QE/FHCI: fixed the CONTROL bug
[zen-stable.git] / drivers / mtd / onenand / onenand_base.c
blobac9e959802a7b113e838ecb8d6e24aee5b7df524
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
9 * Credits:
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
16 * OTP support
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
36 #include <asm/io.h>
39 * Multiblock erase if number of blocks to erase is 2 or more.
40 * Maximum number of blocks for simultaneous erase is 64.
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
50 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 "DIE_BDRY: SLC boundary of the die"
52 "LOCK: Locking information for SLC boundary"
53 " : 0->Set boundary in unlocked status"
54 " : 1->Set boundary in locked status");
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
61 "Syntax : otp=LOCK_TYPE"
62 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 " : 0 -> Default (No Blocks Locked)"
64 " : 1 -> OTP Block lock"
65 " : 2 -> 1st Block lock"
66 " : 3 -> BOTH OTP Block and 1st Block lock");
69 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
70 * For now, we expose only 64 out of 80 ecc bytes
72 static struct nand_ecclayout flexonenand_oob_128 = {
73 .eccbytes = 64,
74 .eccpos = {
75 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81 102, 103, 104, 105
83 .oobfree = {
84 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85 {66, 4}, {82, 4}, {98, 4}, {114, 4}
90 * onenand_oob_128 - oob info for OneNAND with 4KB page
92 * Based on specification:
93 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
95 * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
97 * oobfree uses the spare area fields marked as
98 * "Managed by internal ECC logic for Logical Sector Number area"
100 static struct nand_ecclayout onenand_oob_128 = {
101 .eccbytes = 64,
102 .eccpos = {
103 7, 8, 9, 10, 11, 12, 13, 14, 15,
104 23, 24, 25, 26, 27, 28, 29, 30, 31,
105 39, 40, 41, 42, 43, 44, 45, 46, 47,
106 55, 56, 57, 58, 59, 60, 61, 62, 63,
107 71, 72, 73, 74, 75, 76, 77, 78, 79,
108 87, 88, 89, 90, 91, 92, 93, 94, 95,
109 103, 104, 105, 106, 107, 108, 109, 110, 111,
112 .oobfree = {
113 {2, 3}, {18, 3}, {34, 3}, {50, 3},
114 {66, 3}, {82, 3}, {98, 3}, {114, 3}
119 * onenand_oob_64 - oob info for large (2KB) page
121 static struct nand_ecclayout onenand_oob_64 = {
122 .eccbytes = 20,
123 .eccpos = {
124 8, 9, 10, 11, 12,
125 24, 25, 26, 27, 28,
126 40, 41, 42, 43, 44,
127 56, 57, 58, 59, 60,
129 .oobfree = {
130 {2, 3}, {14, 2}, {18, 3}, {30, 2},
131 {34, 3}, {46, 2}, {50, 3}, {62, 2}
136 * onenand_oob_32 - oob info for middle (1KB) page
138 static struct nand_ecclayout onenand_oob_32 = {
139 .eccbytes = 10,
140 .eccpos = {
141 8, 9, 10, 11, 12,
142 24, 25, 26, 27, 28,
144 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
147 static const unsigned char ffchars[] = {
148 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
149 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
150 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
151 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
152 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
153 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
154 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
155 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
156 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
157 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
158 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
159 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
160 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
161 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
162 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
163 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
167 * onenand_readw - [OneNAND Interface] Read OneNAND register
168 * @param addr address to read
170 * Read OneNAND register
172 static unsigned short onenand_readw(void __iomem *addr)
174 return readw(addr);
178 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
179 * @param value value to write
180 * @param addr address to write
182 * Write OneNAND register with value
184 static void onenand_writew(unsigned short value, void __iomem *addr)
186 writew(value, addr);
190 * onenand_block_address - [DEFAULT] Get block address
191 * @param this onenand chip data structure
192 * @param block the block
193 * @return translated block address if DDP, otherwise same
195 * Setup Start Address 1 Register (F100h)
197 static int onenand_block_address(struct onenand_chip *this, int block)
199 /* Device Flash Core select, NAND Flash Block Address */
200 if (block & this->density_mask)
201 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
203 return block;
207 * onenand_bufferram_address - [DEFAULT] Get bufferram address
208 * @param this onenand chip data structure
209 * @param block the block
210 * @return set DBS value if DDP, otherwise 0
212 * Setup Start Address 2 Register (F101h) for DDP
214 static int onenand_bufferram_address(struct onenand_chip *this, int block)
216 /* Device BufferRAM Select */
217 if (block & this->density_mask)
218 return ONENAND_DDP_CHIP1;
220 return ONENAND_DDP_CHIP0;
224 * onenand_page_address - [DEFAULT] Get page address
225 * @param page the page address
226 * @param sector the sector address
227 * @return combined page and sector address
229 * Setup Start Address 8 Register (F107h)
231 static int onenand_page_address(int page, int sector)
233 /* Flash Page Address, Flash Sector Address */
234 int fpa, fsa;
236 fpa = page & ONENAND_FPA_MASK;
237 fsa = sector & ONENAND_FSA_MASK;
239 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
243 * onenand_buffer_address - [DEFAULT] Get buffer address
244 * @param dataram1 DataRAM index
245 * @param sectors the sector address
246 * @param count the number of sectors
247 * @return the start buffer value
249 * Setup Start Buffer Register (F200h)
251 static int onenand_buffer_address(int dataram1, int sectors, int count)
253 int bsa, bsc;
255 /* BufferRAM Sector Address */
256 bsa = sectors & ONENAND_BSA_MASK;
258 if (dataram1)
259 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
260 else
261 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
263 /* BufferRAM Sector Count */
264 bsc = count & ONENAND_BSC_MASK;
266 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
270 * flexonenand_block- For given address return block number
271 * @param this - OneNAND device structure
272 * @param addr - Address for which block number is needed
274 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
276 unsigned boundary, blk, die = 0;
278 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
279 die = 1;
280 addr -= this->diesize[0];
283 boundary = this->boundary[die];
285 blk = addr >> (this->erase_shift - 1);
286 if (blk > boundary)
287 blk = (blk + boundary + 1) >> 1;
289 blk += die ? this->density_mask : 0;
290 return blk;
293 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
295 if (!FLEXONENAND(this))
296 return addr >> this->erase_shift;
297 return flexonenand_block(this, addr);
301 * flexonenand_addr - Return address of the block
302 * @this: OneNAND device structure
303 * @block: Block number on Flex-OneNAND
305 * Return address of the block
307 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
309 loff_t ofs = 0;
310 int die = 0, boundary;
312 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
313 block -= this->density_mask;
314 die = 1;
315 ofs = this->diesize[0];
318 boundary = this->boundary[die];
319 ofs += (loff_t)block << (this->erase_shift - 1);
320 if (block > (boundary + 1))
321 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
322 return ofs;
325 loff_t onenand_addr(struct onenand_chip *this, int block)
327 if (!FLEXONENAND(this))
328 return (loff_t)block << this->erase_shift;
329 return flexonenand_addr(this, block);
331 EXPORT_SYMBOL(onenand_addr);
334 * onenand_get_density - [DEFAULT] Get OneNAND density
335 * @param dev_id OneNAND device ID
337 * Get OneNAND density from device ID
339 static inline int onenand_get_density(int dev_id)
341 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
342 return (density & ONENAND_DEVICE_DENSITY_MASK);
346 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
347 * @param mtd MTD device structure
348 * @param addr address whose erase region needs to be identified
350 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
352 int i;
354 for (i = 0; i < mtd->numeraseregions; i++)
355 if (addr < mtd->eraseregions[i].offset)
356 break;
357 return i - 1;
359 EXPORT_SYMBOL(flexonenand_region);
362 * onenand_command - [DEFAULT] Send command to OneNAND device
363 * @param mtd MTD device structure
364 * @param cmd the command to be sent
365 * @param addr offset to read from or write to
366 * @param len number of bytes to read or write
368 * Send command to OneNAND device. This function is used for middle/large page
369 * devices (1KB/2KB Bytes per page)
371 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
373 struct onenand_chip *this = mtd->priv;
374 int value, block, page;
376 /* Address translation */
377 switch (cmd) {
378 case ONENAND_CMD_UNLOCK:
379 case ONENAND_CMD_LOCK:
380 case ONENAND_CMD_LOCK_TIGHT:
381 case ONENAND_CMD_UNLOCK_ALL:
382 block = -1;
383 page = -1;
384 break;
386 case FLEXONENAND_CMD_PI_ACCESS:
387 /* addr contains die index */
388 block = addr * this->density_mask;
389 page = -1;
390 break;
392 case ONENAND_CMD_ERASE:
393 case ONENAND_CMD_MULTIBLOCK_ERASE:
394 case ONENAND_CMD_ERASE_VERIFY:
395 case ONENAND_CMD_BUFFERRAM:
396 case ONENAND_CMD_OTP_ACCESS:
397 block = onenand_block(this, addr);
398 page = -1;
399 break;
401 case FLEXONENAND_CMD_READ_PI:
402 cmd = ONENAND_CMD_READ;
403 block = addr * this->density_mask;
404 page = 0;
405 break;
407 default:
408 block = onenand_block(this, addr);
409 if (FLEXONENAND(this))
410 page = (int) (addr - onenand_addr(this, block))>>\
411 this->page_shift;
412 else
413 page = (int) (addr >> this->page_shift);
414 if (ONENAND_IS_2PLANE(this)) {
415 /* Make the even block number */
416 block &= ~1;
417 /* Is it the odd plane? */
418 if (addr & this->writesize)
419 block++;
420 page >>= 1;
422 page &= this->page_mask;
423 break;
426 /* NOTE: The setting order of the registers is very important! */
427 if (cmd == ONENAND_CMD_BUFFERRAM) {
428 /* Select DataRAM for DDP */
429 value = onenand_bufferram_address(this, block);
430 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
432 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
433 /* It is always BufferRAM0 */
434 ONENAND_SET_BUFFERRAM0(this);
435 else
436 /* Switch to the next data buffer */
437 ONENAND_SET_NEXT_BUFFERRAM(this);
439 return 0;
442 if (block != -1) {
443 /* Write 'DFS, FBA' of Flash */
444 value = onenand_block_address(this, block);
445 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
447 /* Select DataRAM for DDP */
448 value = onenand_bufferram_address(this, block);
449 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
452 if (page != -1) {
453 /* Now we use page size operation */
454 int sectors = 0, count = 0;
455 int dataram;
457 switch (cmd) {
458 case FLEXONENAND_CMD_RECOVER_LSB:
459 case ONENAND_CMD_READ:
460 case ONENAND_CMD_READOOB:
461 if (ONENAND_IS_4KB_PAGE(this))
462 /* It is always BufferRAM0 */
463 dataram = ONENAND_SET_BUFFERRAM0(this);
464 else
465 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
466 break;
468 default:
469 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
470 cmd = ONENAND_CMD_2X_PROG;
471 dataram = ONENAND_CURRENT_BUFFERRAM(this);
472 break;
475 /* Write 'FPA, FSA' of Flash */
476 value = onenand_page_address(page, sectors);
477 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
479 /* Write 'BSA, BSC' of DataRAM */
480 value = onenand_buffer_address(dataram, sectors, count);
481 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
484 /* Interrupt clear */
485 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
487 /* Write command */
488 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
490 return 0;
494 * onenand_read_ecc - return ecc status
495 * @param this onenand chip structure
497 static inline int onenand_read_ecc(struct onenand_chip *this)
499 int ecc, i, result = 0;
501 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
502 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
504 for (i = 0; i < 4; i++) {
505 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
506 if (likely(!ecc))
507 continue;
508 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
509 return ONENAND_ECC_2BIT_ALL;
510 else
511 result = ONENAND_ECC_1BIT_ALL;
514 return result;
518 * onenand_wait - [DEFAULT] wait until the command is done
519 * @param mtd MTD device structure
520 * @param state state to select the max. timeout value
522 * Wait for command done. This applies to all OneNAND command
523 * Read can take up to 30us, erase up to 2ms and program up to 350us
524 * according to general OneNAND specs
526 static int onenand_wait(struct mtd_info *mtd, int state)
528 struct onenand_chip * this = mtd->priv;
529 unsigned long timeout;
530 unsigned int flags = ONENAND_INT_MASTER;
531 unsigned int interrupt = 0;
532 unsigned int ctrl;
534 /* The 20 msec is enough */
535 timeout = jiffies + msecs_to_jiffies(20);
536 while (time_before(jiffies, timeout)) {
537 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
539 if (interrupt & flags)
540 break;
542 if (state != FL_READING && state != FL_PREPARING_ERASE)
543 cond_resched();
545 /* To get correct interrupt status in timeout case */
546 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
548 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
551 * In the Spec. it checks the controller status first
552 * However if you get the correct information in case of
553 * power off recovery (POR) test, it should read ECC status first
555 if (interrupt & ONENAND_INT_READ) {
556 int ecc = onenand_read_ecc(this);
557 if (ecc) {
558 if (ecc & ONENAND_ECC_2BIT_ALL) {
559 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
560 __func__, ecc);
561 mtd->ecc_stats.failed++;
562 return -EBADMSG;
563 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
564 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
565 __func__, ecc);
566 mtd->ecc_stats.corrected++;
569 } else if (state == FL_READING) {
570 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
571 __func__, ctrl, interrupt);
572 return -EIO;
575 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
576 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
577 __func__, ctrl, interrupt);
578 return -EIO;
581 if (!(interrupt & ONENAND_INT_MASTER)) {
582 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
583 __func__, ctrl, interrupt);
584 return -EIO;
587 /* If there's controller error, it's a real error */
588 if (ctrl & ONENAND_CTRL_ERROR) {
589 printk(KERN_ERR "%s: controller error = 0x%04x\n",
590 __func__, ctrl);
591 if (ctrl & ONENAND_CTRL_LOCK)
592 printk(KERN_ERR "%s: it's locked error.\n", __func__);
593 return -EIO;
596 return 0;
600 * onenand_interrupt - [DEFAULT] onenand interrupt handler
601 * @param irq onenand interrupt number
602 * @param dev_id interrupt data
604 * complete the work
606 static irqreturn_t onenand_interrupt(int irq, void *data)
608 struct onenand_chip *this = data;
610 /* To handle shared interrupt */
611 if (!this->complete.done)
612 complete(&this->complete);
614 return IRQ_HANDLED;
618 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
619 * @param mtd MTD device structure
620 * @param state state to select the max. timeout value
622 * Wait for command done.
624 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
626 struct onenand_chip *this = mtd->priv;
628 wait_for_completion(&this->complete);
630 return onenand_wait(mtd, state);
634 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
635 * @param mtd MTD device structure
636 * @param state state to select the max. timeout value
638 * Try interrupt based wait (It is used one-time)
640 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
642 struct onenand_chip *this = mtd->priv;
643 unsigned long remain, timeout;
645 /* We use interrupt wait first */
646 this->wait = onenand_interrupt_wait;
648 timeout = msecs_to_jiffies(100);
649 remain = wait_for_completion_timeout(&this->complete, timeout);
650 if (!remain) {
651 printk(KERN_INFO "OneNAND: There's no interrupt. "
652 "We use the normal wait\n");
654 /* Release the irq */
655 free_irq(this->irq, this);
657 this->wait = onenand_wait;
660 return onenand_wait(mtd, state);
664 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
665 * @param mtd MTD device structure
667 * There's two method to wait onenand work
668 * 1. polling - read interrupt status register
669 * 2. interrupt - use the kernel interrupt method
671 static void onenand_setup_wait(struct mtd_info *mtd)
673 struct onenand_chip *this = mtd->priv;
674 int syscfg;
676 init_completion(&this->complete);
678 if (this->irq <= 0) {
679 this->wait = onenand_wait;
680 return;
683 if (request_irq(this->irq, &onenand_interrupt,
684 IRQF_SHARED, "onenand", this)) {
685 /* If we can't get irq, use the normal wait */
686 this->wait = onenand_wait;
687 return;
690 /* Enable interrupt */
691 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
692 syscfg |= ONENAND_SYS_CFG1_IOBE;
693 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
695 this->wait = onenand_try_interrupt_wait;
699 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
700 * @param mtd MTD data structure
701 * @param area BufferRAM area
702 * @return offset given area
704 * Return BufferRAM offset given area
706 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
708 struct onenand_chip *this = mtd->priv;
710 if (ONENAND_CURRENT_BUFFERRAM(this)) {
711 /* Note: the 'this->writesize' is a real page size */
712 if (area == ONENAND_DATARAM)
713 return this->writesize;
714 if (area == ONENAND_SPARERAM)
715 return mtd->oobsize;
718 return 0;
722 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
723 * @param mtd MTD data structure
724 * @param area BufferRAM area
725 * @param buffer the databuffer to put/get data
726 * @param offset offset to read from or write to
727 * @param count number of bytes to read/write
729 * Read the BufferRAM area
731 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
732 unsigned char *buffer, int offset, size_t count)
734 struct onenand_chip *this = mtd->priv;
735 void __iomem *bufferram;
737 bufferram = this->base + area;
739 bufferram += onenand_bufferram_offset(mtd, area);
741 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
742 unsigned short word;
744 /* Align with word(16-bit) size */
745 count--;
747 /* Read word and save byte */
748 word = this->read_word(bufferram + offset + count);
749 buffer[count] = (word & 0xff);
752 memcpy(buffer, bufferram + offset, count);
754 return 0;
758 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
759 * @param mtd MTD data structure
760 * @param area BufferRAM area
761 * @param buffer the databuffer to put/get data
762 * @param offset offset to read from or write to
763 * @param count number of bytes to read/write
765 * Read the BufferRAM area with Sync. Burst Mode
767 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
768 unsigned char *buffer, int offset, size_t count)
770 struct onenand_chip *this = mtd->priv;
771 void __iomem *bufferram;
773 bufferram = this->base + area;
775 bufferram += onenand_bufferram_offset(mtd, area);
777 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
779 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
780 unsigned short word;
782 /* Align with word(16-bit) size */
783 count--;
785 /* Read word and save byte */
786 word = this->read_word(bufferram + offset + count);
787 buffer[count] = (word & 0xff);
790 memcpy(buffer, bufferram + offset, count);
792 this->mmcontrol(mtd, 0);
794 return 0;
798 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
799 * @param mtd MTD data structure
800 * @param area BufferRAM area
801 * @param buffer the databuffer to put/get data
802 * @param offset offset to read from or write to
803 * @param count number of bytes to read/write
805 * Write the BufferRAM area
807 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
808 const unsigned char *buffer, int offset, size_t count)
810 struct onenand_chip *this = mtd->priv;
811 void __iomem *bufferram;
813 bufferram = this->base + area;
815 bufferram += onenand_bufferram_offset(mtd, area);
817 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
818 unsigned short word;
819 int byte_offset;
821 /* Align with word(16-bit) size */
822 count--;
824 /* Calculate byte access offset */
825 byte_offset = offset + count;
827 /* Read word and save byte */
828 word = this->read_word(bufferram + byte_offset);
829 word = (word & ~0xff) | buffer[count];
830 this->write_word(word, bufferram + byte_offset);
833 memcpy(bufferram + offset, buffer, count);
835 return 0;
839 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
840 * @param mtd MTD data structure
841 * @param addr address to check
842 * @return blockpage address
844 * Get blockpage address at 2x program mode
846 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
848 struct onenand_chip *this = mtd->priv;
849 int blockpage, block, page;
851 /* Calculate the even block number */
852 block = (int) (addr >> this->erase_shift) & ~1;
853 /* Is it the odd plane? */
854 if (addr & this->writesize)
855 block++;
856 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
857 blockpage = (block << 7) | page;
859 return blockpage;
863 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
864 * @param mtd MTD data structure
865 * @param addr address to check
866 * @return 1 if there are valid data, otherwise 0
868 * Check bufferram if there is data we required
870 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
872 struct onenand_chip *this = mtd->priv;
873 int blockpage, found = 0;
874 unsigned int i;
876 if (ONENAND_IS_2PLANE(this))
877 blockpage = onenand_get_2x_blockpage(mtd, addr);
878 else
879 blockpage = (int) (addr >> this->page_shift);
881 /* Is there valid data? */
882 i = ONENAND_CURRENT_BUFFERRAM(this);
883 if (this->bufferram[i].blockpage == blockpage)
884 found = 1;
885 else {
886 /* Check another BufferRAM */
887 i = ONENAND_NEXT_BUFFERRAM(this);
888 if (this->bufferram[i].blockpage == blockpage) {
889 ONENAND_SET_NEXT_BUFFERRAM(this);
890 found = 1;
894 if (found && ONENAND_IS_DDP(this)) {
895 /* Select DataRAM for DDP */
896 int block = onenand_block(this, addr);
897 int value = onenand_bufferram_address(this, block);
898 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
901 return found;
905 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
906 * @param mtd MTD data structure
907 * @param addr address to update
908 * @param valid valid flag
910 * Update BufferRAM information
912 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
913 int valid)
915 struct onenand_chip *this = mtd->priv;
916 int blockpage;
917 unsigned int i;
919 if (ONENAND_IS_2PLANE(this))
920 blockpage = onenand_get_2x_blockpage(mtd, addr);
921 else
922 blockpage = (int) (addr >> this->page_shift);
924 /* Invalidate another BufferRAM */
925 i = ONENAND_NEXT_BUFFERRAM(this);
926 if (this->bufferram[i].blockpage == blockpage)
927 this->bufferram[i].blockpage = -1;
929 /* Update BufferRAM */
930 i = ONENAND_CURRENT_BUFFERRAM(this);
931 if (valid)
932 this->bufferram[i].blockpage = blockpage;
933 else
934 this->bufferram[i].blockpage = -1;
938 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
939 * @param mtd MTD data structure
940 * @param addr start address to invalidate
941 * @param len length to invalidate
943 * Invalidate BufferRAM information
945 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
946 unsigned int len)
948 struct onenand_chip *this = mtd->priv;
949 int i;
950 loff_t end_addr = addr + len;
952 /* Invalidate BufferRAM */
953 for (i = 0; i < MAX_BUFFERRAM; i++) {
954 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
955 if (buf_addr >= addr && buf_addr < end_addr)
956 this->bufferram[i].blockpage = -1;
961 * onenand_get_device - [GENERIC] Get chip for selected access
962 * @param mtd MTD device structure
963 * @param new_state the state which is requested
965 * Get the device and lock it for exclusive access
967 static int onenand_get_device(struct mtd_info *mtd, int new_state)
969 struct onenand_chip *this = mtd->priv;
970 DECLARE_WAITQUEUE(wait, current);
973 * Grab the lock and see if the device is available
975 while (1) {
976 spin_lock(&this->chip_lock);
977 if (this->state == FL_READY) {
978 this->state = new_state;
979 spin_unlock(&this->chip_lock);
980 if (new_state != FL_PM_SUSPENDED && this->enable)
981 this->enable(mtd);
982 break;
984 if (new_state == FL_PM_SUSPENDED) {
985 spin_unlock(&this->chip_lock);
986 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
988 set_current_state(TASK_UNINTERRUPTIBLE);
989 add_wait_queue(&this->wq, &wait);
990 spin_unlock(&this->chip_lock);
991 schedule();
992 remove_wait_queue(&this->wq, &wait);
995 return 0;
999 * onenand_release_device - [GENERIC] release chip
1000 * @param mtd MTD device structure
1002 * Deselect, release chip lock and wake up anyone waiting on the device
1004 static void onenand_release_device(struct mtd_info *mtd)
1006 struct onenand_chip *this = mtd->priv;
1008 if (this->state != FL_PM_SUSPENDED && this->disable)
1009 this->disable(mtd);
1010 /* Release the chip */
1011 spin_lock(&this->chip_lock);
1012 this->state = FL_READY;
1013 wake_up(&this->wq);
1014 spin_unlock(&this->chip_lock);
1018 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
1019 * @param mtd MTD device structure
1020 * @param buf destination address
1021 * @param column oob offset to read from
1022 * @param thislen oob length to read
1024 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1025 int thislen)
1027 struct onenand_chip *this = mtd->priv;
1028 struct nand_oobfree *free;
1029 int readcol = column;
1030 int readend = column + thislen;
1031 int lastgap = 0;
1032 unsigned int i;
1033 uint8_t *oob_buf = this->oob_buf;
1035 free = this->ecclayout->oobfree;
1036 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1037 if (readcol >= lastgap)
1038 readcol += free->offset - lastgap;
1039 if (readend >= lastgap)
1040 readend += free->offset - lastgap;
1041 lastgap = free->offset + free->length;
1043 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1044 free = this->ecclayout->oobfree;
1045 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1046 int free_end = free->offset + free->length;
1047 if (free->offset < readend && free_end > readcol) {
1048 int st = max_t(int,free->offset,readcol);
1049 int ed = min_t(int,free_end,readend);
1050 int n = ed - st;
1051 memcpy(buf, oob_buf + st, n);
1052 buf += n;
1053 } else if (column == 0)
1054 break;
1056 return 0;
1060 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1061 * @param mtd MTD device structure
1062 * @param addr address to recover
1063 * @param status return value from onenand_wait / onenand_bbt_wait
1065 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1066 * lower page address and MSB page has higher page address in paired pages.
1067 * If power off occurs during MSB page program, the paired LSB page data can
1068 * become corrupt. LSB page recovery read is a way to read LSB page though page
1069 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1070 * read after power up, issue LSB page recovery read.
1072 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1074 struct onenand_chip *this = mtd->priv;
1075 int i;
1077 /* Recovery is only for Flex-OneNAND */
1078 if (!FLEXONENAND(this))
1079 return status;
1081 /* check if we failed due to uncorrectable error */
1082 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1083 return status;
1085 /* check if address lies in MLC region */
1086 i = flexonenand_region(mtd, addr);
1087 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1088 return status;
1090 /* We are attempting to reread, so decrement stats.failed
1091 * which was incremented by onenand_wait due to read failure
1093 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1094 __func__);
1095 mtd->ecc_stats.failed--;
1097 /* Issue the LSB page recovery command */
1098 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1099 return this->wait(mtd, FL_READING);
1103 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1104 * @param mtd MTD device structure
1105 * @param from offset to read from
1106 * @param ops: oob operation description structure
1108 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1109 * So, read-while-load is not present.
1111 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1112 struct mtd_oob_ops *ops)
1114 struct onenand_chip *this = mtd->priv;
1115 struct mtd_ecc_stats stats;
1116 size_t len = ops->len;
1117 size_t ooblen = ops->ooblen;
1118 u_char *buf = ops->datbuf;
1119 u_char *oobbuf = ops->oobbuf;
1120 int read = 0, column, thislen;
1121 int oobread = 0, oobcolumn, thisooblen, oobsize;
1122 int ret = 0;
1123 int writesize = this->writesize;
1125 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1126 __func__, (unsigned int) from, (int) len);
1128 if (ops->mode == MTD_OOB_AUTO)
1129 oobsize = this->ecclayout->oobavail;
1130 else
1131 oobsize = mtd->oobsize;
1133 oobcolumn = from & (mtd->oobsize - 1);
1135 /* Do not allow reads past end of device */
1136 if (from + len > mtd->size) {
1137 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1138 __func__);
1139 ops->retlen = 0;
1140 ops->oobretlen = 0;
1141 return -EINVAL;
1144 stats = mtd->ecc_stats;
1146 while (read < len) {
1147 cond_resched();
1149 thislen = min_t(int, writesize, len - read);
1151 column = from & (writesize - 1);
1152 if (column + thislen > writesize)
1153 thislen = writesize - column;
1155 if (!onenand_check_bufferram(mtd, from)) {
1156 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1158 ret = this->wait(mtd, FL_READING);
1159 if (unlikely(ret))
1160 ret = onenand_recover_lsb(mtd, from, ret);
1161 onenand_update_bufferram(mtd, from, !ret);
1162 if (ret == -EBADMSG)
1163 ret = 0;
1164 if (ret)
1165 break;
1168 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1169 if (oobbuf) {
1170 thisooblen = oobsize - oobcolumn;
1171 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1173 if (ops->mode == MTD_OOB_AUTO)
1174 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1175 else
1176 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1177 oobread += thisooblen;
1178 oobbuf += thisooblen;
1179 oobcolumn = 0;
1182 read += thislen;
1183 if (read == len)
1184 break;
1186 from += thislen;
1187 buf += thislen;
1191 * Return success, if no ECC failures, else -EBADMSG
1192 * fs driver will take care of that, because
1193 * retlen == desired len and result == -EBADMSG
1195 ops->retlen = read;
1196 ops->oobretlen = oobread;
1198 if (ret)
1199 return ret;
1201 if (mtd->ecc_stats.failed - stats.failed)
1202 return -EBADMSG;
1204 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @param mtd MTD device structure
1210 * @param from offset to read from
1211 * @param ops: oob operation description structure
1213 * OneNAND read main and/or out-of-band data
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 struct mtd_oob_ops *ops)
1218 struct onenand_chip *this = mtd->priv;
1219 struct mtd_ecc_stats stats;
1220 size_t len = ops->len;
1221 size_t ooblen = ops->ooblen;
1222 u_char *buf = ops->datbuf;
1223 u_char *oobbuf = ops->oobbuf;
1224 int read = 0, column, thislen;
1225 int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 int ret = 0, boundary = 0;
1227 int writesize = this->writesize;
1229 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1230 __func__, (unsigned int) from, (int) len);
1232 if (ops->mode == MTD_OOB_AUTO)
1233 oobsize = this->ecclayout->oobavail;
1234 else
1235 oobsize = mtd->oobsize;
1237 oobcolumn = from & (mtd->oobsize - 1);
1239 /* Do not allow reads past end of device */
1240 if ((from + len) > mtd->size) {
1241 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1242 __func__);
1243 ops->retlen = 0;
1244 ops->oobretlen = 0;
1245 return -EINVAL;
1248 stats = mtd->ecc_stats;
1250 /* Read-while-load method */
1252 /* Do first load to bufferRAM */
1253 if (read < len) {
1254 if (!onenand_check_bufferram(mtd, from)) {
1255 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1256 ret = this->wait(mtd, FL_READING);
1257 onenand_update_bufferram(mtd, from, !ret);
1258 if (ret == -EBADMSG)
1259 ret = 0;
1263 thislen = min_t(int, writesize, len - read);
1264 column = from & (writesize - 1);
1265 if (column + thislen > writesize)
1266 thislen = writesize - column;
1268 while (!ret) {
1269 /* If there is more to load then start next load */
1270 from += thislen;
1271 if (read + thislen < len) {
1272 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1274 * Chip boundary handling in DDP
1275 * Now we issued chip 1 read and pointed chip 1
1276 * bufferram so we have to point chip 0 bufferram.
1278 if (ONENAND_IS_DDP(this) &&
1279 unlikely(from == (this->chipsize >> 1))) {
1280 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1281 boundary = 1;
1282 } else
1283 boundary = 0;
1284 ONENAND_SET_PREV_BUFFERRAM(this);
1286 /* While load is going, read from last bufferRAM */
1287 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1289 /* Read oob area if needed */
1290 if (oobbuf) {
1291 thisooblen = oobsize - oobcolumn;
1292 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1294 if (ops->mode == MTD_OOB_AUTO)
1295 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1296 else
1297 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1298 oobread += thisooblen;
1299 oobbuf += thisooblen;
1300 oobcolumn = 0;
1303 /* See if we are done */
1304 read += thislen;
1305 if (read == len)
1306 break;
1307 /* Set up for next read from bufferRAM */
1308 if (unlikely(boundary))
1309 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1310 ONENAND_SET_NEXT_BUFFERRAM(this);
1311 buf += thislen;
1312 thislen = min_t(int, writesize, len - read);
1313 column = 0;
1314 cond_resched();
1315 /* Now wait for load */
1316 ret = this->wait(mtd, FL_READING);
1317 onenand_update_bufferram(mtd, from, !ret);
1318 if (ret == -EBADMSG)
1319 ret = 0;
1323 * Return success, if no ECC failures, else -EBADMSG
1324 * fs driver will take care of that, because
1325 * retlen == desired len and result == -EBADMSG
1327 ops->retlen = read;
1328 ops->oobretlen = oobread;
1330 if (ret)
1331 return ret;
1333 if (mtd->ecc_stats.failed - stats.failed)
1334 return -EBADMSG;
1336 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1340 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1341 * @param mtd MTD device structure
1342 * @param from offset to read from
1343 * @param ops: oob operation description structure
1345 * OneNAND read out-of-band data from the spare area
1347 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1348 struct mtd_oob_ops *ops)
1350 struct onenand_chip *this = mtd->priv;
1351 struct mtd_ecc_stats stats;
1352 int read = 0, thislen, column, oobsize;
1353 size_t len = ops->ooblen;
1354 mtd_oob_mode_t mode = ops->mode;
1355 u_char *buf = ops->oobbuf;
1356 int ret = 0, readcmd;
1358 from += ops->ooboffs;
1360 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1361 __func__, (unsigned int) from, (int) len);
1363 /* Initialize return length value */
1364 ops->oobretlen = 0;
1366 if (mode == MTD_OOB_AUTO)
1367 oobsize = this->ecclayout->oobavail;
1368 else
1369 oobsize = mtd->oobsize;
1371 column = from & (mtd->oobsize - 1);
1373 if (unlikely(column >= oobsize)) {
1374 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1375 __func__);
1376 return -EINVAL;
1379 /* Do not allow reads past end of device */
1380 if (unlikely(from >= mtd->size ||
1381 column + len > ((mtd->size >> this->page_shift) -
1382 (from >> this->page_shift)) * oobsize)) {
1383 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1384 __func__);
1385 return -EINVAL;
1388 stats = mtd->ecc_stats;
1390 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1392 while (read < len) {
1393 cond_resched();
1395 thislen = oobsize - column;
1396 thislen = min_t(int, thislen, len);
1398 this->command(mtd, readcmd, from, mtd->oobsize);
1400 onenand_update_bufferram(mtd, from, 0);
1402 ret = this->wait(mtd, FL_READING);
1403 if (unlikely(ret))
1404 ret = onenand_recover_lsb(mtd, from, ret);
1406 if (ret && ret != -EBADMSG) {
1407 printk(KERN_ERR "%s: read failed = 0x%x\n",
1408 __func__, ret);
1409 break;
1412 if (mode == MTD_OOB_AUTO)
1413 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1414 else
1415 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1417 read += thislen;
1419 if (read == len)
1420 break;
1422 buf += thislen;
1424 /* Read more? */
1425 if (read < len) {
1426 /* Page size */
1427 from += mtd->writesize;
1428 column = 0;
1432 ops->oobretlen = read;
1434 if (ret)
1435 return ret;
1437 if (mtd->ecc_stats.failed - stats.failed)
1438 return -EBADMSG;
1440 return 0;
1444 * onenand_read - [MTD Interface] Read data from flash
1445 * @param mtd MTD device structure
1446 * @param from offset to read from
1447 * @param len number of bytes to read
1448 * @param retlen pointer to variable to store the number of read bytes
1449 * @param buf the databuffer to put data
1451 * Read with ecc
1453 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1454 size_t *retlen, u_char *buf)
1456 struct onenand_chip *this = mtd->priv;
1457 struct mtd_oob_ops ops = {
1458 .len = len,
1459 .ooblen = 0,
1460 .datbuf = buf,
1461 .oobbuf = NULL,
1463 int ret;
1465 onenand_get_device(mtd, FL_READING);
1466 ret = ONENAND_IS_4KB_PAGE(this) ?
1467 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1468 onenand_read_ops_nolock(mtd, from, &ops);
1469 onenand_release_device(mtd);
1471 *retlen = ops.retlen;
1472 return ret;
1476 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1477 * @param mtd: MTD device structure
1478 * @param from: offset to read from
1479 * @param ops: oob operation description structure
1481 * Read main and/or out-of-band
1483 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1484 struct mtd_oob_ops *ops)
1486 struct onenand_chip *this = mtd->priv;
1487 int ret;
1489 switch (ops->mode) {
1490 case MTD_OOB_PLACE:
1491 case MTD_OOB_AUTO:
1492 break;
1493 case MTD_OOB_RAW:
1494 /* Not implemented yet */
1495 default:
1496 return -EINVAL;
1499 onenand_get_device(mtd, FL_READING);
1500 if (ops->datbuf)
1501 ret = ONENAND_IS_4KB_PAGE(this) ?
1502 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1503 onenand_read_ops_nolock(mtd, from, ops);
1504 else
1505 ret = onenand_read_oob_nolock(mtd, from, ops);
1506 onenand_release_device(mtd);
1508 return ret;
1512 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1513 * @param mtd MTD device structure
1514 * @param state state to select the max. timeout value
1516 * Wait for command done.
1518 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1520 struct onenand_chip *this = mtd->priv;
1521 unsigned long timeout;
1522 unsigned int interrupt, ctrl, ecc, addr1, addr8;
1524 /* The 20 msec is enough */
1525 timeout = jiffies + msecs_to_jiffies(20);
1526 while (time_before(jiffies, timeout)) {
1527 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1528 if (interrupt & ONENAND_INT_MASTER)
1529 break;
1531 /* To get correct interrupt status in timeout case */
1532 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1533 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1534 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1535 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1537 if (interrupt & ONENAND_INT_READ) {
1538 ecc = onenand_read_ecc(this);
1539 if (ecc & ONENAND_ECC_2BIT_ALL) {
1540 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1541 "intr 0x%04x addr1 %#x addr8 %#x\n",
1542 __func__, ecc, ctrl, interrupt, addr1, addr8);
1543 return ONENAND_BBT_READ_ECC_ERROR;
1545 } else {
1546 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1547 "intr 0x%04x addr1 %#x addr8 %#x\n",
1548 __func__, ctrl, interrupt, addr1, addr8);
1549 return ONENAND_BBT_READ_FATAL_ERROR;
1552 /* Initial bad block case: 0x2400 or 0x0400 */
1553 if (ctrl & ONENAND_CTRL_ERROR) {
1554 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1555 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1556 return ONENAND_BBT_READ_ERROR;
1559 return 0;
1563 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1564 * @param mtd MTD device structure
1565 * @param from offset to read from
1566 * @param ops oob operation description structure
1568 * OneNAND read out-of-band data from the spare area for bbt scan
1570 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1571 struct mtd_oob_ops *ops)
1573 struct onenand_chip *this = mtd->priv;
1574 int read = 0, thislen, column;
1575 int ret = 0, readcmd;
1576 size_t len = ops->ooblen;
1577 u_char *buf = ops->oobbuf;
1579 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1580 __func__, (unsigned int) from, len);
1582 /* Initialize return value */
1583 ops->oobretlen = 0;
1585 /* Do not allow reads past end of device */
1586 if (unlikely((from + len) > mtd->size)) {
1587 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1588 __func__);
1589 return ONENAND_BBT_READ_FATAL_ERROR;
1592 /* Grab the lock and see if the device is available */
1593 onenand_get_device(mtd, FL_READING);
1595 column = from & (mtd->oobsize - 1);
1597 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1599 while (read < len) {
1600 cond_resched();
1602 thislen = mtd->oobsize - column;
1603 thislen = min_t(int, thislen, len);
1605 this->command(mtd, readcmd, from, mtd->oobsize);
1607 onenand_update_bufferram(mtd, from, 0);
1609 ret = this->bbt_wait(mtd, FL_READING);
1610 if (unlikely(ret))
1611 ret = onenand_recover_lsb(mtd, from, ret);
1613 if (ret)
1614 break;
1616 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1617 read += thislen;
1618 if (read == len)
1619 break;
1621 buf += thislen;
1623 /* Read more? */
1624 if (read < len) {
1625 /* Update Page size */
1626 from += this->writesize;
1627 column = 0;
1631 /* Deselect and wake up anyone waiting on the device */
1632 onenand_release_device(mtd);
1634 ops->oobretlen = read;
1635 return ret;
1638 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1640 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1641 * @param mtd MTD device structure
1642 * @param buf the databuffer to verify
1643 * @param to offset to read from
1645 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1647 struct onenand_chip *this = mtd->priv;
1648 u_char *oob_buf = this->oob_buf;
1649 int status, i, readcmd;
1651 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1653 this->command(mtd, readcmd, to, mtd->oobsize);
1654 onenand_update_bufferram(mtd, to, 0);
1655 status = this->wait(mtd, FL_READING);
1656 if (status)
1657 return status;
1659 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1660 for (i = 0; i < mtd->oobsize; i++)
1661 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1662 return -EBADMSG;
1664 return 0;
1668 * onenand_verify - [GENERIC] verify the chip contents after a write
1669 * @param mtd MTD device structure
1670 * @param buf the databuffer to verify
1671 * @param addr offset to read from
1672 * @param len number of bytes to read and compare
1674 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1676 struct onenand_chip *this = mtd->priv;
1677 int ret = 0;
1678 int thislen, column;
1680 column = addr & (this->writesize - 1);
1682 while (len != 0) {
1683 thislen = min_t(int, this->writesize - column, len);
1685 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1687 onenand_update_bufferram(mtd, addr, 0);
1689 ret = this->wait(mtd, FL_READING);
1690 if (ret)
1691 return ret;
1693 onenand_update_bufferram(mtd, addr, 1);
1695 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1697 if (memcmp(buf, this->verify_buf + column, thislen))
1698 return -EBADMSG;
1700 len -= thislen;
1701 buf += thislen;
1702 addr += thislen;
1703 column = 0;
1706 return 0;
1708 #else
1709 #define onenand_verify(...) (0)
1710 #define onenand_verify_oob(...) (0)
1711 #endif
1713 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1715 static void onenand_panic_wait(struct mtd_info *mtd)
1717 struct onenand_chip *this = mtd->priv;
1718 unsigned int interrupt;
1719 int i;
1721 for (i = 0; i < 2000; i++) {
1722 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1723 if (interrupt & ONENAND_INT_MASTER)
1724 break;
1725 udelay(10);
1730 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1731 * @param mtd MTD device structure
1732 * @param to offset to write to
1733 * @param len number of bytes to write
1734 * @param retlen pointer to variable to store the number of written bytes
1735 * @param buf the data to write
1737 * Write with ECC
1739 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1740 size_t *retlen, const u_char *buf)
1742 struct onenand_chip *this = mtd->priv;
1743 int column, subpage;
1744 int written = 0;
1745 int ret = 0;
1747 if (this->state == FL_PM_SUSPENDED)
1748 return -EBUSY;
1750 /* Wait for any existing operation to clear */
1751 onenand_panic_wait(mtd);
1753 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1754 __func__, (unsigned int) to, (int) len);
1756 /* Initialize retlen, in case of early exit */
1757 *retlen = 0;
1759 /* Do not allow writes past end of device */
1760 if (unlikely((to + len) > mtd->size)) {
1761 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1762 __func__);
1763 return -EINVAL;
1766 /* Reject writes, which are not page aligned */
1767 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1768 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1769 __func__);
1770 return -EINVAL;
1773 column = to & (mtd->writesize - 1);
1775 /* Loop until all data write */
1776 while (written < len) {
1777 int thislen = min_t(int, mtd->writesize - column, len - written);
1778 u_char *wbuf = (u_char *) buf;
1780 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1782 /* Partial page write */
1783 subpage = thislen < mtd->writesize;
1784 if (subpage) {
1785 memset(this->page_buf, 0xff, mtd->writesize);
1786 memcpy(this->page_buf + column, buf, thislen);
1787 wbuf = this->page_buf;
1790 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1791 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1793 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1795 onenand_panic_wait(mtd);
1797 /* In partial page write we don't update bufferram */
1798 onenand_update_bufferram(mtd, to, !ret && !subpage);
1799 if (ONENAND_IS_2PLANE(this)) {
1800 ONENAND_SET_BUFFERRAM1(this);
1801 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1804 if (ret) {
1805 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1806 break;
1809 written += thislen;
1811 if (written == len)
1812 break;
1814 column = 0;
1815 to += thislen;
1816 buf += thislen;
1819 *retlen = written;
1820 return ret;
1824 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1825 * @param mtd MTD device structure
1826 * @param oob_buf oob buffer
1827 * @param buf source address
1828 * @param column oob offset to write to
1829 * @param thislen oob length to write
1831 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1832 const u_char *buf, int column, int thislen)
1834 struct onenand_chip *this = mtd->priv;
1835 struct nand_oobfree *free;
1836 int writecol = column;
1837 int writeend = column + thislen;
1838 int lastgap = 0;
1839 unsigned int i;
1841 free = this->ecclayout->oobfree;
1842 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1843 if (writecol >= lastgap)
1844 writecol += free->offset - lastgap;
1845 if (writeend >= lastgap)
1846 writeend += free->offset - lastgap;
1847 lastgap = free->offset + free->length;
1849 free = this->ecclayout->oobfree;
1850 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1851 int free_end = free->offset + free->length;
1852 if (free->offset < writeend && free_end > writecol) {
1853 int st = max_t(int,free->offset,writecol);
1854 int ed = min_t(int,free_end,writeend);
1855 int n = ed - st;
1856 memcpy(oob_buf + st, buf, n);
1857 buf += n;
1858 } else if (column == 0)
1859 break;
1861 return 0;
1865 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1866 * @param mtd MTD device structure
1867 * @param to offset to write to
1868 * @param ops oob operation description structure
1870 * Write main and/or oob with ECC
1872 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1873 struct mtd_oob_ops *ops)
1875 struct onenand_chip *this = mtd->priv;
1876 int written = 0, column, thislen = 0, subpage = 0;
1877 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1878 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1879 size_t len = ops->len;
1880 size_t ooblen = ops->ooblen;
1881 const u_char *buf = ops->datbuf;
1882 const u_char *oob = ops->oobbuf;
1883 u_char *oobbuf;
1884 int ret = 0, cmd;
1886 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1887 __func__, (unsigned int) to, (int) len);
1889 /* Initialize retlen, in case of early exit */
1890 ops->retlen = 0;
1891 ops->oobretlen = 0;
1893 /* Do not allow writes past end of device */
1894 if (unlikely((to + len) > mtd->size)) {
1895 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1896 __func__);
1897 return -EINVAL;
1900 /* Reject writes, which are not page aligned */
1901 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1902 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1903 __func__);
1904 return -EINVAL;
1907 /* Check zero length */
1908 if (!len)
1909 return 0;
1911 if (ops->mode == MTD_OOB_AUTO)
1912 oobsize = this->ecclayout->oobavail;
1913 else
1914 oobsize = mtd->oobsize;
1916 oobcolumn = to & (mtd->oobsize - 1);
1918 column = to & (mtd->writesize - 1);
1920 /* Loop until all data write */
1921 while (1) {
1922 if (written < len) {
1923 u_char *wbuf = (u_char *) buf;
1925 thislen = min_t(int, mtd->writesize - column, len - written);
1926 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1928 cond_resched();
1930 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1932 /* Partial page write */
1933 subpage = thislen < mtd->writesize;
1934 if (subpage) {
1935 memset(this->page_buf, 0xff, mtd->writesize);
1936 memcpy(this->page_buf + column, buf, thislen);
1937 wbuf = this->page_buf;
1940 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1942 if (oob) {
1943 oobbuf = this->oob_buf;
1945 /* We send data to spare ram with oobsize
1946 * to prevent byte access */
1947 memset(oobbuf, 0xff, mtd->oobsize);
1948 if (ops->mode == MTD_OOB_AUTO)
1949 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1950 else
1951 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1953 oobwritten += thisooblen;
1954 oob += thisooblen;
1955 oobcolumn = 0;
1956 } else
1957 oobbuf = (u_char *) ffchars;
1959 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1960 } else
1961 ONENAND_SET_NEXT_BUFFERRAM(this);
1964 * 2 PLANE, MLC, and Flex-OneNAND do not support
1965 * write-while-program feature.
1967 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1968 ONENAND_SET_PREV_BUFFERRAM(this);
1970 ret = this->wait(mtd, FL_WRITING);
1972 /* In partial page write we don't update bufferram */
1973 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1974 if (ret) {
1975 written -= prevlen;
1976 printk(KERN_ERR "%s: write failed %d\n",
1977 __func__, ret);
1978 break;
1981 if (written == len) {
1982 /* Only check verify write turn on */
1983 ret = onenand_verify(mtd, buf - len, to - len, len);
1984 if (ret)
1985 printk(KERN_ERR "%s: verify failed %d\n",
1986 __func__, ret);
1987 break;
1990 ONENAND_SET_NEXT_BUFFERRAM(this);
1993 this->ongoing = 0;
1994 cmd = ONENAND_CMD_PROG;
1996 /* Exclude 1st OTP and OTP blocks for cache program feature */
1997 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1998 likely(onenand_block(this, to) != 0) &&
1999 ONENAND_IS_4KB_PAGE(this) &&
2000 ((written + thislen) < len)) {
2001 cmd = ONENAND_CMD_2X_CACHE_PROG;
2002 this->ongoing = 1;
2005 this->command(mtd, cmd, to, mtd->writesize);
2008 * 2 PLANE, MLC, and Flex-OneNAND wait here
2010 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
2011 ret = this->wait(mtd, FL_WRITING);
2013 /* In partial page write we don't update bufferram */
2014 onenand_update_bufferram(mtd, to, !ret && !subpage);
2015 if (ret) {
2016 printk(KERN_ERR "%s: write failed %d\n",
2017 __func__, ret);
2018 break;
2021 /* Only check verify write turn on */
2022 ret = onenand_verify(mtd, buf, to, thislen);
2023 if (ret) {
2024 printk(KERN_ERR "%s: verify failed %d\n",
2025 __func__, ret);
2026 break;
2029 written += thislen;
2031 if (written == len)
2032 break;
2034 } else
2035 written += thislen;
2037 column = 0;
2038 prev_subpage = subpage;
2039 prev = to;
2040 prevlen = thislen;
2041 to += thislen;
2042 buf += thislen;
2043 first = 0;
2046 /* In error case, clear all bufferrams */
2047 if (written != len)
2048 onenand_invalidate_bufferram(mtd, 0, -1);
2050 ops->retlen = written;
2051 ops->oobretlen = oobwritten;
2053 return ret;
2058 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2059 * @param mtd MTD device structure
2060 * @param to offset to write to
2061 * @param len number of bytes to write
2062 * @param retlen pointer to variable to store the number of written bytes
2063 * @param buf the data to write
2064 * @param mode operation mode
2066 * OneNAND write out-of-band
2068 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2069 struct mtd_oob_ops *ops)
2071 struct onenand_chip *this = mtd->priv;
2072 int column, ret = 0, oobsize;
2073 int written = 0, oobcmd;
2074 u_char *oobbuf;
2075 size_t len = ops->ooblen;
2076 const u_char *buf = ops->oobbuf;
2077 mtd_oob_mode_t mode = ops->mode;
2079 to += ops->ooboffs;
2081 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2082 __func__, (unsigned int) to, (int) len);
2084 /* Initialize retlen, in case of early exit */
2085 ops->oobretlen = 0;
2087 if (mode == MTD_OOB_AUTO)
2088 oobsize = this->ecclayout->oobavail;
2089 else
2090 oobsize = mtd->oobsize;
2092 column = to & (mtd->oobsize - 1);
2094 if (unlikely(column >= oobsize)) {
2095 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2096 __func__);
2097 return -EINVAL;
2100 /* For compatibility with NAND: Do not allow write past end of page */
2101 if (unlikely(column + len > oobsize)) {
2102 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2103 __func__);
2104 return -EINVAL;
2107 /* Do not allow reads past end of device */
2108 if (unlikely(to >= mtd->size ||
2109 column + len > ((mtd->size >> this->page_shift) -
2110 (to >> this->page_shift)) * oobsize)) {
2111 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2112 __func__);
2113 return -EINVAL;
2116 oobbuf = this->oob_buf;
2118 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2120 /* Loop until all data write */
2121 while (written < len) {
2122 int thislen = min_t(int, oobsize, len - written);
2124 cond_resched();
2126 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2128 /* We send data to spare ram with oobsize
2129 * to prevent byte access */
2130 memset(oobbuf, 0xff, mtd->oobsize);
2131 if (mode == MTD_OOB_AUTO)
2132 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2133 else
2134 memcpy(oobbuf + column, buf, thislen);
2135 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2137 if (ONENAND_IS_4KB_PAGE(this)) {
2138 /* Set main area of DataRAM to 0xff*/
2139 memset(this->page_buf, 0xff, mtd->writesize);
2140 this->write_bufferram(mtd, ONENAND_DATARAM,
2141 this->page_buf, 0, mtd->writesize);
2144 this->command(mtd, oobcmd, to, mtd->oobsize);
2146 onenand_update_bufferram(mtd, to, 0);
2147 if (ONENAND_IS_2PLANE(this)) {
2148 ONENAND_SET_BUFFERRAM1(this);
2149 onenand_update_bufferram(mtd, to + this->writesize, 0);
2152 ret = this->wait(mtd, FL_WRITING);
2153 if (ret) {
2154 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2155 break;
2158 ret = onenand_verify_oob(mtd, oobbuf, to);
2159 if (ret) {
2160 printk(KERN_ERR "%s: verify failed %d\n",
2161 __func__, ret);
2162 break;
2165 written += thislen;
2166 if (written == len)
2167 break;
2169 to += mtd->writesize;
2170 buf += thislen;
2171 column = 0;
2174 ops->oobretlen = written;
2176 return ret;
2180 * onenand_write - [MTD Interface] write buffer to FLASH
2181 * @param mtd MTD device structure
2182 * @param to offset to write to
2183 * @param len number of bytes to write
2184 * @param retlen pointer to variable to store the number of written bytes
2185 * @param buf the data to write
2187 * Write with ECC
2189 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2190 size_t *retlen, const u_char *buf)
2192 struct mtd_oob_ops ops = {
2193 .len = len,
2194 .ooblen = 0,
2195 .datbuf = (u_char *) buf,
2196 .oobbuf = NULL,
2198 int ret;
2200 onenand_get_device(mtd, FL_WRITING);
2201 ret = onenand_write_ops_nolock(mtd, to, &ops);
2202 onenand_release_device(mtd);
2204 *retlen = ops.retlen;
2205 return ret;
2209 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2210 * @param mtd: MTD device structure
2211 * @param to: offset to write
2212 * @param ops: oob operation description structure
2214 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2215 struct mtd_oob_ops *ops)
2217 int ret;
2219 switch (ops->mode) {
2220 case MTD_OOB_PLACE:
2221 case MTD_OOB_AUTO:
2222 break;
2223 case MTD_OOB_RAW:
2224 /* Not implemented yet */
2225 default:
2226 return -EINVAL;
2229 onenand_get_device(mtd, FL_WRITING);
2230 if (ops->datbuf)
2231 ret = onenand_write_ops_nolock(mtd, to, ops);
2232 else
2233 ret = onenand_write_oob_nolock(mtd, to, ops);
2234 onenand_release_device(mtd);
2236 return ret;
2240 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2241 * @param mtd MTD device structure
2242 * @param ofs offset from device start
2243 * @param allowbbt 1, if its allowed to access the bbt area
2245 * Check, if the block is bad. Either by reading the bad block table or
2246 * calling of the scan function.
2248 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2250 struct onenand_chip *this = mtd->priv;
2251 struct bbm_info *bbm = this->bbm;
2253 /* Return info from the table */
2254 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2258 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2259 struct erase_info *instr)
2261 struct onenand_chip *this = mtd->priv;
2262 loff_t addr = instr->addr;
2263 int len = instr->len;
2264 unsigned int block_size = (1 << this->erase_shift);
2265 int ret = 0;
2267 while (len) {
2268 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2269 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2270 if (ret) {
2271 printk(KERN_ERR "%s: Failed verify, block %d\n",
2272 __func__, onenand_block(this, addr));
2273 instr->state = MTD_ERASE_FAILED;
2274 instr->fail_addr = addr;
2275 return -1;
2277 len -= block_size;
2278 addr += block_size;
2280 return 0;
2284 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2285 * @param mtd MTD device structure
2286 * @param instr erase instruction
2287 * @param region erase region
2289 * Erase one or more blocks up to 64 block at a time
2291 static int onenand_multiblock_erase(struct mtd_info *mtd,
2292 struct erase_info *instr,
2293 unsigned int block_size)
2295 struct onenand_chip *this = mtd->priv;
2296 loff_t addr = instr->addr;
2297 int len = instr->len;
2298 int eb_count = 0;
2299 int ret = 0;
2300 int bdry_block = 0;
2302 instr->state = MTD_ERASING;
2304 if (ONENAND_IS_DDP(this)) {
2305 loff_t bdry_addr = this->chipsize >> 1;
2306 if (addr < bdry_addr && (addr + len) > bdry_addr)
2307 bdry_block = bdry_addr >> this->erase_shift;
2310 /* Pre-check bbs */
2311 while (len) {
2312 /* Check if we have a bad block, we do not erase bad blocks */
2313 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2314 printk(KERN_WARNING "%s: attempt to erase a bad block "
2315 "at addr 0x%012llx\n",
2316 __func__, (unsigned long long) addr);
2317 instr->state = MTD_ERASE_FAILED;
2318 return -EIO;
2320 len -= block_size;
2321 addr += block_size;
2324 len = instr->len;
2325 addr = instr->addr;
2327 /* loop over 64 eb batches */
2328 while (len) {
2329 struct erase_info verify_instr = *instr;
2330 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2332 verify_instr.addr = addr;
2333 verify_instr.len = 0;
2335 /* do not cross chip boundary */
2336 if (bdry_block) {
2337 int this_block = (addr >> this->erase_shift);
2339 if (this_block < bdry_block) {
2340 max_eb_count = min(max_eb_count,
2341 (bdry_block - this_block));
2345 eb_count = 0;
2347 while (len > block_size && eb_count < (max_eb_count - 1)) {
2348 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2349 addr, block_size);
2350 onenand_invalidate_bufferram(mtd, addr, block_size);
2352 ret = this->wait(mtd, FL_PREPARING_ERASE);
2353 if (ret) {
2354 printk(KERN_ERR "%s: Failed multiblock erase, "
2355 "block %d\n", __func__,
2356 onenand_block(this, addr));
2357 instr->state = MTD_ERASE_FAILED;
2358 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2359 return -EIO;
2362 len -= block_size;
2363 addr += block_size;
2364 eb_count++;
2367 /* last block of 64-eb series */
2368 cond_resched();
2369 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2370 onenand_invalidate_bufferram(mtd, addr, block_size);
2372 ret = this->wait(mtd, FL_ERASING);
2373 /* Check if it is write protected */
2374 if (ret) {
2375 printk(KERN_ERR "%s: Failed erase, block %d\n",
2376 __func__, onenand_block(this, addr));
2377 instr->state = MTD_ERASE_FAILED;
2378 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2379 return -EIO;
2382 len -= block_size;
2383 addr += block_size;
2384 eb_count++;
2386 /* verify */
2387 verify_instr.len = eb_count * block_size;
2388 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2389 instr->state = verify_instr.state;
2390 instr->fail_addr = verify_instr.fail_addr;
2391 return -EIO;
2395 return 0;
2400 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2401 * @param mtd MTD device structure
2402 * @param instr erase instruction
2403 * @param region erase region
2404 * @param block_size erase block size
2406 * Erase one or more blocks one block at a time
2408 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2409 struct erase_info *instr,
2410 struct mtd_erase_region_info *region,
2411 unsigned int block_size)
2413 struct onenand_chip *this = mtd->priv;
2414 loff_t addr = instr->addr;
2415 int len = instr->len;
2416 loff_t region_end = 0;
2417 int ret = 0;
2419 if (region) {
2420 /* region is set for Flex-OneNAND */
2421 region_end = region->offset + region->erasesize * region->numblocks;
2424 instr->state = MTD_ERASING;
2426 /* Loop through the blocks */
2427 while (len) {
2428 cond_resched();
2430 /* Check if we have a bad block, we do not erase bad blocks */
2431 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2432 printk(KERN_WARNING "%s: attempt to erase a bad block "
2433 "at addr 0x%012llx\n",
2434 __func__, (unsigned long long) addr);
2435 instr->state = MTD_ERASE_FAILED;
2436 return -EIO;
2439 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2441 onenand_invalidate_bufferram(mtd, addr, block_size);
2443 ret = this->wait(mtd, FL_ERASING);
2444 /* Check, if it is write protected */
2445 if (ret) {
2446 printk(KERN_ERR "%s: Failed erase, block %d\n",
2447 __func__, onenand_block(this, addr));
2448 instr->state = MTD_ERASE_FAILED;
2449 instr->fail_addr = addr;
2450 return -EIO;
2453 len -= block_size;
2454 addr += block_size;
2456 if (region && addr == region_end) {
2457 if (!len)
2458 break;
2459 region++;
2461 block_size = region->erasesize;
2462 region_end = region->offset + region->erasesize * region->numblocks;
2464 if (len & (block_size - 1)) {
2465 /* FIXME: This should be handled at MTD partitioning level. */
2466 printk(KERN_ERR "%s: Unaligned address\n",
2467 __func__);
2468 return -EIO;
2472 return 0;
2476 * onenand_erase - [MTD Interface] erase block(s)
2477 * @param mtd MTD device structure
2478 * @param instr erase instruction
2480 * Erase one or more blocks
2482 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2484 struct onenand_chip *this = mtd->priv;
2485 unsigned int block_size;
2486 loff_t addr = instr->addr;
2487 loff_t len = instr->len;
2488 int ret = 0;
2489 struct mtd_erase_region_info *region = NULL;
2490 loff_t region_offset = 0;
2492 DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2493 (unsigned long long) instr->addr, (unsigned long long) instr->len);
2495 /* Do not allow erase past end of device */
2496 if (unlikely((len + addr) > mtd->size)) {
2497 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2498 return -EINVAL;
2501 if (FLEXONENAND(this)) {
2502 /* Find the eraseregion of this address */
2503 int i = flexonenand_region(mtd, addr);
2505 region = &mtd->eraseregions[i];
2506 block_size = region->erasesize;
2508 /* Start address within region must align on block boundary.
2509 * Erase region's start offset is always block start address.
2511 region_offset = region->offset;
2512 } else
2513 block_size = 1 << this->erase_shift;
2515 /* Start address must align on block boundary */
2516 if (unlikely((addr - region_offset) & (block_size - 1))) {
2517 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2518 return -EINVAL;
2521 /* Length must align on block boundary */
2522 if (unlikely(len & (block_size - 1))) {
2523 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2524 return -EINVAL;
2527 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2529 /* Grab the lock and see if the device is available */
2530 onenand_get_device(mtd, FL_ERASING);
2532 if (ONENAND_IS_4KB_PAGE(this) || region ||
2533 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2534 /* region is set for Flex-OneNAND (no mb erase) */
2535 ret = onenand_block_by_block_erase(mtd, instr,
2536 region, block_size);
2537 } else {
2538 ret = onenand_multiblock_erase(mtd, instr, block_size);
2541 /* Deselect and wake up anyone waiting on the device */
2542 onenand_release_device(mtd);
2544 /* Do call back function */
2545 if (!ret) {
2546 instr->state = MTD_ERASE_DONE;
2547 mtd_erase_callback(instr);
2550 return ret;
2554 * onenand_sync - [MTD Interface] sync
2555 * @param mtd MTD device structure
2557 * Sync is actually a wait for chip ready function
2559 static void onenand_sync(struct mtd_info *mtd)
2561 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2563 /* Grab the lock and see if the device is available */
2564 onenand_get_device(mtd, FL_SYNCING);
2566 /* Release it and go back */
2567 onenand_release_device(mtd);
2571 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2572 * @param mtd MTD device structure
2573 * @param ofs offset relative to mtd start
2575 * Check whether the block is bad
2577 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2579 int ret;
2581 /* Check for invalid offset */
2582 if (ofs > mtd->size)
2583 return -EINVAL;
2585 onenand_get_device(mtd, FL_READING);
2586 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2587 onenand_release_device(mtd);
2588 return ret;
2592 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2593 * @param mtd MTD device structure
2594 * @param ofs offset from device start
2596 * This is the default implementation, which can be overridden by
2597 * a hardware specific driver.
2599 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2601 struct onenand_chip *this = mtd->priv;
2602 struct bbm_info *bbm = this->bbm;
2603 u_char buf[2] = {0, 0};
2604 struct mtd_oob_ops ops = {
2605 .mode = MTD_OOB_PLACE,
2606 .ooblen = 2,
2607 .oobbuf = buf,
2608 .ooboffs = 0,
2610 int block;
2612 /* Get block number */
2613 block = onenand_block(this, ofs);
2614 if (bbm->bbt)
2615 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2617 /* We write two bytes, so we don't have to mess with 16-bit access */
2618 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2619 /* FIXME : What to do when marking SLC block in partition
2620 * with MLC erasesize? For now, it is not advisable to
2621 * create partitions containing both SLC and MLC regions.
2623 return onenand_write_oob_nolock(mtd, ofs, &ops);
2627 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2628 * @param mtd MTD device structure
2629 * @param ofs offset relative to mtd start
2631 * Mark the block as bad
2633 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2635 struct onenand_chip *this = mtd->priv;
2636 int ret;
2638 ret = onenand_block_isbad(mtd, ofs);
2639 if (ret) {
2640 /* If it was bad already, return success and do nothing */
2641 if (ret > 0)
2642 return 0;
2643 return ret;
2646 onenand_get_device(mtd, FL_WRITING);
2647 ret = this->block_markbad(mtd, ofs);
2648 onenand_release_device(mtd);
2649 return ret;
2653 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2654 * @param mtd MTD device structure
2655 * @param ofs offset relative to mtd start
2656 * @param len number of bytes to lock or unlock
2657 * @param cmd lock or unlock command
2659 * Lock or unlock one or more blocks
2661 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2663 struct onenand_chip *this = mtd->priv;
2664 int start, end, block, value, status;
2665 int wp_status_mask;
2667 start = onenand_block(this, ofs);
2668 end = onenand_block(this, ofs + len) - 1;
2670 if (cmd == ONENAND_CMD_LOCK)
2671 wp_status_mask = ONENAND_WP_LS;
2672 else
2673 wp_status_mask = ONENAND_WP_US;
2675 /* Continuous lock scheme */
2676 if (this->options & ONENAND_HAS_CONT_LOCK) {
2677 /* Set start block address */
2678 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2679 /* Set end block address */
2680 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2681 /* Write lock command */
2682 this->command(mtd, cmd, 0, 0);
2684 /* There's no return value */
2685 this->wait(mtd, FL_LOCKING);
2687 /* Sanity check */
2688 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2689 & ONENAND_CTRL_ONGO)
2690 continue;
2692 /* Check lock status */
2693 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2694 if (!(status & wp_status_mask))
2695 printk(KERN_ERR "%s: wp status = 0x%x\n",
2696 __func__, status);
2698 return 0;
2701 /* Block lock scheme */
2702 for (block = start; block < end + 1; block++) {
2703 /* Set block address */
2704 value = onenand_block_address(this, block);
2705 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2706 /* Select DataRAM for DDP */
2707 value = onenand_bufferram_address(this, block);
2708 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2709 /* Set start block address */
2710 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2711 /* Write lock command */
2712 this->command(mtd, cmd, 0, 0);
2714 /* There's no return value */
2715 this->wait(mtd, FL_LOCKING);
2717 /* Sanity check */
2718 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2719 & ONENAND_CTRL_ONGO)
2720 continue;
2722 /* Check lock status */
2723 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2724 if (!(status & wp_status_mask))
2725 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2726 __func__, block, status);
2729 return 0;
2733 * onenand_lock - [MTD Interface] Lock block(s)
2734 * @param mtd MTD device structure
2735 * @param ofs offset relative to mtd start
2736 * @param len number of bytes to unlock
2738 * Lock one or more blocks
2740 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2742 int ret;
2744 onenand_get_device(mtd, FL_LOCKING);
2745 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2746 onenand_release_device(mtd);
2747 return ret;
2751 * onenand_unlock - [MTD Interface] Unlock block(s)
2752 * @param mtd MTD device structure
2753 * @param ofs offset relative to mtd start
2754 * @param len number of bytes to unlock
2756 * Unlock one or more blocks
2758 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2760 int ret;
2762 onenand_get_device(mtd, FL_LOCKING);
2763 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2764 onenand_release_device(mtd);
2765 return ret;
2769 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2770 * @param this onenand chip data structure
2772 * Check lock status
2774 static int onenand_check_lock_status(struct onenand_chip *this)
2776 unsigned int value, block, status;
2777 unsigned int end;
2779 end = this->chipsize >> this->erase_shift;
2780 for (block = 0; block < end; block++) {
2781 /* Set block address */
2782 value = onenand_block_address(this, block);
2783 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2784 /* Select DataRAM for DDP */
2785 value = onenand_bufferram_address(this, block);
2786 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2787 /* Set start block address */
2788 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2790 /* Check lock status */
2791 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2792 if (!(status & ONENAND_WP_US)) {
2793 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2794 __func__, block, status);
2795 return 0;
2799 return 1;
2803 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2804 * @param mtd MTD device structure
2806 * Unlock all blocks
2808 static void onenand_unlock_all(struct mtd_info *mtd)
2810 struct onenand_chip *this = mtd->priv;
2811 loff_t ofs = 0;
2812 loff_t len = mtd->size;
2814 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2815 /* Set start block address */
2816 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2817 /* Write unlock command */
2818 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2820 /* There's no return value */
2821 this->wait(mtd, FL_LOCKING);
2823 /* Sanity check */
2824 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2825 & ONENAND_CTRL_ONGO)
2826 continue;
2828 /* Don't check lock status */
2829 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2830 return;
2832 /* Check lock status */
2833 if (onenand_check_lock_status(this))
2834 return;
2836 /* Workaround for all block unlock in DDP */
2837 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2838 /* All blocks on another chip */
2839 ofs = this->chipsize >> 1;
2840 len = this->chipsize >> 1;
2844 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2847 #ifdef CONFIG_MTD_ONENAND_OTP
2850 * onenand_otp_command - Send OTP specific command to OneNAND device
2851 * @param mtd MTD device structure
2852 * @param cmd the command to be sent
2853 * @param addr offset to read from or write to
2854 * @param len number of bytes to read or write
2856 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2857 size_t len)
2859 struct onenand_chip *this = mtd->priv;
2860 int value, block, page;
2862 /* Address translation */
2863 switch (cmd) {
2864 case ONENAND_CMD_OTP_ACCESS:
2865 block = (int) (addr >> this->erase_shift);
2866 page = -1;
2867 break;
2869 default:
2870 block = (int) (addr >> this->erase_shift);
2871 page = (int) (addr >> this->page_shift);
2873 if (ONENAND_IS_2PLANE(this)) {
2874 /* Make the even block number */
2875 block &= ~1;
2876 /* Is it the odd plane? */
2877 if (addr & this->writesize)
2878 block++;
2879 page >>= 1;
2881 page &= this->page_mask;
2882 break;
2885 if (block != -1) {
2886 /* Write 'DFS, FBA' of Flash */
2887 value = onenand_block_address(this, block);
2888 this->write_word(value, this->base +
2889 ONENAND_REG_START_ADDRESS1);
2892 if (page != -1) {
2893 /* Now we use page size operation */
2894 int sectors = 4, count = 4;
2895 int dataram;
2897 switch (cmd) {
2898 default:
2899 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2900 cmd = ONENAND_CMD_2X_PROG;
2901 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2902 break;
2905 /* Write 'FPA, FSA' of Flash */
2906 value = onenand_page_address(page, sectors);
2907 this->write_word(value, this->base +
2908 ONENAND_REG_START_ADDRESS8);
2910 /* Write 'BSA, BSC' of DataRAM */
2911 value = onenand_buffer_address(dataram, sectors, count);
2912 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2915 /* Interrupt clear */
2916 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2918 /* Write command */
2919 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2921 return 0;
2925 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2926 * @param mtd MTD device structure
2927 * @param to offset to write to
2928 * @param len number of bytes to write
2929 * @param retlen pointer to variable to store the number of written bytes
2930 * @param buf the data to write
2932 * OneNAND write out-of-band only for OTP
2934 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2935 struct mtd_oob_ops *ops)
2937 struct onenand_chip *this = mtd->priv;
2938 int column, ret = 0, oobsize;
2939 int written = 0;
2940 u_char *oobbuf;
2941 size_t len = ops->ooblen;
2942 const u_char *buf = ops->oobbuf;
2943 int block, value, status;
2945 to += ops->ooboffs;
2947 /* Initialize retlen, in case of early exit */
2948 ops->oobretlen = 0;
2950 oobsize = mtd->oobsize;
2952 column = to & (mtd->oobsize - 1);
2954 oobbuf = this->oob_buf;
2956 /* Loop until all data write */
2957 while (written < len) {
2958 int thislen = min_t(int, oobsize, len - written);
2960 cond_resched();
2962 block = (int) (to >> this->erase_shift);
2964 * Write 'DFS, FBA' of Flash
2965 * Add: F100h DQ=DFS, FBA
2968 value = onenand_block_address(this, block);
2969 this->write_word(value, this->base +
2970 ONENAND_REG_START_ADDRESS1);
2973 * Select DataRAM for DDP
2974 * Add: F101h DQ=DBS
2977 value = onenand_bufferram_address(this, block);
2978 this->write_word(value, this->base +
2979 ONENAND_REG_START_ADDRESS2);
2980 ONENAND_SET_NEXT_BUFFERRAM(this);
2983 * Enter OTP access mode
2985 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2986 this->wait(mtd, FL_OTPING);
2988 /* We send data to spare ram with oobsize
2989 * to prevent byte access */
2990 memcpy(oobbuf + column, buf, thislen);
2993 * Write Data into DataRAM
2994 * Add: 8th Word
2995 * in sector0/spare/page0
2996 * DQ=XXFCh
2998 this->write_bufferram(mtd, ONENAND_SPARERAM,
2999 oobbuf, 0, mtd->oobsize);
3001 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
3002 onenand_update_bufferram(mtd, to, 0);
3003 if (ONENAND_IS_2PLANE(this)) {
3004 ONENAND_SET_BUFFERRAM1(this);
3005 onenand_update_bufferram(mtd, to + this->writesize, 0);
3008 ret = this->wait(mtd, FL_WRITING);
3009 if (ret) {
3010 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
3011 break;
3014 /* Exit OTP access mode */
3015 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3016 this->wait(mtd, FL_RESETING);
3018 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
3019 status &= 0x60;
3021 if (status == 0x60) {
3022 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3023 printk(KERN_DEBUG "1st Block\tLOCKED\n");
3024 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3025 } else if (status == 0x20) {
3026 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3027 printk(KERN_DEBUG "1st Block\tLOCKED\n");
3028 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
3029 } else if (status == 0x40) {
3030 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3031 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3032 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3033 } else {
3034 printk(KERN_DEBUG "Reboot to check\n");
3037 written += thislen;
3038 if (written == len)
3039 break;
3041 to += mtd->writesize;
3042 buf += thislen;
3043 column = 0;
3046 ops->oobretlen = written;
3048 return ret;
3051 /* Internal OTP operation */
3052 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3053 size_t *retlen, u_char *buf);
3056 * do_otp_read - [DEFAULT] Read OTP block area
3057 * @param mtd MTD device structure
3058 * @param from The offset to read
3059 * @param len number of bytes to read
3060 * @param retlen pointer to variable to store the number of readbytes
3061 * @param buf the databuffer to put/get data
3063 * Read OTP block area.
3065 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3066 size_t *retlen, u_char *buf)
3068 struct onenand_chip *this = mtd->priv;
3069 struct mtd_oob_ops ops = {
3070 .len = len,
3071 .ooblen = 0,
3072 .datbuf = buf,
3073 .oobbuf = NULL,
3075 int ret;
3077 /* Enter OTP access mode */
3078 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3079 this->wait(mtd, FL_OTPING);
3081 ret = ONENAND_IS_4KB_PAGE(this) ?
3082 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3083 onenand_read_ops_nolock(mtd, from, &ops);
3085 /* Exit OTP access mode */
3086 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3087 this->wait(mtd, FL_RESETING);
3089 return ret;
3093 * do_otp_write - [DEFAULT] Write OTP block area
3094 * @param mtd MTD device structure
3095 * @param to The offset to write
3096 * @param len number of bytes to write
3097 * @param retlen pointer to variable to store the number of write bytes
3098 * @param buf the databuffer to put/get data
3100 * Write OTP block area.
3102 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3103 size_t *retlen, u_char *buf)
3105 struct onenand_chip *this = mtd->priv;
3106 unsigned char *pbuf = buf;
3107 int ret;
3108 struct mtd_oob_ops ops;
3110 /* Force buffer page aligned */
3111 if (len < mtd->writesize) {
3112 memcpy(this->page_buf, buf, len);
3113 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3114 pbuf = this->page_buf;
3115 len = mtd->writesize;
3118 /* Enter OTP access mode */
3119 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3120 this->wait(mtd, FL_OTPING);
3122 ops.len = len;
3123 ops.ooblen = 0;
3124 ops.datbuf = pbuf;
3125 ops.oobbuf = NULL;
3126 ret = onenand_write_ops_nolock(mtd, to, &ops);
3127 *retlen = ops.retlen;
3129 /* Exit OTP access mode */
3130 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3131 this->wait(mtd, FL_RESETING);
3133 return ret;
3137 * do_otp_lock - [DEFAULT] Lock OTP block area
3138 * @param mtd MTD device structure
3139 * @param from The offset to lock
3140 * @param len number of bytes to lock
3141 * @param retlen pointer to variable to store the number of lock bytes
3142 * @param buf the databuffer to put/get data
3144 * Lock OTP block area.
3146 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3147 size_t *retlen, u_char *buf)
3149 struct onenand_chip *this = mtd->priv;
3150 struct mtd_oob_ops ops;
3151 int ret;
3153 if (FLEXONENAND(this)) {
3155 /* Enter OTP access mode */
3156 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3157 this->wait(mtd, FL_OTPING);
3159 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3160 * main area of page 49.
3162 ops.len = mtd->writesize;
3163 ops.ooblen = 0;
3164 ops.datbuf = buf;
3165 ops.oobbuf = NULL;
3166 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3167 *retlen = ops.retlen;
3169 /* Exit OTP access mode */
3170 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3171 this->wait(mtd, FL_RESETING);
3172 } else {
3173 ops.mode = MTD_OOB_PLACE;
3174 ops.ooblen = len;
3175 ops.oobbuf = buf;
3176 ops.ooboffs = 0;
3177 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3178 *retlen = ops.oobretlen;
3181 return ret;
3185 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3186 * @param mtd MTD device structure
3187 * @param from The offset to read/write
3188 * @param len number of bytes to read/write
3189 * @param retlen pointer to variable to store the number of read bytes
3190 * @param buf the databuffer to put/get data
3191 * @param action do given action
3192 * @param mode specify user and factory
3194 * Handle OTP operation.
3196 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3197 size_t *retlen, u_char *buf,
3198 otp_op_t action, int mode)
3200 struct onenand_chip *this = mtd->priv;
3201 int otp_pages;
3202 int density;
3203 int ret = 0;
3205 *retlen = 0;
3207 density = onenand_get_density(this->device_id);
3208 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3209 otp_pages = 20;
3210 else
3211 otp_pages = 50;
3213 if (mode == MTD_OTP_FACTORY) {
3214 from += mtd->writesize * otp_pages;
3215 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3218 /* Check User/Factory boundary */
3219 if (mode == MTD_OTP_USER) {
3220 if (mtd->writesize * otp_pages < from + len)
3221 return 0;
3222 } else {
3223 if (mtd->writesize * otp_pages < len)
3224 return 0;
3227 onenand_get_device(mtd, FL_OTPING);
3228 while (len > 0 && otp_pages > 0) {
3229 if (!action) { /* OTP Info functions */
3230 struct otp_info *otpinfo;
3232 len -= sizeof(struct otp_info);
3233 if (len <= 0) {
3234 ret = -ENOSPC;
3235 break;
3238 otpinfo = (struct otp_info *) buf;
3239 otpinfo->start = from;
3240 otpinfo->length = mtd->writesize;
3241 otpinfo->locked = 0;
3243 from += mtd->writesize;
3244 buf += sizeof(struct otp_info);
3245 *retlen += sizeof(struct otp_info);
3246 } else {
3247 size_t tmp_retlen;
3249 ret = action(mtd, from, len, &tmp_retlen, buf);
3251 buf += tmp_retlen;
3252 len -= tmp_retlen;
3253 *retlen += tmp_retlen;
3255 if (ret)
3256 break;
3258 otp_pages--;
3260 onenand_release_device(mtd);
3262 return ret;
3266 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3267 * @param mtd MTD device structure
3268 * @param buf the databuffer to put/get data
3269 * @param len number of bytes to read
3271 * Read factory OTP info.
3273 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3274 struct otp_info *buf, size_t len)
3276 size_t retlen;
3277 int ret;
3279 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3281 return ret ? : retlen;
3285 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3286 * @param mtd MTD device structure
3287 * @param from The offset to read
3288 * @param len number of bytes to read
3289 * @param retlen pointer to variable to store the number of read bytes
3290 * @param buf the databuffer to put/get data
3292 * Read factory OTP area.
3294 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3295 size_t len, size_t *retlen, u_char *buf)
3297 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3301 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3302 * @param mtd MTD device structure
3303 * @param buf the databuffer to put/get data
3304 * @param len number of bytes to read
3306 * Read user OTP info.
3308 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3309 struct otp_info *buf, size_t len)
3311 size_t retlen;
3312 int ret;
3314 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3316 return ret ? : retlen;
3320 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3321 * @param mtd MTD device structure
3322 * @param from The offset to read
3323 * @param len number of bytes to read
3324 * @param retlen pointer to variable to store the number of read bytes
3325 * @param buf the databuffer to put/get data
3327 * Read user OTP area.
3329 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3330 size_t len, size_t *retlen, u_char *buf)
3332 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3336 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3337 * @param mtd MTD device structure
3338 * @param from The offset to write
3339 * @param len number of bytes to write
3340 * @param retlen pointer to variable to store the number of write bytes
3341 * @param buf the databuffer to put/get data
3343 * Write user OTP area.
3345 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3346 size_t len, size_t *retlen, u_char *buf)
3348 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3352 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3353 * @param mtd MTD device structure
3354 * @param from The offset to lock
3355 * @param len number of bytes to unlock
3357 * Write lock mark on spare area in page 0 in OTP block
3359 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3360 size_t len)
3362 struct onenand_chip *this = mtd->priv;
3363 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3364 size_t retlen;
3365 int ret;
3366 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3368 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3369 : mtd->oobsize);
3371 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3372 * We write 16 bytes spare area instead of 2 bytes.
3373 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3374 * main area of page 49.
3377 from = 0;
3378 len = FLEXONENAND(this) ? mtd->writesize : 16;
3381 * Note: OTP lock operation
3382 * OTP block : 0xXXFC XX 1111 1100
3383 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3384 * Both : 0xXXF0 (If chip support) XX 1111 0000
3386 if (FLEXONENAND(this))
3387 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3389 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3390 if (otp == 1)
3391 buf[otp_lock_offset] = 0xFC;
3392 else if (otp == 2)
3393 buf[otp_lock_offset] = 0xF3;
3394 else if (otp == 3)
3395 buf[otp_lock_offset] = 0xF0;
3396 else if (otp != 0)
3397 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3399 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3401 return ret ? : retlen;
3404 #endif /* CONFIG_MTD_ONENAND_OTP */
3407 * onenand_check_features - Check and set OneNAND features
3408 * @param mtd MTD data structure
3410 * Check and set OneNAND features
3411 * - lock scheme
3412 * - two plane
3414 static void onenand_check_features(struct mtd_info *mtd)
3416 struct onenand_chip *this = mtd->priv;
3417 unsigned int density, process, numbufs;
3419 /* Lock scheme depends on density and process */
3420 density = onenand_get_density(this->device_id);
3421 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3422 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3424 /* Lock scheme */
3425 switch (density) {
3426 case ONENAND_DEVICE_DENSITY_4Gb:
3427 if (ONENAND_IS_DDP(this))
3428 this->options |= ONENAND_HAS_2PLANE;
3429 else if (numbufs == 1) {
3430 this->options |= ONENAND_HAS_4KB_PAGE;
3431 this->options |= ONENAND_HAS_CACHE_PROGRAM;
3434 case ONENAND_DEVICE_DENSITY_2Gb:
3435 /* 2Gb DDP does not have 2 plane */
3436 if (!ONENAND_IS_DDP(this))
3437 this->options |= ONENAND_HAS_2PLANE;
3438 this->options |= ONENAND_HAS_UNLOCK_ALL;
3440 case ONENAND_DEVICE_DENSITY_1Gb:
3441 /* A-Die has all block unlock */
3442 if (process)
3443 this->options |= ONENAND_HAS_UNLOCK_ALL;
3444 break;
3446 default:
3447 /* Some OneNAND has continuous lock scheme */
3448 if (!process)
3449 this->options |= ONENAND_HAS_CONT_LOCK;
3450 break;
3453 /* The MLC has 4KiB pagesize. */
3454 if (ONENAND_IS_MLC(this))
3455 this->options |= ONENAND_HAS_4KB_PAGE;
3457 if (ONENAND_IS_4KB_PAGE(this))
3458 this->options &= ~ONENAND_HAS_2PLANE;
3460 if (FLEXONENAND(this)) {
3461 this->options &= ~ONENAND_HAS_CONT_LOCK;
3462 this->options |= ONENAND_HAS_UNLOCK_ALL;
3465 if (this->options & ONENAND_HAS_CONT_LOCK)
3466 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3467 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3468 printk(KERN_DEBUG "Chip support all block unlock\n");
3469 if (this->options & ONENAND_HAS_2PLANE)
3470 printk(KERN_DEBUG "Chip has 2 plane\n");
3471 if (this->options & ONENAND_HAS_4KB_PAGE)
3472 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3473 if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3474 printk(KERN_DEBUG "Chip has cache program feature\n");
3478 * onenand_print_device_info - Print device & version ID
3479 * @param device device ID
3480 * @param version version ID
3482 * Print device & version ID
3484 static void onenand_print_device_info(int device, int version)
3486 int vcc, demuxed, ddp, density, flexonenand;
3488 vcc = device & ONENAND_DEVICE_VCC_MASK;
3489 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3490 ddp = device & ONENAND_DEVICE_IS_DDP;
3491 density = onenand_get_density(device);
3492 flexonenand = device & DEVICE_IS_FLEXONENAND;
3493 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3494 demuxed ? "" : "Muxed ",
3495 flexonenand ? "Flex-" : "",
3496 ddp ? "(DDP)" : "",
3497 (16 << density),
3498 vcc ? "2.65/3.3" : "1.8",
3499 device);
3500 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3503 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3504 {ONENAND_MFR_SAMSUNG, "Samsung"},
3505 {ONENAND_MFR_NUMONYX, "Numonyx"},
3509 * onenand_check_maf - Check manufacturer ID
3510 * @param manuf manufacturer ID
3512 * Check manufacturer ID
3514 static int onenand_check_maf(int manuf)
3516 int size = ARRAY_SIZE(onenand_manuf_ids);
3517 char *name;
3518 int i;
3520 for (i = 0; i < size; i++)
3521 if (manuf == onenand_manuf_ids[i].id)
3522 break;
3524 if (i < size)
3525 name = onenand_manuf_ids[i].name;
3526 else
3527 name = "Unknown";
3529 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3531 return (i == size);
3535 * flexonenand_get_boundary - Reads the SLC boundary
3536 * @param onenand_info - onenand info structure
3538 static int flexonenand_get_boundary(struct mtd_info *mtd)
3540 struct onenand_chip *this = mtd->priv;
3541 unsigned die, bdry;
3542 int ret, syscfg, locked;
3544 /* Disable ECC */
3545 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3546 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3548 for (die = 0; die < this->dies; die++) {
3549 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3550 this->wait(mtd, FL_SYNCING);
3552 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3553 ret = this->wait(mtd, FL_READING);
3555 bdry = this->read_word(this->base + ONENAND_DATARAM);
3556 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3557 locked = 0;
3558 else
3559 locked = 1;
3560 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3562 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3563 ret = this->wait(mtd, FL_RESETING);
3565 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3566 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3569 /* Enable ECC */
3570 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3571 return 0;
3575 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3576 * boundary[], diesize[], mtd->size, mtd->erasesize
3577 * @param mtd - MTD device structure
3579 static void flexonenand_get_size(struct mtd_info *mtd)
3581 struct onenand_chip *this = mtd->priv;
3582 int die, i, eraseshift, density;
3583 int blksperdie, maxbdry;
3584 loff_t ofs;
3586 density = onenand_get_density(this->device_id);
3587 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3588 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3589 maxbdry = blksperdie - 1;
3590 eraseshift = this->erase_shift - 1;
3592 mtd->numeraseregions = this->dies << 1;
3594 /* This fills up the device boundary */
3595 flexonenand_get_boundary(mtd);
3596 die = ofs = 0;
3597 i = -1;
3598 for (; die < this->dies; die++) {
3599 if (!die || this->boundary[die-1] != maxbdry) {
3600 i++;
3601 mtd->eraseregions[i].offset = ofs;
3602 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3603 mtd->eraseregions[i].numblocks =
3604 this->boundary[die] + 1;
3605 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3606 eraseshift++;
3607 } else {
3608 mtd->numeraseregions -= 1;
3609 mtd->eraseregions[i].numblocks +=
3610 this->boundary[die] + 1;
3611 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3613 if (this->boundary[die] != maxbdry) {
3614 i++;
3615 mtd->eraseregions[i].offset = ofs;
3616 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3617 mtd->eraseregions[i].numblocks = maxbdry ^
3618 this->boundary[die];
3619 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3620 eraseshift--;
3621 } else
3622 mtd->numeraseregions -= 1;
3625 /* Expose MLC erase size except when all blocks are SLC */
3626 mtd->erasesize = 1 << this->erase_shift;
3627 if (mtd->numeraseregions == 1)
3628 mtd->erasesize >>= 1;
3630 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3631 for (i = 0; i < mtd->numeraseregions; i++)
3632 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3633 " numblocks: %04u]\n",
3634 (unsigned int) mtd->eraseregions[i].offset,
3635 mtd->eraseregions[i].erasesize,
3636 mtd->eraseregions[i].numblocks);
3638 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3639 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3640 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3641 << (this->erase_shift - 1);
3642 mtd->size += this->diesize[die];
3647 * flexonenand_check_blocks_erased - Check if blocks are erased
3648 * @param mtd_info - mtd info structure
3649 * @param start - first erase block to check
3650 * @param end - last erase block to check
3652 * Converting an unerased block from MLC to SLC
3653 * causes byte values to change. Since both data and its ECC
3654 * have changed, reads on the block give uncorrectable error.
3655 * This might lead to the block being detected as bad.
3657 * Avoid this by ensuring that the block to be converted is
3658 * erased.
3660 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3662 struct onenand_chip *this = mtd->priv;
3663 int i, ret;
3664 int block;
3665 struct mtd_oob_ops ops = {
3666 .mode = MTD_OOB_PLACE,
3667 .ooboffs = 0,
3668 .ooblen = mtd->oobsize,
3669 .datbuf = NULL,
3670 .oobbuf = this->oob_buf,
3672 loff_t addr;
3674 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3676 for (block = start; block <= end; block++) {
3677 addr = flexonenand_addr(this, block);
3678 if (onenand_block_isbad_nolock(mtd, addr, 0))
3679 continue;
3682 * Since main area write results in ECC write to spare,
3683 * it is sufficient to check only ECC bytes for change.
3685 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3686 if (ret)
3687 return ret;
3689 for (i = 0; i < mtd->oobsize; i++)
3690 if (this->oob_buf[i] != 0xff)
3691 break;
3693 if (i != mtd->oobsize) {
3694 printk(KERN_WARNING "%s: Block %d not erased.\n",
3695 __func__, block);
3696 return 1;
3700 return 0;
3704 * flexonenand_set_boundary - Writes the SLC boundary
3705 * @param mtd - mtd info structure
3707 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3708 int boundary, int lock)
3710 struct onenand_chip *this = mtd->priv;
3711 int ret, density, blksperdie, old, new, thisboundary;
3712 loff_t addr;
3714 /* Change only once for SDP Flex-OneNAND */
3715 if (die && (!ONENAND_IS_DDP(this)))
3716 return 0;
3718 /* boundary value of -1 indicates no required change */
3719 if (boundary < 0 || boundary == this->boundary[die])
3720 return 0;
3722 density = onenand_get_density(this->device_id);
3723 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3724 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3726 if (boundary >= blksperdie) {
3727 printk(KERN_ERR "%s: Invalid boundary value. "
3728 "Boundary not changed.\n", __func__);
3729 return -EINVAL;
3732 /* Check if converting blocks are erased */
3733 old = this->boundary[die] + (die * this->density_mask);
3734 new = boundary + (die * this->density_mask);
3735 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3736 if (ret) {
3737 printk(KERN_ERR "%s: Please erase blocks "
3738 "before boundary change\n", __func__);
3739 return ret;
3742 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3743 this->wait(mtd, FL_SYNCING);
3745 /* Check is boundary is locked */
3746 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3747 ret = this->wait(mtd, FL_READING);
3749 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3750 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3751 printk(KERN_ERR "%s: boundary locked\n", __func__);
3752 ret = 1;
3753 goto out;
3756 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3757 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3759 addr = die ? this->diesize[0] : 0;
3761 boundary &= FLEXONENAND_PI_MASK;
3762 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3764 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3765 ret = this->wait(mtd, FL_ERASING);
3766 if (ret) {
3767 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3768 __func__, die);
3769 goto out;
3772 this->write_word(boundary, this->base + ONENAND_DATARAM);
3773 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3774 ret = this->wait(mtd, FL_WRITING);
3775 if (ret) {
3776 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3777 __func__, die);
3778 goto out;
3781 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3782 ret = this->wait(mtd, FL_WRITING);
3783 out:
3784 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3785 this->wait(mtd, FL_RESETING);
3786 if (!ret)
3787 /* Recalculate device size on boundary change*/
3788 flexonenand_get_size(mtd);
3790 return ret;
3794 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3795 * @param mtd MTD device structure
3797 * OneNAND detection method:
3798 * Compare the values from command with ones from register
3800 static int onenand_chip_probe(struct mtd_info *mtd)
3802 struct onenand_chip *this = mtd->priv;
3803 int bram_maf_id, bram_dev_id, maf_id, dev_id;
3804 int syscfg;
3806 /* Save system configuration 1 */
3807 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3808 /* Clear Sync. Burst Read mode to read BootRAM */
3809 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3811 /* Send the command for reading device ID from BootRAM */
3812 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3814 /* Read manufacturer and device IDs from BootRAM */
3815 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3816 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3818 /* Reset OneNAND to read default register values */
3819 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3820 /* Wait reset */
3821 this->wait(mtd, FL_RESETING);
3823 /* Restore system configuration 1 */
3824 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3826 /* Check manufacturer ID */
3827 if (onenand_check_maf(bram_maf_id))
3828 return -ENXIO;
3830 /* Read manufacturer and device IDs from Register */
3831 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3832 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3834 /* Check OneNAND device */
3835 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3836 return -ENXIO;
3838 return 0;
3842 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3843 * @param mtd MTD device structure
3845 static int onenand_probe(struct mtd_info *mtd)
3847 struct onenand_chip *this = mtd->priv;
3848 int maf_id, dev_id, ver_id;
3849 int density;
3850 int ret;
3852 ret = this->chip_probe(mtd);
3853 if (ret)
3854 return ret;
3856 /* Read manufacturer and device IDs from Register */
3857 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3858 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3859 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3860 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3862 /* Flash device information */
3863 onenand_print_device_info(dev_id, ver_id);
3864 this->device_id = dev_id;
3865 this->version_id = ver_id;
3867 /* Check OneNAND features */
3868 onenand_check_features(mtd);
3870 density = onenand_get_density(dev_id);
3871 if (FLEXONENAND(this)) {
3872 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3873 /* Maximum possible erase regions */
3874 mtd->numeraseregions = this->dies << 1;
3875 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3876 * (this->dies << 1), GFP_KERNEL);
3877 if (!mtd->eraseregions)
3878 return -ENOMEM;
3882 * For Flex-OneNAND, chipsize represents maximum possible device size.
3883 * mtd->size represents the actual device size.
3885 this->chipsize = (16 << density) << 20;
3887 /* OneNAND page size & block size */
3888 /* The data buffer size is equal to page size */
3889 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3890 /* We use the full BufferRAM */
3891 if (ONENAND_IS_4KB_PAGE(this))
3892 mtd->writesize <<= 1;
3894 mtd->oobsize = mtd->writesize >> 5;
3895 /* Pages per a block are always 64 in OneNAND */
3896 mtd->erasesize = mtd->writesize << 6;
3898 * Flex-OneNAND SLC area has 64 pages per block.
3899 * Flex-OneNAND MLC area has 128 pages per block.
3900 * Expose MLC erase size to find erase_shift and page_mask.
3902 if (FLEXONENAND(this))
3903 mtd->erasesize <<= 1;
3905 this->erase_shift = ffs(mtd->erasesize) - 1;
3906 this->page_shift = ffs(mtd->writesize) - 1;
3907 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3908 /* Set density mask. it is used for DDP */
3909 if (ONENAND_IS_DDP(this))
3910 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3911 /* It's real page size */
3912 this->writesize = mtd->writesize;
3914 /* REVISIT: Multichip handling */
3916 if (FLEXONENAND(this))
3917 flexonenand_get_size(mtd);
3918 else
3919 mtd->size = this->chipsize;
3922 * We emulate the 4KiB page and 256KiB erase block size
3923 * But oobsize is still 64 bytes.
3924 * It is only valid if you turn on 2X program support,
3925 * Otherwise it will be ignored by compiler.
3927 if (ONENAND_IS_2PLANE(this)) {
3928 mtd->writesize <<= 1;
3929 mtd->erasesize <<= 1;
3932 return 0;
3936 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3937 * @param mtd MTD device structure
3939 static int onenand_suspend(struct mtd_info *mtd)
3941 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3945 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3946 * @param mtd MTD device structure
3948 static void onenand_resume(struct mtd_info *mtd)
3950 struct onenand_chip *this = mtd->priv;
3952 if (this->state == FL_PM_SUSPENDED)
3953 onenand_release_device(mtd);
3954 else
3955 printk(KERN_ERR "%s: resume() called for the chip which is not "
3956 "in suspended state\n", __func__);
3960 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3961 * @param mtd MTD device structure
3962 * @param maxchips Number of chips to scan for
3964 * This fills out all the not initialized function pointers
3965 * with the defaults.
3966 * The flash ID is read and the mtd/chip structures are
3967 * filled with the appropriate values.
3969 int onenand_scan(struct mtd_info *mtd, int maxchips)
3971 int i, ret;
3972 struct onenand_chip *this = mtd->priv;
3974 if (!this->read_word)
3975 this->read_word = onenand_readw;
3976 if (!this->write_word)
3977 this->write_word = onenand_writew;
3979 if (!this->command)
3980 this->command = onenand_command;
3981 if (!this->wait)
3982 onenand_setup_wait(mtd);
3983 if (!this->bbt_wait)
3984 this->bbt_wait = onenand_bbt_wait;
3985 if (!this->unlock_all)
3986 this->unlock_all = onenand_unlock_all;
3988 if (!this->chip_probe)
3989 this->chip_probe = onenand_chip_probe;
3991 if (!this->read_bufferram)
3992 this->read_bufferram = onenand_read_bufferram;
3993 if (!this->write_bufferram)
3994 this->write_bufferram = onenand_write_bufferram;
3996 if (!this->block_markbad)
3997 this->block_markbad = onenand_default_block_markbad;
3998 if (!this->scan_bbt)
3999 this->scan_bbt = onenand_default_bbt;
4001 if (onenand_probe(mtd))
4002 return -ENXIO;
4004 /* Set Sync. Burst Read after probing */
4005 if (this->mmcontrol) {
4006 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
4007 this->read_bufferram = onenand_sync_read_bufferram;
4010 /* Allocate buffers, if necessary */
4011 if (!this->page_buf) {
4012 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4013 if (!this->page_buf) {
4014 printk(KERN_ERR "%s: Can't allocate page_buf\n",
4015 __func__);
4016 return -ENOMEM;
4018 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4019 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4020 if (!this->verify_buf) {
4021 kfree(this->page_buf);
4022 return -ENOMEM;
4024 #endif
4025 this->options |= ONENAND_PAGEBUF_ALLOC;
4027 if (!this->oob_buf) {
4028 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
4029 if (!this->oob_buf) {
4030 printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4031 __func__);
4032 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4033 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4034 kfree(this->page_buf);
4036 return -ENOMEM;
4038 this->options |= ONENAND_OOBBUF_ALLOC;
4041 this->state = FL_READY;
4042 init_waitqueue_head(&this->wq);
4043 spin_lock_init(&this->chip_lock);
4046 * Allow subpage writes up to oobsize.
4048 switch (mtd->oobsize) {
4049 case 128:
4050 if (FLEXONENAND(this)) {
4051 this->ecclayout = &flexonenand_oob_128;
4052 mtd->subpage_sft = 0;
4053 } else {
4054 this->ecclayout = &onenand_oob_128;
4055 mtd->subpage_sft = 2;
4057 break;
4058 case 64:
4059 this->ecclayout = &onenand_oob_64;
4060 mtd->subpage_sft = 2;
4061 break;
4063 case 32:
4064 this->ecclayout = &onenand_oob_32;
4065 mtd->subpage_sft = 1;
4066 break;
4068 default:
4069 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4070 __func__, mtd->oobsize);
4071 mtd->subpage_sft = 0;
4072 /* To prevent kernel oops */
4073 this->ecclayout = &onenand_oob_32;
4074 break;
4077 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4080 * The number of bytes available for a client to place data into
4081 * the out of band area
4083 this->ecclayout->oobavail = 0;
4084 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4085 this->ecclayout->oobfree[i].length; i++)
4086 this->ecclayout->oobavail +=
4087 this->ecclayout->oobfree[i].length;
4088 mtd->oobavail = this->ecclayout->oobavail;
4090 mtd->ecclayout = this->ecclayout;
4092 /* Fill in remaining MTD driver data */
4093 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4094 mtd->flags = MTD_CAP_NANDFLASH;
4095 mtd->erase = onenand_erase;
4096 mtd->point = NULL;
4097 mtd->unpoint = NULL;
4098 mtd->read = onenand_read;
4099 mtd->write = onenand_write;
4100 mtd->read_oob = onenand_read_oob;
4101 mtd->write_oob = onenand_write_oob;
4102 mtd->panic_write = onenand_panic_write;
4103 #ifdef CONFIG_MTD_ONENAND_OTP
4104 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4105 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4106 mtd->get_user_prot_info = onenand_get_user_prot_info;
4107 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4108 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4109 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4110 #endif
4111 mtd->sync = onenand_sync;
4112 mtd->lock = onenand_lock;
4113 mtd->unlock = onenand_unlock;
4114 mtd->suspend = onenand_suspend;
4115 mtd->resume = onenand_resume;
4116 mtd->block_isbad = onenand_block_isbad;
4117 mtd->block_markbad = onenand_block_markbad;
4118 mtd->owner = THIS_MODULE;
4119 mtd->writebufsize = mtd->writesize;
4121 /* Unlock whole block */
4122 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4123 this->unlock_all(mtd);
4125 ret = this->scan_bbt(mtd);
4126 if ((!FLEXONENAND(this)) || ret)
4127 return ret;
4129 /* Change Flex-OneNAND boundaries if required */
4130 for (i = 0; i < MAX_DIES; i++)
4131 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4132 flex_bdry[(2 * i) + 1]);
4134 return 0;
4138 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4139 * @param mtd MTD device structure
4141 void onenand_release(struct mtd_info *mtd)
4143 struct onenand_chip *this = mtd->priv;
4145 /* Deregister partitions */
4146 mtd_device_unregister(mtd);
4148 /* Free bad block table memory, if allocated */
4149 if (this->bbm) {
4150 struct bbm_info *bbm = this->bbm;
4151 kfree(bbm->bbt);
4152 kfree(this->bbm);
4154 /* Buffers allocated by onenand_scan */
4155 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4156 kfree(this->page_buf);
4157 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4158 kfree(this->verify_buf);
4159 #endif
4161 if (this->options & ONENAND_OOBBUF_ALLOC)
4162 kfree(this->oob_buf);
4163 kfree(mtd->eraseregions);
4166 EXPORT_SYMBOL_GPL(onenand_scan);
4167 EXPORT_SYMBOL_GPL(onenand_release);
4169 MODULE_LICENSE("GPL");
4170 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4171 MODULE_DESCRIPTION("Generic OneNAND flash driver code");