compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / arch / ia64 / mm / contig.c
blob1516d1dc11fd3662d8d1b70497989f84750546d2
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
15 * memory.
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
28 #include <asm/mca.h>
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
32 #endif
34 /**
35 * show_mem - give short summary of memory stats
37 * Shows a simple page count of reserved and used pages in the system.
38 * For discontig machines, it does this on a per-pgdat basis.
40 void show_mem(unsigned int filter)
42 int i, total_reserved = 0;
43 int total_shared = 0, total_cached = 0;
44 unsigned long total_present = 0;
45 pg_data_t *pgdat;
47 printk(KERN_INFO "Mem-info:\n");
48 show_free_areas(filter);
49 printk(KERN_INFO "Node memory in pages:\n");
50 for_each_online_pgdat(pgdat) {
51 unsigned long present;
52 unsigned long flags;
53 int shared = 0, cached = 0, reserved = 0;
54 int nid = pgdat->node_id;
56 if (skip_free_areas_node(filter, nid))
57 continue;
58 pgdat_resize_lock(pgdat, &flags);
59 present = pgdat->node_present_pages;
60 for(i = 0; i < pgdat->node_spanned_pages; i++) {
61 struct page *page;
62 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
63 touch_nmi_watchdog();
64 if (pfn_valid(pgdat->node_start_pfn + i))
65 page = pfn_to_page(pgdat->node_start_pfn + i);
66 else {
67 #ifdef CONFIG_VIRTUAL_MEM_MAP
68 if (max_gap < LARGE_GAP)
69 continue;
70 #endif
71 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
72 continue;
74 if (PageReserved(page))
75 reserved++;
76 else if (PageSwapCache(page))
77 cached++;
78 else if (page_count(page))
79 shared += page_count(page)-1;
81 pgdat_resize_unlock(pgdat, &flags);
82 total_present += present;
83 total_reserved += reserved;
84 total_cached += cached;
85 total_shared += shared;
86 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
87 "shrd: %10d, swpd: %10d\n", nid,
88 present, reserved, shared, cached);
90 printk(KERN_INFO "%ld pages of RAM\n", total_present);
91 printk(KERN_INFO "%d reserved pages\n", total_reserved);
92 printk(KERN_INFO "%d pages shared\n", total_shared);
93 printk(KERN_INFO "%d pages swap cached\n", total_cached);
94 printk(KERN_INFO "Total of %ld pages in page table cache\n",
95 quicklist_total_size());
96 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
100 /* physical address where the bootmem map is located */
101 unsigned long bootmap_start;
104 * find_bootmap_location - callback to find a memory area for the bootmap
105 * @start: start of region
106 * @end: end of region
107 * @arg: unused callback data
109 * Find a place to put the bootmap and return its starting address in
110 * bootmap_start. This address must be page-aligned.
112 static int __init
113 find_bootmap_location (u64 start, u64 end, void *arg)
115 u64 needed = *(unsigned long *)arg;
116 u64 range_start, range_end, free_start;
117 int i;
119 #if IGNORE_PFN0
120 if (start == PAGE_OFFSET) {
121 start += PAGE_SIZE;
122 if (start >= end)
123 return 0;
125 #endif
127 free_start = PAGE_OFFSET;
129 for (i = 0; i < num_rsvd_regions; i++) {
130 range_start = max(start, free_start);
131 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
133 free_start = PAGE_ALIGN(rsvd_region[i].end);
135 if (range_end <= range_start)
136 continue; /* skip over empty range */
138 if (range_end - range_start >= needed) {
139 bootmap_start = __pa(range_start);
140 return -1; /* done */
143 /* nothing more available in this segment */
144 if (range_end == end)
145 return 0;
147 return 0;
150 #ifdef CONFIG_SMP
151 static void *cpu_data;
153 * per_cpu_init - setup per-cpu variables
155 * Allocate and setup per-cpu data areas.
157 void * __cpuinit
158 per_cpu_init (void)
160 static bool first_time = true;
161 void *cpu0_data = __cpu0_per_cpu;
162 unsigned int cpu;
164 if (!first_time)
165 goto skip;
166 first_time = false;
169 * get_free_pages() cannot be used before cpu_init() done.
170 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
171 * to avoid that AP calls get_zeroed_page().
173 for_each_possible_cpu(cpu) {
174 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
176 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
177 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
178 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
181 * percpu area for cpu0 is moved from the __init area
182 * which is setup by head.S and used till this point.
183 * Update ar.k3. This move is ensures that percpu
184 * area for cpu0 is on the correct node and its
185 * virtual address isn't insanely far from other
186 * percpu areas which is important for congruent
187 * percpu allocator.
189 if (cpu == 0)
190 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
191 (unsigned long)__per_cpu_start);
193 cpu_data += PERCPU_PAGE_SIZE;
195 skip:
196 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
199 static inline void
200 alloc_per_cpu_data(void)
202 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
203 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
207 * setup_per_cpu_areas - setup percpu areas
209 * Arch code has already allocated and initialized percpu areas. All
210 * this function has to do is to teach the determined layout to the
211 * dynamic percpu allocator, which happens to be more complex than
212 * creating whole new ones using helpers.
214 void __init
215 setup_per_cpu_areas(void)
217 struct pcpu_alloc_info *ai;
218 struct pcpu_group_info *gi;
219 unsigned int cpu;
220 ssize_t static_size, reserved_size, dyn_size;
221 int rc;
223 ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
224 if (!ai)
225 panic("failed to allocate pcpu_alloc_info");
226 gi = &ai->groups[0];
228 /* units are assigned consecutively to possible cpus */
229 for_each_possible_cpu(cpu)
230 gi->cpu_map[gi->nr_units++] = cpu;
232 /* set parameters */
233 static_size = __per_cpu_end - __per_cpu_start;
234 reserved_size = PERCPU_MODULE_RESERVE;
235 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
236 if (dyn_size < 0)
237 panic("percpu area overflow static=%zd reserved=%zd\n",
238 static_size, reserved_size);
240 ai->static_size = static_size;
241 ai->reserved_size = reserved_size;
242 ai->dyn_size = dyn_size;
243 ai->unit_size = PERCPU_PAGE_SIZE;
244 ai->atom_size = PAGE_SIZE;
245 ai->alloc_size = PERCPU_PAGE_SIZE;
247 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
248 if (rc)
249 panic("failed to setup percpu area (err=%d)", rc);
251 pcpu_free_alloc_info(ai);
253 #else
254 #define alloc_per_cpu_data() do { } while (0)
255 #endif /* CONFIG_SMP */
258 * find_memory - setup memory map
260 * Walk the EFI memory map and find usable memory for the system, taking
261 * into account reserved areas.
263 void __init
264 find_memory (void)
266 unsigned long bootmap_size;
268 reserve_memory();
270 /* first find highest page frame number */
271 min_low_pfn = ~0UL;
272 max_low_pfn = 0;
273 efi_memmap_walk(find_max_min_low_pfn, NULL);
274 max_pfn = max_low_pfn;
275 /* how many bytes to cover all the pages */
276 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
278 /* look for a location to hold the bootmap */
279 bootmap_start = ~0UL;
280 efi_memmap_walk(find_bootmap_location, &bootmap_size);
281 if (bootmap_start == ~0UL)
282 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
284 bootmap_size = init_bootmem_node(NODE_DATA(0),
285 (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
287 /* Free all available memory, then mark bootmem-map as being in use. */
288 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
289 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
291 find_initrd();
293 alloc_per_cpu_data();
296 static int count_pages(u64 start, u64 end, void *arg)
298 unsigned long *count = arg;
300 *count += (end - start) >> PAGE_SHIFT;
301 return 0;
305 * Set up the page tables.
308 void __init
309 paging_init (void)
311 unsigned long max_dma;
312 unsigned long max_zone_pfns[MAX_NR_ZONES];
314 num_physpages = 0;
315 efi_memmap_walk(count_pages, &num_physpages);
317 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
318 #ifdef CONFIG_ZONE_DMA
319 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
320 max_zone_pfns[ZONE_DMA] = max_dma;
321 #endif
322 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
324 #ifdef CONFIG_VIRTUAL_MEM_MAP
325 efi_memmap_walk(filter_memory, register_active_ranges);
326 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
327 if (max_gap < LARGE_GAP) {
328 vmem_map = (struct page *) 0;
329 free_area_init_nodes(max_zone_pfns);
330 } else {
331 unsigned long map_size;
333 /* allocate virtual_mem_map */
335 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
336 sizeof(struct page));
337 VMALLOC_END -= map_size;
338 vmem_map = (struct page *) VMALLOC_END;
339 efi_memmap_walk(create_mem_map_page_table, NULL);
342 * alloc_node_mem_map makes an adjustment for mem_map
343 * which isn't compatible with vmem_map.
345 NODE_DATA(0)->node_mem_map = vmem_map +
346 find_min_pfn_with_active_regions();
347 free_area_init_nodes(max_zone_pfns);
349 printk("Virtual mem_map starts at 0x%p\n", mem_map);
351 #else /* !CONFIG_VIRTUAL_MEM_MAP */
352 memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
353 free_area_init_nodes(max_zone_pfns);
354 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
355 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));