately there are a couple of changes to
573 * the block layer that I want to make for this. So in the
574 * interests of getting something for people to use I give
575 * you this clearly demarcated crap.
576 *---------------------------------------------------------------*/
578 static int __noflush_suspending(struct mapped_device *md)
580 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
584 * Decrements the number of outstanding ios that a bio has been
585 * cloned into, completing the original io if necc.
587 static void dec_pending(struct dm_io *io, int error)
589 unsigned long flags;
590 int io_error;
591 struct bio *bio;
592 struct mapped_device *md = io->md;
594 /* Push-back supersedes any I/O errors */
595 if (unlikely(error)) {
596 spin_lock_irqsave(&io->endio_lock, flags);
597 if (!(io->error > 0 && __noflush_suspending(md)))
598 io->error = error;
599 spin_unlock_irqrestore(&io->endio_lock, flags);
602 if (atomic_dec_and_test(&io->io_count)) {
603 if (io->error == DM_ENDIO_REQUEUE) {
605 * Target requested pushing back the I/O.
607 spin_lock_irqsave(&md->deferred_lock, flags);
608 if (__noflush_suspending(md))
609 bio_list_add_head(&md->deferred, io->bio);
610 else
611 /* noflush suspend was interrupted. */
612 io->error = -EIO;
613 spin_unlock_irqrestore(&md->deferred_lock, flags);
616 io_error = io->error;
617 bio = io->bio;
618 end_io_acct(io);
619 free_io(md, io);
621 if (io_error == DM_ENDIO_REQUEUE)
622 return;
624 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
626 * Preflush done for flush with data, reissue
627 * without REQ_FLUSH.
629 bio->bi_rw &= ~REQ_FLUSH;
630 queue_io(md, bio);
631 } else {
632 /* done with normal IO or empty flush */
633 trace_block_bio_complete(md->queue, bio, io_error);
634 bio_endio(bio, io_error);
639 static void clone_endio(struct bio *bio, int error)
641 int r = 0;
642 struct dm_target_io *tio = bio->bi_private;
643 struct dm_io *io = tio->io;
644 struct mapped_device *md = tio->io->md;
645 dm_endio_fn endio = tio->ti->type->end_io;
647 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
648 error = -EIO;
650 if (endio) {
651 r = endio(tio->ti, bio, error, &tio->info);
652 if (r < 0 || r == DM_ENDIO_REQUEUE)
654 * error and requeue request are handled
655 * in dec_pending().
657 error = r;
658 else if (r == DM_ENDIO_INCOMPLETE)
659 /* The target will handle the io */
660 return;
661 else if (r) {
662 DMWARN("unimplemented target endio return value: %d", r);
663 BUG();
668 * Store md for cleanup instead of tio which is about to get freed.
670 bio->bi_private = md->bs;
672 free_tio(md, tio);
673 bio_put(bio);
674 dec_pending(io, error);
678 * Partial completion handling for request-based dm
680 static void end_clone_bio(struct bio *clone, int error)
682 struct dm_rq_clone_bio_info *info = clone->bi_private;
683 struct dm_rq_target_io *tio = info->tio;
684 struct bio *bio = info->orig;
685 unsigned int nr_bytes = info->orig->bi_size;
687 bio_put(clone);
689 if (tio->error)
691 * An error has already been detected on the request.
692 * Once error occurred, just let clone->end_io() handle
693 * the remainder.
695 return;
696 else if (error) {
698 * Don't notice the error to the upper layer yet.
699 * The error handling decision is made by the target driver,
700 * when the request is completed.
702 tio->error = error;
703 return;
707 * I/O for the bio successfully completed.
708 * Notice the data completion to the upper layer.
712 * bios are processed from the head of the list.
713 * So the completing bio should always be rq->bio.
714 * If it's not, something wrong is happening.
716 if (tio->orig->bio != bio)
717 DMERR("bio completion is going in the middle of the request");
720 * Update the original request.
721 * Do not use blk_end_request() here, because it may complete
722 * the original request before the clone, and break the ordering.
724 blk_update_request(tio->orig, 0, nr_bytes);
728 * Don't touch any member of the md after calling this function because
729 * the md may be freed in dm_put() at the end of this function.
730 * Or do dm_get() before calling this function and dm_put() later.
732 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
734 atomic_dec(&md->pending[rw]);
736 /* nudge anyone waiting on suspend queue */
737 if (!md_in_flight(md))
738 wake_up(&md->wait);
740 if (run_queue)
741 blk_run_queue(md->queue);
744 * dm_put() must be at the end of this function. See the comment above
746 dm_put(md);
749 static void free_rq_clone(struct request *clone)
751 struct dm_rq_target_io *tio = clone->end_io_data;
753 blk_rq_unprep_clone(clone);
754 free_rq_tio(tio);
758 * Complete the clone and the original request.
759 * Must be called without queue lock.
761 static void dm_end_request(struct request *clone, int error)
763 int rw = rq_data_dir(clone);
764 struct dm_rq_target_io *tio = clone->end_io_data;
765 struct mapped_device *md = tio->md;
766 struct request *rq = tio->orig;
768 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
769 rq->errors = clone->errors;
770 rq->resid_len = clone->resid_len;
772 if (rq->sense)
774 * We are using the sense buffer of the original
775 * request.
776 * So setting the length of the sense data is enough.
778 rq->sense_len = clone->sense_len;
781 free_rq_clone(clone);
782 blk_end_request_all(rq, error);
783 rq_completed(md, rw, true);
786 static void dm_unprep_request(struct request *rq)
788 struct request *clone = rq->special;
790 rq->special = NULL;
791 rq->cmd_flags &= ~REQ_DONTPREP;
793 free_rq_clone(clone);
797 * Requeue the original request of a clone.
799 void dm_requeue_unmapped_request(struct request *clone)
801 int rw = rq_data_dir(clone);
802 struct dm_rq_target_io *tio = clone->end_io_data;
803 struct mapped_device *md = tio->md;
804 struct request *rq = tio->orig;
805 struct request_queue *q = rq->q;
806 unsigned long flags;
808 dm_unprep_request(rq);
810 spin_lock_irqsave(q->queue_lock, flags);
811 blk_requeue_request(q, rq);
812 spin_unlock_irqrestore(q->queue_lock, flags);
814 rq_completed(md, rw, 0);
816 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
818 static void __stop_queue(struct request_queue *q)
820 blk_stop_queue(q);
823 static void stop_queue(struct request_queue *q)
825 unsigned long flags;
827 spin_lock_irqsave(q->queue_lock, flags);
828 __stop_queue(q);
829 spin_unlock_irqrestore(q->queue_lock, flags);
832 static void __start_queue(struct request_queue *q)
834 if (blk_queue_stopped(q))
835 blk_start_queue(q);
838 static void start_queue(struct request_queue *q)
840 unsigned long flags;
842 spin_lock_irqsave(q->queue_lock, flags);
843 __start_queue(q);
844 spin_unlock_irqrestore(q->queue_lock, flags);
847 static void dm_done(struct request *clone, int error, bool mapped)
849 int r = error;
850 struct dm_rq_target_io *tio = clone->end_io_data;
851 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
853 if (mapped && rq_end_io)
854 r = rq_end_io(tio->ti, clone, error, &tio->info);
856 if (r <= 0)
857 /* The target wants to complete the I/O */
858 dm_end_request(clone, r);
859 else if (r == DM_ENDIO_INCOMPLETE)
860 /* The target will handle the I/O */
861 return;
862 else if (r == DM_ENDIO_REQUEUE)
863 /* The target wants to requeue the I/O */
864 dm_requeue_unmapped_request(clone);
865 else {
866 DMWARN("unimplemented target endio return value: %d", r);
867 BUG();
872 * Request completion handler for request-based dm
874 static void dm_softirq_done(struct request *rq)
876 bool mapped = true;
877 struct request *clone = rq->completion_data;
878 struct dm_rq_target_io *tio = clone->end_io_data;
880 if (rq->cmd_flags & REQ_FAILED)
881 mapped = false;
883 dm_done(clone, tio->error, mapped);
887 * Complete the clone and the original request with the error status
888 * through softirq context.
890 static void dm_complete_request(struct request *clone, int error)
892 struct dm_rq_target_io *tio = clone->end_io_data;
893 struct request *rq = tio->orig;
895 tio->error = error;
896 rq->completion_data = clone;
897 blk_complete_request(rq);
901 * Complete the not-mapped clone and the original request with the error status
902 * through softirq context.
903 * Target's rq_end_io() function isn't called.
904 * This may be used when the target's map_rq() function fails.
906 void dm_kill_unmapped_request(struct request *clone, int error)
908 struct dm_rq_target_io *tio = clone->end_io_data;
909 struct request *rq = tio->orig;
911 rq->cmd_flags |= REQ_FAILED;
912 dm_complete_request(clone, error);
914 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
917 * Called with the queue lock held
919 static void end_clone_request(struct request *clone, int error)
922 * For just cleaning up the information of the queue in which
923 * the clone was dispatched.
924 * The clone is *NOT* freed actually here because it is alloced from
925 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 __blk_put_request(clone->q, clone);
930 * Actual request completion is done in a softirq context which doesn't
931 * hold the queue lock. Otherwise, deadlock could occur because:
932 * - another request may be submitted by the upper level driver
933 * of the stacking during the completion
934 * - the submission which requires queue lock may be done
935 * against this queue
937 dm_complete_request(clone, error);
941 * Return maximum size of I/O possible at the supplied sector up to the current
942 * target boundary.
944 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
946 sector_t target_offset = dm_target_offset(ti, sector);
948 return ti->len - target_offset;
951 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
953 sector_t len = max_io_len_target_boundary(sector, ti);
956 * Does the target need to split even further ?
958 if (ti->split_io) {
959 sector_t boundary;
960 sector_t offset = dm_target_offset(ti, sector);
961 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
962 - offset;
963 if (len > boundary)
964 len = boundary;
967 return len;
970 static void __map_bio(struct dm_target *ti, struct bio *clone,
971 struct dm_target_io *tio)
973 int r;
974 sector_t sector;
975 struct mapped_device *md;
977 clone->bi_end_io = clone_endio;
978 clone->bi_private = tio;
981 * Map the clone. If r == 0 we don't need to do
982 * anything, the target has assumed ownership of
983 * this io.
985 atomic_inc(&tio->io->io_count);
986 sector = clone->bi_sector;
987 r = ti->type->map(ti, clone, &tio->info);
988 if (r == DM_MAPIO_REMAPPED) {
989 /* the bio has been remapped so dispatch it */
991 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
992 tio->io->bio->bi_bdev->bd_dev, sector);
994 generic_make_request(clone);
995 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
996 /* error the io and bail out, or requeue it if needed */
997 md = tio->io->md;
998 dec_pending(tio->io, r);
1000 * Store bio_set for cleanup.
1002 clone->bi_private = md->bs;
1003 bio_put(clone);
1004 free_tio(md, tio);
1005 } else if (r) {
1006 DMWARN("unimplemented target map return value: %d", r);
1007 BUG();
1011 struct clone_info {
1012 struct mapped_device *md;
1013 struct dm_table *map;
1014 struct bio *bio;
1015 struct dm_io *io;
1016 sector_t sector;
1017 sector_t sector_count;
1018 unsigned short idx;
1021 static void dm_bio_destructor(struct bio *bio)
1023 struct bio_set *bs = bio->bi_private;
1025 bio_free(bio, bs);
1029 * Creates a little bio that just does part of a bvec.
1031 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1032 unsigned short idx, unsigned int offset,
1033 unsigned int len, struct bio_set *bs)
1035 struct bio *clone;
1036 struct bio_vec *bv = bio->bi_io_vec + idx;
1038 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1039 clone->bi_destructor = dm_bio_destructor;
1040 *clone->bi_io_vec = *bv;
1042 clone->bi_sector = sector;
1043 clone->bi_bdev = bio->bi_bdev;
1044 clone->bi_rw = bio->bi_rw;
1045 clone->bi_vcnt = 1;
1046 clone->bi_size = to_bytes(len);
1047 clone->bi_io_vec->bv_offset = offset;
1048 clone->bi_io_vec->bv_len = clone->bi_size;
1049 clone->bi_flags |= 1 << BIO_CLONED;
1051 if (bio_integrity(bio)) {
1052 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1053 bio_integrity_trim(clone,
1054 bio_sector_offset(bio, idx, offset), len);
1057 return clone;
1061 * Creates a bio that consists of range of complete bvecs.
1063 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1064 unsigned short idx, unsigned short bv_count,
1065 unsigned int len, struct bio_set *bs)
1067 struct bio *clone;
1069 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1070 __bio_clone(clone, bio);
1071 clone->bi_destructor = dm_bio_destructor;
1072 clone->bi_sector = sector;
1073 clone->bi_idx = idx;
1074 clone->bi_vcnt = idx + bv_count;
1075 clone->bi_size = to_bytes(len);
1076 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1078 if (bio_integrity(bio)) {
1079 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1081 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1082 bio_integrity_trim(clone,
1083 bio_sector_offset(bio, idx, 0), len);
1086 return clone;
1089 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1090 struct dm_target *ti)
1092 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1094 tio->io = ci->io;
1095 tio->ti = ti;
1096 memset(&tio->info, 0, sizeof(tio->info));
1098 return tio;
1101 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1102 unsigned request_nr, sector_t len)
1104 struct dm_target_io *tio = alloc_tio(ci, ti);
1105 struct bio *clone;
1107 tio->info.target_request_nr = request_nr;
1110 * Discard requests require the bio's inline iovecs be initialized.
1111 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1112 * and discard, so no need for concern about wasted bvec allocations.
1114 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1115 __bio_clone(clone, ci->bio);
1116 clone->bi_destructor = dm_bio_destructor;
1117 if (len) {
1118 clone->bi_sector = ci->sector;
1119 clone->bi_size = to_bytes(len);
1122 __map_bio(ti, clone, tio);
1125 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1126 unsigned num_requests, sector_t len)
1128 unsigned request_nr;
1130 for (request_nr = 0; request_nr < num_requests; request_nr++)
1131 __issue_target_request(ci, ti, request_nr, len);
1134 static int __clone_and_map_empty_flush(struct clone_info *ci)
1136 unsigned target_nr = 0;
1137 struct dm_target *ti;
1139 BUG_ON(bio_has_data(ci->bio));
1140 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1141 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1143 return 0;
1147 * Perform all io with a single clone.
1149 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1151 struct bio *clone, *bio = ci->bio;
1152 struct dm_target_io *tio;
1154 tio = alloc_tio(ci, ti);
1155 clone = clone_bio(bio, ci->sector, ci->idx,
1156 bio->bi_vcnt - ci->idx, ci->sector_count,
1157 ci->md->bs);
1158 __map_bio(ti, clone, tio);
1159 ci->sector_count = 0;
1162 static int __clone_and_map_discard(struct clone_info *ci)
1164 struct dm_target *ti;
1165 sector_t len;
1167 do {
1168 ti = dm_table_find_target(ci->map, ci->sector);
1169 if (!dm_target_is_valid(ti))
1170 return -EIO;
1173 * Even though the device advertised discard support,
1174 * reconfiguration might have changed that since the
1175 * check was performed.
1177 if (!ti->num_discard_requests)
1178 return -EOPNOTSUPP;
1180 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1182 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1184 ci->sector += len;
1185 } while (ci->sector_count -= len);
1187 return 0;
1190 static int __clone_and_map(struct clone_info *ci)
1192 struct bio *clone, *bio = ci->bio;
1193 struct dm_target *ti;
1194 sector_t len = 0, max;
1195 struct dm_target_io *tio;
1197 if (unlikely(bio->bi_rw & REQ_DISCARD))
1198 return __clone_and_map_discard(ci);
1200 ti = dm_table_find_target(ci->map, ci->sector);
1201 if (!dm_target_is_valid(ti))
1202 return -EIO;
1204 max = max_io_len(ci->sector, ti);
1206 if (ci->sector_count <= max) {
1208 * Optimise for the simple case where we can do all of
1209 * the remaining io with a single clone.
1211 __clone_and_map_simple(ci, ti);
1213 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1215 * There are some bvecs that don't span targets.
1216 * Do as many of these as possible.
1218 int i;
1219 sector_t remaining = max;
1220 sector_t bv_len;
1222 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1223 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1225 if (bv_len > remaining)
1226 break;
1228 remaining -= bv_len;
1229 len += bv_len;
1232 tio = alloc_tio(ci, ti);
1233 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1234 ci->md->bs);
1235 __map_bio(ti, clone, tio);
1237 ci->sector += len;
1238 ci->sector_count -= len;
1239 ci->idx = i;
1241 } else {
1243 * Handle a bvec that must be split between two or more targets.
1245 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1246 sector_t remaining = to_sector(bv->bv_len);
1247 unsigned int offset = 0;
1249 do {
1250 if (offset) {
1251 ti = dm_table_find_target(ci->map, ci->sector);
1252 if (!dm_target_is_valid(ti))
1253 return -EIO;
1255 max = max_io_len(ci->sector, ti);
1258 len = min(remaining, max);
1260 tio = alloc_tio(ci, ti);
1261 clone = split_bvec(bio, ci->sector, ci->idx,
1262 bv->bv_offset + offset, len,
1263 ci->md->bs);
1265 __map_bio(ti, clone, tio);
1267 ci->sector += len;
1268 ci->sector_count -= len;
1269 offset += to_bytes(len);
1270 } while (remaining -= len);
1272 ci->idx++;
1275 return 0;
1279 * Split the bio into several clones and submit it to targets.
1281 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1283 struct clone_info ci;
1284 int error = 0;
1286 ci.map = dm_get_live_table(md);
1287 if (unlikely(!ci.map)) {
1288 bio_io_error(bio);
1289 return;
1292 ci.md = md;
1293 ci.io = alloc_io(md);
1294 ci.io->error = 0;
1295 atomic_set(&ci.io->io_count, 1);
1296 ci.io->bio = bio;
1297 ci.io->md = md;
1298 spin_lock_init(&ci.io->endio_lock);
1299 ci.sector = bio->bi_sector;
1300 ci.idx = bio->bi_idx;
1302 start_io_acct(ci.io);
1303 if (bio->bi_rw & REQ_FLUSH) {
1304 ci.bio = &ci.md->flush_bio;
1305 ci.sector_count = 0;
1306 error = __clone_and_map_empty_flush(&ci);
1307 /* dec_pending submits any data associated with flush */
1308 } else {
1309 ci.bio = bio;
1310 ci.sector_count = bio_sectors(bio);
1311 while (ci.sector_count && !error)
1312 error = __clone_and_map(&ci);
1315 /* drop the extra reference count */
1316 dec_pending(ci.io, error);
1317 dm_table_put(ci.map);
1319 /*-----------------------------------------------------------------
1320 * CRUD END
1321 *---------------------------------------------------------------*/
1323 static int dm_merge_bvec(struct request_queue *q,
1324 struct bvec_merge_data *bvm,
1325 struct bio_vec *biovec)
1327 struct mapped_device *md = q->queuedata;
1328 struct dm_table *map = dm_get_live_table(md);
1329 struct dm_target *ti;
1330 sector_t max_sectors;
1331 int max_size = 0;
1333 if (unlikely(!map))
1334 goto out;
1336 ti = dm_table_find_target(map, bvm->bi_sector);
1337 if (!dm_target_is_valid(ti))
1338 goto out_table;
1341 * Find maximum amount of I/O that won't need splitting
1343 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1344 (sector_t) BIO_MAX_SECTORS);
1345 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1346 if (max_size < 0)
1347 max_size = 0;
1350 * merge_bvec_fn() returns number of bytes
1351 * it can accept at this offset
1352 * max is precomputed maximal io size
1354 if (max_size && ti->type->merge)
1355 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1357 * If the target doesn't support merge method and some of the devices
1358 * provided their merge_bvec method (we know this by looking at
1359 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1360 * entries. So always set max_size to 0, and the code below allows
1361 * just one page.
1363 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1365 max_size = 0;
1367 out_table:
1368 dm_table_put(map);
1370 out:
1372 * Always allow an entire first page
1374 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1375 max_size = biovec->bv_len;
1377 return max_size;
1381 * The request function that just remaps the bio built up by
1382 * dm_merge_bvec.
1384 static int _dm_request(struct request_queue *q, struct bio *bio)
1386 int rw = bio_data_dir(bio);
1387 struct mapped_device *md = q->queuedata;
1388 int cpu;
1390 down_read(&md->io_lock);
1392 cpu = part_stat_lock();
1393 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1394 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1395 part_stat_unlock();
1397 /* if we're suspended, we have to queue this io for later */
1398 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1399 up_read(&md->io_lock);
1401 if (bio_rw(bio) != READA)
1402 queue_io(md, bio);
1403 else
1404 bio_io_error(bio);
1405 return 0;
1408 __split_and_process_bio(md, bio);
1409 up_read(&md->io_lock);
1410 return 0;
1413 static int dm_make_request(struct request_queue *q, struct bio *bio)
1415 struct mapped_device *md = q->queuedata;
1417 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1420 static int dm_request_based(struct mapped_device *md)
1422 return blk_queue_stackable(md->queue);
1425 static int dm_request(struct request_queue *q, struct bio *bio)
1427 struct mapped_device *md = q->queuedata;
1429 if (dm_request_based(md))
1430 return dm_make_request(q, bio);
1432 return _dm_request(q, bio);
1435 void dm_dispatch_request(struct request *rq)
1437 int r;
1439 if (blk_queue_io_stat(rq->q))
1440 rq->cmd_flags |= REQ_IO_STAT;
1442 rq->start_time = jiffies;
1443 r = blk_insert_cloned_request(rq->q, rq);
1444 if (r)
1445 dm_complete_request(rq, r);
1447 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1449 static void dm_rq_bio_destructor(struct bio *bio)
1451 struct dm_rq_clone_bio_info *info = bio->bi_private;
1452 struct mapped_device *md = info->tio->md;
1454 free_bio_info(info);
1455 bio_free(bio, md->bs);
1458 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1459 void *data)
1461 struct dm_rq_target_io *tio = data;
1462 struct mapped_device *md = tio->md;
1463 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1465 if (!info)
1466 return -ENOMEM;
1468 info->orig = bio_orig;
1469 info->tio = tio;
1470 bio->bi_end_io = end_clone_bio;
1471 bio->bi_private = info;
1472 bio->bi_destructor = dm_rq_bio_destructor;
1474 return 0;
1477 static int setup_clone(struct request *clone, struct request *rq,
1478 struct dm_rq_target_io *tio)
1480 int r;
1482 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1483 dm_rq_bio_constructor, tio);
1484 if (r)
1485 return r;
1487 clone->cmd = rq->cmd;
1488 clone->cmd_len = rq->cmd_len;
1489 clone->sense = rq->sense;
1490 clone->buffer = rq->buffer;
1491 clone->end_io = end_clone_request;
1492 clone->end_io_data = tio;
1494 return 0;
1497 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1498 gfp_t gfp_mask)
1500 struct request *clone;
1501 struct dm_rq_target_io *tio;
1503 tio = alloc_rq_tio(md, gfp_mask);
1504 if (!tio)
1505 return NULL;
1507 tio->md = md;
1508 tio->ti = NULL;
1509 tio->orig = rq;
1510 tio->error = 0;
1511 memset(&tio->info, 0, sizeof(tio->info));
1513 clone = &tio->clone;
1514 if (setup_clone(clone, rq, tio)) {
1515 /* -ENOMEM */
1516 free_rq_tio(tio);
1517 return NULL;
1520 return clone;
1524 * Called with the queue lock held.
1526 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1528 struct mapped_device *md = q->queuedata;
1529 struct request *clone;
1531 if (unlikely(rq->special)) {
1532 DMWARN("Already has something in rq->special.");
1533 return BLKPREP_KILL;
1536 clone = clone_rq(rq, md, GFP_ATOMIC);
1537 if (!clone)
1538 return BLKPREP_DEFER;
1540 rq->special = clone;
1541 rq->cmd_flags |= REQ_DONTPREP;
1543 return BLKPREP_OK;
1547 * Returns:
1548 * 0 : the request has been processed (not requeued)
1549 * !0 : the request has been requeued
1551 static int map_request(struct dm_target *ti, struct request *clone,
1552 struct mapped_device *md)
1554 int r, requeued = 0;
1555 struct dm_rq_target_io *tio = clone->end_io_data;
1558 * Hold the md reference here for the in-flight I/O.
1559 * We can't rely on the reference count by device opener,
1560 * because the device may be closed during the request completion
1561 * when all bios are completed.
1562 * See the comment in rq_completed() too.
1564 dm_get(md);
1566 tio->ti = ti;
1567 r = ti->type->map_rq(ti, clone, &tio->info);
1568 switch (r) {
1569 case DM_MAPIO_SUBMITTED:
1570 /* The target has taken the I/O to submit by itself later */
1571 break;
1572 case DM_MAPIO_REMAPPED:
1573 /* The target has remapped the I/O so dispatch it */
1574 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1575 blk_rq_pos(tio->orig));
1576 dm_dispatch_request(clone);
1577 break;
1578 case DM_MAPIO_REQUEUE:
1579 /* The target wants to requeue the I/O */
1580 dm_requeue_unmapped_request(clone);
1581 requeued = 1;
1582 break;
1583 default:
1584 if (r > 0) {
1585 DMWARN("unimplemented target map return value: %d", r);
1586 BUG();
1589 /* The target wants to complete the I/O */
1590 dm_kill_unmapped_request(clone, r);
1591 break;
1594 return requeued;
1598 * q->request_fn for request-based dm.
1599 * Called with the queue lock held.
1601 static void dm_request_fn(struct request_queue *q)
1603 struct mapped_device *md = q->queuedata;
1604 struct dm_table *map = dm_get_live_table(md);
1605 struct dm_target *ti;
1606 struct request *rq, *clone;
1607 sector_t pos;
1610 * For suspend, check blk_queue_stopped() and increment
1611 * ->pending within a single queue_lock not to increment the
1612 * number of in-flight I/Os after the queue is stopped in
1613 * dm_suspend().
1615 while (!blk_queue_stopped(q)) {
1616 rq = blk_peek_request(q);
1617 if (!rq)
1618 goto delay_and_out;
1620 /* always use block 0 to find the target for flushes for now */
1621 pos = 0;
1622 if (!(rq->cmd_flags & REQ_FLUSH))
1623 pos = blk_rq_pos(rq);
1625 ti = dm_table_find_target(map, pos);
1626 BUG_ON(!dm_target_is_valid(ti));
1628 if (ti->type->busy && ti->type->busy(ti))
1629 goto delay_and_out;
1631 blk_start_request(rq);
1632 clone = rq->special;
1633 atomic_inc(&md->pending[rq_data_dir(clone)]);
1635 spin_unlock(q->queue_lock);
1636 if (map_request(ti, clone, md))
1637 goto requeued;
1639 BUG_ON(!irqs_disabled());
1640 spin_lock(q->queue_lock);
1643 goto out;
1645 requeued:
1646 BUG_ON(!irqs_disabled());
1647 spin_lock(q->queue_lock);
1649 delay_and_out:
1650 blk_delay_queue(q, HZ / 10);
1651 out:
1652 dm_table_put(map);
1654 return;
1657 int dm_underlying_device_busy(struct request_queue *q)
1659 return blk_lld_busy(q);
1661 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1663 static int dm_lld_busy(struct request_queue *q)
1665 int r;
1666 struct mapped_device *md = q->queuedata;
1667 struct dm_table *map = dm_get_live_table(md);
1669 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1670 r = 1;
1671 else
1672 r = dm_table_any_busy_target(map);
1674 dm_table_put(map);
1676 return r;
1679 static int dm_any_congested(void *congested_data, int bdi_bits)
1681 int r = bdi_bits;
1682 struct mapped_device *md = congested_data;
1683 struct dm_table *map;
1685 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1686 map = dm_get_live_table(md);
1687 if (map) {
1689 * Request-based dm cares about only own queue for
1690 * the query about congestion status of request_queue
1692 if (dm_request_based(md))
1693 r = md->queue->backing_dev_info.state &
1694 bdi_bits;
1695 else
1696 r = dm_table_any_congested(map, bdi_bits);
1698 dm_table_put(map);
1702 return r;
1705 /*-----------------------------------------------------------------
1706 * An IDR is used to keep track of allocated minor numbers.
1707 *---------------------------------------------------------------*/
1708 static DEFINE_IDR(_minor_idr);
1710 static void free_minor(int minor)
1712 spin_lock(&_minor_lock);
1713 idr_remove(&_minor_idr, minor);
1714 spin_unlock(&_minor_lock);
1718 * See if the device with a specific minor # is free.
1720 static int specific_minor(int minor)
1722 int r, m;
1724 if (minor >= (1 << MINORBITS))
1725 return -EINVAL;
1727 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1728 if (!r)
1729 return -ENOMEM;
1731 spin_lock(&_minor_lock);
1733 if (idr_find(&_minor_idr, minor)) {
1734 r = -EBUSY;
1735 goto out;
1738 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1739 if (r)
1740 goto out;
1742 if (m != minor) {
1743 idr_remove(&_minor_idr, m);
1744 r = -EBUSY;
1745 goto out;
1748 out:
1749 spin_unlock(&_minor_lock);
1750 return r;
1753 static int next_free_minor(int *minor)
1755 int r, m;
1757 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758 if (!r)
1759 return -ENOMEM;
1761 spin_lock(&_minor_lock);
1763 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1764 if (r)
1765 goto out;
1767 if (m >= (1 << MINORBITS)) {
1768 idr_remove(&_minor_idr, m);
1769 r = -ENOSPC;
1770 goto out;
1773 *minor = m;
1775 out:
1776 spin_unlock(&_minor_lock);
1777 return r;
1780 static const struct block_device_operations dm_blk_dops;
1782 static void dm_wq_work(struct work_struct *work);
1784 static void dm_init_md_queue(struct mapped_device *md)
1787 * Request-based dm devices cannot be stacked on top of bio-based dm
1788 * devices. The type of this dm device has not been decided yet.
1789 * The type is decided at the first table loading time.
1790 * To prevent problematic device stacking, clear the queue flag
1791 * for request stacking support until then.
1793 * This queue is new, so no concurrency on the queue_flags.
1795 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1797 md->queue->queuedata = md;
1798 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1799 md->queue->backing_dev_info.congested_data = md;
1800 blk_queue_make_request(md->queue, dm_request);
1801 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1802 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1803 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1807 * Allocate and initialise a blank device with a given minor.
1809 static struct mapped_device *alloc_dev(int minor)
1811 int r;
1812 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1813 void *old_md;
1815 if (!md) {
1816 DMWARN("unable to allocate device, out of memory.");
1817 return NULL;
1820 if (!try_module_get(THIS_MODULE))
1821 goto bad_module_get;
1823 /* get a minor number for the dev */
1824 if (minor == DM_ANY_MINOR)
1825 r = next_free_minor(&minor);
1826 else
1827 r = specific_minor(minor);
1828 if (r < 0)
1829 goto bad_minor;
1831 md->type = DM_TYPE_NONE;
1832 init_rwsem(&md->io_lock);
1833 mutex_init(&md->suspend_lock);
1834 mutex_init(&md->type_lock);
1835 spin_lock_init(&md->deferred_lock);
1836 rwlock_init(&md->map_lock);
1837 atomic_set(&md->holders, 1);
1838 atomic_set(&md->open_count, 0);
1839 atomic_set(&md->event_nr, 0);
1840 atomic_set(&md->uevent_seq, 0);
1841 INIT_LIST_HEAD(&md->uevent_list);
1842 spin_lock_init(&md->uevent_lock);
1844 md->queue = blk_alloc_queue(GFP_KERNEL);
1845 if (!md->queue)
1846 goto bad_queue;
1848 dm_init_md_queue(md);
1850 md->disk = alloc_disk(1);
1851 if (!md->disk)
1852 goto bad_disk;
1854 atomic_set(&md->pending[0], 0);
1855 atomic_set(&md->pending[1], 0);
1856 init_waitqueue_head(&md->wait);
1857 INIT_WORK(&md->work, dm_wq_work);
1858 init_waitqueue_head(&md->eventq);
1860 md->disk->major = _major;
1861 md->disk->first_minor = minor;
1862 md->disk->fops = &dm_blk_dops;
1863 md->disk->queue = md->queue;
1864 md->disk->private_data = md;
1865 sprintf(md->disk->disk_name, "dm-%d", minor);
1866 add_disk(md->disk);
1867 format_dev_t(md->name, MKDEV(_major, minor));
1869 md->wq = alloc_workqueue("kdmflush",
1870 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1871 if (!md->wq)
1872 goto bad_thread;
1874 md->bdev = bdget_disk(md->disk, 0);
1875 if (!md->bdev)
1876 goto bad_bdev;
1878 bio_init(&md->flush_bio);
1879 md->flush_bio.bi_bdev = md->bdev;
1880 md->flush_bio.bi_rw = WRITE_FLUSH;
1882 /* Populate the mapping, nobody knows we exist yet */
1883 spin_lock(&_minor_lock);
1884 old_md = idr_replace(&_minor_idr, md, minor);
1885 spin_unlock(&_minor_lock);
1887 BUG_ON(old_md != MINOR_ALLOCED);
1889 return md;
1891 bad_bdev:
1892 destroy_workqueue(md->wq);
1893 bad_thread:
1894 del_gendisk(md->disk);
1895 put_disk(md->disk);
1896 bad_disk:
1897 blk_cleanup_queue(md->queue);
1898 bad_queue:
1899 free_minor(minor);
1900 bad_minor:
1901 module_put(THIS_MODULE);
1902 bad_module_get:
1903 kfree(md);
1904 return NULL;
1907 static void unlock_fs(struct mapped_device *md);
1909 static void free_dev(struct mapped_device *md)
1911 int minor = MINOR(disk_devt(md->disk));
1913 unlock_fs(md);
1914 bdput(md->bdev);
1915 destroy_workqueue(md->wq);
1916 if (md->tio_pool)
1917 mempool_destroy(md->tio_pool);
1918 if (md->io_pool)
1919 mempool_destroy(md->io_pool);
1920 if (md->bs)
1921 bioset_free(md->bs);
1922 blk_integrity_unregister(md->disk);
1923 del_gendisk(md->disk);
1924 free_minor(minor);
1926 spin_lock(&_minor_lock);
1927 md->disk->private_data = NULL;
1928 spin_unlock(&_minor_lock);
1930 put_disk(md->disk);
1931 blk_cleanup_queue(md->queue);
1932 module_put(THIS_MODULE);
1933 kfree(md);
1936 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1938 struct dm_md_mempools *p;
1940 if (md->io_pool && md->tio_pool && md->bs)
1941 /* the md already has necessary mempools */
1942 goto out;
1944 p = dm_table_get_md_mempools(t);
1945 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1947 md->io_pool = p->io_pool;
1948 p->io_pool = NULL;
1949 md->tio_pool = p->tio_pool;
1950 p->tio_pool = NULL;
1951 md->bs = p->bs;
1952 p->bs = NULL;
1954 out:
1955 /* mempool bind completed, now no need any mempools in the table */
1956 dm_table_free_md_mempools(t);
1960 * Bind a table to the device.
1962 static void event_callback(void *context)
1964 unsigned long flags;
1965 LIST_HEAD(uevents);
1966 struct mapped_device *md = (struct mapped_device *) context;
1968 spin_lock_irqsave(&md->uevent_lock, flags);
1969 list_splice_init(&md->uevent_list, &uevents);
1970 spin_unlock_irqrestore(&md->uevent_lock, flags);
1972 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1974 atomic_inc(&md->event_nr);
1975 wake_up(&md->eventq);
1979 * Protected by md->suspend_lock obtained by dm_swap_table().
1981 static void __set_size(struct mapped_device *md, sector_t size)
1983 set_capacity(md->disk, size);
1985 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1989 * Returns old map, which caller must destroy.
1991 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1992 struct queue_limits *limits)
1994 struct dm_table *old_map;
1995 struct request_queue *q = md->queue;
1996 sector_t size;
1997 unsigned long flags;
1999 size = dm_table_get_size(t);
2002 * Wipe any geometry if the size of the table changed.
2004 if (size != get_capacity(md->disk))
2005 memset(&md->geometry, 0, sizeof(md->geometry));
2007 __set_size(md, size);
2009 dm_table_event_callback(t, event_callback, md);
2012 * The queue hasn't been stopped yet, if the old table type wasn't
2013 * for request-based during suspension. So stop it to prevent
2014 * I/O mapping before resume.
2015 * This must be done before setting the queue restrictions,
2016 * because request-based dm may be run just after the setting.
2018 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2019 stop_queue(q);
2021 __bind_mempools(md, t);
2023 write_lock_irqsave(&md->map_lock, flags);
2024 old_map = md->map;
2025 md->map = t;
2026 dm_table_set_restrictions(t, q, limits);
2027 write_unlock_irqrestore(&md->map_lock, flags);
2029 return old_map;
2033 * Returns unbound table for the caller to free.
2035 static struct dm_table *__unbind(struct mapped_device *md)
2037 struct dm_table *map = md->map;
2038 unsigned long flags;
2040 if (!map)
2041 return NULL;
2043 dm_table_event_callback(map, NULL, NULL);
2044 write_lock_irqsave(&md->map_lock, flags);
2045 md->map = NULL;
2046 write_unlock_irqrestore(&md->map_lock, flags);
2048 return map;
2052 * Constructor for a new device.
2054 int dm_create(int minor, struct mapped_device **result)
2056 struct mapped_device *md;
2058 md = alloc_dev(minor);
2059 if (!md)
2060 return -ENXIO;
2062 dm_sysfs_init(md);
2064 *result = md;
2065 return 0;
2069 * Functions to manage md->type.
2070 * All are required to hold md->type_lock.
2072 void dm_lock_md_type(struct mapped_device *md)
2074 mutex_lock(&md->type_lock);
2077 void dm_unlock_md_type(struct mapped_device *md)
2079 mutex_unlock(&md->type_lock);
2082 void dm_set_md_type(struct mapped_device *md, unsigned type)
2084 md->type = type;
2087 unsigned dm_get_md_type(struct mapped_device *md)
2089 return md->type;
2093 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2095 static int dm_init_request_based_queue(struct mapped_device *md)
2097 struct request_queue *q = NULL;
2099 if (md->queue->elevator)
2100 return 1;
2102 /* Fully initialize the queue */
2103 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2104 if (!q)
2105 return 0;
2107 md->queue = q;
2108 md->saved_make_request_fn = md->queue->make_request_fn;
2109 dm_init_md_queue(md);
2110 blk_queue_softirq_done(md->queue, dm_softirq_done);
2111 blk_queue_prep_rq(md->queue, dm_prep_fn);
2112 blk_queue_lld_busy(md->queue, dm_lld_busy);
2114 elv_register_queue(md->queue);
2116 return 1;
2120 * Setup the DM device's queue based on md's type
2122 int dm_setup_md_queue(struct mapped_device *md)
2124 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2125 !dm_init_request_based_queue(md)) {
2126 DMWARN("Cannot initialize queue for request-based mapped device");
2127 return -EINVAL;
2130 return 0;
2133 static struct mapped_device *dm_find_md(dev_t dev)
2135 struct mapped_device *md;
2136 unsigned minor = MINOR(dev);
2138 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139 return NULL;
2141 spin_lock(&_minor_lock);
2143 md = idr_find(&_minor_idr, minor);
2144 if (md && (md == MINOR_ALLOCED ||
2145 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2146 dm_deleting_md(md) ||
2147 test_bit(DMF_FREEING, &md->flags))) {
2148 md = NULL;
2149 goto out;
2152 out:
2153 spin_unlock(&_minor_lock);
2155 return md;
2158 struct mapped_device *dm_get_md(dev_t dev)
2160 struct mapped_device *md = dm_find_md(dev);
2162 if (md)
2163 dm_get(md);
2165 return md;
2168 void *dm_get_mdptr(struct mapped_device *md)
2170 return md->interface_ptr;
2173 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2175 md->interface_ptr = ptr;
2178 void dm_get(struct mapped_device *md)
2180 atomic_inc(&md->holders);
2181 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2184 const char *dm_device_name(struct mapped_device *md)
2186 return md->name;
2188 EXPORT_SYMBOL_GPL(dm_device_name);
2190 static void __dm_destroy(struct mapped_device *md, bool wait)
2192 struct dm_table *map;
2194 might_sleep();
2196 spin_lock(&_minor_lock);
2197 map = dm_get_live_table(md);
2198 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2199 set_bit(DMF_FREEING, &md->flags);
2200 spin_unlock(&_minor_lock);
2202 if (!dm_suspended_md(md)) {
2203 dm_table_presuspend_targets(map);
2204 dm_table_postsuspend_targets(map);
2208 * Rare, but there may be I/O requests still going to complete,
2209 * for example. Wait for all references to disappear.
2210 * No one should increment the reference count of the mapped_device,
2211 * after the mapped_device state becomes DMF_FREEING.
2213 if (wait)
2214 while (atomic_read(&md->holders))
2215 msleep(1);
2216 else if (atomic_read(&md->holders))
2217 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2218 dm_device_name(md), atomic_read(&md->holders));
2220 dm_sysfs_exit(md);
2221 dm_table_put(map);
2222 dm_table_destroy(__unbind(md));
2223 free_dev(md);
2226 void dm_destroy(struct mapped_device *md)
2228 __dm_destroy(md, true);
2231 void dm_destroy_immediate(struct mapped_device *md)
2233 __dm_destroy(md, false);
2236 void dm_put(struct mapped_device *md)
2238 atomic_dec(&md->holders);
2240 EXPORT_SYMBOL_GPL(dm_put);
2242 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2244 int r = 0;
2245 DECLARE_WAITQUEUE(wait, current);
2247 add_wait_queue(&md->wait, &wait);
2249 while (1) {
2250 set_current_state(interruptible);
2252 smp_mb();
2253 if (!md_in_flight(md))
2254 break;
2256 if (interruptible == TASK_INTERRUPTIBLE &&
2257 signal_pending(current)) {
2258 r = -EINTR;
2259 break;
2262 io_schedule();
2264 set_current_state(TASK_RUNNING);
2266 remove_wait_queue(&md->wait, &wait);
2268 return r;
2272 * Process the deferred bios
2274 static void dm_wq_work(struct work_struct *work)
2276 struct mapped_device *md = container_of(work, struct mapped_device,
2277 work);
2278 struct bio *c;
2280 down_read(&md->io_lock);
2282 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2283 spin_lock_irq(&md->deferred_lock);
2284 c = bio_list_pop(&md->deferred);
2285 spin_unlock_irq(&md->deferred_lock);
2287 if (!c)
2288 break;
2290 up_read(&md->io_lock);
2292 if (dm_request_based(md))
2293 generic_make_request(c);
2294 else
2295 __split_and_process_bio(md, c);
2297 down_read(&md->io_lock);
2300 up_read(&md->io_lock);
2303 static void dm_queue_flush(struct mapped_device *md)
2305 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2306 smp_mb__after_clear_bit();
2307 queue_work(md->wq, &md->work);
2311 * Swap in a new table, returning the old one for the caller to destroy.
2313 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2315 struct dm_table *map = ERR_PTR(-EINVAL);
2316 struct queue_limits limits;
2317 int r;
2319 mutex_lock(&md->suspend_lock);
2321 /* device must be suspended */
2322 if (!dm_suspended_md(md))
2323 goto out;
2325 r = dm_calculate_queue_limits(table, &limits);
2326 if (r) {
2327 map = ERR_PTR(r);
2328 goto out;
2331 map = __bind(md, table, &limits);
2333 out:
2334 mutex_unlock(&md->suspend_lock);
2335 return map;
2339 * Functions to lock and unlock any filesystem running on the
2340 * device.
2342 static int lock_fs(struct mapped_device *md)
2344 int r;
2346 WARN_ON(md->frozen_sb);
2348 md->frozen_sb = freeze_bdev(md->bdev);
2349 if (IS_ERR(md->frozen_sb)) {
2350 r = PTR_ERR(md->frozen_sb);
2351 md->frozen_sb = NULL;
2352 return r;
2355 set_bit(DMF_FROZEN, &md->flags);
2357 return 0;
2360 static void unlock_fs(struct mapped_device *md)
2362 if (!test_bit(DMF_FROZEN, &md->flags))
2363 return;
2365 thaw_bdev(md->bdev, md->frozen_sb);
2366 md->frozen_sb = NULL;
2367 clear_bit(DMF_FROZEN, &md->flags);
2371 * We need to be able to change a mapping table under a mounted
2372 * filesystem. For example we might want to move some data in
2373 * the background. Before the table can be swapped with
2374 * dm_bind_table, dm_suspend must be called to flush any in
2375 * flight bios and ensure that any further io gets deferred.
2378 * Suspend mechanism in request-based dm.
2380 * 1. Flush all I/Os by lock_fs() if needed.
2381 * 2. Stop dispatching any I/O by stopping the request_queue.
2382 * 3. Wait for all in-flight I/Os to be completed or requeued.
2384 * To abort suspend, start the request_queue.
2386 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2388 struct dm_table *map = NULL;
2389 int r = 0;
2390 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2391 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2393 mutex_lock(&md->suspend_lock);
2395 if (dm_suspended_md(md)) {
2396 r = -EINVAL;
2397 goto out_unlock;
2400 map = dm_get_live_table(md);
2403 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2404 * This flag is cleared before dm_suspend returns.
2406 if (noflush)
2407 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2409 /* This does not get reverted if there's an error later. */
2410 dm_table_presuspend_targets(map);
2413 * Flush I/O to the device.
2414 * Any I/O submitted after lock_fs() may not be flushed.
2415 * noflush takes precedence over do_lockfs.
2416 * (lock_fs() flushes I/Os and waits for them to complete.)
2418 if (!noflush && do_lockfs) {
2419 r = lock_fs(md);
2420 if (r)
2421 goto out;
2425 * Here we must make sure that no processes are submitting requests
2426 * to target drivers i.e. no one may be executing
2427 * __split_and_process_bio. This is called from dm_request and
2428 * dm_wq_work.
2430 * To get all processes out of __split_and_process_bio in dm_request,
2431 * we take the write lock. To prevent any process from reentering
2432 * __split_and_process_bio from dm_request and quiesce the thread
2433 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2434 * flush_workqueue(md->wq).
2436 down_write(&md->io_lock);
2437 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2438 up_write(&md->io_lock);
2441 * Stop md->queue before flushing md->wq in case request-based
2442 * dm defers requests to md->wq from md->queue.
2444 if (dm_request_based(md))
2445 stop_queue(md->queue);
2447 flush_workqueue(md->wq);
2450 * At this point no more requests are entering target request routines.
2451 * We call dm_wait_for_completion to wait for all existing requests
2452 * to finish.
2454 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2456 down_write(&md->io_lock);
2457 if (noflush)
2458 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2459 up_write(&md->io_lock);
2461 /* were we interrupted ? */
2462 if (r < 0) {
2463 dm_queue_flush(md);
2465 if (dm_request_based(md))
2466 start_queue(md->queue);
2468 unlock_fs(md);
2469 goto out; /* pushback list is already flushed, so skip flush */
2473 * If dm_wait_for_completion returned 0, the device is completely
2474 * quiescent now. There is no request-processing activity. All new
2475 * requests are being added to md->deferred list.
2478 set_bit(DMF_SUSPENDED, &md->flags);
2480 dm_table_postsuspend_targets(map);
2482 out:
2483 dm_table_put(map);
2485 out_unlock:
2486 mutex_unlock(&md->suspend_lock);
2487 return r;
2490 int dm_resume(struct mapped_device *md)
2492 int r = -EINVAL;
2493 struct dm_table *map = NULL;
2495 mutex_lock(&md->suspend_lock);
2496 if (!dm_suspended_md(md))
2497 goto out;
2499 map = dm_get_live_table(md);
2500 if (!map || !dm_table_get_size(map))
2501 goto out;
2503 r = dm_table_resume_targets(map);
2504 if (r)
2505 goto out;
2507 dm_queue_flush(md);
2510 * Flushing deferred I/Os must be done after targets are resumed
2511 * so that mapping of targets can work correctly.
2512 * Request-based dm is queueing the deferred I/Os in its request_queue.
2514 if (dm_request_based(md))
2515 start_queue(md->queue);
2517 unlock_fs(md);
2519 clear_bit(DMF_SUSPENDED, &md->flags);
2521 r = 0;
2522 out:
2523 dm_table_put(map);
2524 mutex_unlock(&md->suspend_lock);
2526 return r;
2529 /*-----------------------------------------------------------------
2530 * Event notification.
2531 *---------------------------------------------------------------*/
2532 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2533 unsigned cookie)
2535 char udev_cookie[DM_COOKIE_LENGTH];
2536 char *envp[] = { udev_cookie, NULL };
2538 if (!cookie)
2539 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2540 else {
2541 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2542 DM_COOKIE_ENV_VAR_NAME, cookie);
2543 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2544 action, envp);
2548 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2550 return atomic_add_return(1, &md->uevent_seq);
2553 uint32_t dm_get_event_nr(struct mapped_device *md)
2555 return atomic_read(&md->event_nr);
2558 int dm_wait_event(struct mapped_device *md, int event_nr)
2560 return wait_event_interruptible(md->eventq,
2561 (event_nr != atomic_read(&md->event_nr)));
2564 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2566 unsigned long flags;
2568 spin_lock_irqsave(&md->uevent_lock, flags);
2569 list_add(elist, &md->uevent_list);
2570 spin_unlock_irqrestore(&md->uevent_lock, flags);
2574 * The gendisk is only valid as long as you have a reference
2575 * count on 'md'.
2577 struct gendisk *dm_disk(struct mapped_device *md)
2579 return md->disk;
2582 struct kobject *dm_kobject(struct mapped_device *md)
2584 return &md->kobj;
2588 * struct mapped_device should not be exported outside of dm.c
2589 * so use this check to verify that kobj is part of md structure
2591 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2593 struct mapped_device *md;
2595 md = container_of(kobj, struct mapped_device, kobj);
2596 if (&md->kobj != kobj)
2597 return NULL;
2599 if (test_bit(DMF_FREEING, &md->flags) ||
2600 dm_deleting_md(md))
2601 return NULL;
2603 dm_get(md);
2604 return md;
2607 int dm_suspended_md(struct mapped_device *md)
2609 return test_bit(DMF_SUSPENDED, &md->flags);
2612 int dm_suspended(struct dm_target *ti)
2614 return dm_suspended_md(dm_table_get_md(ti->table));
2616 EXPORT_SYMBOL_GPL(dm_suspended);
2618 int dm_noflush_suspending(struct dm_target *ti)
2620 return __noflush_suspending(dm_table_get_md(ti->table));
2622 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2624 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2626 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2627 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2629 if (!pools)
2630 return NULL;
2632 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2633 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2634 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2635 if (!pools->io_pool)
2636 goto free_pools_and_out;
2638 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2639 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2640 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2641 if (!pools->tio_pool)
2642 goto free_io_pool_and_out;
2644 pools->bs = bioset_create(pool_size, 0);
2645 if (!pools->bs)
2646 goto free_tio_pool_and_out;
2648 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2649 goto free_bioset_and_out;
2651 return pools;
2653 free_bioset_and_out:
2654 bioset_free(pools->bs);
2656 free_tio_pool_and_out:
2657 mempool_destroy(pools->tio_pool);
2659 free_io_pool_and_out:
2660 mempool_destroy(pools->io_pool);
2662 free_pools_and_out:
2663 kfree(pools);
2665 return NULL;
2668 void dm_free_md_mempools(struct dm_md_mempools *pools)
2670 if (!pools)
2671 return;
2673 if (pools->io_pool)
2674 mempool_destroy(pools->io_pool);
2676 if (pools->tio_pool)
2677 mempool_destroy(pools->tio_pool);
2679 if (pools->bs)
2680 bioset_free(pools->bs);
2682 kfree(pools);
2685 static const struct block_device_operations dm_blk_dops = {
2686 .open = dm_blk_open,
2687 .release = dm_blk_close,
2688 .ioctl = dm_blk_ioctl,
2689 .getgeo = dm_blk_getgeo,
2690 .owner = THIS_MODULE
2693 EXPORT_SYMBOL(dm_get_mapinfo);
2696 * module hooks
2698 module_init(dm_init);
2699 module_exit(dm_exit);
2701 module_param(major, uint, 0);
2702 MODULE_PARM_DESC(major, "The major number of the device mapper");
2703 MODULE_DESCRIPTION(DM_NAME " driver");
2704 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2705 MODULE_LICENSE("GPL");