2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 * Copyright (C) 2003-2007 Micronas
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <linux/version.h>
32 #include <asm/div64.h>
34 #include "dvb_frontend.h"
36 #include "drxd_firm.h"
38 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
39 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
43 #define DRX_I2C_RMW 0x10
44 #define DRX_I2C_BROADCAST 0x20
45 #define DRX_I2C_CLEARCRC 0x80
46 #define DRX_I2C_SINGLE_MASTER 0xC0
47 #define DRX_I2C_MODEFLAGS 0xC0
48 #define DRX_I2C_FLAGS 0xF0
51 #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
54 #define DEFAULT_LOCK_TIMEOUT 1100
56 #define DRX_CHANNEL_AUTO 0
57 #define DRX_CHANNEL_HIGH 1
58 #define DRX_CHANNEL_LOW 2
60 #define DRX_LOCK_MPEG 1
61 #define DRX_LOCK_FEC 2
62 #define DRX_LOCK_DEMOD 4
64 /****************************************************************************/
73 DRXD_UNINITIALIZED
= 0,
86 OM_DVBT_Diversity_Front
,
91 enum AGC_CTRL_MODE ctrlMode
;
92 u16 outputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
93 u16 settleLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
94 u16 minOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
95 u16 maxOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
96 u16 speed
; /* range [0, ... , 1023], 1/n of fullscale range */
118 IFFILTER_DISCRETE
= 1
122 struct dvb_frontend frontend
;
123 struct dvb_frontend_ops ops
;
124 struct dvb_frontend_parameters param
;
126 const struct firmware
*fw
;
129 struct i2c_adapter
*i2c
;
131 struct drxd_config config
;
138 u16 hi_cfg_timing_div
;
139 u16 hi_cfg_bridge_delay
;
140 u16 hi_cfg_wakeup_key
;
143 u16 intermediate_freq
;
146 enum CSCDState cscd_state
;
147 enum CDrxdState drxd_state
;
150 s16 osc_clock_deviation
;
151 u16 expected_sys_clock_freq
;
158 struct SCfgAgc if_agc_cfg
;
159 struct SCfgAgc rf_agc_cfg
;
161 struct SNoiseCal noise_cal
;
164 u32 org_fe_fs_add_incr
;
165 u16 current_fe_if_incr
;
168 u16 m_FeAgRegAgAgcSio
;
170 u16 m_EcOcRegOcModeLop
;
171 u16 m_EcOcRegSncSncLvl
;
172 u8
*m_InitAtomicRead
;
184 u8
*m_InitDiversityFront
;
185 u8
*m_InitDiversityEnd
;
186 u8
*m_DisableDiversity
;
187 u8
*m_StartDiversityFront
;
188 u8
*m_StartDiversityEnd
;
190 u8
*m_DiversityDelay8MHZ
;
191 u8
*m_DiversityDelay6MHZ
;
194 u32 microcode_length
;
201 enum app_env app_env_default
;
202 enum app_env app_env_diversity
;
206 /****************************************************************************/
207 /* I2C **********************************************************************/
208 /****************************************************************************/
210 static int i2c_write(struct i2c_adapter
*adap
, u8 adr
, u8
* data
, int len
)
212 struct i2c_msg msg
= {.addr
= adr
, .flags
= 0, .buf
= data
, .len
= len
};
214 if (i2c_transfer(adap
, &msg
, 1) != 1)
219 static int i2c_read(struct i2c_adapter
*adap
,
220 u8 adr
, u8
*msg
, int len
, u8
*answ
, int alen
)
222 struct i2c_msg msgs
[2] = {
224 .addr
= adr
, .flags
= 0,
225 .buf
= msg
, .len
= len
227 .addr
= adr
, .flags
= I2C_M_RD
,
228 .buf
= answ
, .len
= alen
231 if (i2c_transfer(adap
, msgs
, 2) != 2)
236 inline u32
MulDiv32(u32 a
, u32 b
, u32 c
)
240 tmp64
= (u64
)a
* (u64
)b
;
246 static int Read16(struct drxd_state
*state
, u32 reg
, u16
*data
, u8 flags
)
248 u8 adr
= state
->config
.demod_address
;
249 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
250 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
253 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 2) < 0)
256 *data
= mm2
[0] | (mm2
[1] << 8);
257 return mm2
[0] | (mm2
[1] << 8);
260 static int Read32(struct drxd_state
*state
, u32 reg
, u32
*data
, u8 flags
)
262 u8 adr
= state
->config
.demod_address
;
263 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
264 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
268 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 4) < 0)
272 mm2
[0] | (mm2
[1] << 8) | (mm2
[2] << 16) | (mm2
[3] << 24);
276 static int Write16(struct drxd_state
*state
, u32 reg
, u16 data
, u8 flags
)
278 u8 adr
= state
->config
.demod_address
;
279 u8 mm
[6] = { reg
& 0xff, (reg
>> 16) & 0xff,
280 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
281 data
& 0xff, (data
>> 8) & 0xff
284 if (i2c_write(state
->i2c
, adr
, mm
, 6) < 0)
289 static int Write32(struct drxd_state
*state
, u32 reg
, u32 data
, u8 flags
)
291 u8 adr
= state
->config
.demod_address
;
292 u8 mm
[8] = { reg
& 0xff, (reg
>> 16) & 0xff,
293 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
294 data
& 0xff, (data
>> 8) & 0xff,
295 (data
>> 16) & 0xff, (data
>> 24) & 0xff
298 if (i2c_write(state
->i2c
, adr
, mm
, 8) < 0)
303 static int write_chunk(struct drxd_state
*state
,
304 u32 reg
, u8
*data
, u32 len
, u8 flags
)
306 u8 adr
= state
->config
.demod_address
;
307 u8 mm
[CHUNK_SIZE
+ 4] = { reg
& 0xff, (reg
>> 16) & 0xff,
308 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
312 for (i
= 0; i
< len
; i
++)
314 if (i2c_write(state
->i2c
, adr
, mm
, 4 + len
) < 0) {
315 printk(KERN_ERR
"error in write_chunk\n");
321 static int WriteBlock(struct drxd_state
*state
,
322 u32 Address
, u16 BlockSize
, u8
*pBlock
, u8 Flags
)
324 while (BlockSize
> 0) {
325 u16 Chunk
= BlockSize
> CHUNK_SIZE
? CHUNK_SIZE
: BlockSize
;
327 if (write_chunk(state
, Address
, pBlock
, Chunk
, Flags
) < 0)
330 Address
+= (Chunk
>> 1);
336 static int WriteTable(struct drxd_state
*state
, u8
* pTable
)
345 u32 Address
= pTable
[0] | (pTable
[1] << 8) |
346 (pTable
[2] << 16) | (pTable
[3] << 24);
348 if (Address
== 0xFFFFFFFF)
350 pTable
+= sizeof(u32
);
352 Length
= pTable
[0] | (pTable
[1] << 8);
353 pTable
+= sizeof(u16
);
356 status
= WriteBlock(state
, Address
, Length
* 2, pTable
, 0);
357 pTable
+= (Length
* 2);
362 /****************************************************************************/
363 /****************************************************************************/
364 /****************************************************************************/
366 static int ResetCEFR(struct drxd_state
*state
)
368 return WriteTable(state
, state
->m_ResetCEFR
);
371 static int InitCP(struct drxd_state
*state
)
373 return WriteTable(state
, state
->m_InitCP
);
376 static int InitCE(struct drxd_state
*state
)
379 enum app_env AppEnv
= state
->app_env_default
;
382 status
= WriteTable(state
, state
->m_InitCE
);
386 if (state
->operation_mode
== OM_DVBT_Diversity_Front
||
387 state
->operation_mode
== OM_DVBT_Diversity_End
) {
388 AppEnv
= state
->app_env_diversity
;
390 if (AppEnv
== APPENV_STATIC
) {
391 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0000, 0);
394 } else if (AppEnv
== APPENV_PORTABLE
) {
395 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0001, 0);
398 } else if (AppEnv
== APPENV_MOBILE
&& state
->type_A
) {
399 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0002, 0);
402 } else if (AppEnv
== APPENV_MOBILE
&& !state
->type_A
) {
403 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0006, 0);
409 status
= Write16(state
, B_CE_REG_COMM_EXEC__A
, 0x0001, 0);
416 static int StopOC(struct drxd_state
*state
)
420 u16 ocModeLop
= state
->m_EcOcRegOcModeLop
;
425 /* Store output configuration */
426 status
= Read16(state
, EC_OC_REG_SNC_ISC_LVL__A
, &ocSyncLvl
, 0);
429 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
430 state
->m_EcOcRegSncSncLvl
= ocSyncLvl
;
431 /* m_EcOcRegOcModeLop = ocModeLop; */
433 /* Flush FIFO (byte-boundary) at fixed rate */
434 status
= Read16(state
, EC_OC_REG_RCN_MAP_LOP__A
, &dtoIncLop
, 0);
437 status
= Read16(state
, EC_OC_REG_RCN_MAP_HIP__A
, &dtoIncHip
, 0);
440 status
= Write16(state
, EC_OC_REG_DTO_INC_LOP__A
, dtoIncLop
, 0);
443 status
= Write16(state
, EC_OC_REG_DTO_INC_HIP__A
, dtoIncHip
, 0);
446 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M
);
447 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC
;
448 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
451 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
456 /* Output pins to '0' */
457 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS__M
, 0);
461 /* Force the OC out of sync */
462 ocSyncLvl
&= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M
);
463 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, ocSyncLvl
, 0);
466 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
);
467 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE
;
468 ocModeLop
|= 0x2; /* Magically-out-of-sync */
469 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
472 status
= Write16(state
, EC_OC_REG_COMM_INT_STA__A
, 0x0, 0);
475 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
483 static int StartOC(struct drxd_state
*state
)
489 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
493 /* Restore output configuration */
494 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, state
->m_EcOcRegSncSncLvl
, 0);
497 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, state
->m_EcOcRegOcModeLop
, 0);
501 /* Output pins active again */
502 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS_INIT
, 0);
507 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
514 static int InitEQ(struct drxd_state
*state
)
516 return WriteTable(state
, state
->m_InitEQ
);
519 static int InitEC(struct drxd_state
*state
)
521 return WriteTable(state
, state
->m_InitEC
);
524 static int InitSC(struct drxd_state
*state
)
526 return WriteTable(state
, state
->m_InitSC
);
529 static int InitAtomicRead(struct drxd_state
*state
)
531 return WriteTable(state
, state
->m_InitAtomicRead
);
534 static int CorrectSysClockDeviation(struct drxd_state
*state
);
536 static int DRX_GetLockStatus(struct drxd_state
*state
, u32
* pLockStatus
)
539 const u16 mpeg_lock_mask
= (SC_RA_RAM_LOCK_MPEG__M
|
540 SC_RA_RAM_LOCK_FEC__M
|
541 SC_RA_RAM_LOCK_DEMOD__M
);
542 const u16 fec_lock_mask
= (SC_RA_RAM_LOCK_FEC__M
|
543 SC_RA_RAM_LOCK_DEMOD__M
);
544 const u16 demod_lock_mask
= SC_RA_RAM_LOCK_DEMOD__M
;
550 status
= Read16(state
, SC_RA_RAM_LOCK__A
, &ScRaRamLock
, 0x0000);
552 printk(KERN_ERR
"Can't read SC_RA_RAM_LOCK__A status = %08x\n", status
);
556 if (state
->drxd_state
!= DRXD_STARTED
)
559 if ((ScRaRamLock
& mpeg_lock_mask
) == mpeg_lock_mask
) {
560 *pLockStatus
|= DRX_LOCK_MPEG
;
561 CorrectSysClockDeviation(state
);
564 if ((ScRaRamLock
& fec_lock_mask
) == fec_lock_mask
)
565 *pLockStatus
|= DRX_LOCK_FEC
;
567 if ((ScRaRamLock
& demod_lock_mask
) == demod_lock_mask
)
568 *pLockStatus
|= DRX_LOCK_DEMOD
;
572 /****************************************************************************/
574 static int SetCfgIfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
578 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
581 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
583 u16 FeAgRegPm1AgcWri
;
584 u16 FeAgRegAgModeLop
;
586 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
589 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
590 FeAgRegAgModeLop
|= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC
;
591 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
595 FeAgRegPm1AgcWri
= (u16
) (cfg
->outputLevel
&
596 FE_AG_REG_PM1_AGC_WRI__M
);
597 status
= Write16(state
, FE_AG_REG_PM1_AGC_WRI__A
, FeAgRegPm1AgcWri
, 0);
601 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
602 if (((cfg
->maxOutputLevel
) < (cfg
->minOutputLevel
)) ||
603 ((cfg
->maxOutputLevel
) > DRXD_FE_CTRL_MAX
) ||
604 ((cfg
->speed
) > DRXD_FE_CTRL_MAX
) ||
605 ((cfg
->settleLevel
) > DRXD_FE_CTRL_MAX
)
609 u16 FeAgRegAgModeLop
;
610 u16 FeAgRegEgcSetLvl
;
615 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
618 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
620 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC
;
621 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
625 /* == Settle level == */
627 FeAgRegEgcSetLvl
= (u16
) ((cfg
->settleLevel
>> 1) &
628 FE_AG_REG_EGC_SET_LVL__M
);
629 status
= Write16(state
, FE_AG_REG_EGC_SET_LVL__A
, FeAgRegEgcSetLvl
, 0);
635 slope
= (u16
) ((cfg
->maxOutputLevel
-
636 cfg
->minOutputLevel
) / 2);
637 offset
= (u16
) ((cfg
->maxOutputLevel
+
638 cfg
->minOutputLevel
) / 2 - 511);
640 status
= Write16(state
, FE_AG_REG_GC1_AGC_RIC__A
, slope
, 0);
643 status
= Write16(state
, FE_AG_REG_GC1_AGC_OFF__A
, offset
, 0);
649 const u16 maxRur
= 8;
650 const u16 slowIncrDecLUT
[] = { 3, 4, 4, 5, 6 };
651 const u16 fastIncrDecLUT
[] = { 14, 15, 15, 16,
658 u16 fineSteps
= (DRXD_FE_CTRL_MAX
+ 1) /
660 u16 fineSpeed
= (u16
) (cfg
->speed
-
664 u16 invRurCount
= (u16
) (cfg
->speed
/
667 if (invRurCount
> maxRur
) {
669 fineSpeed
+= fineSteps
;
671 rurCount
= maxRur
- invRurCount
;
676 (2^(fineSpeed/fineSteps))
677 => range[default...2*default>
679 (2^(fineSpeed/fineSteps))
683 fastIncrDecLUT
[fineSpeed
/
687 slowIncrDecLUT
[fineSpeed
/
691 status
= Write16(state
, FE_AG_REG_EGC_RUR_CNT__A
, rurCount
, 0);
694 status
= Write16(state
, FE_AG_REG_EGC_FAS_INC__A
, fastIncrDec
, 0);
697 status
= Write16(state
, FE_AG_REG_EGC_FAS_DEC__A
, fastIncrDec
, 0);
700 status
= Write16(state
, FE_AG_REG_EGC_SLO_INC__A
, slowIncrDec
, 0);
703 status
= Write16(state
, FE_AG_REG_EGC_SLO_DEC__A
, slowIncrDec
, 0);
711 /* No OFF mode for IF control */
717 static int SetCfgRfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
721 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
724 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
727 u16 level
= (cfg
->outputLevel
);
729 if (level
== DRXD_FE_CTRL_MAX
)
732 status
= Write16(state
, FE_AG_REG_PM2_AGC_WRI__A
, level
, 0x0000);
738 /* Powerdown PD2, WRI source */
739 state
->m_FeAgRegAgPwd
&= ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
740 state
->m_FeAgRegAgPwd
|=
741 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
742 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
746 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
749 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
750 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
751 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
752 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
753 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
757 /* enable AGC2 pin */
759 u16 FeAgRegAgAgcSio
= 0;
760 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
764 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
766 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
767 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
773 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
778 /* Automatic control */
779 /* Powerup PD2, AGC2 as output, TGC source */
780 (state
->m_FeAgRegAgPwd
) &=
781 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
782 (state
->m_FeAgRegAgPwd
) |=
783 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
784 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
788 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
791 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
792 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
793 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
794 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC
);
795 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
799 level
= (((cfg
->settleLevel
) >> 4) &
800 FE_AG_REG_TGC_SET_LVL__M
);
801 status
= Write16(state
, FE_AG_REG_TGC_SET_LVL__A
, level
, 0x0000);
805 /* Min/max: don't care */
809 /* enable AGC2 pin */
811 u16 FeAgRegAgAgcSio
= 0;
812 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
816 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
818 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
819 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
829 /* No RF AGC control */
830 /* Powerdown PD2, AGC2 as output, WRI source */
831 (state
->m_FeAgRegAgPwd
) &=
832 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
833 (state
->m_FeAgRegAgPwd
) |=
834 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE
;
835 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
839 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
842 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
843 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
844 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
845 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
846 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
850 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
852 u16 FeAgRegAgAgcSio
= 0;
853 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
857 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
859 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT
;
860 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
869 static int ReadIFAgc(struct drxd_state
*state
, u32
* pValue
)
874 if (state
->if_agc_cfg
.ctrlMode
!= AGC_CTRL_OFF
) {
876 status
= Read16(state
, FE_AG_REG_GC1_AGC_DAT__A
, &Value
, 0);
877 Value
&= FE_AG_REG_GC1_AGC_DAT__M
;
889 u32 R1
= state
->if_agc_cfg
.R1
;
890 u32 R2
= state
->if_agc_cfg
.R2
;
891 u32 R3
= state
->if_agc_cfg
.R3
;
893 u32 Vmax
= (3300 * R2
) / (R1
+ R2
);
894 u32 Rpar
= (R2
* R3
) / (R3
+ R2
);
895 u32 Vmin
= (3300 * Rpar
) / (R1
+ Rpar
);
896 u32 Vout
= Vmin
+ ((Vmax
- Vmin
) * Value
) / 1024;
904 static int load_firmware(struct drxd_state
*state
, const char *fw_name
)
906 const struct firmware
*fw
;
908 if (request_firmware(&fw
, fw_name
, state
->dev
) < 0) {
909 printk(KERN_ERR
"drxd: firmware load failure [%s]\n", fw_name
);
913 state
->microcode
= kzalloc(fw
->size
, GFP_KERNEL
);
914 if (state
->microcode
== NULL
) {
915 printk(KERN_ERR
"drxd: firmware load failure: nomemory\n");
919 memcpy(state
->microcode
, fw
->data
, fw
->size
);
920 state
->microcode_length
= fw
->size
;
924 static int DownloadMicrocode(struct drxd_state
*state
,
925 const u8
*pMCImage
, u32 Length
)
936 pSrc
= (u8
*) pMCImage
;
937 Flags
= (pSrc
[0] << 8) | pSrc
[1];
939 offset
+= sizeof(u16
);
940 nBlocks
= (pSrc
[0] << 8) | pSrc
[1];
942 offset
+= sizeof(u16
);
944 for (i
= 0; i
< nBlocks
; i
++) {
945 Address
= (pSrc
[0] << 24) | (pSrc
[1] << 16) |
946 (pSrc
[2] << 8) | pSrc
[3];
948 offset
+= sizeof(u32
);
950 BlockSize
= ((pSrc
[0] << 8) | pSrc
[1]) * sizeof(u16
);
952 offset
+= sizeof(u16
);
954 Flags
= (pSrc
[0] << 8) | pSrc
[1];
956 offset
+= sizeof(u16
);
958 BlockCRC
= (pSrc
[0] << 8) | pSrc
[1];
960 offset
+= sizeof(u16
);
962 status
= WriteBlock(state
, Address
, BlockSize
,
963 pSrc
, DRX_I2C_CLEARCRC
);
973 static int HI_Command(struct drxd_state
*state
, u16 cmd
, u16
* pResult
)
979 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
, cmd
, 0);
985 if (nrRetries
> DRXD_MAX_RETRIES
) {
989 status
= Read16(state
, HI_RA_RAM_SRV_CMD__A
, &waitCmd
, 0);
990 } while (waitCmd
!= 0);
993 status
= Read16(state
, HI_RA_RAM_SRV_RES__A
, pResult
, 0);
997 static int HI_CfgCommand(struct drxd_state
*state
)
1001 mutex_lock(&state
->mutex
);
1002 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1003 Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, state
->hi_cfg_timing_div
, 0);
1004 Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, state
->hi_cfg_bridge_delay
, 0);
1005 Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, state
->hi_cfg_wakeup_key
, 0);
1006 Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, state
->hi_cfg_ctrl
, 0);
1008 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1010 if ((state
->hi_cfg_ctrl
& HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
) ==
1011 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
)
1012 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
,
1013 HI_RA_RAM_SRV_CMD_CONFIG
, 0);
1015 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_CONFIG
, 0);
1016 mutex_unlock(&state
->mutex
);
1020 static int InitHI(struct drxd_state
*state
)
1022 state
->hi_cfg_wakeup_key
= (state
->chip_adr
);
1023 /* port/bridge/power down ctrl */
1024 state
->hi_cfg_ctrl
= HI_RA_RAM_SRV_CFG_ACT_SLV0_ON
;
1025 return HI_CfgCommand(state
);
1028 static int HI_ResetCommand(struct drxd_state
*state
)
1032 mutex_lock(&state
->mutex
);
1033 status
= Write16(state
, HI_RA_RAM_SRV_RST_KEY__A
,
1034 HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1036 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_RESET
, 0);
1037 mutex_unlock(&state
->mutex
);
1042 static int DRX_ConfigureI2CBridge(struct drxd_state
*state
, int bEnableBridge
)
1044 state
->hi_cfg_ctrl
&= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M
);
1046 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_ON
;
1048 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF
;
1050 return HI_CfgCommand(state
);
1053 #define HI_TR_WRITE 0x9
1054 #define HI_TR_READ 0xA
1055 #define HI_TR_READ_WRITE 0xB
1056 #define HI_TR_BROADCAST 0x4
1059 static int AtomicReadBlock(struct drxd_state
*state
,
1060 u32 Addr
, u16 DataSize
, u8
*pData
, u8 Flags
)
1065 /* Parameter check */
1066 if ((!pData
) || ((DataSize
& 1) != 0))
1069 mutex_lock(&state
->mutex
);
1072 /* Instruct HI to read n bytes */
1073 /* TODO use proper names forthese egisters */
1074 status
= Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, (HI_TR_FUNC_ADDR
& 0xFFFF), 0);
1077 status
= Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, (u16
) (Addr
>> 16), 0);
1080 status
= Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, (u16
) (Addr
& 0xFFFF), 0);
1083 status
= Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, (u16
) ((DataSize
/ 2) - 1), 0);
1086 status
= Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, HI_TR_READ
, 0);
1090 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_EXECUTE
, 0);
1097 for (i
= 0; i
< (DataSize
/ 2); i
+= 1) {
1100 status
= Read16(state
, (HI_RA_RAM_USR_BEGIN__A
+ i
),
1104 pData
[2 * i
] = (u8
) (word
& 0xFF);
1105 pData
[(2 * i
) + 1] = (u8
) (word
>> 8);
1108 mutex_unlock(&state
->mutex
);
1112 static int AtomicReadReg32(struct drxd_state
*state
,
1113 u32 Addr
, u32
*pData
, u8 Flags
)
1115 u8 buf
[sizeof(u32
)];
1120 status
= AtomicReadBlock(state
, Addr
, sizeof(u32
), buf
, Flags
);
1121 *pData
= (((u32
) buf
[0]) << 0) +
1122 (((u32
) buf
[1]) << 8) +
1123 (((u32
) buf
[2]) << 16) + (((u32
) buf
[3]) << 24);
1128 static int StopAllProcessors(struct drxd_state
*state
)
1130 return Write16(state
, HI_COMM_EXEC__A
,
1131 SC_COMM_EXEC_CTL_STOP
, DRX_I2C_BROADCAST
);
1134 static int EnableAndResetMB(struct drxd_state
*state
)
1136 if (state
->type_A
) {
1137 /* disable? monitor bus observe @ EC_OC */
1138 Write16(state
, EC_OC_REG_OC_MON_SIO__A
, 0x0000, 0x0000);
1141 /* do inverse broadcast, followed by explicit write to HI */
1142 Write16(state
, HI_COMM_MB__A
, 0x0000, DRX_I2C_BROADCAST
);
1143 Write16(state
, HI_COMM_MB__A
, 0x0000, 0x0000);
1147 static int InitCC(struct drxd_state
*state
)
1149 if (state
->osc_clock_freq
== 0 ||
1150 state
->osc_clock_freq
> 20000 ||
1151 (state
->osc_clock_freq
% 4000) != 0) {
1152 printk(KERN_ERR
"invalid osc frequency %d\n", state
->osc_clock_freq
);
1156 Write16(state
, CC_REG_OSC_MODE__A
, CC_REG_OSC_MODE_M20
, 0);
1157 Write16(state
, CC_REG_PLL_MODE__A
, CC_REG_PLL_MODE_BYPASS_PLL
|
1158 CC_REG_PLL_MODE_PUMP_CUR_12
, 0);
1159 Write16(state
, CC_REG_REF_DIVIDE__A
, state
->osc_clock_freq
/ 4000, 0);
1160 Write16(state
, CC_REG_PWD_MODE__A
, CC_REG_PWD_MODE_DOWN_PLL
, 0);
1161 Write16(state
, CC_REG_UPDATE__A
, CC_REG_UPDATE_KEY
, 0);
1166 static int ResetECOD(struct drxd_state
*state
)
1171 status
= Write16(state
, EC_OD_REG_SYNC__A
, 0x0664, 0);
1173 status
= Write16(state
, B_EC_OD_REG_SYNC__A
, 0x0664, 0);
1176 status
= WriteTable(state
, state
->m_ResetECRAM
);
1178 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0001, 0);
1182 /* Configure PGA switch */
1184 static int SetCfgPga(struct drxd_state
*state
, int pgaSwitch
)
1193 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1196 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1197 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC
;
1198 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1203 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1206 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1207 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC
;
1208 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1212 /* enable fine and coarse gain, enable AAF,
1214 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN
, 0x0000);
1218 /* PGA off, bypass */
1221 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1224 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1225 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC
;
1226 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1231 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1234 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1235 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC
;
1236 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1240 /* disable fine and coarse gain, enable AAF,
1242 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
, 0x0000);
1250 static int InitFE(struct drxd_state
*state
)
1255 status
= WriteTable(state
, state
->m_InitFE_1
);
1259 if (state
->type_A
) {
1260 status
= Write16(state
, FE_AG_REG_AG_PGA_MODE__A
,
1261 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1265 status
= SetCfgPga(state
, 0);
1268 Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
,
1269 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1275 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, state
->m_FeAgRegAgAgcSio
, 0x0000);
1278 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
1282 status
= WriteTable(state
, state
->m_InitFE_2
);
1291 static int InitFT(struct drxd_state
*state
)
1294 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1297 return Write16(state
, FT_REG_COMM_EXEC__A
, 0x0001, 0x0000);
1300 static int SC_WaitForReady(struct drxd_state
*state
)
1305 for (i
= 0; i
< DRXD_MAX_RETRIES
; i
+= 1) {
1306 int status
= Read16(state
, SC_RA_RAM_CMD__A
, &curCmd
, 0);
1307 if (status
== 0 || curCmd
== 0)
1313 static int SC_SendCommand(struct drxd_state
*state
, u16 cmd
)
1318 Write16(state
, SC_RA_RAM_CMD__A
, cmd
, 0);
1319 SC_WaitForReady(state
);
1321 Read16(state
, SC_RA_RAM_CMD_ADDR__A
, &errCode
, 0);
1323 if (errCode
== 0xFFFF) {
1324 printk(KERN_ERR
"Command Error\n");
1331 static int SC_ProcStartCommand(struct drxd_state
*state
,
1332 u16 subCmd
, u16 param0
, u16 param1
)
1337 mutex_lock(&state
->mutex
);
1339 Read16(state
, SC_COMM_EXEC__A
, &scExec
, 0);
1344 SC_WaitForReady(state
);
1345 Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1346 Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1347 Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1349 SC_SendCommand(state
, SC_RA_RAM_CMD_PROC_START
);
1351 mutex_unlock(&state
->mutex
);
1355 static int SC_SetPrefParamCommand(struct drxd_state
*state
,
1356 u16 subCmd
, u16 param0
, u16 param1
)
1360 mutex_lock(&state
->mutex
);
1362 status
= SC_WaitForReady(state
);
1365 status
= Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1368 status
= Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1371 status
= Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1375 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_SET_PREF_PARAM
);
1379 mutex_unlock(&state
->mutex
);
1384 static int SC_GetOpParamCommand(struct drxd_state
*state
, u16
* result
)
1388 mutex_lock(&state
->mutex
);
1390 status
= SC_WaitForReady(state
);
1393 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_GET_OP_PARAM
);
1396 status
= Read16(state
, SC_RA_RAM_PARAM0__A
, result
, 0);
1400 mutex_unlock(&state
->mutex
);
1405 static int ConfigureMPEGOutput(struct drxd_state
*state
, int bEnableOutput
)
1410 u16 EcOcRegIprInvMpg
= 0;
1411 u16 EcOcRegOcModeLop
= 0;
1412 u16 EcOcRegOcModeHip
= 0;
1413 u16 EcOcRegOcMpgSio
= 0;
1415 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1417 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1418 if (bEnableOutput
) {
1420 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR
;
1422 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1424 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1426 EcOcRegOcModeLop
= state
->m_EcOcRegOcModeLop
;
1429 EcOcRegOcMpgSio
&= (~(EC_OC_REG_OC_MPG_SIO__M
));
1431 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1433 /* Don't Insert RS Byte */
1434 if (state
->insert_rs_byte
) {
1436 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
));
1438 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1440 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE
;
1443 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1445 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1447 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE
;
1450 /* Mode = Parallel */
1451 if (state
->enable_parallel
)
1453 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M
));
1456 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL
;
1459 /* EcOcRegIprInvMpg |= 0x00FF; */
1460 EcOcRegIprInvMpg
&= (~(0x00FF));
1462 /* Invert Error ( we don't use the pin ) */
1463 /* EcOcRegIprInvMpg |= 0x0100; */
1464 EcOcRegIprInvMpg
&= (~(0x0100));
1466 /* Invert Start ( we don't use the pin ) */
1467 /* EcOcRegIprInvMpg |= 0x0200; */
1468 EcOcRegIprInvMpg
&= (~(0x0200));
1470 /* Invert Valid ( we don't use the pin ) */
1471 /* EcOcRegIprInvMpg |= 0x0400; */
1472 EcOcRegIprInvMpg
&= (~(0x0400));
1475 /* EcOcRegIprInvMpg |= 0x0800; */
1476 EcOcRegIprInvMpg
&= (~(0x0800));
1478 /* EcOcRegOcModeLop =0x05; */
1479 status
= Write16(state
, EC_OC_REG_IPR_INV_MPG__A
, EcOcRegIprInvMpg
, 0);
1482 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, EcOcRegOcModeLop
, 0);
1485 status
= Write16(state
, EC_OC_REG_OC_MODE_HIP__A
, EcOcRegOcModeHip
, 0x0000);
1488 status
= Write16(state
, EC_OC_REG_OC_MPG_SIO__A
, EcOcRegOcMpgSio
, 0);
1495 static int SetDeviceTypeId(struct drxd_state
*state
)
1501 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1504 /* TODO: why twice? */
1505 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1508 printk(KERN_INFO
"drxd: deviceId = %04x\n", deviceId
);
1512 state
->diversity
= 0;
1513 if (deviceId
== 0) { /* on A2 only 3975 available */
1515 printk(KERN_INFO
"DRX3975D-A2\n");
1518 printk(KERN_INFO
"DRX397%dD-B1\n", deviceId
);
1521 state
->diversity
= 1;
1527 state
->diversity
= 1;
1541 /* Init Table selection */
1542 state
->m_InitAtomicRead
= DRXD_InitAtomicRead
;
1543 state
->m_InitSC
= DRXD_InitSC
;
1544 state
->m_ResetECRAM
= DRXD_ResetECRAM
;
1545 if (state
->type_A
) {
1546 state
->m_ResetCEFR
= DRXD_ResetCEFR
;
1547 state
->m_InitFE_1
= DRXD_InitFEA2_1
;
1548 state
->m_InitFE_2
= DRXD_InitFEA2_2
;
1549 state
->m_InitCP
= DRXD_InitCPA2
;
1550 state
->m_InitCE
= DRXD_InitCEA2
;
1551 state
->m_InitEQ
= DRXD_InitEQA2
;
1552 state
->m_InitEC
= DRXD_InitECA2
;
1553 if (load_firmware(state
, DRX_FW_FILENAME_A2
))
1556 state
->m_ResetCEFR
= NULL
;
1557 state
->m_InitFE_1
= DRXD_InitFEB1_1
;
1558 state
->m_InitFE_2
= DRXD_InitFEB1_2
;
1559 state
->m_InitCP
= DRXD_InitCPB1
;
1560 state
->m_InitCE
= DRXD_InitCEB1
;
1561 state
->m_InitEQ
= DRXD_InitEQB1
;
1562 state
->m_InitEC
= DRXD_InitECB1
;
1563 if (load_firmware(state
, DRX_FW_FILENAME_B1
))
1566 if (state
->diversity
) {
1567 state
->m_InitDiversityFront
= DRXD_InitDiversityFront
;
1568 state
->m_InitDiversityEnd
= DRXD_InitDiversityEnd
;
1569 state
->m_DisableDiversity
= DRXD_DisableDiversity
;
1570 state
->m_StartDiversityFront
= DRXD_StartDiversityFront
;
1571 state
->m_StartDiversityEnd
= DRXD_StartDiversityEnd
;
1572 state
->m_DiversityDelay8MHZ
= DRXD_DiversityDelay8MHZ
;
1573 state
->m_DiversityDelay6MHZ
= DRXD_DiversityDelay6MHZ
;
1575 state
->m_InitDiversityFront
= NULL
;
1576 state
->m_InitDiversityEnd
= NULL
;
1577 state
->m_DisableDiversity
= NULL
;
1578 state
->m_StartDiversityFront
= NULL
;
1579 state
->m_StartDiversityEnd
= NULL
;
1580 state
->m_DiversityDelay8MHZ
= NULL
;
1581 state
->m_DiversityDelay6MHZ
= NULL
;
1587 static int CorrectSysClockDeviation(struct drxd_state
*state
)
1593 u32 sysClockInHz
= 0;
1594 u32 sysClockFreq
= 0; /* in kHz */
1595 s16 oscClockDeviation
;
1599 /* Retrieve bandwidth and incr, sanity check */
1601 /* These accesses should be AtomicReadReg32, but that
1602 causes trouble (at least for diversity */
1603 status
= Read32(state
, LC_RA_RAM_IFINCR_NOM_L__A
, ((u32
*) &nomincr
), 0);
1606 status
= Read32(state
, FE_IF_REG_INCR0__A
, (u32
*) &incr
, 0);
1610 if (state
->type_A
) {
1611 if ((nomincr
- incr
< -500) || (nomincr
- incr
> 500))
1614 if ((nomincr
- incr
< -2000) || (nomincr
- incr
> 2000))
1618 switch (state
->param
.u
.ofdm
.bandwidth
) {
1619 case BANDWIDTH_8_MHZ
:
1620 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
1622 case BANDWIDTH_7_MHZ
:
1623 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
1625 case BANDWIDTH_6_MHZ
:
1626 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
1633 /* Compute new sysclock value
1634 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1636 sysClockInHz
= MulDiv32(incr
, bandwidth
, 1 << 21);
1637 sysClockFreq
= (u32
) (sysClockInHz
/ 1000);
1639 if ((sysClockInHz
% 1000) > 500)
1642 /* Compute clock deviation in ppm */
1643 oscClockDeviation
= (u16
) ((((s32
) (sysClockFreq
) -
1645 (state
->expected_sys_clock_freq
)) *
1648 (state
->expected_sys_clock_freq
));
1650 Diff
= oscClockDeviation
- state
->osc_clock_deviation
;
1651 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1652 if (Diff
>= -200 && Diff
<= 200) {
1653 state
->sys_clock_freq
= (u16
) sysClockFreq
;
1654 if (oscClockDeviation
!= state
->osc_clock_deviation
) {
1655 if (state
->config
.osc_deviation
) {
1656 state
->config
.osc_deviation(state
->priv
,
1659 state
->osc_clock_deviation
=
1663 /* switch OFF SRMM scan in SC */
1664 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DONT_SCAN
, 0);
1667 /* overrule FE_IF internal value for
1668 proper re-locking */
1669 status
= Write16(state
, SC_RA_RAM_IF_SAVE__AX
, state
->current_fe_if_incr
, 0);
1672 state
->cscd_state
= CSCD_SAVED
;
1679 static int DRX_Stop(struct drxd_state
*state
)
1683 if (state
->drxd_state
!= DRXD_STARTED
)
1687 if (state
->cscd_state
!= CSCD_SAVED
) {
1689 status
= DRX_GetLockStatus(state
, &lock
);
1694 status
= StopOC(state
);
1698 state
->drxd_state
= DRXD_STOPPED
;
1700 status
= ConfigureMPEGOutput(state
, 0);
1704 if (state
->type_A
) {
1705 /* Stop relevant processors off the device */
1706 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0x0000);
1710 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1713 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1717 /* Stop all processors except HI & CC & FE */
1718 status
= Write16(state
, B_SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1721 status
= Write16(state
, B_LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1724 status
= Write16(state
, B_FT_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1727 status
= Write16(state
, B_CP_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1730 status
= Write16(state
, B_CE_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1733 status
= Write16(state
, B_EQ_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1736 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0);
1745 int SetOperationMode(struct drxd_state
*state
, int oMode
)
1750 if (state
->drxd_state
!= DRXD_STOPPED
) {
1755 if (oMode
== state
->operation_mode
) {
1760 if (oMode
!= OM_Default
&& !state
->diversity
) {
1766 case OM_DVBT_Diversity_Front
:
1767 status
= WriteTable(state
, state
->m_InitDiversityFront
);
1769 case OM_DVBT_Diversity_End
:
1770 status
= WriteTable(state
, state
->m_InitDiversityEnd
);
1773 /* We need to check how to
1774 get DRXD out of diversity */
1776 status
= WriteTable(state
, state
->m_DisableDiversity
);
1782 state
->operation_mode
= oMode
;
1786 static int StartDiversity(struct drxd_state
*state
)
1792 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1793 status
= WriteTable(state
, state
->m_StartDiversityFront
);
1796 } else if (state
->operation_mode
== OM_DVBT_Diversity_End
) {
1797 status
= WriteTable(state
, state
->m_StartDiversityEnd
);
1800 if (state
->param
.u
.ofdm
.bandwidth
== BANDWIDTH_8_MHZ
) {
1801 status
= WriteTable(state
, state
->m_DiversityDelay8MHZ
);
1805 status
= WriteTable(state
, state
->m_DiversityDelay6MHZ
);
1810 status
= Read16(state
, B_EQ_REG_RC_SEL_CAR__A
, &rcControl
, 0);
1813 rcControl
&= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M
);
1814 rcControl
|= B_EQ_REG_RC_SEL_CAR_DIV_ON
|
1815 /* combining enabled */
1816 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC
|
1817 B_EQ_REG_RC_SEL_CAR_PASS_A_CC
|
1818 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC
;
1819 status
= Write16(state
, B_EQ_REG_RC_SEL_CAR__A
, rcControl
, 0);
1827 static int SetFrequencyShift(struct drxd_state
*state
,
1828 u32 offsetFreq
, int channelMirrored
)
1830 int negativeShift
= (state
->tuner_mirrors
== channelMirrored
);
1832 /* Handle all mirroring
1834 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1835 * feFsRegAddInc to 28 bits below
1836 * (if the result before masking is more than 28 bits, this means
1837 * that the ADC is mirroring.
1838 * The masking is in fact the aliasing of the ADC)
1842 /* Compute register value, unsigned computation */
1843 state
->fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
+
1845 1 << 28, state
->sys_clock_freq
);
1846 /* Remove integer part */
1847 state
->fe_fs_add_incr
&= 0x0FFFFFFFL
;
1849 state
->fe_fs_add_incr
= ((1 << 28) - state
->fe_fs_add_incr
);
1851 /* Save the frequency shift without tunerOffset compensation
1852 for CtrlGetChannel. */
1853 state
->org_fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
,
1854 1 << 28, state
->sys_clock_freq
);
1855 /* Remove integer part */
1856 state
->org_fe_fs_add_incr
&= 0x0FFFFFFFL
;
1858 state
->org_fe_fs_add_incr
= ((1L << 28) -
1859 state
->org_fe_fs_add_incr
);
1861 return Write32(state
, FE_FS_REG_ADD_INC_LOP__A
,
1862 state
->fe_fs_add_incr
, 0);
1865 static int SetCfgNoiseCalibration(struct drxd_state
*state
,
1866 struct SNoiseCal
*noiseCal
)
1872 status
= Read16(state
, SC_RA_RAM_BE_OPT_ENA__A
, &beOptEna
, 0);
1875 if (noiseCal
->cpOpt
) {
1876 beOptEna
|= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1878 beOptEna
&= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1879 status
= Write16(state
, CP_REG_AC_NEXP_OFFS__A
, noiseCal
->cpNexpOfs
, 0);
1883 status
= Write16(state
, SC_RA_RAM_BE_OPT_ENA__A
, beOptEna
, 0);
1887 if (!state
->type_A
) {
1888 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_2K__A
, noiseCal
->tdCal2k
, 0);
1891 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_8K__A
, noiseCal
->tdCal8k
, 0);
1900 static int DRX_Start(struct drxd_state
*state
, s32 off
)
1902 struct dvb_ofdm_parameters
*p
= &state
->param
.u
.ofdm
;
1905 u16 transmissionParams
= 0;
1906 u16 operationMode
= 0;
1907 u16 qpskTdTpsPwr
= 0;
1908 u16 qam16TdTpsPwr
= 0;
1909 u16 qam64TdTpsPwr
= 0;
1912 int mirrorFreqSpect
;
1914 u16 qpskSnCeGain
= 0;
1915 u16 qam16SnCeGain
= 0;
1916 u16 qam64SnCeGain
= 0;
1917 u16 qpskIsGainMan
= 0;
1918 u16 qam16IsGainMan
= 0;
1919 u16 qam64IsGainMan
= 0;
1920 u16 qpskIsGainExp
= 0;
1921 u16 qam16IsGainExp
= 0;
1922 u16 qam64IsGainExp
= 0;
1923 u16 bandwidthParam
= 0;
1926 off
= (off
- 500) / 1000;
1928 off
= (off
+ 500) / 1000;
1931 if (state
->drxd_state
!= DRXD_STOPPED
)
1933 status
= ResetECOD(state
);
1936 if (state
->type_A
) {
1937 status
= InitSC(state
);
1941 status
= InitFT(state
);
1944 status
= InitCP(state
);
1947 status
= InitCE(state
);
1950 status
= InitEQ(state
);
1953 status
= InitSC(state
);
1958 /* Restore current IF & RF AGC settings */
1960 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
1963 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
1967 mirrorFreqSpect
= (state
->param
.inversion
== INVERSION_ON
);
1969 switch (p
->transmission_mode
) {
1970 default: /* Not set, detect it automatically */
1971 operationMode
|= SC_RA_RAM_OP_AUTO_MODE__M
;
1972 /* fall through , try first guess DRX_FFTMODE_8K */
1973 case TRANSMISSION_MODE_8K
:
1974 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_8K
;
1975 if (state
->type_A
) {
1976 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_8K
, 0x0000);
1984 case TRANSMISSION_MODE_2K
:
1985 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_2K
;
1986 if (state
->type_A
) {
1987 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_2K
, 0x0000);
1997 switch (p
->guard_interval
) {
1998 case GUARD_INTERVAL_1_4
:
1999 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2001 case GUARD_INTERVAL_1_8
:
2002 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_8
;
2004 case GUARD_INTERVAL_1_16
:
2005 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_16
;
2007 case GUARD_INTERVAL_1_32
:
2008 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_32
;
2010 default: /* Not set, detect it automatically */
2011 operationMode
|= SC_RA_RAM_OP_AUTO_GUARD__M
;
2012 /* try first guess 1/4 */
2013 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2017 switch (p
->hierarchy_information
) {
2019 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A1
;
2020 if (state
->type_A
) {
2021 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0001, 0x0000);
2024 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0001, 0x0000);
2028 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2029 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA1
;
2030 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA1
;
2033 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2035 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2037 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2040 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2042 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2044 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2049 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A2
;
2050 if (state
->type_A
) {
2051 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0002, 0x0000);
2054 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0002, 0x0000);
2058 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2059 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA2
;
2060 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA2
;
2063 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2065 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE
;
2067 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE
;
2070 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2072 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE
;
2074 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE
;
2078 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A4
;
2079 if (state
->type_A
) {
2080 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0003, 0x0000);
2083 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0003, 0x0000);
2087 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2088 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA4
;
2089 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA4
;
2092 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2094 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE
;
2096 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE
;
2099 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2101 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE
;
2103 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE
;
2106 case HIERARCHY_AUTO
:
2108 /* Not set, detect it automatically, start with none */
2109 operationMode
|= SC_RA_RAM_OP_AUTO_HIER__M
;
2110 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_NO
;
2111 if (state
->type_A
) {
2112 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0000, 0x0000);
2115 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0000, 0x0000);
2119 qpskTdTpsPwr
= EQ_TD_TPS_PWR_QPSK
;
2120 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHAN
;
2121 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHAN
;
2124 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE
;
2126 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2128 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2131 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE
;
2133 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2135 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2143 switch (p
->constellation
) {
2145 operationMode
|= SC_RA_RAM_OP_AUTO_CONST__M
;
2146 /* fall through , try first guess
2147 DRX_CONSTELLATION_QAM64 */
2149 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM64
;
2150 if (state
->type_A
) {
2151 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0002, 0x0000);
2154 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_64QAM
, 0x0000);
2157 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0020, 0x0000);
2160 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0008, 0x0000);
2163 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0002, 0x0000);
2167 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam64TdTpsPwr
, 0x0000);
2170 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam64SnCeGain
, 0x0000);
2173 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam64IsGainMan
, 0x0000);
2176 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam64IsGainExp
, 0x0000);
2182 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QPSK
;
2183 if (state
->type_A
) {
2184 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0000, 0x0000);
2187 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_QPSK
, 0x0000);
2190 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2193 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0000, 0x0000);
2196 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2200 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qpskTdTpsPwr
, 0x0000);
2203 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qpskSnCeGain
, 0x0000);
2206 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qpskIsGainMan
, 0x0000);
2209 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qpskIsGainExp
, 0x0000);
2216 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM16
;
2217 if (state
->type_A
) {
2218 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0001, 0x0000);
2221 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_16QAM
, 0x0000);
2224 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2227 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0004, 0x0000);
2230 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2234 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam16TdTpsPwr
, 0x0000);
2237 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam16SnCeGain
, 0x0000);
2240 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam16IsGainMan
, 0x0000);
2243 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam16IsGainExp
, 0x0000);
2254 switch (DRX_CHANNEL_HIGH
) {
2256 case DRX_CHANNEL_AUTO
:
2257 case DRX_CHANNEL_LOW
:
2258 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_LO
;
2259 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_LO
, 0x0000);
2263 case DRX_CHANNEL_HIGH
:
2264 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_HI
;
2265 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_HI
, 0x0000);
2272 switch (p
->code_rate_HP
) {
2274 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_1_2
;
2275 if (state
->type_A
) {
2276 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C1_2
, 0x0000);
2282 operationMode
|= SC_RA_RAM_OP_AUTO_RATE__M
;
2284 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_2_3
;
2285 if (state
->type_A
) {
2286 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C2_3
, 0x0000);
2292 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_3_4
;
2293 if (state
->type_A
) {
2294 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C3_4
, 0x0000);
2300 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_5_6
;
2301 if (state
->type_A
) {
2302 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C5_6
, 0x0000);
2308 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_7_8
;
2309 if (state
->type_A
) {
2310 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C7_8
, 0x0000);
2320 /* First determine real bandwidth (Hz) */
2321 /* Also set delay for impulse noise cruncher (only A2) */
2322 /* Also set parameters for EC_OC fix, note
2323 EC_OC_REG_TMD_HIL_MAR is changed
2324 by SC for fix for some 8K,1/8 guard but is restored by
2327 switch (p
->bandwidth
) {
2328 case BANDWIDTH_AUTO
:
2329 case BANDWIDTH_8_MHZ
:
2330 /* (64/7)*(8/8)*1000000 */
2331 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
2334 status
= Write16(state
,
2335 FE_AG_REG_IND_DEL__A
, 50, 0x0000);
2337 case BANDWIDTH_7_MHZ
:
2338 /* (64/7)*(7/8)*1000000 */
2339 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
2340 bandwidthParam
= 0x4807; /*binary:0100 1000 0000 0111 */
2341 status
= Write16(state
,
2342 FE_AG_REG_IND_DEL__A
, 59, 0x0000);
2344 case BANDWIDTH_6_MHZ
:
2345 /* (64/7)*(6/8)*1000000 */
2346 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
2347 bandwidthParam
= 0x0F07; /*binary: 0000 1111 0000 0111 */
2348 status
= Write16(state
,
2349 FE_AG_REG_IND_DEL__A
, 71, 0x0000);
2357 status
= Write16(state
, SC_RA_RAM_BAND__A
, bandwidthParam
, 0x0000);
2363 status
= Read16(state
, SC_RA_RAM_CONFIG__A
, &sc_config
, 0);
2367 /* enable SLAVE mode in 2k 1/32 to
2368 prevent timing change glitches */
2369 if ((p
->transmission_mode
== TRANSMISSION_MODE_2K
) &&
2370 (p
->guard_interval
== GUARD_INTERVAL_1_32
)) {
2372 sc_config
|= SC_RA_RAM_CONFIG_SLAVE__M
;
2375 sc_config
&= ~SC_RA_RAM_CONFIG_SLAVE__M
;
2377 status
= Write16(state
, SC_RA_RAM_CONFIG__A
, sc_config
, 0);
2382 status
= SetCfgNoiseCalibration(state
, &state
->noise_cal
);
2386 if (state
->cscd_state
== CSCD_INIT
) {
2387 /* switch on SRMM scan in SC */
2388 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DO_SCAN
, 0x0000);
2391 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2392 state
->cscd_state
= CSCD_SET
;
2395 /* Now compute FE_IF_REG_INCR */
2396 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2397 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2398 feIfIncr
= MulDiv32(state
->sys_clock_freq
* 1000,
2399 (1ULL << 21), bandwidth
) - (1 << 23);
2400 status
= Write16(state
, FE_IF_REG_INCR0__A
, (u16
) (feIfIncr
& FE_IF_REG_INCR0__M
), 0x0000);
2403 status
= Write16(state
, FE_IF_REG_INCR1__A
, (u16
) ((feIfIncr
>> FE_IF_REG_INCR0__W
) & FE_IF_REG_INCR1__M
), 0x0000);
2406 /* Bandwidth setting done */
2408 /* Mirror & frequency offset */
2409 SetFrequencyShift(state
, off
, mirrorFreqSpect
);
2411 /* Start SC, write channel settings to SC */
2413 /* Enable SC after setting all other parameters */
2414 status
= Write16(state
, SC_COMM_STATE__A
, 0, 0x0000);
2417 status
= Write16(state
, SC_COMM_EXEC__A
, 1, 0x0000);
2421 /* Write SC parameter registers, operation mode */
2423 operationMode
= (SC_RA_RAM_OP_AUTO_MODE__M
|
2424 SC_RA_RAM_OP_AUTO_GUARD__M
|
2425 SC_RA_RAM_OP_AUTO_CONST__M
|
2426 SC_RA_RAM_OP_AUTO_HIER__M
|
2427 SC_RA_RAM_OP_AUTO_RATE__M
);
2429 status
= SC_SetPrefParamCommand(state
, 0x0000, transmissionParams
, operationMode
);
2433 /* Start correct processes to get in lock */
2434 status
= SC_ProcStartCommand(state
, SC_RA_RAM_PROC_LOCKTRACK
, SC_RA_RAM_SW_EVENT_RUN_NMASK__M
, SC_RA_RAM_LOCKTRACK_MIN
);
2438 status
= StartOC(state
);
2442 if (state
->operation_mode
!= OM_Default
) {
2443 status
= StartDiversity(state
);
2448 state
->drxd_state
= DRXD_STARTED
;
2454 static int CDRXD(struct drxd_state
*state
, u32 IntermediateFrequency
)
2456 u32 ulRfAgcOutputLevel
= 0xffffffff;
2457 u32 ulRfAgcSettleLevel
= 528; /* Optimum value for MT2060 */
2458 u32 ulRfAgcMinLevel
= 0; /* Currently unused */
2459 u32 ulRfAgcMaxLevel
= DRXD_FE_CTRL_MAX
; /* Currently unused */
2460 u32 ulRfAgcSpeed
= 0; /* Currently unused */
2461 u32 ulRfAgcMode
= 0; /*2; Off */
2462 u32 ulRfAgcR1
= 820;
2463 u32 ulRfAgcR2
= 2200;
2464 u32 ulRfAgcR3
= 150;
2465 u32 ulIfAgcMode
= 0; /* Auto */
2466 u32 ulIfAgcOutputLevel
= 0xffffffff;
2467 u32 ulIfAgcSettleLevel
= 0xffffffff;
2468 u32 ulIfAgcMinLevel
= 0xffffffff;
2469 u32 ulIfAgcMaxLevel
= 0xffffffff;
2470 u32 ulIfAgcSpeed
= 0xffffffff;
2471 u32 ulIfAgcR1
= 820;
2472 u32 ulIfAgcR2
= 2200;
2473 u32 ulIfAgcR3
= 150;
2474 u32 ulClock
= state
->config
.clock
;
2475 u32 ulSerialMode
= 0;
2476 u32 ulEcOcRegOcModeLop
= 4; /* Dynamic DTO source */
2477 u32 ulHiI2cDelay
= HI_I2C_DELAY
;
2478 u32 ulHiI2cBridgeDelay
= HI_I2C_BRIDGE_DELAY
;
2479 u32 ulHiI2cPatch
= 0;
2480 u32 ulEnvironment
= APPENV_PORTABLE
;
2481 u32 ulEnvironmentDiversity
= APPENV_MOBILE
;
2482 u32 ulIFFilter
= IFFILTER_SAW
;
2484 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2485 state
->if_agc_cfg
.outputLevel
= 0;
2486 state
->if_agc_cfg
.settleLevel
= 140;
2487 state
->if_agc_cfg
.minOutputLevel
= 0;
2488 state
->if_agc_cfg
.maxOutputLevel
= 1023;
2489 state
->if_agc_cfg
.speed
= 904;
2491 if (ulIfAgcMode
== 1 && ulIfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2492 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2493 state
->if_agc_cfg
.outputLevel
= (u16
) (ulIfAgcOutputLevel
);
2496 if (ulIfAgcMode
== 0 &&
2497 ulIfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2498 ulIfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2499 ulIfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2500 ulIfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2501 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2502 state
->if_agc_cfg
.settleLevel
= (u16
) (ulIfAgcSettleLevel
);
2503 state
->if_agc_cfg
.minOutputLevel
= (u16
) (ulIfAgcMinLevel
);
2504 state
->if_agc_cfg
.maxOutputLevel
= (u16
) (ulIfAgcMaxLevel
);
2505 state
->if_agc_cfg
.speed
= (u16
) (ulIfAgcSpeed
);
2508 state
->if_agc_cfg
.R1
= (u16
) (ulIfAgcR1
);
2509 state
->if_agc_cfg
.R2
= (u16
) (ulIfAgcR2
);
2510 state
->if_agc_cfg
.R3
= (u16
) (ulIfAgcR3
);
2512 state
->rf_agc_cfg
.R1
= (u16
) (ulRfAgcR1
);
2513 state
->rf_agc_cfg
.R2
= (u16
) (ulRfAgcR2
);
2514 state
->rf_agc_cfg
.R3
= (u16
) (ulRfAgcR3
);
2516 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2517 /* rest of the RFAgcCfg structure currently unused */
2518 if (ulRfAgcMode
== 1 && ulRfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2519 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2520 state
->rf_agc_cfg
.outputLevel
= (u16
) (ulRfAgcOutputLevel
);
2523 if (ulRfAgcMode
== 0 &&
2524 ulRfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2525 ulRfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2526 ulRfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2527 ulRfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2528 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2529 state
->rf_agc_cfg
.settleLevel
= (u16
) (ulRfAgcSettleLevel
);
2530 state
->rf_agc_cfg
.minOutputLevel
= (u16
) (ulRfAgcMinLevel
);
2531 state
->rf_agc_cfg
.maxOutputLevel
= (u16
) (ulRfAgcMaxLevel
);
2532 state
->rf_agc_cfg
.speed
= (u16
) (ulRfAgcSpeed
);
2535 if (ulRfAgcMode
== 2)
2536 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_OFF
;
2538 if (ulEnvironment
<= 2)
2539 state
->app_env_default
= (enum app_env
)
2541 if (ulEnvironmentDiversity
<= 2)
2542 state
->app_env_diversity
= (enum app_env
)
2543 (ulEnvironmentDiversity
);
2545 if (ulIFFilter
== IFFILTER_DISCRETE
) {
2546 /* discrete filter */
2547 state
->noise_cal
.cpOpt
= 0;
2548 state
->noise_cal
.cpNexpOfs
= 40;
2549 state
->noise_cal
.tdCal2k
= -40;
2550 state
->noise_cal
.tdCal8k
= -24;
2553 state
->noise_cal
.cpOpt
= 1;
2554 state
->noise_cal
.cpNexpOfs
= 0;
2555 state
->noise_cal
.tdCal2k
= -21;
2556 state
->noise_cal
.tdCal8k
= -24;
2558 state
->m_EcOcRegOcModeLop
= (u16
) (ulEcOcRegOcModeLop
);
2560 state
->chip_adr
= (state
->config
.demod_address
<< 1) | 1;
2561 switch (ulHiI2cPatch
) {
2563 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_1
;
2566 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_3
;
2569 state
->m_HiI2cPatch
= NULL
;
2572 /* modify tuner and clock attributes */
2573 state
->intermediate_freq
= (u16
) (IntermediateFrequency
/ 1000);
2574 /* expected system clock frequency in kHz */
2575 state
->expected_sys_clock_freq
= 48000;
2576 /* real system clock frequency in kHz */
2577 state
->sys_clock_freq
= 48000;
2578 state
->osc_clock_freq
= (u16
) ulClock
;
2579 state
->osc_clock_deviation
= 0;
2580 state
->cscd_state
= CSCD_INIT
;
2581 state
->drxd_state
= DRXD_UNINITIALIZED
;
2585 state
->tuner_mirrors
= 0;
2587 /* modify MPEG output attributes */
2588 state
->insert_rs_byte
= state
->config
.insert_rs_byte
;
2589 state
->enable_parallel
= (ulSerialMode
!= 1);
2591 /* Timing div, 250ns/Psys */
2592 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2594 state
->hi_cfg_timing_div
= (u16
) ((state
->sys_clock_freq
/ 1000) *
2595 ulHiI2cDelay
) / 1000;
2596 /* Bridge delay, uses oscilator clock */
2597 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2598 state
->hi_cfg_bridge_delay
= (u16
) ((state
->osc_clock_freq
/ 1000) *
2599 ulHiI2cBridgeDelay
) / 1000;
2601 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2602 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2603 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2607 int DRXD_init(struct drxd_state
*state
, const u8
* fw
, u32 fw_size
)
2612 if (state
->init_done
)
2615 CDRXD(state
, state
->config
.IF
? state
->config
.IF
: 36000000);
2618 state
->operation_mode
= OM_Default
;
2620 status
= SetDeviceTypeId(state
);
2624 /* Apply I2c address patch to B1 */
2625 if (!state
->type_A
&& state
->m_HiI2cPatch
!= NULL
)
2626 status
= WriteTable(state
, state
->m_HiI2cPatch
);
2630 if (state
->type_A
) {
2631 /* HI firmware patch for UIO readout,
2632 avoid clearing of result register */
2633 status
= Write16(state
, 0x43012D, 0x047f, 0);
2638 status
= HI_ResetCommand(state
);
2642 status
= StopAllProcessors(state
);
2645 status
= InitCC(state
);
2649 state
->osc_clock_deviation
= 0;
2651 if (state
->config
.osc_deviation
)
2652 state
->osc_clock_deviation
=
2653 state
->config
.osc_deviation(state
->priv
, 0, 0);
2655 /* Handle clock deviation */
2657 s32 devA
= (s32
) (state
->osc_clock_deviation
) *
2658 (s32
) (state
->expected_sys_clock_freq
);
2659 /* deviation in kHz */
2660 s32 deviation
= (devA
/ (1000000L));
2661 /* rounding, signed */
2666 if ((devB
* (devA
% 1000000L) > 1000000L)) {
2668 deviation
+= (devB
/ 2);
2671 state
->sys_clock_freq
=
2672 (u16
) ((state
->expected_sys_clock_freq
) +
2675 status
= InitHI(state
);
2678 status
= InitAtomicRead(state
);
2682 status
= EnableAndResetMB(state
);
2686 status
= ResetCEFR(state
);
2691 status
= DownloadMicrocode(state
, fw
, fw_size
);
2695 status
= DownloadMicrocode(state
, state
->microcode
, state
->microcode_length
);
2701 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_PRO
;
2702 SetCfgPga(state
, 0); /* PGA = 0 dB */
2704 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2707 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2709 status
= InitFE(state
);
2712 status
= InitFT(state
);
2715 status
= InitCP(state
);
2718 status
= InitCE(state
);
2721 status
= InitEQ(state
);
2724 status
= InitEC(state
);
2727 status
= InitSC(state
);
2731 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
2734 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
2738 state
->cscd_state
= CSCD_INIT
;
2739 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2742 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2746 driverVersion
= (((VERSION_MAJOR
/ 10) << 4) +
2747 (VERSION_MAJOR
% 10)) << 24;
2748 driverVersion
+= (((VERSION_MINOR
/ 10) << 4) +
2749 (VERSION_MINOR
% 10)) << 16;
2750 driverVersion
+= ((VERSION_PATCH
/ 1000) << 12) +
2751 ((VERSION_PATCH
/ 100) << 8) +
2752 ((VERSION_PATCH
/ 10) << 4) + (VERSION_PATCH
% 10);
2754 status
= Write32(state
, SC_RA_RAM_DRIVER_VERSION__AX
, driverVersion
, 0);
2758 status
= StopOC(state
);
2762 state
->drxd_state
= DRXD_STOPPED
;
2763 state
->init_done
= 1;
2769 int DRXD_status(struct drxd_state
*state
, u32
* pLockStatus
)
2771 DRX_GetLockStatus(state
, pLockStatus
);
2773 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2774 if (*pLockStatus
& DRX_LOCK_FEC
) {
2775 ConfigureMPEGOutput(state
, 1);
2776 /* Get status again, in case we have MPEG lock now */
2777 /*DRX_GetLockStatus(state, pLockStatus); */
2783 /****************************************************************************/
2784 /****************************************************************************/
2785 /****************************************************************************/
2787 static int drxd_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
2789 struct drxd_state
*state
= fe
->demodulator_priv
;
2793 res
= ReadIFAgc(state
, &value
);
2797 *strength
= 0xffff - (value
<< 4);
2801 static int drxd_read_status(struct dvb_frontend
*fe
, fe_status_t
* status
)
2803 struct drxd_state
*state
= fe
->demodulator_priv
;
2806 DRXD_status(state
, &lock
);
2808 /* No MPEG lock in V255 firmware, bug ? */
2810 if (lock
& DRX_LOCK_MPEG
)
2811 *status
|= FE_HAS_LOCK
;
2813 if (lock
& DRX_LOCK_FEC
)
2814 *status
|= FE_HAS_LOCK
;
2816 if (lock
& DRX_LOCK_FEC
)
2817 *status
|= FE_HAS_VITERBI
| FE_HAS_SYNC
;
2818 if (lock
& DRX_LOCK_DEMOD
)
2819 *status
|= FE_HAS_CARRIER
| FE_HAS_SIGNAL
;
2824 static int drxd_init(struct dvb_frontend
*fe
)
2826 struct drxd_state
*state
= fe
->demodulator_priv
;
2829 /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2830 return DRXD_init(state
, 0, 0);
2832 err
= DRXD_init(state
, state
->fw
->data
, state
->fw
->size
);
2833 release_firmware(state
->fw
);
2837 int drxd_config_i2c(struct dvb_frontend
*fe
, int onoff
)
2839 struct drxd_state
*state
= fe
->demodulator_priv
;
2841 if (state
->config
.disable_i2c_gate_ctrl
== 1)
2844 return DRX_ConfigureI2CBridge(state
, onoff
);
2846 EXPORT_SYMBOL(drxd_config_i2c
);
2848 static int drxd_get_tune_settings(struct dvb_frontend
*fe
,
2849 struct dvb_frontend_tune_settings
*sets
)
2851 sets
->min_delay_ms
= 10000;
2852 sets
->max_drift
= 0;
2853 sets
->step_size
= 0;
2857 static int drxd_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
2863 static int drxd_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
2869 static int drxd_read_ucblocks(struct dvb_frontend
*fe
, u32
* ucblocks
)
2875 static int drxd_sleep(struct dvb_frontend
*fe
)
2877 struct drxd_state
*state
= fe
->demodulator_priv
;
2879 ConfigureMPEGOutput(state
, 0);
2883 static int drxd_get_frontend(struct dvb_frontend
*fe
,
2884 struct dvb_frontend_parameters
*param
)
2889 static int drxd_i2c_gate_ctrl(struct dvb_frontend
*fe
, int enable
)
2891 return drxd_config_i2c(fe
, enable
);
2894 static int drxd_set_frontend(struct dvb_frontend
*fe
,
2895 struct dvb_frontend_parameters
*param
)
2897 struct drxd_state
*state
= fe
->demodulator_priv
;
2900 state
->param
= *param
;
2903 if (fe
->ops
.tuner_ops
.set_params
) {
2904 fe
->ops
.tuner_ops
.set_params(fe
, param
);
2905 if (fe
->ops
.i2c_gate_ctrl
)
2906 fe
->ops
.i2c_gate_ctrl(fe
, 0);
2909 /* FIXME: move PLL drivers */
2910 if (state
->config
.pll_set
&&
2911 state
->config
.pll_set(state
->priv
, param
,
2912 state
->config
.pll_address
,
2913 state
->config
.demoda_address
, &off
) < 0) {
2914 printk(KERN_ERR
"Error in pll_set\n");
2920 return DRX_Start(state
, off
);
2923 static void drxd_release(struct dvb_frontend
*fe
)
2925 struct drxd_state
*state
= fe
->demodulator_priv
;
2930 static struct dvb_frontend_ops drxd_ops
= {
2933 .name
= "Micronas DRXD DVB-T",
2935 .frequency_min
= 47125000,
2936 .frequency_max
= 855250000,
2937 .frequency_stepsize
= 166667,
2938 .frequency_tolerance
= 0,
2939 .caps
= FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
|
2940 FE_CAN_FEC_3_4
| FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
|
2942 FE_CAN_QAM_16
| FE_CAN_QAM_64
|
2944 FE_CAN_TRANSMISSION_MODE_AUTO
|
2945 FE_CAN_GUARD_INTERVAL_AUTO
|
2946 FE_CAN_HIERARCHY_AUTO
| FE_CAN_RECOVER
| FE_CAN_MUTE_TS
},
2948 .release
= drxd_release
,
2950 .sleep
= drxd_sleep
,
2951 .i2c_gate_ctrl
= drxd_i2c_gate_ctrl
,
2953 .set_frontend
= drxd_set_frontend
,
2954 .get_frontend
= drxd_get_frontend
,
2955 .get_tune_settings
= drxd_get_tune_settings
,
2957 .read_status
= drxd_read_status
,
2958 .read_ber
= drxd_read_ber
,
2959 .read_signal_strength
= drxd_read_signal_strength
,
2960 .read_snr
= drxd_read_snr
,
2961 .read_ucblocks
= drxd_read_ucblocks
,
2964 struct dvb_frontend
*drxd_attach(const struct drxd_config
*config
,
2965 void *priv
, struct i2c_adapter
*i2c
,
2968 struct drxd_state
*state
= NULL
;
2970 state
= kmalloc(sizeof(struct drxd_state
), GFP_KERNEL
);
2973 memset(state
, 0, sizeof(*state
));
2975 memcpy(&state
->ops
, &drxd_ops
, sizeof(struct dvb_frontend_ops
));
2977 state
->config
= *config
;
2981 mutex_init(&state
->mutex
);
2983 if (Read16(state
, 0, 0, 0) < 0)
2986 memcpy(&state
->frontend
.ops
, &drxd_ops
,
2987 sizeof(struct dvb_frontend_ops
));
2988 state
->frontend
.demodulator_priv
= state
;
2989 ConfigureMPEGOutput(state
, 0);
2990 return &state
->frontend
;
2993 printk(KERN_ERR
"drxd: not found\n");
2997 EXPORT_SYMBOL(drxd_attach
);
2999 MODULE_DESCRIPTION("DRXD driver");
3000 MODULE_AUTHOR("Micronas");
3001 MODULE_LICENSE("GPL");