compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / arch / x86 / kernel / cpu / perf_event.c
blob5adce1040b118c597daf067e675896eb2100f808
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
35 #include "perf_event.h"
37 #if 0
38 #undef wrmsrl
39 #define wrmsrl(msr, val) \
40 do { \
41 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 (unsigned long)(val)); \
43 native_write_msr((msr), (u32)((u64)(val)), \
44 (u32)((u64)(val) >> 32)); \
45 } while (0)
46 #endif
48 struct x86_pmu x86_pmu __read_mostly;
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 s64 delta;
76 if (idx == X86_PMC_IDX_FIXED_BTS)
77 return 0;
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdmsrl(hwc->event_base, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
122 return 0;
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
130 reg->idx = er->idx;
131 reg->config = event->attr.config1;
132 reg->reg = er->msr;
133 break;
135 return 0;
138 static atomic_t active_events;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
141 #ifdef CONFIG_X86_LOCAL_APIC
143 static bool reserve_pmc_hardware(void)
145 int i;
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
157 return true;
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
163 i = x86_pmu.num_counters;
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
169 return false;
172 static void release_pmc_hardware(void)
174 int i;
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
182 #else
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
187 #endif
189 static bool check_hw_exists(void)
191 u64 val, val_new = 0;
192 int i, reg, ret = 0;
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
198 for (i = 0; i < x86_pmu.num_counters; i++) {
199 reg = x86_pmu_config_addr(i);
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
204 goto bios_fail;
207 if (x86_pmu.num_counters_fixed) {
208 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
209 ret = rdmsrl_safe(reg, &val);
210 if (ret)
211 goto msr_fail;
212 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
213 if (val & (0x03 << i*4))
214 goto bios_fail;
219 * Now write a value and read it back to see if it matches,
220 * this is needed to detect certain hardware emulators (qemu/kvm)
221 * that don't trap on the MSR access and always return 0s.
223 val = 0xabcdUL;
224 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
225 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
226 if (ret || val != val_new)
227 goto msr_fail;
229 return true;
231 bios_fail:
233 * We still allow the PMU driver to operate:
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238 return true;
240 msr_fail:
241 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 return false;
246 static void hw_perf_event_destroy(struct perf_event *event)
248 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
249 release_pmc_hardware();
250 release_ds_buffers();
251 mutex_unlock(&pmc_reserve_mutex);
255 static inline int x86_pmu_initialized(void)
257 return x86_pmu.handle_irq != NULL;
260 static inline int
261 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 struct perf_event_attr *attr = &event->attr;
264 unsigned int cache_type, cache_op, cache_result;
265 u64 config, val;
267 config = attr->config;
269 cache_type = (config >> 0) & 0xff;
270 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
271 return -EINVAL;
273 cache_op = (config >> 8) & 0xff;
274 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
275 return -EINVAL;
277 cache_result = (config >> 16) & 0xff;
278 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
279 return -EINVAL;
281 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283 if (val == 0)
284 return -ENOENT;
286 if (val == -1)
287 return -EINVAL;
289 hwc->config |= val;
290 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
291 return x86_pmu_extra_regs(val, event);
294 int x86_setup_perfctr(struct perf_event *event)
296 struct perf_event_attr *attr = &event->attr;
297 struct hw_perf_event *hwc = &event->hw;
298 u64 config;
300 if (!is_sampling_event(event)) {
301 hwc->sample_period = x86_pmu.max_period;
302 hwc->last_period = hwc->sample_period;
303 local64_set(&hwc->period_left, hwc->sample_period);
304 } else {
306 * If we have a PMU initialized but no APIC
307 * interrupts, we cannot sample hardware
308 * events (user-space has to fall back and
309 * sample via a hrtimer based software event):
311 if (!x86_pmu.apic)
312 return -EOPNOTSUPP;
315 if (attr->type == PERF_TYPE_RAW)
316 return x86_pmu_extra_regs(event->attr.config, event);
318 if (attr->type == PERF_TYPE_HW_CACHE)
319 return set_ext_hw_attr(hwc, event);
321 if (attr->config >= x86_pmu.max_events)
322 return -EINVAL;
325 * The generic map:
327 config = x86_pmu.event_map(attr->config);
329 if (config == 0)
330 return -ENOENT;
332 if (config == -1LL)
333 return -EINVAL;
336 * Branch tracing:
338 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
339 !attr->freq && hwc->sample_period == 1) {
340 /* BTS is not supported by this architecture. */
341 if (!x86_pmu.bts_active)
342 return -EOPNOTSUPP;
344 /* BTS is currently only allowed for user-mode. */
345 if (!attr->exclude_kernel)
346 return -EOPNOTSUPP;
349 hwc->config |= config;
351 return 0;
354 int x86_pmu_hw_config(struct perf_event *event)
356 if (event->attr.precise_ip) {
357 int precise = 0;
359 /* Support for constant skid */
360 if (x86_pmu.pebs_active) {
361 precise++;
363 /* Support for IP fixup */
364 if (x86_pmu.lbr_nr)
365 precise++;
368 if (event->attr.precise_ip > precise)
369 return -EOPNOTSUPP;
373 * Generate PMC IRQs:
374 * (keep 'enabled' bit clear for now)
376 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
379 * Count user and OS events unless requested not to
381 if (!event->attr.exclude_user)
382 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
383 if (!event->attr.exclude_kernel)
384 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
386 if (event->attr.type == PERF_TYPE_RAW)
387 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
389 return x86_setup_perfctr(event);
393 * Setup the hardware configuration for a given attr_type
395 static int __x86_pmu_event_init(struct perf_event *event)
397 int err;
399 if (!x86_pmu_initialized())
400 return -ENODEV;
402 err = 0;
403 if (!atomic_inc_not_zero(&active_events)) {
404 mutex_lock(&pmc_reserve_mutex);
405 if (atomic_read(&active_events) == 0) {
406 if (!reserve_pmc_hardware())
407 err = -EBUSY;
408 else
409 reserve_ds_buffers();
411 if (!err)
412 atomic_inc(&active_events);
413 mutex_unlock(&pmc_reserve_mutex);
415 if (err)
416 return err;
418 event->destroy = hw_perf_event_destroy;
420 event->hw.idx = -1;
421 event->hw.last_cpu = -1;
422 event->hw.last_tag = ~0ULL;
424 /* mark unused */
425 event->hw.extra_reg.idx = EXTRA_REG_NONE;
427 return x86_pmu.hw_config(event);
430 void x86_pmu_disable_all(void)
432 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
433 int idx;
435 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
436 u64 val;
438 if (!test_bit(idx, cpuc->active_mask))
439 continue;
440 rdmsrl(x86_pmu_config_addr(idx), val);
441 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
442 continue;
443 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
444 wrmsrl(x86_pmu_config_addr(idx), val);
448 static void x86_pmu_disable(struct pmu *pmu)
450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
452 if (!x86_pmu_initialized())
453 return;
455 if (!cpuc->enabled)
456 return;
458 cpuc->n_added = 0;
459 cpuc->enabled = 0;
460 barrier();
462 x86_pmu.disable_all();
465 void x86_pmu_enable_all(int added)
467 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
468 int idx;
470 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
471 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
473 if (!test_bit(idx, cpuc->active_mask))
474 continue;
476 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
480 static struct pmu pmu;
482 static inline int is_x86_event(struct perf_event *event)
484 return event->pmu == &pmu;
488 * Event scheduler state:
490 * Assign events iterating over all events and counters, beginning
491 * with events with least weights first. Keep the current iterator
492 * state in struct sched_state.
494 struct sched_state {
495 int weight;
496 int event; /* event index */
497 int counter; /* counter index */
498 int unassigned; /* number of events to be assigned left */
499 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
502 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
503 #define SCHED_STATES_MAX 2
505 struct perf_sched {
506 int max_weight;
507 int max_events;
508 struct event_constraint **constraints;
509 struct sched_state state;
510 int saved_states;
511 struct sched_state saved[SCHED_STATES_MAX];
515 * Initialize interator that runs through all events and counters.
517 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
518 int num, int wmin, int wmax)
520 int idx;
522 memset(sched, 0, sizeof(*sched));
523 sched->max_events = num;
524 sched->max_weight = wmax;
525 sched->constraints = c;
527 for (idx = 0; idx < num; idx++) {
528 if (c[idx]->weight == wmin)
529 break;
532 sched->state.event = idx; /* start with min weight */
533 sched->state.weight = wmin;
534 sched->state.unassigned = num;
537 static void perf_sched_save_state(struct perf_sched *sched)
539 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
540 return;
542 sched->saved[sched->saved_states] = sched->state;
543 sched->saved_states++;
546 static bool perf_sched_restore_state(struct perf_sched *sched)
548 if (!sched->saved_states)
549 return false;
551 sched->saved_states--;
552 sched->state = sched->saved[sched->saved_states];
554 /* continue with next counter: */
555 clear_bit(sched->state.counter++, sched->state.used);
557 return true;
561 * Select a counter for the current event to schedule. Return true on
562 * success.
564 static bool __perf_sched_find_counter(struct perf_sched *sched)
566 struct event_constraint *c;
567 int idx;
569 if (!sched->state.unassigned)
570 return false;
572 if (sched->state.event >= sched->max_events)
573 return false;
575 c = sched->constraints[sched->state.event];
577 /* Prefer fixed purpose counters */
578 if (x86_pmu.num_counters_fixed) {
579 idx = X86_PMC_IDX_FIXED;
580 for_each_set_bit_cont(idx, c->idxmsk, X86_PMC_IDX_MAX) {
581 if (!__test_and_set_bit(idx, sched->state.used))
582 goto done;
585 /* Grab the first unused counter starting with idx */
586 idx = sched->state.counter;
587 for_each_set_bit_cont(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
588 if (!__test_and_set_bit(idx, sched->state.used))
589 goto done;
592 return false;
594 done:
595 sched->state.counter = idx;
597 if (c->overlap)
598 perf_sched_save_state(sched);
600 return true;
603 static bool perf_sched_find_counter(struct perf_sched *sched)
605 while (!__perf_sched_find_counter(sched)) {
606 if (!perf_sched_restore_state(sched))
607 return false;
610 return true;
614 * Go through all unassigned events and find the next one to schedule.
615 * Take events with the least weight first. Return true on success.
617 static bool perf_sched_next_event(struct perf_sched *sched)
619 struct event_constraint *c;
621 if (!sched->state.unassigned || !--sched->state.unassigned)
622 return false;
624 do {
625 /* next event */
626 sched->state.event++;
627 if (sched->state.event >= sched->max_events) {
628 /* next weight */
629 sched->state.event = 0;
630 sched->state.weight++;
631 if (sched->state.weight > sched->max_weight)
632 return false;
634 c = sched->constraints[sched->state.event];
635 } while (c->weight != sched->state.weight);
637 sched->state.counter = 0; /* start with first counter */
639 return true;
643 * Assign a counter for each event.
645 static int perf_assign_events(struct event_constraint **constraints, int n,
646 int wmin, int wmax, int *assign)
648 struct perf_sched sched;
650 perf_sched_init(&sched, constraints, n, wmin, wmax);
652 do {
653 if (!perf_sched_find_counter(&sched))
654 break; /* failed */
655 if (assign)
656 assign[sched.state.event] = sched.state.counter;
657 } while (perf_sched_next_event(&sched));
659 return sched.state.unassigned;
662 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
664 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
665 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
666 int i, wmin, wmax, num = 0;
667 struct hw_perf_event *hwc;
669 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
671 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
672 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
673 constraints[i] = c;
674 wmin = min(wmin, c->weight);
675 wmax = max(wmax, c->weight);
679 * fastpath, try to reuse previous register
681 for (i = 0; i < n; i++) {
682 hwc = &cpuc->event_list[i]->hw;
683 c = constraints[i];
685 /* never assigned */
686 if (hwc->idx == -1)
687 break;
689 /* constraint still honored */
690 if (!test_bit(hwc->idx, c->idxmsk))
691 break;
693 /* not already used */
694 if (test_bit(hwc->idx, used_mask))
695 break;
697 __set_bit(hwc->idx, used_mask);
698 if (assign)
699 assign[i] = hwc->idx;
702 /* slow path */
703 if (i != n)
704 num = perf_assign_events(constraints, n, wmin, wmax, assign);
707 * scheduling failed or is just a simulation,
708 * free resources if necessary
710 if (!assign || num) {
711 for (i = 0; i < n; i++) {
712 if (x86_pmu.put_event_constraints)
713 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
716 return num ? -EINVAL : 0;
720 * dogrp: true if must collect siblings events (group)
721 * returns total number of events and error code
723 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
725 struct perf_event *event;
726 int n, max_count;
728 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
730 /* current number of events already accepted */
731 n = cpuc->n_events;
733 if (is_x86_event(leader)) {
734 if (n >= max_count)
735 return -EINVAL;
736 cpuc->event_list[n] = leader;
737 n++;
739 if (!dogrp)
740 return n;
742 list_for_each_entry(event, &leader->sibling_list, group_entry) {
743 if (!is_x86_event(event) ||
744 event->state <= PERF_EVENT_STATE_OFF)
745 continue;
747 if (n >= max_count)
748 return -EINVAL;
750 cpuc->event_list[n] = event;
751 n++;
753 return n;
756 static inline void x86_assign_hw_event(struct perf_event *event,
757 struct cpu_hw_events *cpuc, int i)
759 struct hw_perf_event *hwc = &event->hw;
761 hwc->idx = cpuc->assign[i];
762 hwc->last_cpu = smp_processor_id();
763 hwc->last_tag = ++cpuc->tags[i];
765 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
766 hwc->config_base = 0;
767 hwc->event_base = 0;
768 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
769 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
770 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
771 } else {
772 hwc->config_base = x86_pmu_config_addr(hwc->idx);
773 hwc->event_base = x86_pmu_event_addr(hwc->idx);
777 static inline int match_prev_assignment(struct hw_perf_event *hwc,
778 struct cpu_hw_events *cpuc,
779 int i)
781 return hwc->idx == cpuc->assign[i] &&
782 hwc->last_cpu == smp_processor_id() &&
783 hwc->last_tag == cpuc->tags[i];
786 static void x86_pmu_start(struct perf_event *event, int flags);
788 static void x86_pmu_enable(struct pmu *pmu)
790 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
791 struct perf_event *event;
792 struct hw_perf_event *hwc;
793 int i, added = cpuc->n_added;
795 if (!x86_pmu_initialized())
796 return;
798 if (cpuc->enabled)
799 return;
801 if (cpuc->n_added) {
802 int n_running = cpuc->n_events - cpuc->n_added;
804 * apply assignment obtained either from
805 * hw_perf_group_sched_in() or x86_pmu_enable()
807 * step1: save events moving to new counters
808 * step2: reprogram moved events into new counters
810 for (i = 0; i < n_running; i++) {
811 event = cpuc->event_list[i];
812 hwc = &event->hw;
815 * we can avoid reprogramming counter if:
816 * - assigned same counter as last time
817 * - running on same CPU as last time
818 * - no other event has used the counter since
820 if (hwc->idx == -1 ||
821 match_prev_assignment(hwc, cpuc, i))
822 continue;
825 * Ensure we don't accidentally enable a stopped
826 * counter simply because we rescheduled.
828 if (hwc->state & PERF_HES_STOPPED)
829 hwc->state |= PERF_HES_ARCH;
831 x86_pmu_stop(event, PERF_EF_UPDATE);
834 for (i = 0; i < cpuc->n_events; i++) {
835 event = cpuc->event_list[i];
836 hwc = &event->hw;
838 if (!match_prev_assignment(hwc, cpuc, i))
839 x86_assign_hw_event(event, cpuc, i);
840 else if (i < n_running)
841 continue;
843 if (hwc->state & PERF_HES_ARCH)
844 continue;
846 x86_pmu_start(event, PERF_EF_RELOAD);
848 cpuc->n_added = 0;
849 perf_events_lapic_init();
852 cpuc->enabled = 1;
853 barrier();
855 x86_pmu.enable_all(added);
858 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
861 * Set the next IRQ period, based on the hwc->period_left value.
862 * To be called with the event disabled in hw:
864 int x86_perf_event_set_period(struct perf_event *event)
866 struct hw_perf_event *hwc = &event->hw;
867 s64 left = local64_read(&hwc->period_left);
868 s64 period = hwc->sample_period;
869 int ret = 0, idx = hwc->idx;
871 if (idx == X86_PMC_IDX_FIXED_BTS)
872 return 0;
875 * If we are way outside a reasonable range then just skip forward:
877 if (unlikely(left <= -period)) {
878 left = period;
879 local64_set(&hwc->period_left, left);
880 hwc->last_period = period;
881 ret = 1;
884 if (unlikely(left <= 0)) {
885 left += period;
886 local64_set(&hwc->period_left, left);
887 hwc->last_period = period;
888 ret = 1;
891 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
893 if (unlikely(left < 2))
894 left = 2;
896 if (left > x86_pmu.max_period)
897 left = x86_pmu.max_period;
899 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
902 * The hw event starts counting from this event offset,
903 * mark it to be able to extra future deltas:
905 local64_set(&hwc->prev_count, (u64)-left);
907 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
910 * Due to erratum on certan cpu we need
911 * a second write to be sure the register
912 * is updated properly
914 if (x86_pmu.perfctr_second_write) {
915 wrmsrl(hwc->event_base,
916 (u64)(-left) & x86_pmu.cntval_mask);
919 perf_event_update_userpage(event);
921 return ret;
924 void x86_pmu_enable_event(struct perf_event *event)
926 if (__this_cpu_read(cpu_hw_events.enabled))
927 __x86_pmu_enable_event(&event->hw,
928 ARCH_PERFMON_EVENTSEL_ENABLE);
932 * Add a single event to the PMU.
934 * The event is added to the group of enabled events
935 * but only if it can be scehduled with existing events.
937 static int x86_pmu_add(struct perf_event *event, int flags)
939 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
940 struct hw_perf_event *hwc;
941 int assign[X86_PMC_IDX_MAX];
942 int n, n0, ret;
944 hwc = &event->hw;
946 perf_pmu_disable(event->pmu);
947 n0 = cpuc->n_events;
948 ret = n = collect_events(cpuc, event, false);
949 if (ret < 0)
950 goto out;
952 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
953 if (!(flags & PERF_EF_START))
954 hwc->state |= PERF_HES_ARCH;
957 * If group events scheduling transaction was started,
958 * skip the schedulability test here, it will be performed
959 * at commit time (->commit_txn) as a whole
961 if (cpuc->group_flag & PERF_EVENT_TXN)
962 goto done_collect;
964 ret = x86_pmu.schedule_events(cpuc, n, assign);
965 if (ret)
966 goto out;
968 * copy new assignment, now we know it is possible
969 * will be used by hw_perf_enable()
971 memcpy(cpuc->assign, assign, n*sizeof(int));
973 done_collect:
974 cpuc->n_events = n;
975 cpuc->n_added += n - n0;
976 cpuc->n_txn += n - n0;
978 ret = 0;
979 out:
980 perf_pmu_enable(event->pmu);
981 return ret;
984 static void x86_pmu_start(struct perf_event *event, int flags)
986 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
987 int idx = event->hw.idx;
989 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
990 return;
992 if (WARN_ON_ONCE(idx == -1))
993 return;
995 if (flags & PERF_EF_RELOAD) {
996 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
997 x86_perf_event_set_period(event);
1000 event->hw.state = 0;
1002 cpuc->events[idx] = event;
1003 __set_bit(idx, cpuc->active_mask);
1004 __set_bit(idx, cpuc->running);
1005 x86_pmu.enable(event);
1006 perf_event_update_userpage(event);
1009 void perf_event_print_debug(void)
1011 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1012 u64 pebs;
1013 struct cpu_hw_events *cpuc;
1014 unsigned long flags;
1015 int cpu, idx;
1017 if (!x86_pmu.num_counters)
1018 return;
1020 local_irq_save(flags);
1022 cpu = smp_processor_id();
1023 cpuc = &per_cpu(cpu_hw_events, cpu);
1025 if (x86_pmu.version >= 2) {
1026 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1027 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1028 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1029 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1030 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1032 pr_info("\n");
1033 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1034 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1035 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1036 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1037 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1039 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1041 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1042 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1043 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1045 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1047 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1048 cpu, idx, pmc_ctrl);
1049 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1050 cpu, idx, pmc_count);
1051 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1052 cpu, idx, prev_left);
1054 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1055 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1057 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1058 cpu, idx, pmc_count);
1060 local_irq_restore(flags);
1063 void x86_pmu_stop(struct perf_event *event, int flags)
1065 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1066 struct hw_perf_event *hwc = &event->hw;
1068 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1069 x86_pmu.disable(event);
1070 cpuc->events[hwc->idx] = NULL;
1071 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1072 hwc->state |= PERF_HES_STOPPED;
1075 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1077 * Drain the remaining delta count out of a event
1078 * that we are disabling:
1080 x86_perf_event_update(event);
1081 hwc->state |= PERF_HES_UPTODATE;
1085 static void x86_pmu_del(struct perf_event *event, int flags)
1087 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1088 int i;
1091 * If we're called during a txn, we don't need to do anything.
1092 * The events never got scheduled and ->cancel_txn will truncate
1093 * the event_list.
1095 if (cpuc->group_flag & PERF_EVENT_TXN)
1096 return;
1098 x86_pmu_stop(event, PERF_EF_UPDATE);
1100 for (i = 0; i < cpuc->n_events; i++) {
1101 if (event == cpuc->event_list[i]) {
1103 if (x86_pmu.put_event_constraints)
1104 x86_pmu.put_event_constraints(cpuc, event);
1106 while (++i < cpuc->n_events)
1107 cpuc->event_list[i-1] = cpuc->event_list[i];
1109 --cpuc->n_events;
1110 break;
1113 perf_event_update_userpage(event);
1116 int x86_pmu_handle_irq(struct pt_regs *regs)
1118 struct perf_sample_data data;
1119 struct cpu_hw_events *cpuc;
1120 struct perf_event *event;
1121 int idx, handled = 0;
1122 u64 val;
1124 perf_sample_data_init(&data, 0);
1126 cpuc = &__get_cpu_var(cpu_hw_events);
1129 * Some chipsets need to unmask the LVTPC in a particular spot
1130 * inside the nmi handler. As a result, the unmasking was pushed
1131 * into all the nmi handlers.
1133 * This generic handler doesn't seem to have any issues where the
1134 * unmasking occurs so it was left at the top.
1136 apic_write(APIC_LVTPC, APIC_DM_NMI);
1138 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1139 if (!test_bit(idx, cpuc->active_mask)) {
1141 * Though we deactivated the counter some cpus
1142 * might still deliver spurious interrupts still
1143 * in flight. Catch them:
1145 if (__test_and_clear_bit(idx, cpuc->running))
1146 handled++;
1147 continue;
1150 event = cpuc->events[idx];
1152 val = x86_perf_event_update(event);
1153 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1154 continue;
1157 * event overflow
1159 handled++;
1160 data.period = event->hw.last_period;
1162 if (!x86_perf_event_set_period(event))
1163 continue;
1165 if (perf_event_overflow(event, &data, regs))
1166 x86_pmu_stop(event, 0);
1169 if (handled)
1170 inc_irq_stat(apic_perf_irqs);
1172 return handled;
1175 void perf_events_lapic_init(void)
1177 if (!x86_pmu.apic || !x86_pmu_initialized())
1178 return;
1181 * Always use NMI for PMU
1183 apic_write(APIC_LVTPC, APIC_DM_NMI);
1186 static int __kprobes
1187 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1189 if (!atomic_read(&active_events))
1190 return NMI_DONE;
1192 return x86_pmu.handle_irq(regs);
1195 struct event_constraint emptyconstraint;
1196 struct event_constraint unconstrained;
1198 static int __cpuinit
1199 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1201 unsigned int cpu = (long)hcpu;
1202 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1203 int ret = NOTIFY_OK;
1205 switch (action & ~CPU_TASKS_FROZEN) {
1206 case CPU_UP_PREPARE:
1207 cpuc->kfree_on_online = NULL;
1208 if (x86_pmu.cpu_prepare)
1209 ret = x86_pmu.cpu_prepare(cpu);
1210 break;
1212 case CPU_STARTING:
1213 if (x86_pmu.cpu_starting)
1214 x86_pmu.cpu_starting(cpu);
1215 break;
1217 case CPU_ONLINE:
1218 kfree(cpuc->kfree_on_online);
1219 break;
1221 case CPU_DYING:
1222 if (x86_pmu.cpu_dying)
1223 x86_pmu.cpu_dying(cpu);
1224 break;
1226 case CPU_UP_CANCELED:
1227 case CPU_DEAD:
1228 if (x86_pmu.cpu_dead)
1229 x86_pmu.cpu_dead(cpu);
1230 break;
1232 default:
1233 break;
1236 return ret;
1239 static void __init pmu_check_apic(void)
1241 if (cpu_has_apic)
1242 return;
1244 x86_pmu.apic = 0;
1245 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1246 pr_info("no hardware sampling interrupt available.\n");
1249 static int __init init_hw_perf_events(void)
1251 struct x86_pmu_quirk *quirk;
1252 struct event_constraint *c;
1253 int err;
1255 pr_info("Performance Events: ");
1257 switch (boot_cpu_data.x86_vendor) {
1258 case X86_VENDOR_INTEL:
1259 err = intel_pmu_init();
1260 break;
1261 case X86_VENDOR_AMD:
1262 err = amd_pmu_init();
1263 break;
1264 default:
1265 return 0;
1267 if (err != 0) {
1268 pr_cont("no PMU driver, software events only.\n");
1269 return 0;
1272 pmu_check_apic();
1274 /* sanity check that the hardware exists or is emulated */
1275 if (!check_hw_exists())
1276 return 0;
1278 pr_cont("%s PMU driver.\n", x86_pmu.name);
1280 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1281 quirk->func();
1283 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1284 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1285 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1286 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1288 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1290 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1291 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1292 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1293 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1296 x86_pmu.intel_ctrl |=
1297 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1299 perf_events_lapic_init();
1300 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1302 unconstrained = (struct event_constraint)
1303 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1304 0, x86_pmu.num_counters, 0);
1306 if (x86_pmu.event_constraints) {
1308 * event on fixed counter2 (REF_CYCLES) only works on this
1309 * counter, so do not extend mask to generic counters
1311 for_each_event_constraint(c, x86_pmu.event_constraints) {
1312 if (c->cmask != X86_RAW_EVENT_MASK
1313 || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1314 continue;
1317 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1318 c->weight += x86_pmu.num_counters;
1322 pr_info("... version: %d\n", x86_pmu.version);
1323 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1324 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1325 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1326 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1327 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1328 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1330 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1331 perf_cpu_notifier(x86_pmu_notifier);
1333 return 0;
1335 early_initcall(init_hw_perf_events);
1337 static inline void x86_pmu_read(struct perf_event *event)
1339 x86_perf_event_update(event);
1343 * Start group events scheduling transaction
1344 * Set the flag to make pmu::enable() not perform the
1345 * schedulability test, it will be performed at commit time
1347 static void x86_pmu_start_txn(struct pmu *pmu)
1349 perf_pmu_disable(pmu);
1350 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1351 __this_cpu_write(cpu_hw_events.n_txn, 0);
1355 * Stop group events scheduling transaction
1356 * Clear the flag and pmu::enable() will perform the
1357 * schedulability test.
1359 static void x86_pmu_cancel_txn(struct pmu *pmu)
1361 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1363 * Truncate the collected events.
1365 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1366 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1367 perf_pmu_enable(pmu);
1371 * Commit group events scheduling transaction
1372 * Perform the group schedulability test as a whole
1373 * Return 0 if success
1375 static int x86_pmu_commit_txn(struct pmu *pmu)
1377 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1378 int assign[X86_PMC_IDX_MAX];
1379 int n, ret;
1381 n = cpuc->n_events;
1383 if (!x86_pmu_initialized())
1384 return -EAGAIN;
1386 ret = x86_pmu.schedule_events(cpuc, n, assign);
1387 if (ret)
1388 return ret;
1391 * copy new assignment, now we know it is possible
1392 * will be used by hw_perf_enable()
1394 memcpy(cpuc->assign, assign, n*sizeof(int));
1396 cpuc->group_flag &= ~PERF_EVENT_TXN;
1397 perf_pmu_enable(pmu);
1398 return 0;
1401 * a fake_cpuc is used to validate event groups. Due to
1402 * the extra reg logic, we need to also allocate a fake
1403 * per_core and per_cpu structure. Otherwise, group events
1404 * using extra reg may conflict without the kernel being
1405 * able to catch this when the last event gets added to
1406 * the group.
1408 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1410 kfree(cpuc->shared_regs);
1411 kfree(cpuc);
1414 static struct cpu_hw_events *allocate_fake_cpuc(void)
1416 struct cpu_hw_events *cpuc;
1417 int cpu = raw_smp_processor_id();
1419 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1420 if (!cpuc)
1421 return ERR_PTR(-ENOMEM);
1423 /* only needed, if we have extra_regs */
1424 if (x86_pmu.extra_regs) {
1425 cpuc->shared_regs = allocate_shared_regs(cpu);
1426 if (!cpuc->shared_regs)
1427 goto error;
1429 return cpuc;
1430 error:
1431 free_fake_cpuc(cpuc);
1432 return ERR_PTR(-ENOMEM);
1436 * validate that we can schedule this event
1438 static int validate_event(struct perf_event *event)
1440 struct cpu_hw_events *fake_cpuc;
1441 struct event_constraint *c;
1442 int ret = 0;
1444 fake_cpuc = allocate_fake_cpuc();
1445 if (IS_ERR(fake_cpuc))
1446 return PTR_ERR(fake_cpuc);
1448 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1450 if (!c || !c->weight)
1451 ret = -EINVAL;
1453 if (x86_pmu.put_event_constraints)
1454 x86_pmu.put_event_constraints(fake_cpuc, event);
1456 free_fake_cpuc(fake_cpuc);
1458 return ret;
1462 * validate a single event group
1464 * validation include:
1465 * - check events are compatible which each other
1466 * - events do not compete for the same counter
1467 * - number of events <= number of counters
1469 * validation ensures the group can be loaded onto the
1470 * PMU if it was the only group available.
1472 static int validate_group(struct perf_event *event)
1474 struct perf_event *leader = event->group_leader;
1475 struct cpu_hw_events *fake_cpuc;
1476 int ret = -EINVAL, n;
1478 fake_cpuc = allocate_fake_cpuc();
1479 if (IS_ERR(fake_cpuc))
1480 return PTR_ERR(fake_cpuc);
1482 * the event is not yet connected with its
1483 * siblings therefore we must first collect
1484 * existing siblings, then add the new event
1485 * before we can simulate the scheduling
1487 n = collect_events(fake_cpuc, leader, true);
1488 if (n < 0)
1489 goto out;
1491 fake_cpuc->n_events = n;
1492 n = collect_events(fake_cpuc, event, false);
1493 if (n < 0)
1494 goto out;
1496 fake_cpuc->n_events = n;
1498 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1500 out:
1501 free_fake_cpuc(fake_cpuc);
1502 return ret;
1505 static int x86_pmu_event_init(struct perf_event *event)
1507 struct pmu *tmp;
1508 int err;
1510 switch (event->attr.type) {
1511 case PERF_TYPE_RAW:
1512 case PERF_TYPE_HARDWARE:
1513 case PERF_TYPE_HW_CACHE:
1514 break;
1516 default:
1517 return -ENOENT;
1520 err = __x86_pmu_event_init(event);
1521 if (!err) {
1523 * we temporarily connect event to its pmu
1524 * such that validate_group() can classify
1525 * it as an x86 event using is_x86_event()
1527 tmp = event->pmu;
1528 event->pmu = &pmu;
1530 if (event->group_leader != event)
1531 err = validate_group(event);
1532 else
1533 err = validate_event(event);
1535 event->pmu = tmp;
1537 if (err) {
1538 if (event->destroy)
1539 event->destroy(event);
1542 return err;
1545 static struct pmu pmu = {
1546 .pmu_enable = x86_pmu_enable,
1547 .pmu_disable = x86_pmu_disable,
1549 .event_init = x86_pmu_event_init,
1551 .add = x86_pmu_add,
1552 .del = x86_pmu_del,
1553 .start = x86_pmu_start,
1554 .stop = x86_pmu_stop,
1555 .read = x86_pmu_read,
1557 .start_txn = x86_pmu_start_txn,
1558 .cancel_txn = x86_pmu_cancel_txn,
1559 .commit_txn = x86_pmu_commit_txn,
1563 * callchain support
1566 static int backtrace_stack(void *data, char *name)
1568 return 0;
1571 static void backtrace_address(void *data, unsigned long addr, int reliable)
1573 struct perf_callchain_entry *entry = data;
1575 perf_callchain_store(entry, addr);
1578 static const struct stacktrace_ops backtrace_ops = {
1579 .stack = backtrace_stack,
1580 .address = backtrace_address,
1581 .walk_stack = print_context_stack_bp,
1584 void
1585 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1587 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1588 /* TODO: We don't support guest os callchain now */
1589 return;
1592 perf_callchain_store(entry, regs->ip);
1594 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1597 #ifdef CONFIG_COMPAT
1598 static inline int
1599 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1601 /* 32-bit process in 64-bit kernel. */
1602 struct stack_frame_ia32 frame;
1603 const void __user *fp;
1605 if (!test_thread_flag(TIF_IA32))
1606 return 0;
1608 fp = compat_ptr(regs->bp);
1609 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1610 unsigned long bytes;
1611 frame.next_frame = 0;
1612 frame.return_address = 0;
1614 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1615 if (bytes != sizeof(frame))
1616 break;
1618 if (fp < compat_ptr(regs->sp))
1619 break;
1621 perf_callchain_store(entry, frame.return_address);
1622 fp = compat_ptr(frame.next_frame);
1624 return 1;
1626 #else
1627 static inline int
1628 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1630 return 0;
1632 #endif
1634 void
1635 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1637 struct stack_frame frame;
1638 const void __user *fp;
1640 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1641 /* TODO: We don't support guest os callchain now */
1642 return;
1645 fp = (void __user *)regs->bp;
1647 perf_callchain_store(entry, regs->ip);
1649 if (!current->mm)
1650 return;
1652 if (perf_callchain_user32(regs, entry))
1653 return;
1655 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1656 unsigned long bytes;
1657 frame.next_frame = NULL;
1658 frame.return_address = 0;
1660 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1661 if (bytes != sizeof(frame))
1662 break;
1664 if ((unsigned long)fp < regs->sp)
1665 break;
1667 perf_callchain_store(entry, frame.return_address);
1668 fp = frame.next_frame;
1672 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1674 unsigned long ip;
1676 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1677 ip = perf_guest_cbs->get_guest_ip();
1678 else
1679 ip = instruction_pointer(regs);
1681 return ip;
1684 unsigned long perf_misc_flags(struct pt_regs *regs)
1686 int misc = 0;
1688 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1689 if (perf_guest_cbs->is_user_mode())
1690 misc |= PERF_RECORD_MISC_GUEST_USER;
1691 else
1692 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1693 } else {
1694 if (user_mode(regs))
1695 misc |= PERF_RECORD_MISC_USER;
1696 else
1697 misc |= PERF_RECORD_MISC_KERNEL;
1700 if (regs->flags & PERF_EFLAGS_EXACT)
1701 misc |= PERF_RECORD_MISC_EXACT_IP;
1703 return misc;
1706 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1708 cap->version = x86_pmu.version;
1709 cap->num_counters_gp = x86_pmu.num_counters;
1710 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1711 cap->bit_width_gp = x86_pmu.cntval_bits;
1712 cap->bit_width_fixed = x86_pmu.cntval_bits;
1713 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
1714 cap->events_mask_len = x86_pmu.events_mask_len;
1716 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);