Avoid reading past buffer when calling GETACL
[zen-stable.git] / drivers / md / dm.c
blobb89c548ec3f88612eb4a6fec4d6230ad413ed9c1
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
27 #ifdef CONFIG_PRINTK
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name = DM_NAME;
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
49 static DEFINE_IDR(_minor_idr);
51 static DEFINE_SPINLOCK(_minor_lock);
53 * For bio-based dm.
54 * One of these is allocated per bio.
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
77 * For request-based dm.
78 * One of these is allocated per request.
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
89 * For request-based dm.
90 * One of these is allocated per bio.
92 struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
97 union map_info *dm_get_mapinfo(struct bio *bio)
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 #define MINOR_ALLOCED ((void *)-1)
115 * Bits for the md->flags field.
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
126 * Work processed by per-device workqueue.
128 struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
135 unsigned long flags;
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
142 struct target_type *immutable_target_type;
144 struct gendisk *disk;
145 char name[16];
147 void *interface_ptr;
150 * A list of ios that arrived while we were suspended.
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
159 * Processing queue (flush)
161 struct workqueue_struct *wq;
164 * The current mapping.
166 struct dm_table *map;
169 * io objects are allocated from here.
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
174 struct bio_set *bs;
177 * Event handling.
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
186 * freeze/thaw support require holding onto a super block
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
191 /* forced geometry settings */
192 struct hd_geometry geometry;
194 /* sysfs handle */
195 struct kobject kobj;
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
202 * For mempools pre-allocation at the table loading time.
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
216 static int __init local_init(void)
218 int r = -ENOMEM;
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
247 if (!_major)
248 _major = r;
250 return 0;
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
263 return r;
266 static void local_exit(void)
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
275 _major = 0;
277 DMINFO("cleaned up");
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
300 static int __init dm_init(void)
302 const int count = ARRAY_SIZE(_inits);
304 int r, i;
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
312 return 0;
314 bad:
315 while (i--)
316 _exits[i]();
318 return r;
321 static void __exit dm_exit(void)
323 int i = ARRAY_SIZE(_exits);
325 while (i--)
326 _exits[i]();
329 * Should be empty by this point.
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
336 * Block device functions
338 int dm_deleting_md(struct mapped_device *md)
340 return test_bit(DMF_DELETING, &md->flags);
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
345 struct mapped_device *md;
347 spin_lock(&_minor_lock);
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
359 dm_get(md);
360 atomic_inc(&md->open_count);
362 out:
363 spin_unlock(&_minor_lock);
365 return md ? 0 : -ENXIO;
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
370 struct mapped_device *md = disk->private_data;
372 spin_lock(&_minor_lock);
374 atomic_dec(&md->open_count);
375 dm_put(md);
377 spin_unlock(&_minor_lock);
379 return 0;
382 int dm_open_count(struct mapped_device *md)
384 return atomic_read(&md->open_count);
388 * Guarantees nothing is using the device before it's deleted.
390 int dm_lock_for_deletion(struct mapped_device *md)
392 int r = 0;
394 spin_lock(&_minor_lock);
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
401 spin_unlock(&_minor_lock);
403 return r;
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 struct mapped_device *md = bdev->bd_disk->private_data;
410 return dm_get_geometry(md, geo);
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
421 if (!map || !dm_table_get_size(map))
422 goto out;
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
428 tgt = dm_table_get_target(map, 0);
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
438 out:
439 dm_table_put(map);
441 return r;
444 static struct dm_io *alloc_io(struct mapped_device *md)
446 return mempool_alloc(md->io_pool, GFP_NOIO);
449 static void free_io(struct mapped_device *md, struct dm_io *io)
451 mempool_free(io, md->io_pool);
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
456 mempool_free(tio, md->tio_pool);
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
462 return mempool_alloc(md->tio_pool, gfp_mask);
465 static void free_rq_tio(struct dm_rq_target_io *tio)
467 mempool_free(tio, tio->md->tio_pool);
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
477 mempool_free(info, info->tio->md->io_pool);
480 static int md_in_flight(struct mapped_device *md)
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
486 static void start_io_acct(struct dm_io *io)
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
492 io->start_time = jiffies;
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
501 static void end_io_acct(struct dm_io *io)
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
528 * Add the bio to the list of deferred io.
530 static void queue_io(struct mapped_device *md, struct bio *bio)
532 unsigned long flags;
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
547 struct dm_table *t;
548 unsigned long flags;
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
556 return t;
560 * Get the geometry associated with a dm device
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
564 *geo = md->geometry;
566 return 0;
570 * Set the geometry of a device.
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
581 md->geometry = *geo;
583 return 0;
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
595 static int __noflush_suspending(struct mapped_device *md)
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
604 static void dec_pending(struct dm_io *io, int error)
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
622 * Target requested pushing back the I/O.
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
656 static void clone_endio(struct bio *bio, int error)
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
671 * error and requeue request are handled
672 * in dec_pending().
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
685 * Store md for cleanup instead of tio which is about to get freed.
687 bio->bi_private = md->bs;
689 free_tio(md, tio);
690 bio_put(bio);
691 dec_pending(io, error);
695 * Partial completion handling for request-based dm
697 static void end_clone_bio(struct bio *clone, int error)
699 struct dm_rq_clone_bio_info *info = clone->bi_private;
700 struct dm_rq_target_io *tio = info->tio;
701 struct bio *bio = info->orig;
702 unsigned int nr_bytes = info->orig->bi_size;
704 bio_put(clone);
706 if (tio->error)
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
710 * the remainder.
712 return;
713 else if (error) {
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
719 tio->error = error;
720 return;
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
733 if (tio->orig->bio != bio)
734 DMERR("bio completion is going in the middle of the request");
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
741 blk_update_request(tio->orig, 0, nr_bytes);
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
751 atomic_dec(&md->pending[rw]);
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md))
755 wake_up(&md->wait);
757 if (run_queue)
758 blk_run_queue(md->queue);
761 * dm_put() must be at the end of this function. See the comment above
763 dm_put(md);
766 static void free_rq_clone(struct request *clone)
768 struct dm_rq_target_io *tio = clone->end_io_data;
770 blk_rq_unprep_clone(clone);
771 free_rq_tio(tio);
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
778 static void dm_end_request(struct request *clone, int error)
780 int rw = rq_data_dir(clone);
781 struct dm_rq_target_io *tio = clone->end_io_data;
782 struct mapped_device *md = tio->md;
783 struct request *rq = tio->orig;
785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 rq->errors = clone->errors;
787 rq->resid_len = clone->resid_len;
789 if (rq->sense)
791 * We are using the sense buffer of the original
792 * request.
793 * So setting the length of the sense data is enough.
795 rq->sense_len = clone->sense_len;
798 free_rq_clone(clone);
799 blk_end_request_all(rq, error);
800 rq_completed(md, rw, true);
803 static void dm_unprep_request(struct request *rq)
805 struct request *clone = rq->special;
807 rq->special = NULL;
808 rq->cmd_flags &= ~REQ_DONTPREP;
810 free_rq_clone(clone);
814 * Requeue the original request of a clone.
816 void dm_requeue_unmapped_request(struct request *clone)
818 int rw = rq_data_dir(clone);
819 struct dm_rq_target_io *tio = clone->end_io_data;
820 struct mapped_device *md = tio->md;
821 struct request *rq = tio->orig;
822 struct request_queue *q = rq->q;
823 unsigned long flags;
825 dm_unprep_request(rq);
827 spin_lock_irqsave(q->queue_lock, flags);
828 blk_requeue_request(q, rq);
829 spin_unlock_irqrestore(q->queue_lock, flags);
831 rq_completed(md, rw, 0);
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
835 static void __stop_queue(struct request_queue *q)
837 blk_stop_queue(q);
840 static void stop_queue(struct request_queue *q)
842 unsigned long flags;
844 spin_lock_irqsave(q->queue_lock, flags);
845 __stop_queue(q);
846 spin_unlock_irqrestore(q->queue_lock, flags);
849 static void __start_queue(struct request_queue *q)
851 if (blk_queue_stopped(q))
852 blk_start_queue(q);
855 static void start_queue(struct request_queue *q)
857 unsigned long flags;
859 spin_lock_irqsave(q->queue_lock, flags);
860 __start_queue(q);
861 spin_unlock_irqrestore(q->queue_lock, flags);
864 static void dm_done(struct request *clone, int error, bool mapped)
866 int r = error;
867 struct dm_rq_target_io *tio = clone->end_io_data;
868 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
870 if (mapped && rq_end_io)
871 r = rq_end_io(tio->ti, clone, error, &tio->info);
873 if (r <= 0)
874 /* The target wants to complete the I/O */
875 dm_end_request(clone, r);
876 else if (r == DM_ENDIO_INCOMPLETE)
877 /* The target will handle the I/O */
878 return;
879 else if (r == DM_ENDIO_REQUEUE)
880 /* The target wants to requeue the I/O */
881 dm_requeue_unmapped_request(clone);
882 else {
883 DMWARN("unimplemented target endio return value: %d", r);
884 BUG();
889 * Request completion handler for request-based dm
891 static void dm_softirq_done(struct request *rq)
893 bool mapped = true;
894 struct request *clone = rq->completion_data;
895 struct dm_rq_target_io *tio = clone->end_io_data;
897 if (rq->cmd_flags & REQ_FAILED)
898 mapped = false;
900 dm_done(clone, tio->error, mapped);
904 * Complete the clone and the original request with the error status
905 * through softirq context.
907 static void dm_complete_request(struct request *clone, int error)
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
912 tio->error = error;
913 rq->completion_data = clone;
914 blk_complete_request(rq);
918 * Complete the not-mapped clone and the original request with the error status
919 * through softirq context.
920 * Target's rq_end_io() function isn't called.
921 * This may be used when the target's map_rq() function fails.
923 void dm_kill_unmapped_request(struct request *clone, int error)
925 struct dm_rq_target_io *tio = clone->end_io_data;
926 struct request *rq = tio->orig;
928 rq->cmd_flags |= REQ_FAILED;
929 dm_complete_request(clone, error);
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
934 * Called with the queue lock held
936 static void end_clone_request(struct request *clone, int error)
939 * For just cleaning up the information of the queue in which
940 * the clone was dispatched.
941 * The clone is *NOT* freed actually here because it is alloced from
942 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
944 __blk_put_request(clone->q, clone);
947 * Actual request completion is done in a softirq context which doesn't
948 * hold the queue lock. Otherwise, deadlock could occur because:
949 * - another request may be submitted by the upper level driver
950 * of the stacking during the completion
951 * - the submission which requires queue lock may be done
952 * against this queue
954 dm_complete_request(clone, error);
958 * Return maximum size of I/O possible at the supplied sector up to the current
959 * target boundary.
961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
963 sector_t target_offset = dm_target_offset(ti, sector);
965 return ti->len - target_offset;
968 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
970 sector_t len = max_io_len_target_boundary(sector, ti);
973 * Does the target need to split even further ?
975 if (ti->split_io) {
976 sector_t boundary;
977 sector_t offset = dm_target_offset(ti, sector);
978 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
979 - offset;
980 if (len > boundary)
981 len = boundary;
984 return len;
987 static void __map_bio(struct dm_target *ti, struct bio *clone,
988 struct dm_target_io *tio)
990 int r;
991 sector_t sector;
992 struct mapped_device *md;
994 clone->bi_end_io = clone_endio;
995 clone->bi_private = tio;
998 * Map the clone. If r == 0 we don't need to do
999 * anything, the target has assumed ownership of
1000 * this io.
1002 atomic_inc(&tio->io->io_count);
1003 sector = clone->bi_sector;
1004 r = ti->type->map(ti, clone, &tio->info);
1005 if (r == DM_MAPIO_REMAPPED) {
1006 /* the bio has been remapped so dispatch it */
1008 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1009 tio->io->bio->bi_bdev->bd_dev, sector);
1011 generic_make_request(clone);
1012 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1013 /* error the io and bail out, or requeue it if needed */
1014 md = tio->io->md;
1015 dec_pending(tio->io, r);
1017 * Store bio_set for cleanup.
1019 clone->bi_private = md->bs;
1020 bio_put(clone);
1021 free_tio(md, tio);
1022 } else if (r) {
1023 DMWARN("unimplemented target map return value: %d", r);
1024 BUG();
1028 struct clone_info {
1029 struct mapped_device *md;
1030 struct dm_table *map;
1031 struct bio *bio;
1032 struct dm_io *io;
1033 sector_t sector;
1034 sector_t sector_count;
1035 unsigned short idx;
1038 static void dm_bio_destructor(struct bio *bio)
1040 struct bio_set *bs = bio->bi_private;
1042 bio_free(bio, bs);
1046 * Creates a little bio that just does part of a bvec.
1048 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1049 unsigned short idx, unsigned int offset,
1050 unsigned int len, struct bio_set *bs)
1052 struct bio *clone;
1053 struct bio_vec *bv = bio->bi_io_vec + idx;
1055 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1056 clone->bi_destructor = dm_bio_destructor;
1057 *clone->bi_io_vec = *bv;
1059 clone->bi_sector = sector;
1060 clone->bi_bdev = bio->bi_bdev;
1061 clone->bi_rw = bio->bi_rw;
1062 clone->bi_vcnt = 1;
1063 clone->bi_size = to_bytes(len);
1064 clone->bi_io_vec->bv_offset = offset;
1065 clone->bi_io_vec->bv_len = clone->bi_size;
1066 clone->bi_flags |= 1 << BIO_CLONED;
1068 if (bio_integrity(bio)) {
1069 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1070 bio_integrity_trim(clone,
1071 bio_sector_offset(bio, idx, offset), len);
1074 return clone;
1078 * Creates a bio that consists of range of complete bvecs.
1080 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1081 unsigned short idx, unsigned short bv_count,
1082 unsigned int len, struct bio_set *bs)
1084 struct bio *clone;
1086 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1087 __bio_clone(clone, bio);
1088 clone->bi_destructor = dm_bio_destructor;
1089 clone->bi_sector = sector;
1090 clone->bi_idx = idx;
1091 clone->bi_vcnt = idx + bv_count;
1092 clone->bi_size = to_bytes(len);
1093 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1095 if (bio_integrity(bio)) {
1096 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1098 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1099 bio_integrity_trim(clone,
1100 bio_sector_offset(bio, idx, 0), len);
1103 return clone;
1106 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1107 struct dm_target *ti)
1109 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1111 tio->io = ci->io;
1112 tio->ti = ti;
1113 memset(&tio->info, 0, sizeof(tio->info));
1115 return tio;
1118 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1119 unsigned request_nr, sector_t len)
1121 struct dm_target_io *tio = alloc_tio(ci, ti);
1122 struct bio *clone;
1124 tio->info.target_request_nr = request_nr;
1127 * Discard requests require the bio's inline iovecs be initialized.
1128 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129 * and discard, so no need for concern about wasted bvec allocations.
1131 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1132 __bio_clone(clone, ci->bio);
1133 clone->bi_destructor = dm_bio_destructor;
1134 if (len) {
1135 clone->bi_sector = ci->sector;
1136 clone->bi_size = to_bytes(len);
1139 __map_bio(ti, clone, tio);
1142 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1143 unsigned num_requests, sector_t len)
1145 unsigned request_nr;
1147 for (request_nr = 0; request_nr < num_requests; request_nr++)
1148 __issue_target_request(ci, ti, request_nr, len);
1151 static int __clone_and_map_empty_flush(struct clone_info *ci)
1153 unsigned target_nr = 0;
1154 struct dm_target *ti;
1156 BUG_ON(bio_has_data(ci->bio));
1157 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1160 return 0;
1164 * Perform all io with a single clone.
1166 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1168 struct bio *clone, *bio = ci->bio;
1169 struct dm_target_io *tio;
1171 tio = alloc_tio(ci, ti);
1172 clone = clone_bio(bio, ci->sector, ci->idx,
1173 bio->bi_vcnt - ci->idx, ci->sector_count,
1174 ci->md->bs);
1175 __map_bio(ti, clone, tio);
1176 ci->sector_count = 0;
1179 static int __clone_and_map_discard(struct clone_info *ci)
1181 struct dm_target *ti;
1182 sector_t len;
1184 do {
1185 ti = dm_table_find_target(ci->map, ci->sector);
1186 if (!dm_target_is_valid(ti))
1187 return -EIO;
1190 * Even though the device advertised discard support,
1191 * that does not mean every target supports it, and
1192 * reconfiguration might also have changed that since the
1193 * check was performed.
1195 if (!ti->num_discard_requests)
1196 return -EOPNOTSUPP;
1198 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1200 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1202 ci->sector += len;
1203 } while (ci->sector_count -= len);
1205 return 0;
1208 static int __clone_and_map(struct clone_info *ci)
1210 struct bio *clone, *bio = ci->bio;
1211 struct dm_target *ti;
1212 sector_t len = 0, max;
1213 struct dm_target_io *tio;
1215 if (unlikely(bio->bi_rw & REQ_DISCARD))
1216 return __clone_and_map_discard(ci);
1218 ti = dm_table_find_target(ci->map, ci->sector);
1219 if (!dm_target_is_valid(ti))
1220 return -EIO;
1222 max = max_io_len(ci->sector, ti);
1224 if (ci->sector_count <= max) {
1226 * Optimise for the simple case where we can do all of
1227 * the remaining io with a single clone.
1229 __clone_and_map_simple(ci, ti);
1231 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1233 * There are some bvecs that don't span targets.
1234 * Do as many of these as possible.
1236 int i;
1237 sector_t remaining = max;
1238 sector_t bv_len;
1240 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1241 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1243 if (bv_len > remaining)
1244 break;
1246 remaining -= bv_len;
1247 len += bv_len;
1250 tio = alloc_tio(ci, ti);
1251 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1252 ci->md->bs);
1253 __map_bio(ti, clone, tio);
1255 ci->sector += len;
1256 ci->sector_count -= len;
1257 ci->idx = i;
1259 } else {
1261 * Handle a bvec that must be split between two or more targets.
1263 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1264 sector_t remaining = to_sector(bv->bv_len);
1265 unsigned int offset = 0;
1267 do {
1268 if (offset) {
1269 ti = dm_table_find_target(ci->map, ci->sector);
1270 if (!dm_target_is_valid(ti))
1271 return -EIO;
1273 max = max_io_len(ci->sector, ti);
1276 len = min(remaining, max);
1278 tio = alloc_tio(ci, ti);
1279 clone = split_bvec(bio, ci->sector, ci->idx,
1280 bv->bv_offset + offset, len,
1281 ci->md->bs);
1283 __map_bio(ti, clone, tio);
1285 ci->sector += len;
1286 ci->sector_count -= len;
1287 offset += to_bytes(len);
1288 } while (remaining -= len);
1290 ci->idx++;
1293 return 0;
1297 * Split the bio into several clones and submit it to targets.
1299 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1301 struct clone_info ci;
1302 int error = 0;
1304 ci.map = dm_get_live_table(md);
1305 if (unlikely(!ci.map)) {
1306 bio_io_error(bio);
1307 return;
1310 ci.md = md;
1311 ci.io = alloc_io(md);
1312 ci.io->error = 0;
1313 atomic_set(&ci.io->io_count, 1);
1314 ci.io->bio = bio;
1315 ci.io->md = md;
1316 spin_lock_init(&ci.io->endio_lock);
1317 ci.sector = bio->bi_sector;
1318 ci.idx = bio->bi_idx;
1320 start_io_acct(ci.io);
1321 if (bio->bi_rw & REQ_FLUSH) {
1322 ci.bio = &ci.md->flush_bio;
1323 ci.sector_count = 0;
1324 error = __clone_and_map_empty_flush(&ci);
1325 /* dec_pending submits any data associated with flush */
1326 } else {
1327 ci.bio = bio;
1328 ci.sector_count = bio_sectors(bio);
1329 while (ci.sector_count && !error)
1330 error = __clone_and_map(&ci);
1333 /* drop the extra reference count */
1334 dec_pending(ci.io, error);
1335 dm_table_put(ci.map);
1337 /*-----------------------------------------------------------------
1338 * CRUD END
1339 *---------------------------------------------------------------*/
1341 static int dm_merge_bvec(struct request_queue *q,
1342 struct bvec_merge_data *bvm,
1343 struct bio_vec *biovec)
1345 struct mapped_device *md = q->queuedata;
1346 struct dm_table *map = dm_get_live_table(md);
1347 struct dm_target *ti;
1348 sector_t max_sectors;
1349 int max_size = 0;
1351 if (unlikely(!map))
1352 goto out;
1354 ti = dm_table_find_target(map, bvm->bi_sector);
1355 if (!dm_target_is_valid(ti))
1356 goto out_table;
1359 * Find maximum amount of I/O that won't need splitting
1361 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1362 (sector_t) BIO_MAX_SECTORS);
1363 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1364 if (max_size < 0)
1365 max_size = 0;
1368 * merge_bvec_fn() returns number of bytes
1369 * it can accept at this offset
1370 * max is precomputed maximal io size
1372 if (max_size && ti->type->merge)
1373 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1375 * If the target doesn't support merge method and some of the devices
1376 * provided their merge_bvec method (we know this by looking at
1377 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378 * entries. So always set max_size to 0, and the code below allows
1379 * just one page.
1381 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1383 max_size = 0;
1385 out_table:
1386 dm_table_put(map);
1388 out:
1390 * Always allow an entire first page
1392 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1393 max_size = biovec->bv_len;
1395 return max_size;
1399 * The request function that just remaps the bio built up by
1400 * dm_merge_bvec.
1402 static void _dm_request(struct request_queue *q, struct bio *bio)
1404 int rw = bio_data_dir(bio);
1405 struct mapped_device *md = q->queuedata;
1406 int cpu;
1408 down_read(&md->io_lock);
1410 cpu = part_stat_lock();
1411 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1412 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1413 part_stat_unlock();
1415 /* if we're suspended, we have to queue this io for later */
1416 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1417 up_read(&md->io_lock);
1419 if (bio_rw(bio) != READA)
1420 queue_io(md, bio);
1421 else
1422 bio_io_error(bio);
1423 return;
1426 __split_and_process_bio(md, bio);
1427 up_read(&md->io_lock);
1428 return;
1431 static int dm_request_based(struct mapped_device *md)
1433 return blk_queue_stackable(md->queue);
1436 static void dm_request(struct request_queue *q, struct bio *bio)
1438 struct mapped_device *md = q->queuedata;
1440 if (dm_request_based(md))
1441 blk_queue_bio(q, bio);
1442 else
1443 _dm_request(q, bio);
1446 void dm_dispatch_request(struct request *rq)
1448 int r;
1450 if (blk_queue_io_stat(rq->q))
1451 rq->cmd_flags |= REQ_IO_STAT;
1453 rq->start_time = jiffies;
1454 r = blk_insert_cloned_request(rq->q, rq);
1455 if (r)
1456 dm_complete_request(rq, r);
1458 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1460 static void dm_rq_bio_destructor(struct bio *bio)
1462 struct dm_rq_clone_bio_info *info = bio->bi_private;
1463 struct mapped_device *md = info->tio->md;
1465 free_bio_info(info);
1466 bio_free(bio, md->bs);
1469 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1470 void *data)
1472 struct dm_rq_target_io *tio = data;
1473 struct mapped_device *md = tio->md;
1474 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1476 if (!info)
1477 return -ENOMEM;
1479 info->orig = bio_orig;
1480 info->tio = tio;
1481 bio->bi_end_io = end_clone_bio;
1482 bio->bi_private = info;
1483 bio->bi_destructor = dm_rq_bio_destructor;
1485 return 0;
1488 static int setup_clone(struct request *clone, struct request *rq,
1489 struct dm_rq_target_io *tio)
1491 int r;
1493 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1494 dm_rq_bio_constructor, tio);
1495 if (r)
1496 return r;
1498 clone->cmd = rq->cmd;
1499 clone->cmd_len = rq->cmd_len;
1500 clone->sense = rq->sense;
1501 clone->buffer = rq->buffer;
1502 clone->end_io = end_clone_request;
1503 clone->end_io_data = tio;
1505 return 0;
1508 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1509 gfp_t gfp_mask)
1511 struct request *clone;
1512 struct dm_rq_target_io *tio;
1514 tio = alloc_rq_tio(md, gfp_mask);
1515 if (!tio)
1516 return NULL;
1518 tio->md = md;
1519 tio->ti = NULL;
1520 tio->orig = rq;
1521 tio->error = 0;
1522 memset(&tio->info, 0, sizeof(tio->info));
1524 clone = &tio->clone;
1525 if (setup_clone(clone, rq, tio)) {
1526 /* -ENOMEM */
1527 free_rq_tio(tio);
1528 return NULL;
1531 return clone;
1535 * Called with the queue lock held.
1537 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1539 struct mapped_device *md = q->queuedata;
1540 struct request *clone;
1542 if (unlikely(rq->special)) {
1543 DMWARN("Already has something in rq->special.");
1544 return BLKPREP_KILL;
1547 clone = clone_rq(rq, md, GFP_ATOMIC);
1548 if (!clone)
1549 return BLKPREP_DEFER;
1551 rq->special = clone;
1552 rq->cmd_flags |= REQ_DONTPREP;
1554 return BLKPREP_OK;
1558 * Returns:
1559 * 0 : the request has been processed (not requeued)
1560 * !0 : the request has been requeued
1562 static int map_request(struct dm_target *ti, struct request *clone,
1563 struct mapped_device *md)
1565 int r, requeued = 0;
1566 struct dm_rq_target_io *tio = clone->end_io_data;
1569 * Hold the md reference here for the in-flight I/O.
1570 * We can't rely on the reference count by device opener,
1571 * because the device may be closed during the request completion
1572 * when all bios are completed.
1573 * See the comment in rq_completed() too.
1575 dm_get(md);
1577 tio->ti = ti;
1578 r = ti->type->map_rq(ti, clone, &tio->info);
1579 switch (r) {
1580 case DM_MAPIO_SUBMITTED:
1581 /* The target has taken the I/O to submit by itself later */
1582 break;
1583 case DM_MAPIO_REMAPPED:
1584 /* The target has remapped the I/O so dispatch it */
1585 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1586 blk_rq_pos(tio->orig));
1587 dm_dispatch_request(clone);
1588 break;
1589 case DM_MAPIO_REQUEUE:
1590 /* The target wants to requeue the I/O */
1591 dm_requeue_unmapped_request(clone);
1592 requeued = 1;
1593 break;
1594 default:
1595 if (r > 0) {
1596 DMWARN("unimplemented target map return value: %d", r);
1597 BUG();
1600 /* The target wants to complete the I/O */
1601 dm_kill_unmapped_request(clone, r);
1602 break;
1605 return requeued;
1609 * q->request_fn for request-based dm.
1610 * Called with the queue lock held.
1612 static void dm_request_fn(struct request_queue *q)
1614 struct mapped_device *md = q->queuedata;
1615 struct dm_table *map = dm_get_live_table(md);
1616 struct dm_target *ti;
1617 struct request *rq, *clone;
1618 sector_t pos;
1621 * For suspend, check blk_queue_stopped() and increment
1622 * ->pending within a single queue_lock not to increment the
1623 * number of in-flight I/Os after the queue is stopped in
1624 * dm_suspend().
1626 while (!blk_queue_stopped(q)) {
1627 rq = blk_peek_request(q);
1628 if (!rq)
1629 goto delay_and_out;
1631 /* always use block 0 to find the target for flushes for now */
1632 pos = 0;
1633 if (!(rq->cmd_flags & REQ_FLUSH))
1634 pos = blk_rq_pos(rq);
1636 ti = dm_table_find_target(map, pos);
1637 BUG_ON(!dm_target_is_valid(ti));
1639 if (ti->type->busy && ti->type->busy(ti))
1640 goto delay_and_out;
1642 blk_start_request(rq);
1643 clone = rq->special;
1644 atomic_inc(&md->pending[rq_data_dir(clone)]);
1646 spin_unlock(q->queue_lock);
1647 if (map_request(ti, clone, md))
1648 goto requeued;
1650 BUG_ON(!irqs_disabled());
1651 spin_lock(q->queue_lock);
1654 goto out;
1656 requeued:
1657 BUG_ON(!irqs_disabled());
1658 spin_lock(q->queue_lock);
1660 delay_and_out:
1661 blk_delay_queue(q, HZ / 10);
1662 out:
1663 dm_table_put(map);
1665 return;
1668 int dm_underlying_device_busy(struct request_queue *q)
1670 return blk_lld_busy(q);
1672 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1674 static int dm_lld_busy(struct request_queue *q)
1676 int r;
1677 struct mapped_device *md = q->queuedata;
1678 struct dm_table *map = dm_get_live_table(md);
1680 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1681 r = 1;
1682 else
1683 r = dm_table_any_busy_target(map);
1685 dm_table_put(map);
1687 return r;
1690 static int dm_any_congested(void *congested_data, int bdi_bits)
1692 int r = bdi_bits;
1693 struct mapped_device *md = congested_data;
1694 struct dm_table *map;
1696 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1697 map = dm_get_live_table(md);
1698 if (map) {
1700 * Request-based dm cares about only own queue for
1701 * the query about congestion status of request_queue
1703 if (dm_request_based(md))
1704 r = md->queue->backing_dev_info.state &
1705 bdi_bits;
1706 else
1707 r = dm_table_any_congested(map, bdi_bits);
1709 dm_table_put(map);
1713 return r;
1716 /*-----------------------------------------------------------------
1717 * An IDR is used to keep track of allocated minor numbers.
1718 *---------------------------------------------------------------*/
1719 static void free_minor(int minor)
1721 spin_lock(&_minor_lock);
1722 idr_remove(&_minor_idr, minor);
1723 spin_unlock(&_minor_lock);
1727 * See if the device with a specific minor # is free.
1729 static int specific_minor(int minor)
1731 int r, m;
1733 if (minor >= (1 << MINORBITS))
1734 return -EINVAL;
1736 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1737 if (!r)
1738 return -ENOMEM;
1740 spin_lock(&_minor_lock);
1742 if (idr_find(&_minor_idr, minor)) {
1743 r = -EBUSY;
1744 goto out;
1747 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1748 if (r)
1749 goto out;
1751 if (m != minor) {
1752 idr_remove(&_minor_idr, m);
1753 r = -EBUSY;
1754 goto out;
1757 out:
1758 spin_unlock(&_minor_lock);
1759 return r;
1762 static int next_free_minor(int *minor)
1764 int r, m;
1766 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1767 if (!r)
1768 return -ENOMEM;
1770 spin_lock(&_minor_lock);
1772 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1773 if (r)
1774 goto out;
1776 if (m >= (1 << MINORBITS)) {
1777 idr_remove(&_minor_idr, m);
1778 r = -ENOSPC;
1779 goto out;
1782 *minor = m;
1784 out:
1785 spin_unlock(&_minor_lock);
1786 return r;
1789 static const struct block_device_operations dm_blk_dops;
1791 static void dm_wq_work(struct work_struct *work);
1793 static void dm_init_md_queue(struct mapped_device *md)
1796 * Request-based dm devices cannot be stacked on top of bio-based dm
1797 * devices. The type of this dm device has not been decided yet.
1798 * The type is decided at the first table loading time.
1799 * To prevent problematic device stacking, clear the queue flag
1800 * for request stacking support until then.
1802 * This queue is new, so no concurrency on the queue_flags.
1804 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1806 md->queue->queuedata = md;
1807 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1808 md->queue->backing_dev_info.congested_data = md;
1809 blk_queue_make_request(md->queue, dm_request);
1810 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1811 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1815 * Allocate and initialise a blank device with a given minor.
1817 static struct mapped_device *alloc_dev(int minor)
1819 int r;
1820 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1821 void *old_md;
1823 if (!md) {
1824 DMWARN("unable to allocate device, out of memory.");
1825 return NULL;
1828 if (!try_module_get(THIS_MODULE))
1829 goto bad_module_get;
1831 /* get a minor number for the dev */
1832 if (minor == DM_ANY_MINOR)
1833 r = next_free_minor(&minor);
1834 else
1835 r = specific_minor(minor);
1836 if (r < 0)
1837 goto bad_minor;
1839 md->type = DM_TYPE_NONE;
1840 init_rwsem(&md->io_lock);
1841 mutex_init(&md->suspend_lock);
1842 mutex_init(&md->type_lock);
1843 spin_lock_init(&md->deferred_lock);
1844 rwlock_init(&md->map_lock);
1845 atomic_set(&md->holders, 1);
1846 atomic_set(&md->open_count, 0);
1847 atomic_set(&md->event_nr, 0);
1848 atomic_set(&md->uevent_seq, 0);
1849 INIT_LIST_HEAD(&md->uevent_list);
1850 spin_lock_init(&md->uevent_lock);
1852 md->queue = blk_alloc_queue(GFP_KERNEL);
1853 if (!md->queue)
1854 goto bad_queue;
1856 dm_init_md_queue(md);
1858 md->disk = alloc_disk(1);
1859 if (!md->disk)
1860 goto bad_disk;
1862 atomic_set(&md->pending[0], 0);
1863 atomic_set(&md->pending[1], 0);
1864 init_waitqueue_head(&md->wait);
1865 INIT_WORK(&md->work, dm_wq_work);
1866 init_waitqueue_head(&md->eventq);
1868 md->disk->major = _major;
1869 md->disk->first_minor = minor;
1870 md->disk->fops = &dm_blk_dops;
1871 md->disk->queue = md->queue;
1872 md->disk->private_data = md;
1873 sprintf(md->disk->disk_name, "dm-%d", minor);
1874 add_disk(md->disk);
1875 format_dev_t(md->name, MKDEV(_major, minor));
1877 md->wq = alloc_workqueue("kdmflush",
1878 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1879 if (!md->wq)
1880 goto bad_thread;
1882 md->bdev = bdget_disk(md->disk, 0);
1883 if (!md->bdev)
1884 goto bad_bdev;
1886 bio_init(&md->flush_bio);
1887 md->flush_bio.bi_bdev = md->bdev;
1888 md->flush_bio.bi_rw = WRITE_FLUSH;
1890 /* Populate the mapping, nobody knows we exist yet */
1891 spin_lock(&_minor_lock);
1892 old_md = idr_replace(&_minor_idr, md, minor);
1893 spin_unlock(&_minor_lock);
1895 BUG_ON(old_md != MINOR_ALLOCED);
1897 return md;
1899 bad_bdev:
1900 destroy_workqueue(md->wq);
1901 bad_thread:
1902 del_gendisk(md->disk);
1903 put_disk(md->disk);
1904 bad_disk:
1905 blk_cleanup_queue(md->queue);
1906 bad_queue:
1907 free_minor(minor);
1908 bad_minor:
1909 module_put(THIS_MODULE);
1910 bad_module_get:
1911 kfree(md);
1912 return NULL;
1915 static void unlock_fs(struct mapped_device *md);
1917 static void free_dev(struct mapped_device *md)
1919 int minor = MINOR(disk_devt(md->disk));
1921 unlock_fs(md);
1922 bdput(md->bdev);
1923 destroy_workqueue(md->wq);
1924 if (md->tio_pool)
1925 mempool_destroy(md->tio_pool);
1926 if (md->io_pool)
1927 mempool_destroy(md->io_pool);
1928 if (md->bs)
1929 bioset_free(md->bs);
1930 blk_integrity_unregister(md->disk);
1931 del_gendisk(md->disk);
1932 free_minor(minor);
1934 spin_lock(&_minor_lock);
1935 md->disk->private_data = NULL;
1936 spin_unlock(&_minor_lock);
1938 put_disk(md->disk);
1939 blk_cleanup_queue(md->queue);
1940 module_put(THIS_MODULE);
1941 kfree(md);
1944 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1946 struct dm_md_mempools *p;
1948 if (md->io_pool && md->tio_pool && md->bs)
1949 /* the md already has necessary mempools */
1950 goto out;
1952 p = dm_table_get_md_mempools(t);
1953 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1955 md->io_pool = p->io_pool;
1956 p->io_pool = NULL;
1957 md->tio_pool = p->tio_pool;
1958 p->tio_pool = NULL;
1959 md->bs = p->bs;
1960 p->bs = NULL;
1962 out:
1963 /* mempool bind completed, now no need any mempools in the table */
1964 dm_table_free_md_mempools(t);
1968 * Bind a table to the device.
1970 static void event_callback(void *context)
1972 unsigned long flags;
1973 LIST_HEAD(uevents);
1974 struct mapped_device *md = (struct mapped_device *) context;
1976 spin_lock_irqsave(&md->uevent_lock, flags);
1977 list_splice_init(&md->uevent_list, &uevents);
1978 spin_unlock_irqrestore(&md->uevent_lock, flags);
1980 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1982 atomic_inc(&md->event_nr);
1983 wake_up(&md->eventq);
1987 * Protected by md->suspend_lock obtained by dm_swap_table().
1989 static void __set_size(struct mapped_device *md, sector_t size)
1991 set_capacity(md->disk, size);
1993 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1997 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1999 * If this function returns 0, then the device is either a non-dm
2000 * device without a merge_bvec_fn, or it is a dm device that is
2001 * able to split any bios it receives that are too big.
2003 int dm_queue_merge_is_compulsory(struct request_queue *q)
2005 struct mapped_device *dev_md;
2007 if (!q->merge_bvec_fn)
2008 return 0;
2010 if (q->make_request_fn == dm_request) {
2011 dev_md = q->queuedata;
2012 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2013 return 0;
2016 return 1;
2019 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2020 struct dm_dev *dev, sector_t start,
2021 sector_t len, void *data)
2023 struct block_device *bdev = dev->bdev;
2024 struct request_queue *q = bdev_get_queue(bdev);
2026 return dm_queue_merge_is_compulsory(q);
2030 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2031 * on the properties of the underlying devices.
2033 static int dm_table_merge_is_optional(struct dm_table *table)
2035 unsigned i = 0;
2036 struct dm_target *ti;
2038 while (i < dm_table_get_num_targets(table)) {
2039 ti = dm_table_get_target(table, i++);
2041 if (ti->type->iterate_devices &&
2042 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2043 return 0;
2046 return 1;
2050 * Returns old map, which caller must destroy.
2052 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2053 struct queue_limits *limits)
2055 struct dm_table *old_map;
2056 struct request_queue *q = md->queue;
2057 sector_t size;
2058 unsigned long flags;
2059 int merge_is_optional;
2061 size = dm_table_get_size(t);
2064 * Wipe any geometry if the size of the table changed.
2066 if (size != get_capacity(md->disk))
2067 memset(&md->geometry, 0, sizeof(md->geometry));
2069 __set_size(md, size);
2071 dm_table_event_callback(t, event_callback, md);
2074 * The queue hasn't been stopped yet, if the old table type wasn't
2075 * for request-based during suspension. So stop it to prevent
2076 * I/O mapping before resume.
2077 * This must be done before setting the queue restrictions,
2078 * because request-based dm may be run just after the setting.
2080 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2081 stop_queue(q);
2083 __bind_mempools(md, t);
2085 merge_is_optional = dm_table_merge_is_optional(t);
2087 write_lock_irqsave(&md->map_lock, flags);
2088 old_map = md->map;
2089 md->map = t;
2090 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2092 dm_table_set_restrictions(t, q, limits);
2093 if (merge_is_optional)
2094 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2095 else
2096 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2097 write_unlock_irqrestore(&md->map_lock, flags);
2099 return old_map;
2103 * Returns unbound table for the caller to free.
2105 static struct dm_table *__unbind(struct mapped_device *md)
2107 struct dm_table *map = md->map;
2108 unsigned long flags;
2110 if (!map)
2111 return NULL;
2113 dm_table_event_callback(map, NULL, NULL);
2114 write_lock_irqsave(&md->map_lock, flags);
2115 md->map = NULL;
2116 write_unlock_irqrestore(&md->map_lock, flags);
2118 return map;
2122 * Constructor for a new device.
2124 int dm_create(int minor, struct mapped_device **result)
2126 struct mapped_device *md;
2128 md = alloc_dev(minor);
2129 if (!md)
2130 return -ENXIO;
2132 dm_sysfs_init(md);
2134 *result = md;
2135 return 0;
2139 * Functions to manage md->type.
2140 * All are required to hold md->type_lock.
2142 void dm_lock_md_type(struct mapped_device *md)
2144 mutex_lock(&md->type_lock);
2147 void dm_unlock_md_type(struct mapped_device *md)
2149 mutex_unlock(&md->type_lock);
2152 void dm_set_md_type(struct mapped_device *md, unsigned type)
2154 md->type = type;
2157 unsigned dm_get_md_type(struct mapped_device *md)
2159 return md->type;
2162 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2164 return md->immutable_target_type;
2168 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2170 static int dm_init_request_based_queue(struct mapped_device *md)
2172 struct request_queue *q = NULL;
2174 if (md->queue->elevator)
2175 return 1;
2177 /* Fully initialize the queue */
2178 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2179 if (!q)
2180 return 0;
2182 md->queue = q;
2183 dm_init_md_queue(md);
2184 blk_queue_softirq_done(md->queue, dm_softirq_done);
2185 blk_queue_prep_rq(md->queue, dm_prep_fn);
2186 blk_queue_lld_busy(md->queue, dm_lld_busy);
2188 elv_register_queue(md->queue);
2190 return 1;
2194 * Setup the DM device's queue based on md's type
2196 int dm_setup_md_queue(struct mapped_device *md)
2198 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2199 !dm_init_request_based_queue(md)) {
2200 DMWARN("Cannot initialize queue for request-based mapped device");
2201 return -EINVAL;
2204 return 0;
2207 static struct mapped_device *dm_find_md(dev_t dev)
2209 struct mapped_device *md;
2210 unsigned minor = MINOR(dev);
2212 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2213 return NULL;
2215 spin_lock(&_minor_lock);
2217 md = idr_find(&_minor_idr, minor);
2218 if (md && (md == MINOR_ALLOCED ||
2219 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2220 dm_deleting_md(md) ||
2221 test_bit(DMF_FREEING, &md->flags))) {
2222 md = NULL;
2223 goto out;
2226 out:
2227 spin_unlock(&_minor_lock);
2229 return md;
2232 struct mapped_device *dm_get_md(dev_t dev)
2234 struct mapped_device *md = dm_find_md(dev);
2236 if (md)
2237 dm_get(md);
2239 return md;
2241 EXPORT_SYMBOL_GPL(dm_get_md);
2243 void *dm_get_mdptr(struct mapped_device *md)
2245 return md->interface_ptr;
2248 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250 md->interface_ptr = ptr;
2253 void dm_get(struct mapped_device *md)
2255 atomic_inc(&md->holders);
2256 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2259 const char *dm_device_name(struct mapped_device *md)
2261 return md->name;
2263 EXPORT_SYMBOL_GPL(dm_device_name);
2265 static void __dm_destroy(struct mapped_device *md, bool wait)
2267 struct dm_table *map;
2269 might_sleep();
2271 spin_lock(&_minor_lock);
2272 map = dm_get_live_table(md);
2273 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2274 set_bit(DMF_FREEING, &md->flags);
2275 spin_unlock(&_minor_lock);
2277 if (!dm_suspended_md(md)) {
2278 dm_table_presuspend_targets(map);
2279 dm_table_postsuspend_targets(map);
2283 * Rare, but there may be I/O requests still going to complete,
2284 * for example. Wait for all references to disappear.
2285 * No one should increment the reference count of the mapped_device,
2286 * after the mapped_device state becomes DMF_FREEING.
2288 if (wait)
2289 while (atomic_read(&md->holders))
2290 msleep(1);
2291 else if (atomic_read(&md->holders))
2292 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2293 dm_device_name(md), atomic_read(&md->holders));
2295 dm_sysfs_exit(md);
2296 dm_table_put(map);
2297 dm_table_destroy(__unbind(md));
2298 free_dev(md);
2301 void dm_destroy(struct mapped_device *md)
2303 __dm_destroy(md, true);
2306 void dm_destroy_immediate(struct mapped_device *md)
2308 __dm_destroy(md, false);
2311 void dm_put(struct mapped_device *md)
2313 atomic_dec(&md->holders);
2315 EXPORT_SYMBOL_GPL(dm_put);
2317 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2319 int r = 0;
2320 DECLARE_WAITQUEUE(wait, current);
2322 add_wait_queue(&md->wait, &wait);
2324 while (1) {
2325 set_current_state(interruptible);
2327 if (!md_in_flight(md))
2328 break;
2330 if (interruptible == TASK_INTERRUPTIBLE &&
2331 signal_pending(current)) {
2332 r = -EINTR;
2333 break;
2336 io_schedule();
2338 set_current_state(TASK_RUNNING);
2340 remove_wait_queue(&md->wait, &wait);
2342 return r;
2346 * Process the deferred bios
2348 static void dm_wq_work(struct work_struct *work)
2350 struct mapped_device *md = container_of(work, struct mapped_device,
2351 work);
2352 struct bio *c;
2354 down_read(&md->io_lock);
2356 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2357 spin_lock_irq(&md->deferred_lock);
2358 c = bio_list_pop(&md->deferred);
2359 spin_unlock_irq(&md->deferred_lock);
2361 if (!c)
2362 break;
2364 up_read(&md->io_lock);
2366 if (dm_request_based(md))
2367 generic_make_request(c);
2368 else
2369 __split_and_process_bio(md, c);
2371 down_read(&md->io_lock);
2374 up_read(&md->io_lock);
2377 static void dm_queue_flush(struct mapped_device *md)
2379 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2380 smp_mb__after_clear_bit();
2381 queue_work(md->wq, &md->work);
2385 * Swap in a new table, returning the old one for the caller to destroy.
2387 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2389 struct dm_table *map = ERR_PTR(-EINVAL);
2390 struct queue_limits limits;
2391 int r;
2393 mutex_lock(&md->suspend_lock);
2395 /* device must be suspended */
2396 if (!dm_suspended_md(md))
2397 goto out;
2399 r = dm_calculate_queue_limits(table, &limits);
2400 if (r) {
2401 map = ERR_PTR(r);
2402 goto out;
2405 map = __bind(md, table, &limits);
2407 out:
2408 mutex_unlock(&md->suspend_lock);
2409 return map;
2413 * Functions to lock and unlock any filesystem running on the
2414 * device.
2416 static int lock_fs(struct mapped_device *md)
2418 int r;
2420 WARN_ON(md->frozen_sb);
2422 md->frozen_sb = freeze_bdev(md->bdev);
2423 if (IS_ERR(md->frozen_sb)) {
2424 r = PTR_ERR(md->frozen_sb);
2425 md->frozen_sb = NULL;
2426 return r;
2429 set_bit(DMF_FROZEN, &md->flags);
2431 return 0;
2434 static void unlock_fs(struct mapped_device *md)
2436 if (!test_bit(DMF_FROZEN, &md->flags))
2437 return;
2439 thaw_bdev(md->bdev, md->frozen_sb);
2440 md->frozen_sb = NULL;
2441 clear_bit(DMF_FROZEN, &md->flags);
2445 * We need to be able to change a mapping table under a mounted
2446 * filesystem. For example we might want to move some data in
2447 * the background. Before the table can be swapped with
2448 * dm_bind_table, dm_suspend must be called to flush any in
2449 * flight bios and ensure that any further io gets deferred.
2452 * Suspend mechanism in request-based dm.
2454 * 1. Flush all I/Os by lock_fs() if needed.
2455 * 2. Stop dispatching any I/O by stopping the request_queue.
2456 * 3. Wait for all in-flight I/Os to be completed or requeued.
2458 * To abort suspend, start the request_queue.
2460 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2462 struct dm_table *map = NULL;
2463 int r = 0;
2464 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2465 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2467 mutex_lock(&md->suspend_lock);
2469 if (dm_suspended_md(md)) {
2470 r = -EINVAL;
2471 goto out_unlock;
2474 map = dm_get_live_table(md);
2477 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2478 * This flag is cleared before dm_suspend returns.
2480 if (noflush)
2481 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2483 /* This does not get reverted if there's an error later. */
2484 dm_table_presuspend_targets(map);
2487 * Flush I/O to the device.
2488 * Any I/O submitted after lock_fs() may not be flushed.
2489 * noflush takes precedence over do_lockfs.
2490 * (lock_fs() flushes I/Os and waits for them to complete.)
2492 if (!noflush && do_lockfs) {
2493 r = lock_fs(md);
2494 if (r)
2495 goto out;
2499 * Here we must make sure that no processes are submitting requests
2500 * to target drivers i.e. no one may be executing
2501 * __split_and_process_bio. This is called from dm_request and
2502 * dm_wq_work.
2504 * To get all processes out of __split_and_process_bio in dm_request,
2505 * we take the write lock. To prevent any process from reentering
2506 * __split_and_process_bio from dm_request and quiesce the thread
2507 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2508 * flush_workqueue(md->wq).
2510 down_write(&md->io_lock);
2511 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2512 up_write(&md->io_lock);
2515 * Stop md->queue before flushing md->wq in case request-based
2516 * dm defers requests to md->wq from md->queue.
2518 if (dm_request_based(md))
2519 stop_queue(md->queue);
2521 flush_workqueue(md->wq);
2524 * At this point no more requests are entering target request routines.
2525 * We call dm_wait_for_completion to wait for all existing requests
2526 * to finish.
2528 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2530 down_write(&md->io_lock);
2531 if (noflush)
2532 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2533 up_write(&md->io_lock);
2535 /* were we interrupted ? */
2536 if (r < 0) {
2537 dm_queue_flush(md);
2539 if (dm_request_based(md))
2540 start_queue(md->queue);
2542 unlock_fs(md);
2543 goto out; /* pushback list is already flushed, so skip flush */
2547 * If dm_wait_for_completion returned 0, the device is completely
2548 * quiescent now. There is no request-processing activity. All new
2549 * requests are being added to md->deferred list.
2552 set_bit(DMF_SUSPENDED, &md->flags);
2554 dm_table_postsuspend_targets(map);
2556 out:
2557 dm_table_put(map);
2559 out_unlock:
2560 mutex_unlock(&md->suspend_lock);
2561 return r;
2564 int dm_resume(struct mapped_device *md)
2566 int r = -EINVAL;
2567 struct dm_table *map = NULL;
2569 mutex_lock(&md->suspend_lock);
2570 if (!dm_suspended_md(md))
2571 goto out;
2573 map = dm_get_live_table(md);
2574 if (!map || !dm_table_get_size(map))
2575 goto out;
2577 r = dm_table_resume_targets(map);
2578 if (r)
2579 goto out;
2581 dm_queue_flush(md);
2584 * Flushing deferred I/Os must be done after targets are resumed
2585 * so that mapping of targets can work correctly.
2586 * Request-based dm is queueing the deferred I/Os in its request_queue.
2588 if (dm_request_based(md))
2589 start_queue(md->queue);
2591 unlock_fs(md);
2593 clear_bit(DMF_SUSPENDED, &md->flags);
2595 r = 0;
2596 out:
2597 dm_table_put(map);
2598 mutex_unlock(&md->suspend_lock);
2600 return r;
2603 /*-----------------------------------------------------------------
2604 * Event notification.
2605 *---------------------------------------------------------------*/
2606 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2607 unsigned cookie)
2609 char udev_cookie[DM_COOKIE_LENGTH];
2610 char *envp[] = { udev_cookie, NULL };
2612 if (!cookie)
2613 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2614 else {
2615 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2616 DM_COOKIE_ENV_VAR_NAME, cookie);
2617 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2618 action, envp);
2622 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2624 return atomic_add_return(1, &md->uevent_seq);
2627 uint32_t dm_get_event_nr(struct mapped_device *md)
2629 return atomic_read(&md->event_nr);
2632 int dm_wait_event(struct mapped_device *md, int event_nr)
2634 return wait_event_interruptible(md->eventq,
2635 (event_nr != atomic_read(&md->event_nr)));
2638 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2640 unsigned long flags;
2642 spin_lock_irqsave(&md->uevent_lock, flags);
2643 list_add(elist, &md->uevent_list);
2644 spin_unlock_irqrestore(&md->uevent_lock, flags);
2648 * The gendisk is only valid as long as you have a reference
2649 * count on 'md'.
2651 struct gendisk *dm_disk(struct mapped_device *md)
2653 return md->disk;
2656 struct kobject *dm_kobject(struct mapped_device *md)
2658 return &md->kobj;
2662 * struct mapped_device should not be exported outside of dm.c
2663 * so use this check to verify that kobj is part of md structure
2665 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2667 struct mapped_device *md;
2669 md = container_of(kobj, struct mapped_device, kobj);
2670 if (&md->kobj != kobj)
2671 return NULL;
2673 if (test_bit(DMF_FREEING, &md->flags) ||
2674 dm_deleting_md(md))
2675 return NULL;
2677 dm_get(md);
2678 return md;
2681 int dm_suspended_md(struct mapped_device *md)
2683 return test_bit(DMF_SUSPENDED, &md->flags);
2686 int dm_suspended(struct dm_target *ti)
2688 return dm_suspended_md(dm_table_get_md(ti->table));
2690 EXPORT_SYMBOL_GPL(dm_suspended);
2692 int dm_noflush_suspending(struct dm_target *ti)
2694 return __noflush_suspending(dm_table_get_md(ti->table));
2696 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2698 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2700 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2701 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2703 if (!pools)
2704 return NULL;
2706 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2707 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2708 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2709 if (!pools->io_pool)
2710 goto free_pools_and_out;
2712 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2713 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2714 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2715 if (!pools->tio_pool)
2716 goto free_io_pool_and_out;
2718 pools->bs = bioset_create(pool_size, 0);
2719 if (!pools->bs)
2720 goto free_tio_pool_and_out;
2722 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2723 goto free_bioset_and_out;
2725 return pools;
2727 free_bioset_and_out:
2728 bioset_free(pools->bs);
2730 free_tio_pool_and_out:
2731 mempool_destroy(pools->tio_pool);
2733 free_io_pool_and_out:
2734 mempool_destroy(pools->io_pool);
2736 free_pools_and_out:
2737 kfree(pools);
2739 return NULL;
2742 void dm_free_md_mempools(struct dm_md_mempools *pools)
2744 if (!pools)
2745 return;
2747 if (pools->io_pool)
2748 mempool_destroy(pools->io_pool);
2750 if (pools->tio_pool)
2751 mempool_destroy(pools->tio_pool);
2753 if (pools->bs)
2754 bioset_free(pools->bs);
2756 kfree(pools);
2759 static const struct block_device_operations dm_blk_dops = {
2760 .open = dm_blk_open,
2761 .release = dm_blk_close,
2762 .ioctl = dm_blk_ioctl,
2763 .getgeo = dm_blk_getgeo,
2764 .owner = THIS_MODULE
2767 EXPORT_SYMBOL(dm_get_mapinfo);
2770 * module hooks
2772 module_init(dm_init);
2773 module_exit(dm_exit);
2775 module_param(major, uint, 0);
2776 MODULE_PARM_DESC(major, "The major number of the device mapper");
2777 MODULE_DESCRIPTION(DM_NAME " driver");
2778 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2779 MODULE_LICENSE("GPL");