usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / mtd / nand / fsl_elbc_nand.c
blobeedd8ee2c9ac8b83059edf9cf5856a12e4a53e48
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
50 struct fsl_elbc_mtd {
51 struct mtd_info mtd;
52 struct nand_chip chip;
53 struct fsl_lbc_ctrl *ctrl;
55 struct device *dev;
56 int bank; /* Chip select bank number */
57 u8 __iomem *vbase; /* Chip select base virtual address */
58 int page_size; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller information */
64 struct fsl_elbc_fcm_ctrl {
65 struct nand_hw_control controller;
66 struct fsl_elbc_mtd *chips[MAX_BANKS];
68 u8 __iomem *addr; /* Address of assigned FCM buffer */
69 unsigned int page; /* Last page written to / read from */
70 unsigned int read_bytes; /* Number of bytes read during command */
71 unsigned int column; /* Saved column from SEQIN */
72 unsigned int index; /* Pointer to next byte to 'read' */
73 unsigned int status; /* status read from LTESR after last op */
74 unsigned int mdr; /* UPM/FCM Data Register value */
75 unsigned int use_mdr; /* Non zero if the MDR is to be set */
76 unsigned int oob; /* Non zero if operating on OOB data */
77 unsigned int counter; /* counter for the initializations */
80 /* These map to the positions used by the FCM hardware ECC generator */
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
84 .eccbytes = 3,
85 .eccpos = {6, 7, 8},
86 .oobfree = { {0, 5}, {9, 7} },
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
91 .eccbytes = 3,
92 .eccpos = {8, 9, 10},
93 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
98 .eccbytes = 12,
99 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
105 .eccbytes = 12,
106 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
111 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112 * 1, so we have to adjust bad block pattern. This pattern should be used for
113 * x8 chips only. So far hardware does not support x16 chips anyway.
115 static u8 scan_ff_pattern[] = { 0xff, };
117 static struct nand_bbt_descr largepage_memorybased = {
118 .options = 0,
119 .offs = 0,
120 .len = 1,
121 .pattern = scan_ff_pattern,
125 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126 * interfere with ECC positions, that's why we implement our own descriptors.
127 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132 static struct nand_bbt_descr bbt_main_descr = {
133 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
134 NAND_BBT_2BIT | NAND_BBT_VERSION,
135 .offs = 11,
136 .len = 4,
137 .veroffs = 15,
138 .maxblocks = 4,
139 .pattern = bbt_pattern,
142 static struct nand_bbt_descr bbt_mirror_descr = {
143 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
144 NAND_BBT_2BIT | NAND_BBT_VERSION,
145 .offs = 11,
146 .len = 4,
147 .veroffs = 15,
148 .maxblocks = 4,
149 .pattern = mirror_pattern,
152 /*=================================*/
155 * Set up the FCM hardware block and page address fields, and the fcm
156 * structure addr field to point to the correct FCM buffer in memory
158 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 struct nand_chip *chip = mtd->priv;
161 struct fsl_elbc_mtd *priv = chip->priv;
162 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
163 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
164 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
165 int buf_num;
167 elbc_fcm_ctrl->page = page_addr;
169 out_be32(&lbc->fbar,
170 page_addr >> (chip->phys_erase_shift - chip->page_shift));
172 if (priv->page_size) {
173 out_be32(&lbc->fpar,
174 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
175 (oob ? FPAR_LP_MS : 0) | column);
176 buf_num = (page_addr & 1) << 2;
177 } else {
178 out_be32(&lbc->fpar,
179 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
180 (oob ? FPAR_SP_MS : 0) | column);
181 buf_num = page_addr & 7;
184 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
185 elbc_fcm_ctrl->index = column;
187 /* for OOB data point to the second half of the buffer */
188 if (oob)
189 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191 dev_vdbg(priv->dev, "set_addr: bank=%d, "
192 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
193 "index %x, pes %d ps %d\n",
194 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
195 elbc_fcm_ctrl->index,
196 chip->phys_erase_shift, chip->page_shift);
200 * execute FCM command and wait for it to complete
202 static int fsl_elbc_run_command(struct mtd_info *mtd)
204 struct nand_chip *chip = mtd->priv;
205 struct fsl_elbc_mtd *priv = chip->priv;
206 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
207 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
208 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210 /* Setup the FMR[OP] to execute without write protection */
211 out_be32(&lbc->fmr, priv->fmr | 3);
212 if (elbc_fcm_ctrl->use_mdr)
213 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215 dev_vdbg(priv->dev,
216 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
217 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
218 dev_vdbg(priv->dev,
219 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
220 "fbcr=%08x bank=%d\n",
221 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
222 in_be32(&lbc->fbcr), priv->bank);
224 ctrl->irq_status = 0;
225 /* execute special operation */
226 out_be32(&lbc->lsor, priv->bank);
228 /* wait for FCM complete flag or timeout */
229 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
230 FCM_TIMEOUT_MSECS * HZ/1000);
231 elbc_fcm_ctrl->status = ctrl->irq_status;
232 /* store mdr value in case it was needed */
233 if (elbc_fcm_ctrl->use_mdr)
234 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236 elbc_fcm_ctrl->use_mdr = 0;
238 if (elbc_fcm_ctrl->status != LTESR_CC) {
239 dev_info(priv->dev,
240 "command failed: fir %x fcr %x status %x mdr %x\n",
241 in_be32(&lbc->fir), in_be32(&lbc->fcr),
242 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
243 return -EIO;
246 if (chip->ecc.mode != NAND_ECC_HW)
247 return 0;
249 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
250 uint32_t lteccr = in_be32(&lbc->lteccr);
252 * if command was a full page read and the ELBC
253 * has the LTECCR register, then bits 12-15 (ppc order) of
254 * LTECCR indicates which 512 byte sub-pages had fixed errors.
255 * bits 28-31 are uncorrectable errors, marked elsewhere.
256 * for small page nand only 1 bit is used.
257 * if the ELBC doesn't have the lteccr register it reads 0
259 if (lteccr & 0x000F000F)
260 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
261 if (lteccr & 0x000F0000)
262 mtd->ecc_stats.corrected++;
265 return 0;
268 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
270 struct fsl_elbc_mtd *priv = chip->priv;
271 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
272 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
274 if (priv->page_size) {
275 out_be32(&lbc->fir,
276 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
277 (FIR_OP_CA << FIR_OP1_SHIFT) |
278 (FIR_OP_PA << FIR_OP2_SHIFT) |
279 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
280 (FIR_OP_RBW << FIR_OP4_SHIFT));
282 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
283 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
284 } else {
285 out_be32(&lbc->fir,
286 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
287 (FIR_OP_CA << FIR_OP1_SHIFT) |
288 (FIR_OP_PA << FIR_OP2_SHIFT) |
289 (FIR_OP_RBW << FIR_OP3_SHIFT));
291 if (oob)
292 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
293 else
294 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
298 /* cmdfunc send commands to the FCM */
299 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
300 int column, int page_addr)
302 struct nand_chip *chip = mtd->priv;
303 struct fsl_elbc_mtd *priv = chip->priv;
304 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
305 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
306 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
308 elbc_fcm_ctrl->use_mdr = 0;
310 /* clear the read buffer */
311 elbc_fcm_ctrl->read_bytes = 0;
312 if (command != NAND_CMD_PAGEPROG)
313 elbc_fcm_ctrl->index = 0;
315 switch (command) {
316 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
317 case NAND_CMD_READ1:
318 column += 256;
320 /* fall-through */
321 case NAND_CMD_READ0:
322 dev_dbg(priv->dev,
323 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
324 " 0x%x, column: 0x%x.\n", page_addr, column);
327 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
328 set_addr(mtd, 0, page_addr, 0);
330 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
331 elbc_fcm_ctrl->index += column;
333 fsl_elbc_do_read(chip, 0);
334 fsl_elbc_run_command(mtd);
335 return;
337 /* READOOB reads only the OOB because no ECC is performed. */
338 case NAND_CMD_READOOB:
339 dev_vdbg(priv->dev,
340 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
341 " 0x%x, column: 0x%x.\n", page_addr, column);
343 out_be32(&lbc->fbcr, mtd->oobsize - column);
344 set_addr(mtd, column, page_addr, 1);
346 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
348 fsl_elbc_do_read(chip, 1);
349 fsl_elbc_run_command(mtd);
350 return;
352 /* READID must read all 5 possible bytes while CEB is active */
353 case NAND_CMD_READID:
354 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
356 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
357 (FIR_OP_UA << FIR_OP1_SHIFT) |
358 (FIR_OP_RBW << FIR_OP2_SHIFT));
359 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
360 /* nand_get_flash_type() reads 8 bytes of entire ID string */
361 out_be32(&lbc->fbcr, 8);
362 elbc_fcm_ctrl->read_bytes = 8;
363 elbc_fcm_ctrl->use_mdr = 1;
364 elbc_fcm_ctrl->mdr = 0;
366 set_addr(mtd, 0, 0, 0);
367 fsl_elbc_run_command(mtd);
368 return;
370 /* ERASE1 stores the block and page address */
371 case NAND_CMD_ERASE1:
372 dev_vdbg(priv->dev,
373 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
374 "page_addr: 0x%x.\n", page_addr);
375 set_addr(mtd, 0, page_addr, 0);
376 return;
378 /* ERASE2 uses the block and page address from ERASE1 */
379 case NAND_CMD_ERASE2:
380 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
382 out_be32(&lbc->fir,
383 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
384 (FIR_OP_PA << FIR_OP1_SHIFT) |
385 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
386 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
387 (FIR_OP_RS << FIR_OP4_SHIFT));
389 out_be32(&lbc->fcr,
390 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
391 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
392 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
394 out_be32(&lbc->fbcr, 0);
395 elbc_fcm_ctrl->read_bytes = 0;
396 elbc_fcm_ctrl->use_mdr = 1;
398 fsl_elbc_run_command(mtd);
399 return;
401 /* SEQIN sets up the addr buffer and all registers except the length */
402 case NAND_CMD_SEQIN: {
403 __be32 fcr;
404 dev_vdbg(priv->dev,
405 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
406 "page_addr: 0x%x, column: 0x%x.\n",
407 page_addr, column);
409 elbc_fcm_ctrl->column = column;
410 elbc_fcm_ctrl->oob = 0;
411 elbc_fcm_ctrl->use_mdr = 1;
413 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
414 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
415 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
417 if (priv->page_size) {
418 out_be32(&lbc->fir,
419 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
420 (FIR_OP_CA << FIR_OP1_SHIFT) |
421 (FIR_OP_PA << FIR_OP2_SHIFT) |
422 (FIR_OP_WB << FIR_OP3_SHIFT) |
423 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
424 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
425 (FIR_OP_RS << FIR_OP6_SHIFT));
426 } else {
427 out_be32(&lbc->fir,
428 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
429 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
430 (FIR_OP_CA << FIR_OP2_SHIFT) |
431 (FIR_OP_PA << FIR_OP3_SHIFT) |
432 (FIR_OP_WB << FIR_OP4_SHIFT) |
433 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
434 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
435 (FIR_OP_RS << FIR_OP7_SHIFT));
437 if (column >= mtd->writesize) {
438 /* OOB area --> READOOB */
439 column -= mtd->writesize;
440 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
441 elbc_fcm_ctrl->oob = 1;
442 } else {
443 WARN_ON(column != 0);
444 /* First 256 bytes --> READ0 */
445 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
449 out_be32(&lbc->fcr, fcr);
450 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
451 return;
454 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
455 case NAND_CMD_PAGEPROG: {
456 dev_vdbg(priv->dev,
457 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
458 "writing %d bytes.\n", elbc_fcm_ctrl->index);
460 /* if the write did not start at 0 or is not a full page
461 * then set the exact length, otherwise use a full page
462 * write so the HW generates the ECC.
464 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
465 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
466 out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
467 else
468 out_be32(&lbc->fbcr, 0);
470 fsl_elbc_run_command(mtd);
471 return;
474 /* CMD_STATUS must read the status byte while CEB is active */
475 /* Note - it does not wait for the ready line */
476 case NAND_CMD_STATUS:
477 out_be32(&lbc->fir,
478 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
479 (FIR_OP_RBW << FIR_OP1_SHIFT));
480 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
481 out_be32(&lbc->fbcr, 1);
482 set_addr(mtd, 0, 0, 0);
483 elbc_fcm_ctrl->read_bytes = 1;
485 fsl_elbc_run_command(mtd);
487 /* The chip always seems to report that it is
488 * write-protected, even when it is not.
490 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
491 return;
493 /* RESET without waiting for the ready line */
494 case NAND_CMD_RESET:
495 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
496 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
497 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
498 fsl_elbc_run_command(mtd);
499 return;
501 default:
502 dev_err(priv->dev,
503 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
504 command);
508 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
510 /* The hardware does not seem to support multiple
511 * chips per bank.
516 * Write buf to the FCM Controller Data Buffer
518 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
520 struct nand_chip *chip = mtd->priv;
521 struct fsl_elbc_mtd *priv = chip->priv;
522 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
523 unsigned int bufsize = mtd->writesize + mtd->oobsize;
525 if (len <= 0) {
526 dev_err(priv->dev, "write_buf of %d bytes", len);
527 elbc_fcm_ctrl->status = 0;
528 return;
531 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
532 dev_err(priv->dev,
533 "write_buf beyond end of buffer "
534 "(%d requested, %u available)\n",
535 len, bufsize - elbc_fcm_ctrl->index);
536 len = bufsize - elbc_fcm_ctrl->index;
539 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
541 * This is workaround for the weird elbc hangs during nand write,
542 * Scott Wood says: "...perhaps difference in how long it takes a
543 * write to make it through the localbus compared to a write to IMMR
544 * is causing problems, and sync isn't helping for some reason."
545 * Reading back the last byte helps though.
547 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
549 elbc_fcm_ctrl->index += len;
553 * read a byte from either the FCM hardware buffer if it has any data left
554 * otherwise issue a command to read a single byte.
556 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
558 struct nand_chip *chip = mtd->priv;
559 struct fsl_elbc_mtd *priv = chip->priv;
560 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
562 /* If there are still bytes in the FCM, then use the next byte. */
563 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
564 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
566 dev_err(priv->dev, "read_byte beyond end of buffer\n");
567 return ERR_BYTE;
571 * Read from the FCM Controller Data Buffer
573 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
575 struct nand_chip *chip = mtd->priv;
576 struct fsl_elbc_mtd *priv = chip->priv;
577 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
578 int avail;
580 if (len < 0)
581 return;
583 avail = min((unsigned int)len,
584 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
585 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
586 elbc_fcm_ctrl->index += avail;
588 if (len > avail)
589 dev_err(priv->dev,
590 "read_buf beyond end of buffer "
591 "(%d requested, %d available)\n",
592 len, avail);
596 * Verify buffer against the FCM Controller Data Buffer
598 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
600 struct nand_chip *chip = mtd->priv;
601 struct fsl_elbc_mtd *priv = chip->priv;
602 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
603 int i;
605 if (len < 0) {
606 dev_err(priv->dev, "write_buf of %d bytes", len);
607 return -EINVAL;
610 if ((unsigned int)len >
611 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
612 dev_err(priv->dev,
613 "verify_buf beyond end of buffer "
614 "(%d requested, %u available)\n",
615 len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
617 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
618 return -EINVAL;
621 for (i = 0; i < len; i++)
622 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
623 != buf[i])
624 break;
626 elbc_fcm_ctrl->index += len;
627 return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
630 /* This function is called after Program and Erase Operations to
631 * check for success or failure.
633 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
635 struct fsl_elbc_mtd *priv = chip->priv;
636 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
638 if (elbc_fcm_ctrl->status != LTESR_CC)
639 return NAND_STATUS_FAIL;
641 /* The chip always seems to report that it is
642 * write-protected, even when it is not.
644 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
647 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
649 struct nand_chip *chip = mtd->priv;
650 struct fsl_elbc_mtd *priv = chip->priv;
651 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
652 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
653 unsigned int al;
655 /* calculate FMR Address Length field */
656 al = 0;
657 if (chip->pagemask & 0xffff0000)
658 al++;
659 if (chip->pagemask & 0xff000000)
660 al++;
662 /* add to ECCM mode set in fsl_elbc_init */
663 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
664 (al << FMR_AL_SHIFT);
666 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
667 chip->numchips);
668 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
669 chip->chipsize);
670 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
671 chip->pagemask);
672 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
673 chip->chip_delay);
674 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
675 chip->badblockpos);
676 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
677 chip->chip_shift);
678 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
679 chip->page_shift);
680 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
681 chip->phys_erase_shift);
682 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
683 chip->ecclayout);
684 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
685 chip->ecc.mode);
686 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
687 chip->ecc.steps);
688 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
689 chip->ecc.bytes);
690 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
691 chip->ecc.total);
692 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
693 chip->ecc.layout);
694 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
695 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
696 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
697 mtd->erasesize);
698 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
699 mtd->writesize);
700 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
701 mtd->oobsize);
703 /* adjust Option Register and ECC to match Flash page size */
704 if (mtd->writesize == 512) {
705 priv->page_size = 0;
706 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
707 } else if (mtd->writesize == 2048) {
708 priv->page_size = 1;
709 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
710 /* adjust ecc setup if needed */
711 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
712 BR_DECC_CHK_GEN) {
713 chip->ecc.size = 512;
714 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
715 &fsl_elbc_oob_lp_eccm1 :
716 &fsl_elbc_oob_lp_eccm0;
717 chip->badblock_pattern = &largepage_memorybased;
719 } else {
720 dev_err(priv->dev,
721 "fsl_elbc_init: page size %d is not supported\n",
722 mtd->writesize);
723 return -1;
726 return 0;
729 static int fsl_elbc_read_page(struct mtd_info *mtd,
730 struct nand_chip *chip,
731 uint8_t *buf,
732 int page)
734 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
735 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
737 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
738 mtd->ecc_stats.failed++;
740 return 0;
743 /* ECC will be calculated automatically, and errors will be detected in
744 * waitfunc.
746 static void fsl_elbc_write_page(struct mtd_info *mtd,
747 struct nand_chip *chip,
748 const uint8_t *buf)
750 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
751 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
754 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
756 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
757 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
758 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
759 struct nand_chip *chip = &priv->chip;
761 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
763 /* Fill in fsl_elbc_mtd structure */
764 priv->mtd.priv = chip;
765 priv->mtd.owner = THIS_MODULE;
767 /* Set the ECCM according to the settings in bootloader.*/
768 priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
770 /* fill in nand_chip structure */
771 /* set up function call table */
772 chip->read_byte = fsl_elbc_read_byte;
773 chip->write_buf = fsl_elbc_write_buf;
774 chip->read_buf = fsl_elbc_read_buf;
775 chip->verify_buf = fsl_elbc_verify_buf;
776 chip->select_chip = fsl_elbc_select_chip;
777 chip->cmdfunc = fsl_elbc_cmdfunc;
778 chip->waitfunc = fsl_elbc_wait;
780 chip->bbt_td = &bbt_main_descr;
781 chip->bbt_md = &bbt_mirror_descr;
783 /* set up nand options */
784 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
785 chip->bbt_options = NAND_BBT_USE_FLASH;
787 chip->controller = &elbc_fcm_ctrl->controller;
788 chip->priv = priv;
790 chip->ecc.read_page = fsl_elbc_read_page;
791 chip->ecc.write_page = fsl_elbc_write_page;
793 /* If CS Base Register selects full hardware ECC then use it */
794 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
795 BR_DECC_CHK_GEN) {
796 chip->ecc.mode = NAND_ECC_HW;
797 /* put in small page settings and adjust later if needed */
798 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
799 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
800 chip->ecc.size = 512;
801 chip->ecc.bytes = 3;
802 } else {
803 /* otherwise fall back to default software ECC */
804 chip->ecc.mode = NAND_ECC_SOFT;
807 return 0;
810 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
812 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
813 nand_release(&priv->mtd);
815 kfree(priv->mtd.name);
817 if (priv->vbase)
818 iounmap(priv->vbase);
820 elbc_fcm_ctrl->chips[priv->bank] = NULL;
821 kfree(priv);
822 return 0;
825 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
827 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
829 struct fsl_lbc_regs __iomem *lbc;
830 struct fsl_elbc_mtd *priv;
831 struct resource res;
832 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
833 static const char *part_probe_types[]
834 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
835 int ret;
836 int bank;
837 struct device *dev;
838 struct device_node *node = pdev->dev.of_node;
839 struct mtd_part_parser_data ppdata;
841 ppdata.of_node = pdev->dev.of_node;
842 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
843 return -ENODEV;
844 lbc = fsl_lbc_ctrl_dev->regs;
845 dev = fsl_lbc_ctrl_dev->dev;
847 /* get, allocate and map the memory resource */
848 ret = of_address_to_resource(node, 0, &res);
849 if (ret) {
850 dev_err(dev, "failed to get resource\n");
851 return ret;
854 /* find which chip select it is connected to */
855 for (bank = 0; bank < MAX_BANKS; bank++)
856 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
857 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
858 (in_be32(&lbc->bank[bank].br) &
859 in_be32(&lbc->bank[bank].or) & BR_BA)
860 == fsl_lbc_addr(res.start))
861 break;
863 if (bank >= MAX_BANKS) {
864 dev_err(dev, "address did not match any chip selects\n");
865 return -ENODEV;
868 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
869 if (!priv)
870 return -ENOMEM;
872 mutex_lock(&fsl_elbc_nand_mutex);
873 if (!fsl_lbc_ctrl_dev->nand) {
874 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
875 if (!elbc_fcm_ctrl) {
876 dev_err(dev, "failed to allocate memory\n");
877 mutex_unlock(&fsl_elbc_nand_mutex);
878 ret = -ENOMEM;
879 goto err;
881 elbc_fcm_ctrl->counter++;
883 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
884 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
885 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
886 } else {
887 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
889 mutex_unlock(&fsl_elbc_nand_mutex);
891 elbc_fcm_ctrl->chips[bank] = priv;
892 priv->bank = bank;
893 priv->ctrl = fsl_lbc_ctrl_dev;
894 priv->dev = dev;
896 priv->vbase = ioremap(res.start, resource_size(&res));
897 if (!priv->vbase) {
898 dev_err(dev, "failed to map chip region\n");
899 ret = -ENOMEM;
900 goto err;
903 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
904 if (!priv->mtd.name) {
905 ret = -ENOMEM;
906 goto err;
909 ret = fsl_elbc_chip_init(priv);
910 if (ret)
911 goto err;
913 ret = nand_scan_ident(&priv->mtd, 1, NULL);
914 if (ret)
915 goto err;
917 ret = fsl_elbc_chip_init_tail(&priv->mtd);
918 if (ret)
919 goto err;
921 ret = nand_scan_tail(&priv->mtd);
922 if (ret)
923 goto err;
925 /* First look for RedBoot table or partitions on the command
926 * line, these take precedence over device tree information */
927 mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
928 NULL, 0);
930 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
931 (unsigned long long)res.start, priv->bank);
932 return 0;
934 err:
935 fsl_elbc_chip_remove(priv);
936 return ret;
939 static int fsl_elbc_nand_remove(struct platform_device *pdev)
941 int i;
942 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
943 for (i = 0; i < MAX_BANKS; i++)
944 if (elbc_fcm_ctrl->chips[i])
945 fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
947 mutex_lock(&fsl_elbc_nand_mutex);
948 elbc_fcm_ctrl->counter--;
949 if (!elbc_fcm_ctrl->counter) {
950 fsl_lbc_ctrl_dev->nand = NULL;
951 kfree(elbc_fcm_ctrl);
953 mutex_unlock(&fsl_elbc_nand_mutex);
955 return 0;
959 static const struct of_device_id fsl_elbc_nand_match[] = {
960 { .compatible = "fsl,elbc-fcm-nand", },
964 static struct platform_driver fsl_elbc_nand_driver = {
965 .driver = {
966 .name = "fsl,elbc-fcm-nand",
967 .owner = THIS_MODULE,
968 .of_match_table = fsl_elbc_nand_match,
970 .probe = fsl_elbc_nand_probe,
971 .remove = fsl_elbc_nand_remove,
974 static int __init fsl_elbc_nand_init(void)
976 return platform_driver_register(&fsl_elbc_nand_driver);
979 static void __exit fsl_elbc_nand_exit(void)
981 platform_driver_unregister(&fsl_elbc_nand_driver);
984 module_init(fsl_elbc_nand_init);
985 module_exit(fsl_elbc_nand_exit);
987 MODULE_LICENSE("GPL");
988 MODULE_AUTHOR("Freescale");
989 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");