1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
43 #include <net/checksum.h>
44 #include <linux/workqueue.h>
45 #include <linux/crc32.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
52 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
59 #define DRV_MODULE_NAME "bnx2"
60 #define DRV_MODULE_VERSION "2.1.11"
61 #define DRV_MODULE_RELDATE "July 20, 2011"
62 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
63 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
64 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1a.fw"
65 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
66 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
68 #define RUN_AT(x) (jiffies + (x))
70 /* Time in jiffies before concluding the transmitter is hung. */
71 #define TX_TIMEOUT (5*HZ)
73 static char version
[] __devinitdata
=
74 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
76 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
77 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
78 MODULE_LICENSE("GPL");
79 MODULE_VERSION(DRV_MODULE_VERSION
);
80 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
81 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
86 static int disable_msi
= 0;
88 module_param(disable_msi
, int, 0);
89 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
105 /* indexed by board_t, above */
108 } board_info
[] __devinitdata
= {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
124 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
132 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
141 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
148 static const struct flash_spec flash_table
[] =
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
155 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
160 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
166 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
172 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
177 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
194 "Non-buffered flash (64kB)"},
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
198 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
203 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
213 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
218 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
223 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
228 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
233 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
234 "Buffered flash (256kB)"},
237 static const struct flash_spec flash_5709
= {
238 .flags
= BNX2_NV_BUFFERED
,
239 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
240 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
241 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
242 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
243 .name
= "5709 Buffered flash (256kB)",
246 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
248 static void bnx2_init_napi(struct bnx2
*bp
);
249 static void bnx2_del_napi(struct bnx2
*bp
);
251 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
255 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
261 diff
= txr
->tx_prod
- txr
->tx_cons
;
262 if (unlikely(diff
>= TX_DESC_CNT
)) {
264 if (diff
== TX_DESC_CNT
)
265 diff
= MAX_TX_DESC_CNT
;
267 return bp
->tx_ring_size
- diff
;
271 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_bh(&bp
->indirect_lock
);
276 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_bh(&bp
->indirect_lock
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
285 spin_lock_bh(&bp
->indirect_lock
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
288 spin_unlock_bh(&bp
->indirect_lock
);
292 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
294 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
298 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
300 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
304 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
307 spin_lock_bh(&bp
->indirect_lock
);
308 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
311 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
312 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
313 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
314 for (i
= 0; i
< 5; i
++) {
315 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
316 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
321 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
322 REG_WR(bp
, BNX2_CTX_DATA
, val
);
324 spin_unlock_bh(&bp
->indirect_lock
);
329 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
331 struct bnx2
*bp
= netdev_priv(dev
);
332 struct drv_ctl_io
*io
= &info
->data
.io
;
335 case DRV_CTL_IO_WR_CMD
:
336 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
338 case DRV_CTL_IO_RD_CMD
:
339 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
341 case DRV_CTL_CTX_WR_CMD
:
342 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
350 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
352 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
353 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
356 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
357 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
358 bnapi
->cnic_present
= 0;
359 sb_id
= bp
->irq_nvecs
;
360 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
362 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
363 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
364 bnapi
->cnic_present
= 1;
366 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
369 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
370 cp
->irq_arr
[0].status_blk
= (void *)
371 ((unsigned long) bnapi
->status_blk
.msi
+
372 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
373 cp
->irq_arr
[0].status_blk_num
= sb_id
;
377 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
380 struct bnx2
*bp
= netdev_priv(dev
);
381 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
386 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
389 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
392 bp
->cnic_data
= data
;
393 rcu_assign_pointer(bp
->cnic_ops
, ops
);
396 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
398 bnx2_setup_cnic_irq_info(bp
);
403 static int bnx2_unregister_cnic(struct net_device
*dev
)
405 struct bnx2
*bp
= netdev_priv(dev
);
406 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
407 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
409 mutex_lock(&bp
->cnic_lock
);
411 bnapi
->cnic_present
= 0;
412 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
413 mutex_unlock(&bp
->cnic_lock
);
418 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
420 struct bnx2
*bp
= netdev_priv(dev
);
421 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
423 if (!cp
->max_iscsi_conn
)
426 cp
->drv_owner
= THIS_MODULE
;
427 cp
->chip_id
= bp
->chip_id
;
429 cp
->io_base
= bp
->regview
;
430 cp
->drv_ctl
= bnx2_drv_ctl
;
431 cp
->drv_register_cnic
= bnx2_register_cnic
;
432 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
436 EXPORT_SYMBOL(bnx2_cnic_probe
);
439 bnx2_cnic_stop(struct bnx2
*bp
)
441 struct cnic_ops
*c_ops
;
442 struct cnic_ctl_info info
;
444 mutex_lock(&bp
->cnic_lock
);
445 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
446 lockdep_is_held(&bp
->cnic_lock
));
448 info
.cmd
= CNIC_CTL_STOP_CMD
;
449 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
451 mutex_unlock(&bp
->cnic_lock
);
455 bnx2_cnic_start(struct bnx2
*bp
)
457 struct cnic_ops
*c_ops
;
458 struct cnic_ctl_info info
;
460 mutex_lock(&bp
->cnic_lock
);
461 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
462 lockdep_is_held(&bp
->cnic_lock
));
464 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
465 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
467 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
469 info
.cmd
= CNIC_CTL_START_CMD
;
470 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
472 mutex_unlock(&bp
->cnic_lock
);
478 bnx2_cnic_stop(struct bnx2
*bp
)
483 bnx2_cnic_start(struct bnx2
*bp
)
490 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
495 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
496 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
497 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
499 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
500 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
505 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
506 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
507 BNX2_EMAC_MDIO_COMM_START_BUSY
;
508 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
510 for (i
= 0; i
< 50; i
++) {
513 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
514 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
517 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
518 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
524 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
533 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
534 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
535 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
537 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
538 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
547 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
552 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
553 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
554 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
556 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
557 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
562 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
563 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
564 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
565 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
567 for (i
= 0; i
< 50; i
++) {
570 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
571 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
577 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
582 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
583 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
584 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
586 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
587 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
596 bnx2_disable_int(struct bnx2
*bp
)
599 struct bnx2_napi
*bnapi
;
601 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
602 bnapi
= &bp
->bnx2_napi
[i
];
603 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
604 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
606 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
610 bnx2_enable_int(struct bnx2
*bp
)
613 struct bnx2_napi
*bnapi
;
615 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
616 bnapi
= &bp
->bnx2_napi
[i
];
618 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
619 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
620 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
621 bnapi
->last_status_idx
);
623 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
624 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
625 bnapi
->last_status_idx
);
627 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
631 bnx2_disable_int_sync(struct bnx2
*bp
)
635 atomic_inc(&bp
->intr_sem
);
636 if (!netif_running(bp
->dev
))
639 bnx2_disable_int(bp
);
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 synchronize_irq(bp
->irq_tbl
[i
].vector
);
645 bnx2_napi_disable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_disable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_napi_enable(struct bnx2
*bp
)
658 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
659 napi_enable(&bp
->bnx2_napi
[i
].napi
);
663 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
667 if (netif_running(bp
->dev
)) {
668 bnx2_napi_disable(bp
);
669 netif_tx_disable(bp
->dev
);
671 bnx2_disable_int_sync(bp
);
672 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
676 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
678 if (atomic_dec_and_test(&bp
->intr_sem
)) {
679 if (netif_running(bp
->dev
)) {
680 netif_tx_wake_all_queues(bp
->dev
);
681 spin_lock_bh(&bp
->phy_lock
);
683 netif_carrier_on(bp
->dev
);
684 spin_unlock_bh(&bp
->phy_lock
);
685 bnx2_napi_enable(bp
);
694 bnx2_free_tx_mem(struct bnx2
*bp
)
698 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
699 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
700 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
702 if (txr
->tx_desc_ring
) {
703 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
705 txr
->tx_desc_mapping
);
706 txr
->tx_desc_ring
= NULL
;
708 kfree(txr
->tx_buf_ring
);
709 txr
->tx_buf_ring
= NULL
;
714 bnx2_free_rx_mem(struct bnx2
*bp
)
718 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
719 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
720 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
723 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
724 if (rxr
->rx_desc_ring
[j
])
725 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
726 rxr
->rx_desc_ring
[j
],
727 rxr
->rx_desc_mapping
[j
]);
728 rxr
->rx_desc_ring
[j
] = NULL
;
730 vfree(rxr
->rx_buf_ring
);
731 rxr
->rx_buf_ring
= NULL
;
733 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
734 if (rxr
->rx_pg_desc_ring
[j
])
735 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
736 rxr
->rx_pg_desc_ring
[j
],
737 rxr
->rx_pg_desc_mapping
[j
]);
738 rxr
->rx_pg_desc_ring
[j
] = NULL
;
740 vfree(rxr
->rx_pg_ring
);
741 rxr
->rx_pg_ring
= NULL
;
746 bnx2_alloc_tx_mem(struct bnx2
*bp
)
750 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
751 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
752 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
754 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
755 if (txr
->tx_buf_ring
== NULL
)
759 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
760 &txr
->tx_desc_mapping
, GFP_KERNEL
);
761 if (txr
->tx_desc_ring
== NULL
)
768 bnx2_alloc_rx_mem(struct bnx2
*bp
)
772 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
773 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
774 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
778 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
779 if (rxr
->rx_buf_ring
== NULL
)
782 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
783 rxr
->rx_desc_ring
[j
] =
784 dma_alloc_coherent(&bp
->pdev
->dev
,
786 &rxr
->rx_desc_mapping
[j
],
788 if (rxr
->rx_desc_ring
[j
] == NULL
)
793 if (bp
->rx_pg_ring_size
) {
794 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
796 if (rxr
->rx_pg_ring
== NULL
)
801 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
802 rxr
->rx_pg_desc_ring
[j
] =
803 dma_alloc_coherent(&bp
->pdev
->dev
,
805 &rxr
->rx_pg_desc_mapping
[j
],
807 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
816 bnx2_free_mem(struct bnx2
*bp
)
819 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
821 bnx2_free_tx_mem(bp
);
822 bnx2_free_rx_mem(bp
);
824 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
825 if (bp
->ctx_blk
[i
]) {
826 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
828 bp
->ctx_blk_mapping
[i
]);
829 bp
->ctx_blk
[i
] = NULL
;
832 if (bnapi
->status_blk
.msi
) {
833 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
834 bnapi
->status_blk
.msi
,
835 bp
->status_blk_mapping
);
836 bnapi
->status_blk
.msi
= NULL
;
837 bp
->stats_blk
= NULL
;
842 bnx2_alloc_mem(struct bnx2
*bp
)
844 int i
, status_blk_size
, err
;
845 struct bnx2_napi
*bnapi
;
848 /* Combine status and statistics blocks into one allocation. */
849 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
850 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
851 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
852 BNX2_SBLK_MSIX_ALIGN_SIZE
);
853 bp
->status_stats_size
= status_blk_size
+
854 sizeof(struct statistics_block
);
856 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
857 &bp
->status_blk_mapping
, GFP_KERNEL
);
858 if (status_blk
== NULL
)
861 memset(status_blk
, 0, bp
->status_stats_size
);
863 bnapi
= &bp
->bnx2_napi
[0];
864 bnapi
->status_blk
.msi
= status_blk
;
865 bnapi
->hw_tx_cons_ptr
=
866 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
867 bnapi
->hw_rx_cons_ptr
=
868 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
869 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
870 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
871 struct status_block_msix
*sblk
;
873 bnapi
= &bp
->bnx2_napi
[i
];
875 sblk
= (void *) (status_blk
+
876 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
877 bnapi
->status_blk
.msix
= sblk
;
878 bnapi
->hw_tx_cons_ptr
=
879 &sblk
->status_tx_quick_consumer_index
;
880 bnapi
->hw_rx_cons_ptr
=
881 &sblk
->status_rx_quick_consumer_index
;
882 bnapi
->int_num
= i
<< 24;
886 bp
->stats_blk
= status_blk
+ status_blk_size
;
888 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
890 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
891 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
892 if (bp
->ctx_pages
== 0)
894 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
895 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
897 &bp
->ctx_blk_mapping
[i
],
899 if (bp
->ctx_blk
[i
] == NULL
)
904 err
= bnx2_alloc_rx_mem(bp
);
908 err
= bnx2_alloc_tx_mem(bp
);
920 bnx2_report_fw_link(struct bnx2
*bp
)
922 u32 fw_link_status
= 0;
924 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
930 switch (bp
->line_speed
) {
932 if (bp
->duplex
== DUPLEX_HALF
)
933 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
935 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
938 if (bp
->duplex
== DUPLEX_HALF
)
939 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
941 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
944 if (bp
->duplex
== DUPLEX_HALF
)
945 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
947 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
950 if (bp
->duplex
== DUPLEX_HALF
)
951 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
953 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
957 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
960 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
962 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
963 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
965 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
966 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
967 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
969 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
973 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
975 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
979 bnx2_xceiver_str(struct bnx2
*bp
)
981 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
982 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
987 bnx2_report_link(struct bnx2
*bp
)
990 netif_carrier_on(bp
->dev
);
991 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
992 bnx2_xceiver_str(bp
),
994 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
997 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
998 pr_cont(", receive ");
999 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1000 pr_cont("& transmit ");
1003 pr_cont(", transmit ");
1005 pr_cont("flow control ON");
1009 netif_carrier_off(bp
->dev
);
1010 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1011 bnx2_xceiver_str(bp
));
1014 bnx2_report_fw_link(bp
);
1018 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1020 u32 local_adv
, remote_adv
;
1023 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1024 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1026 if (bp
->duplex
== DUPLEX_FULL
) {
1027 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1032 if (bp
->duplex
!= DUPLEX_FULL
) {
1036 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1037 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1040 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1041 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1042 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1043 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1044 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1048 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1049 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1051 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1052 u32 new_local_adv
= 0;
1053 u32 new_remote_adv
= 0;
1055 if (local_adv
& ADVERTISE_1000XPAUSE
)
1056 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1059 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1060 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1061 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1062 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1064 local_adv
= new_local_adv
;
1065 remote_adv
= new_remote_adv
;
1068 /* See Table 28B-3 of 802.3ab-1999 spec. */
1069 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1070 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1072 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1074 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1075 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1079 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1080 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1084 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1085 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1086 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1088 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1094 bnx2_5709s_linkup(struct bnx2
*bp
)
1100 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1101 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1102 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1104 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1105 bp
->line_speed
= bp
->req_line_speed
;
1106 bp
->duplex
= bp
->req_duplex
;
1109 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1111 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1112 bp
->line_speed
= SPEED_10
;
1114 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1115 bp
->line_speed
= SPEED_100
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1118 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1119 bp
->line_speed
= SPEED_1000
;
1121 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1122 bp
->line_speed
= SPEED_2500
;
1125 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1126 bp
->duplex
= DUPLEX_FULL
;
1128 bp
->duplex
= DUPLEX_HALF
;
1133 bnx2_5708s_linkup(struct bnx2
*bp
)
1138 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1139 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1140 case BCM5708S_1000X_STAT1_SPEED_10
:
1141 bp
->line_speed
= SPEED_10
;
1143 case BCM5708S_1000X_STAT1_SPEED_100
:
1144 bp
->line_speed
= SPEED_100
;
1146 case BCM5708S_1000X_STAT1_SPEED_1G
:
1147 bp
->line_speed
= SPEED_1000
;
1149 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1150 bp
->line_speed
= SPEED_2500
;
1153 if (val
& BCM5708S_1000X_STAT1_FD
)
1154 bp
->duplex
= DUPLEX_FULL
;
1156 bp
->duplex
= DUPLEX_HALF
;
1162 bnx2_5706s_linkup(struct bnx2
*bp
)
1164 u32 bmcr
, local_adv
, remote_adv
, common
;
1167 bp
->line_speed
= SPEED_1000
;
1169 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1170 if (bmcr
& BMCR_FULLDPLX
) {
1171 bp
->duplex
= DUPLEX_FULL
;
1174 bp
->duplex
= DUPLEX_HALF
;
1177 if (!(bmcr
& BMCR_ANENABLE
)) {
1181 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1182 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1184 common
= local_adv
& remote_adv
;
1185 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1187 if (common
& ADVERTISE_1000XFULL
) {
1188 bp
->duplex
= DUPLEX_FULL
;
1191 bp
->duplex
= DUPLEX_HALF
;
1199 bnx2_copper_linkup(struct bnx2
*bp
)
1203 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1204 if (bmcr
& BMCR_ANENABLE
) {
1205 u32 local_adv
, remote_adv
, common
;
1207 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1208 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1210 common
= local_adv
& (remote_adv
>> 2);
1211 if (common
& ADVERTISE_1000FULL
) {
1212 bp
->line_speed
= SPEED_1000
;
1213 bp
->duplex
= DUPLEX_FULL
;
1215 else if (common
& ADVERTISE_1000HALF
) {
1216 bp
->line_speed
= SPEED_1000
;
1217 bp
->duplex
= DUPLEX_HALF
;
1220 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1221 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1223 common
= local_adv
& remote_adv
;
1224 if (common
& ADVERTISE_100FULL
) {
1225 bp
->line_speed
= SPEED_100
;
1226 bp
->duplex
= DUPLEX_FULL
;
1228 else if (common
& ADVERTISE_100HALF
) {
1229 bp
->line_speed
= SPEED_100
;
1230 bp
->duplex
= DUPLEX_HALF
;
1232 else if (common
& ADVERTISE_10FULL
) {
1233 bp
->line_speed
= SPEED_10
;
1234 bp
->duplex
= DUPLEX_FULL
;
1236 else if (common
& ADVERTISE_10HALF
) {
1237 bp
->line_speed
= SPEED_10
;
1238 bp
->duplex
= DUPLEX_HALF
;
1247 if (bmcr
& BMCR_SPEED100
) {
1248 bp
->line_speed
= SPEED_100
;
1251 bp
->line_speed
= SPEED_10
;
1253 if (bmcr
& BMCR_FULLDPLX
) {
1254 bp
->duplex
= DUPLEX_FULL
;
1257 bp
->duplex
= DUPLEX_HALF
;
1265 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1267 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1269 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1270 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1273 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1274 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1276 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1280 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1285 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1288 bnx2_init_rx_context(bp
, cid
);
1293 bnx2_set_mac_link(struct bnx2
*bp
)
1297 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1298 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1299 (bp
->duplex
== DUPLEX_HALF
)) {
1300 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1303 /* Configure the EMAC mode register. */
1304 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1306 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1307 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1308 BNX2_EMAC_MODE_25G_MODE
);
1311 switch (bp
->line_speed
) {
1313 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1314 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1319 val
|= BNX2_EMAC_MODE_PORT_MII
;
1322 val
|= BNX2_EMAC_MODE_25G_MODE
;
1325 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1330 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1333 /* Set the MAC to operate in the appropriate duplex mode. */
1334 if (bp
->duplex
== DUPLEX_HALF
)
1335 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1336 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1338 /* Enable/disable rx PAUSE. */
1339 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1341 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1342 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1343 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1345 /* Enable/disable tx PAUSE. */
1346 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1347 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1349 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1350 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1351 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1353 /* Acknowledge the interrupt. */
1354 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1356 bnx2_init_all_rx_contexts(bp
);
1360 bnx2_enable_bmsr1(struct bnx2
*bp
)
1362 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1363 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1364 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1365 MII_BNX2_BLK_ADDR_GP_STATUS
);
1369 bnx2_disable_bmsr1(struct bnx2
*bp
)
1371 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1372 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1373 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1374 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1378 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1383 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1386 if (bp
->autoneg
& AUTONEG_SPEED
)
1387 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1389 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1390 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1392 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1393 if (!(up1
& BCM5708S_UP1_2G5
)) {
1394 up1
|= BCM5708S_UP1_2G5
;
1395 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1399 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1400 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1401 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1407 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1412 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1415 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1416 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1418 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1419 if (up1
& BCM5708S_UP1_2G5
) {
1420 up1
&= ~BCM5708S_UP1_2G5
;
1421 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1425 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1426 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1427 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1433 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1435 u32
uninitialized_var(bmcr
);
1438 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1441 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1444 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1445 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1446 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1447 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1448 val
|= MII_BNX2_SD_MISC1_FORCE
|
1449 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1450 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1453 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1454 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1455 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1457 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1458 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1460 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1468 if (bp
->autoneg
& AUTONEG_SPEED
) {
1469 bmcr
&= ~BMCR_ANENABLE
;
1470 if (bp
->req_duplex
== DUPLEX_FULL
)
1471 bmcr
|= BMCR_FULLDPLX
;
1473 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1477 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1479 u32
uninitialized_var(bmcr
);
1482 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1485 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1488 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1489 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1490 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1491 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1492 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1495 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1496 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1497 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1499 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1500 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1502 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1510 if (bp
->autoneg
& AUTONEG_SPEED
)
1511 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1512 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1516 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1520 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1521 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1523 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1525 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1529 bnx2_set_link(struct bnx2
*bp
)
1534 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1539 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1542 link_up
= bp
->link_up
;
1544 bnx2_enable_bmsr1(bp
);
1545 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1546 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1547 bnx2_disable_bmsr1(bp
);
1549 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1550 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1553 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1554 bnx2_5706s_force_link_dn(bp
, 0);
1555 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1557 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1559 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1560 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1561 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1563 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1564 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1565 bmsr
|= BMSR_LSTATUS
;
1567 bmsr
&= ~BMSR_LSTATUS
;
1570 if (bmsr
& BMSR_LSTATUS
) {
1573 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1574 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1575 bnx2_5706s_linkup(bp
);
1576 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1577 bnx2_5708s_linkup(bp
);
1578 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1579 bnx2_5709s_linkup(bp
);
1582 bnx2_copper_linkup(bp
);
1584 bnx2_resolve_flow_ctrl(bp
);
1587 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1588 (bp
->autoneg
& AUTONEG_SPEED
))
1589 bnx2_disable_forced_2g5(bp
);
1591 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1594 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1595 bmcr
|= BMCR_ANENABLE
;
1596 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1598 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1603 if (bp
->link_up
!= link_up
) {
1604 bnx2_report_link(bp
);
1607 bnx2_set_mac_link(bp
);
1613 bnx2_reset_phy(struct bnx2
*bp
)
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1620 #define PHY_RESET_MAX_WAIT 100
1621 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1624 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1625 if (!(reg
& BMCR_RESET
)) {
1630 if (i
== PHY_RESET_MAX_WAIT
) {
1637 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1641 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1642 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1644 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1645 adv
= ADVERTISE_1000XPAUSE
;
1648 adv
= ADVERTISE_PAUSE_CAP
;
1651 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1652 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1653 adv
= ADVERTISE_1000XPSE_ASYM
;
1656 adv
= ADVERTISE_PAUSE_ASYM
;
1659 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1660 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1661 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1664 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1670 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1673 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1674 __releases(&bp
->phy_lock
)
1675 __acquires(&bp
->phy_lock
)
1677 u32 speed_arg
= 0, pause_adv
;
1679 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1681 if (bp
->autoneg
& AUTONEG_SPEED
) {
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1683 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1685 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1687 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1689 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1691 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1693 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1694 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1696 if (bp
->req_line_speed
== SPEED_2500
)
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1698 else if (bp
->req_line_speed
== SPEED_1000
)
1699 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1700 else if (bp
->req_line_speed
== SPEED_100
) {
1701 if (bp
->req_duplex
== DUPLEX_FULL
)
1702 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1704 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1705 } else if (bp
->req_line_speed
== SPEED_10
) {
1706 if (bp
->req_duplex
== DUPLEX_FULL
)
1707 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1709 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1713 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1715 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1716 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1718 if (port
== PORT_TP
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1722 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1724 spin_unlock_bh(&bp
->phy_lock
);
1725 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1726 spin_lock_bh(&bp
->phy_lock
);
1732 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1733 __releases(&bp
->phy_lock
)
1734 __acquires(&bp
->phy_lock
)
1739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1740 return bnx2_setup_remote_phy(bp
, port
);
1742 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1744 int force_link_down
= 0;
1746 if (bp
->req_line_speed
== SPEED_2500
) {
1747 if (!bnx2_test_and_enable_2g5(bp
))
1748 force_link_down
= 1;
1749 } else if (bp
->req_line_speed
== SPEED_1000
) {
1750 if (bnx2_test_and_disable_2g5(bp
))
1751 force_link_down
= 1;
1753 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1754 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1756 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1757 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1758 new_bmcr
|= BMCR_SPEED1000
;
1760 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1761 if (bp
->req_line_speed
== SPEED_2500
)
1762 bnx2_enable_forced_2g5(bp
);
1763 else if (bp
->req_line_speed
== SPEED_1000
) {
1764 bnx2_disable_forced_2g5(bp
);
1765 new_bmcr
&= ~0x2000;
1768 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1769 if (bp
->req_line_speed
== SPEED_2500
)
1770 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1772 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1775 if (bp
->req_duplex
== DUPLEX_FULL
) {
1776 adv
|= ADVERTISE_1000XFULL
;
1777 new_bmcr
|= BMCR_FULLDPLX
;
1780 adv
|= ADVERTISE_1000XHALF
;
1781 new_bmcr
&= ~BMCR_FULLDPLX
;
1783 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1784 /* Force a link down visible on the other side */
1786 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1787 ~(ADVERTISE_1000XFULL
|
1788 ADVERTISE_1000XHALF
));
1789 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1790 BMCR_ANRESTART
| BMCR_ANENABLE
);
1793 netif_carrier_off(bp
->dev
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1795 bnx2_report_link(bp
);
1797 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1798 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1800 bnx2_resolve_flow_ctrl(bp
);
1801 bnx2_set_mac_link(bp
);
1806 bnx2_test_and_enable_2g5(bp
);
1808 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1809 new_adv
|= ADVERTISE_1000XFULL
;
1811 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1813 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1814 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1816 bp
->serdes_an_pending
= 0;
1817 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1818 /* Force a link down visible on the other side */
1820 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1821 spin_unlock_bh(&bp
->phy_lock
);
1823 spin_lock_bh(&bp
->phy_lock
);
1826 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1827 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1829 /* Speed up link-up time when the link partner
1830 * does not autonegotiate which is very common
1831 * in blade servers. Some blade servers use
1832 * IPMI for kerboard input and it's important
1833 * to minimize link disruptions. Autoneg. involves
1834 * exchanging base pages plus 3 next pages and
1835 * normally completes in about 120 msec.
1837 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1838 bp
->serdes_an_pending
= 1;
1839 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1841 bnx2_resolve_flow_ctrl(bp
);
1842 bnx2_set_mac_link(bp
);
1848 #define ETHTOOL_ALL_FIBRE_SPEED \
1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1851 (ADVERTISED_1000baseT_Full)
1853 #define ETHTOOL_ALL_COPPER_SPEED \
1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Full)
1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1864 bnx2_set_default_remote_link(struct bnx2
*bp
)
1868 if (bp
->phy_port
== PORT_TP
)
1869 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1871 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1873 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1874 bp
->req_line_speed
= 0;
1875 bp
->autoneg
|= AUTONEG_SPEED
;
1876 bp
->advertising
= ADVERTISED_Autoneg
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1878 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1880 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1882 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1884 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1886 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1887 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1888 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1891 bp
->advertising
= 0;
1892 bp
->req_duplex
= DUPLEX_FULL
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1894 bp
->req_line_speed
= SPEED_10
;
1895 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1896 bp
->req_duplex
= DUPLEX_HALF
;
1898 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1899 bp
->req_line_speed
= SPEED_100
;
1900 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1901 bp
->req_duplex
= DUPLEX_HALF
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1904 bp
->req_line_speed
= SPEED_1000
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1906 bp
->req_line_speed
= SPEED_2500
;
1911 bnx2_set_default_link(struct bnx2
*bp
)
1913 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1914 bnx2_set_default_remote_link(bp
);
1918 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1919 bp
->req_line_speed
= 0;
1920 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1923 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1925 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1926 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1927 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1929 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1930 bp
->req_duplex
= DUPLEX_FULL
;
1933 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1937 bnx2_send_heart_beat(struct bnx2
*bp
)
1942 spin_lock(&bp
->indirect_lock
);
1943 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1944 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1945 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1946 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1947 spin_unlock(&bp
->indirect_lock
);
1951 bnx2_remote_phy_event(struct bnx2
*bp
)
1954 u8 link_up
= bp
->link_up
;
1957 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1959 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1960 bnx2_send_heart_beat(bp
);
1962 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1964 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1970 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1971 bp
->duplex
= DUPLEX_FULL
;
1973 case BNX2_LINK_STATUS_10HALF
:
1974 bp
->duplex
= DUPLEX_HALF
;
1975 case BNX2_LINK_STATUS_10FULL
:
1976 bp
->line_speed
= SPEED_10
;
1978 case BNX2_LINK_STATUS_100HALF
:
1979 bp
->duplex
= DUPLEX_HALF
;
1980 case BNX2_LINK_STATUS_100BASE_T4
:
1981 case BNX2_LINK_STATUS_100FULL
:
1982 bp
->line_speed
= SPEED_100
;
1984 case BNX2_LINK_STATUS_1000HALF
:
1985 bp
->duplex
= DUPLEX_HALF
;
1986 case BNX2_LINK_STATUS_1000FULL
:
1987 bp
->line_speed
= SPEED_1000
;
1989 case BNX2_LINK_STATUS_2500HALF
:
1990 bp
->duplex
= DUPLEX_HALF
;
1991 case BNX2_LINK_STATUS_2500FULL
:
1992 bp
->line_speed
= SPEED_2500
;
2000 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2001 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2002 if (bp
->duplex
== DUPLEX_FULL
)
2003 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2005 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2006 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2007 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2008 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2011 old_port
= bp
->phy_port
;
2012 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2013 bp
->phy_port
= PORT_FIBRE
;
2015 bp
->phy_port
= PORT_TP
;
2017 if (old_port
!= bp
->phy_port
)
2018 bnx2_set_default_link(bp
);
2021 if (bp
->link_up
!= link_up
)
2022 bnx2_report_link(bp
);
2024 bnx2_set_mac_link(bp
);
2028 bnx2_set_remote_link(struct bnx2
*bp
)
2032 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2034 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2035 bnx2_remote_phy_event(bp
);
2037 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2039 bnx2_send_heart_beat(bp
);
2046 bnx2_setup_copper_phy(struct bnx2
*bp
)
2047 __releases(&bp
->phy_lock
)
2048 __acquires(&bp
->phy_lock
)
2053 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2055 if (bp
->autoneg
& AUTONEG_SPEED
) {
2056 u32 adv_reg
, adv1000_reg
;
2057 u32 new_adv_reg
= 0;
2058 u32 new_adv1000_reg
= 0;
2060 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2061 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2062 ADVERTISE_PAUSE_ASYM
);
2064 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2065 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2067 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2068 new_adv_reg
|= ADVERTISE_10HALF
;
2069 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2070 new_adv_reg
|= ADVERTISE_10FULL
;
2071 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2072 new_adv_reg
|= ADVERTISE_100HALF
;
2073 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2074 new_adv_reg
|= ADVERTISE_100FULL
;
2075 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2076 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2078 new_adv_reg
|= ADVERTISE_CSMA
;
2080 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2082 if ((adv1000_reg
!= new_adv1000_reg
) ||
2083 (adv_reg
!= new_adv_reg
) ||
2084 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2086 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2087 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2088 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2091 else if (bp
->link_up
) {
2092 /* Flow ctrl may have changed from auto to forced */
2093 /* or vice-versa. */
2095 bnx2_resolve_flow_ctrl(bp
);
2096 bnx2_set_mac_link(bp
);
2102 if (bp
->req_line_speed
== SPEED_100
) {
2103 new_bmcr
|= BMCR_SPEED100
;
2105 if (bp
->req_duplex
== DUPLEX_FULL
) {
2106 new_bmcr
|= BMCR_FULLDPLX
;
2108 if (new_bmcr
!= bmcr
) {
2111 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2112 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2114 if (bmsr
& BMSR_LSTATUS
) {
2115 /* Force link down */
2116 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2117 spin_unlock_bh(&bp
->phy_lock
);
2119 spin_lock_bh(&bp
->phy_lock
);
2121 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2122 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2125 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2127 /* Normally, the new speed is setup after the link has
2128 * gone down and up again. In some cases, link will not go
2129 * down so we need to set up the new speed here.
2131 if (bmsr
& BMSR_LSTATUS
) {
2132 bp
->line_speed
= bp
->req_line_speed
;
2133 bp
->duplex
= bp
->req_duplex
;
2134 bnx2_resolve_flow_ctrl(bp
);
2135 bnx2_set_mac_link(bp
);
2138 bnx2_resolve_flow_ctrl(bp
);
2139 bnx2_set_mac_link(bp
);
2145 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2146 __releases(&bp
->phy_lock
)
2147 __acquires(&bp
->phy_lock
)
2149 if (bp
->loopback
== MAC_LOOPBACK
)
2152 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2153 return bnx2_setup_serdes_phy(bp
, port
);
2156 return bnx2_setup_copper_phy(bp
);
2161 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2165 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2166 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2167 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2168 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2169 bp
->mii_lpa
= MII_LPA
+ 0x10;
2170 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2172 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2173 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2179 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2181 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2182 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2183 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2184 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2186 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2187 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2188 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2189 val
|= BCM5708S_UP1_2G5
;
2191 val
&= ~BCM5708S_UP1_2G5
;
2192 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2194 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2195 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2196 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2197 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2199 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2201 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2202 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2203 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2205 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2211 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2218 bp
->mii_up1
= BCM5708S_UP1
;
2220 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2221 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2222 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2224 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2225 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2226 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2228 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2229 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2230 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2232 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2233 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2234 val
|= BCM5708S_UP1_2G5
;
2235 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2238 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2239 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2240 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2241 /* increase tx signal amplitude */
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2243 BCM5708S_BLK_ADDR_TX_MISC
);
2244 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2245 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2246 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2247 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2250 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2251 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2256 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2257 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2258 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2259 BCM5708S_BLK_ADDR_TX_MISC
);
2260 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2261 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2262 BCM5708S_BLK_ADDR_DIG
);
2269 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2274 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2276 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2277 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2279 if (bp
->dev
->mtu
> 1500) {
2282 /* Set extended packet length bit */
2283 bnx2_write_phy(bp
, 0x18, 0x7);
2284 bnx2_read_phy(bp
, 0x18, &val
);
2285 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2287 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2288 bnx2_read_phy(bp
, 0x1c, &val
);
2289 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2294 bnx2_write_phy(bp
, 0x18, 0x7);
2295 bnx2_read_phy(bp
, 0x18, &val
);
2296 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2298 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2299 bnx2_read_phy(bp
, 0x1c, &val
);
2300 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2307 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2314 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2315 bnx2_write_phy(bp
, 0x18, 0x0c00);
2316 bnx2_write_phy(bp
, 0x17, 0x000a);
2317 bnx2_write_phy(bp
, 0x15, 0x310b);
2318 bnx2_write_phy(bp
, 0x17, 0x201f);
2319 bnx2_write_phy(bp
, 0x15, 0x9506);
2320 bnx2_write_phy(bp
, 0x17, 0x401f);
2321 bnx2_write_phy(bp
, 0x15, 0x14e2);
2322 bnx2_write_phy(bp
, 0x18, 0x0400);
2325 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2326 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2327 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2328 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2330 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2333 if (bp
->dev
->mtu
> 1500) {
2334 /* Set extended packet length bit */
2335 bnx2_write_phy(bp
, 0x18, 0x7);
2336 bnx2_read_phy(bp
, 0x18, &val
);
2337 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2339 bnx2_read_phy(bp
, 0x10, &val
);
2340 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2343 bnx2_write_phy(bp
, 0x18, 0x7);
2344 bnx2_read_phy(bp
, 0x18, &val
);
2345 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2347 bnx2_read_phy(bp
, 0x10, &val
);
2348 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2351 /* ethernet@wirespeed */
2352 bnx2_write_phy(bp
, 0x18, 0x7007);
2353 bnx2_read_phy(bp
, 0x18, &val
);
2354 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2360 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2361 __releases(&bp
->phy_lock
)
2362 __acquires(&bp
->phy_lock
)
2367 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2368 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2370 bp
->mii_bmcr
= MII_BMCR
;
2371 bp
->mii_bmsr
= MII_BMSR
;
2372 bp
->mii_bmsr1
= MII_BMSR
;
2373 bp
->mii_adv
= MII_ADVERTISE
;
2374 bp
->mii_lpa
= MII_LPA
;
2376 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2378 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2381 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2382 bp
->phy_id
= val
<< 16;
2383 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2384 bp
->phy_id
|= val
& 0xffff;
2386 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2387 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2388 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2389 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2390 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2391 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2392 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2395 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2400 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2406 bnx2_set_mac_loopback(struct bnx2
*bp
)
2410 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2411 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2412 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2413 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2418 static int bnx2_test_link(struct bnx2
*);
2421 bnx2_set_phy_loopback(struct bnx2
*bp
)
2426 spin_lock_bh(&bp
->phy_lock
);
2427 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2429 spin_unlock_bh(&bp
->phy_lock
);
2433 for (i
= 0; i
< 10; i
++) {
2434 if (bnx2_test_link(bp
) == 0)
2439 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2440 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2441 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2442 BNX2_EMAC_MODE_25G_MODE
);
2444 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2445 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2451 bnx2_dump_mcp_state(struct bnx2
*bp
)
2453 struct net_device
*dev
= bp
->dev
;
2456 netdev_err(dev
, "<--- start MCP states dump --->\n");
2457 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
2458 mcp_p0
= BNX2_MCP_STATE_P0
;
2459 mcp_p1
= BNX2_MCP_STATE_P1
;
2461 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2462 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2464 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2465 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2466 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2467 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2468 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2469 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2470 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2471 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2472 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2473 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2474 netdev_err(dev
, "DEBUG: shmem states:\n");
2475 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2476 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2477 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2478 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2479 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2480 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2481 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2482 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2483 pr_cont(" condition[%08x]\n",
2484 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2485 DP_SHMEM_LINE(bp
, 0x3cc);
2486 DP_SHMEM_LINE(bp
, 0x3dc);
2487 DP_SHMEM_LINE(bp
, 0x3ec);
2488 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2489 netdev_err(dev
, "<--- end MCP states dump --->\n");
2493 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2499 msg_data
|= bp
->fw_wr_seq
;
2501 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2506 /* wait for an acknowledgement. */
2507 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2510 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2512 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2515 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2518 /* If we timed out, inform the firmware that this is the case. */
2519 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2520 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2521 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2523 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2525 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2526 bnx2_dump_mcp_state(bp
);
2532 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2539 bnx2_init_5709_context(struct bnx2
*bp
)
2544 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2545 val
|= (BCM_PAGE_BITS
- 8) << 16;
2546 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2547 for (i
= 0; i
< 10; i
++) {
2548 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2549 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2553 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2556 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2560 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2564 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2565 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2566 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2567 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2568 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2569 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2570 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2571 for (j
= 0; j
< 10; j
++) {
2573 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2574 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2578 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2587 bnx2_init_context(struct bnx2
*bp
)
2593 u32 vcid_addr
, pcid_addr
, offset
;
2598 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2601 vcid_addr
= GET_PCID_ADDR(vcid
);
2603 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2608 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2611 vcid_addr
= GET_CID_ADDR(vcid
);
2612 pcid_addr
= vcid_addr
;
2615 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2616 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2617 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2619 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2620 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2622 /* Zero out the context. */
2623 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2624 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2630 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2636 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2637 if (good_mbuf
== NULL
) {
2638 pr_err("Failed to allocate memory in %s\n", __func__
);
2642 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2643 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2647 /* Allocate a bunch of mbufs and save the good ones in an array. */
2648 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2649 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2650 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2651 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2653 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2655 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2657 /* The addresses with Bit 9 set are bad memory blocks. */
2658 if (!(val
& (1 << 9))) {
2659 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2663 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2666 /* Free the good ones back to the mbuf pool thus discarding
2667 * all the bad ones. */
2668 while (good_mbuf_cnt
) {
2671 val
= good_mbuf
[good_mbuf_cnt
];
2672 val
= (val
<< 9) | val
| 1;
2674 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2681 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2685 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2687 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2689 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2690 (mac_addr
[4] << 8) | mac_addr
[5];
2692 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2696 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2699 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2700 struct rx_bd
*rxbd
=
2701 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2702 struct page
*page
= alloc_page(gfp
);
2706 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2707 PCI_DMA_FROMDEVICE
);
2708 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2714 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2715 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2716 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2721 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2723 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2724 struct page
*page
= rx_pg
->page
;
2729 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2730 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2737 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2739 struct sk_buff
*skb
;
2740 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2742 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2743 unsigned long align
;
2745 skb
= __netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
, gfp
);
2750 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2751 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2753 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, bp
->rx_buf_use_size
,
2754 PCI_DMA_FROMDEVICE
);
2755 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2761 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2762 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2764 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2765 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2767 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2773 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2775 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2776 u32 new_link_state
, old_link_state
;
2779 new_link_state
= sblk
->status_attn_bits
& event
;
2780 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2781 if (new_link_state
!= old_link_state
) {
2783 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2785 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2793 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2795 spin_lock(&bp
->phy_lock
);
2797 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2799 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2800 bnx2_set_remote_link(bp
);
2802 spin_unlock(&bp
->phy_lock
);
2807 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2811 /* Tell compiler that status block fields can change. */
2813 cons
= *bnapi
->hw_tx_cons_ptr
;
2815 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2821 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2823 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2824 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2825 int tx_pkt
= 0, index
;
2826 struct netdev_queue
*txq
;
2828 index
= (bnapi
- bp
->bnx2_napi
);
2829 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2831 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2832 sw_cons
= txr
->tx_cons
;
2834 while (sw_cons
!= hw_cons
) {
2835 struct sw_tx_bd
*tx_buf
;
2836 struct sk_buff
*skb
;
2839 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2841 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2844 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2845 prefetch(&skb
->end
);
2847 /* partial BD completions possible with TSO packets */
2848 if (tx_buf
->is_gso
) {
2849 u16 last_idx
, last_ring_idx
;
2851 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2852 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2853 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2856 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2861 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2862 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2865 last
= tx_buf
->nr_frags
;
2867 for (i
= 0; i
< last
; i
++) {
2868 sw_cons
= NEXT_TX_BD(sw_cons
);
2870 dma_unmap_page(&bp
->pdev
->dev
,
2872 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2874 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2878 sw_cons
= NEXT_TX_BD(sw_cons
);
2882 if (tx_pkt
== budget
)
2885 if (hw_cons
== sw_cons
)
2886 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2889 txr
->hw_tx_cons
= hw_cons
;
2890 txr
->tx_cons
= sw_cons
;
2892 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2893 * before checking for netif_tx_queue_stopped(). Without the
2894 * memory barrier, there is a small possibility that bnx2_start_xmit()
2895 * will miss it and cause the queue to be stopped forever.
2899 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2900 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2901 __netif_tx_lock(txq
, smp_processor_id());
2902 if ((netif_tx_queue_stopped(txq
)) &&
2903 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2904 netif_tx_wake_queue(txq
);
2905 __netif_tx_unlock(txq
);
2912 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2913 struct sk_buff
*skb
, int count
)
2915 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2916 struct rx_bd
*cons_bd
, *prod_bd
;
2919 u16 cons
= rxr
->rx_pg_cons
;
2921 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2923 /* The caller was unable to allocate a new page to replace the
2924 * last one in the frags array, so we need to recycle that page
2925 * and then free the skb.
2929 struct skb_shared_info
*shinfo
;
2931 shinfo
= skb_shinfo(skb
);
2933 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2934 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2936 cons_rx_pg
->page
= page
;
2940 hw_prod
= rxr
->rx_pg_prod
;
2942 for (i
= 0; i
< count
; i
++) {
2943 prod
= RX_PG_RING_IDX(hw_prod
);
2945 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2946 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2947 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2948 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2951 prod_rx_pg
->page
= cons_rx_pg
->page
;
2952 cons_rx_pg
->page
= NULL
;
2953 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2954 dma_unmap_addr(cons_rx_pg
, mapping
));
2956 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2957 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2960 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2961 hw_prod
= NEXT_RX_BD(hw_prod
);
2963 rxr
->rx_pg_prod
= hw_prod
;
2964 rxr
->rx_pg_cons
= cons
;
2968 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2969 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2971 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2972 struct rx_bd
*cons_bd
, *prod_bd
;
2974 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2975 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2977 dma_sync_single_for_device(&bp
->pdev
->dev
,
2978 dma_unmap_addr(cons_rx_buf
, mapping
),
2979 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2981 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2983 prod_rx_buf
->skb
= skb
;
2984 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2989 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2990 dma_unmap_addr(cons_rx_buf
, mapping
));
2992 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2993 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2994 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2995 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2999 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
3000 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3004 u16 prod
= ring_idx
& 0xffff;
3006 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
, GFP_ATOMIC
);
3007 if (unlikely(err
)) {
3008 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
3010 unsigned int raw_len
= len
+ 4;
3011 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3013 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3018 skb_reserve(skb
, BNX2_RX_OFFSET
);
3019 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3020 PCI_DMA_FROMDEVICE
);
3026 unsigned int i
, frag_len
, frag_size
, pages
;
3027 struct sw_pg
*rx_pg
;
3028 u16 pg_cons
= rxr
->rx_pg_cons
;
3029 u16 pg_prod
= rxr
->rx_pg_prod
;
3031 frag_size
= len
+ 4 - hdr_len
;
3032 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3033 skb_put(skb
, hdr_len
);
3035 for (i
= 0; i
< pages
; i
++) {
3036 dma_addr_t mapping_old
;
3038 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3039 if (unlikely(frag_len
<= 4)) {
3040 unsigned int tail
= 4 - frag_len
;
3042 rxr
->rx_pg_cons
= pg_cons
;
3043 rxr
->rx_pg_prod
= pg_prod
;
3044 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3051 &skb_shinfo(skb
)->frags
[i
- 1];
3052 skb_frag_size_sub(frag
, tail
);
3053 skb
->data_len
-= tail
;
3057 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3059 /* Don't unmap yet. If we're unable to allocate a new
3060 * page, we need to recycle the page and the DMA addr.
3062 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3066 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3069 err
= bnx2_alloc_rx_page(bp
, rxr
,
3070 RX_PG_RING_IDX(pg_prod
),
3072 if (unlikely(err
)) {
3073 rxr
->rx_pg_cons
= pg_cons
;
3074 rxr
->rx_pg_prod
= pg_prod
;
3075 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3080 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3081 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3083 frag_size
-= frag_len
;
3084 skb
->data_len
+= frag_len
;
3085 skb
->truesize
+= PAGE_SIZE
;
3086 skb
->len
+= frag_len
;
3088 pg_prod
= NEXT_RX_BD(pg_prod
);
3089 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3091 rxr
->rx_pg_prod
= pg_prod
;
3092 rxr
->rx_pg_cons
= pg_cons
;
3098 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3102 /* Tell compiler that status block fields can change. */
3104 cons
= *bnapi
->hw_rx_cons_ptr
;
3106 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3112 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3114 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3115 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3116 struct l2_fhdr
*rx_hdr
;
3117 int rx_pkt
= 0, pg_ring_used
= 0;
3119 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3120 sw_cons
= rxr
->rx_cons
;
3121 sw_prod
= rxr
->rx_prod
;
3123 /* Memory barrier necessary as speculative reads of the rx
3124 * buffer can be ahead of the index in the status block
3127 while (sw_cons
!= hw_cons
) {
3128 unsigned int len
, hdr_len
;
3130 struct sw_bd
*rx_buf
, *next_rx_buf
;
3131 struct sk_buff
*skb
;
3132 dma_addr_t dma_addr
;
3134 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3135 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3137 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3142 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3143 prefetch(next_rx_buf
->desc
);
3147 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3149 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3150 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3151 PCI_DMA_FROMDEVICE
);
3153 rx_hdr
= rx_buf
->desc
;
3154 len
= rx_hdr
->l2_fhdr_pkt_len
;
3155 status
= rx_hdr
->l2_fhdr_status
;
3158 if (status
& L2_FHDR_STATUS_SPLIT
) {
3159 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3161 } else if (len
> bp
->rx_jumbo_thresh
) {
3162 hdr_len
= bp
->rx_jumbo_thresh
;
3166 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3167 L2_FHDR_ERRORS_PHY_DECODE
|
3168 L2_FHDR_ERRORS_ALIGNMENT
|
3169 L2_FHDR_ERRORS_TOO_SHORT
|
3170 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3172 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3177 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3179 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3186 if (len
<= bp
->rx_copy_thresh
) {
3187 struct sk_buff
*new_skb
;
3189 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3190 if (new_skb
== NULL
) {
3191 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3197 skb_copy_from_linear_data_offset(skb
,
3199 new_skb
->data
, len
+ 6);
3200 skb_reserve(new_skb
, 6);
3201 skb_put(new_skb
, len
);
3203 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3204 sw_ring_cons
, sw_ring_prod
);
3207 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3208 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3211 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3212 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3213 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3215 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3217 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3218 (ntohs(skb
->protocol
) != 0x8100)) {
3225 skb_checksum_none_assert(skb
);
3226 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3227 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3228 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3230 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3231 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3232 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3234 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3235 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3236 L2_FHDR_STATUS_USE_RXHASH
))
3237 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3239 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3240 napi_gro_receive(&bnapi
->napi
, skb
);
3244 sw_cons
= NEXT_RX_BD(sw_cons
);
3245 sw_prod
= NEXT_RX_BD(sw_prod
);
3247 if ((rx_pkt
== budget
))
3250 /* Refresh hw_cons to see if there is new work */
3251 if (sw_cons
== hw_cons
) {
3252 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3256 rxr
->rx_cons
= sw_cons
;
3257 rxr
->rx_prod
= sw_prod
;
3260 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3262 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3264 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3272 /* MSI ISR - The only difference between this and the INTx ISR
3273 * is that the MSI interrupt is always serviced.
3276 bnx2_msi(int irq
, void *dev_instance
)
3278 struct bnx2_napi
*bnapi
= dev_instance
;
3279 struct bnx2
*bp
= bnapi
->bp
;
3281 prefetch(bnapi
->status_blk
.msi
);
3282 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3283 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3284 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3286 /* Return here if interrupt is disabled. */
3287 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3290 napi_schedule(&bnapi
->napi
);
3296 bnx2_msi_1shot(int irq
, void *dev_instance
)
3298 struct bnx2_napi
*bnapi
= dev_instance
;
3299 struct bnx2
*bp
= bnapi
->bp
;
3301 prefetch(bnapi
->status_blk
.msi
);
3303 /* Return here if interrupt is disabled. */
3304 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3307 napi_schedule(&bnapi
->napi
);
3313 bnx2_interrupt(int irq
, void *dev_instance
)
3315 struct bnx2_napi
*bnapi
= dev_instance
;
3316 struct bnx2
*bp
= bnapi
->bp
;
3317 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3319 /* When using INTx, it is possible for the interrupt to arrive
3320 * at the CPU before the status block posted prior to the
3321 * interrupt. Reading a register will flush the status block.
3322 * When using MSI, the MSI message will always complete after
3323 * the status block write.
3325 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3326 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3327 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3330 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3331 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3332 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3334 /* Read back to deassert IRQ immediately to avoid too many
3335 * spurious interrupts.
3337 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3339 /* Return here if interrupt is shared and is disabled. */
3340 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3343 if (napi_schedule_prep(&bnapi
->napi
)) {
3344 bnapi
->last_status_idx
= sblk
->status_idx
;
3345 __napi_schedule(&bnapi
->napi
);
3352 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3354 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3355 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3357 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3358 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3363 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3364 STATUS_ATTN_BITS_TIMER_ABORT)
3367 bnx2_has_work(struct bnx2_napi
*bnapi
)
3369 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3371 if (bnx2_has_fast_work(bnapi
))
3375 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3379 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3380 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3387 bnx2_chk_missed_msi(struct bnx2
*bp
)
3389 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3392 if (bnx2_has_work(bnapi
)) {
3393 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3394 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3397 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3398 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3399 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3400 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3401 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3405 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3409 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3411 struct cnic_ops
*c_ops
;
3413 if (!bnapi
->cnic_present
)
3417 c_ops
= rcu_dereference(bp
->cnic_ops
);
3419 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3420 bnapi
->status_blk
.msi
);
3425 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3427 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3428 u32 status_attn_bits
= sblk
->status_attn_bits
;
3429 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3431 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3432 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3434 bnx2_phy_int(bp
, bnapi
);
3436 /* This is needed to take care of transient status
3437 * during link changes.
3439 REG_WR(bp
, BNX2_HC_COMMAND
,
3440 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3441 REG_RD(bp
, BNX2_HC_COMMAND
);
3445 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3446 int work_done
, int budget
)
3448 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3449 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3451 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3452 bnx2_tx_int(bp
, bnapi
, 0);
3454 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3455 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3460 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3462 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3463 struct bnx2
*bp
= bnapi
->bp
;
3465 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3468 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3469 if (unlikely(work_done
>= budget
))
3472 bnapi
->last_status_idx
= sblk
->status_idx
;
3473 /* status idx must be read before checking for more work. */
3475 if (likely(!bnx2_has_fast_work(bnapi
))) {
3477 napi_complete(napi
);
3478 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3480 bnapi
->last_status_idx
);
3487 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3489 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3490 struct bnx2
*bp
= bnapi
->bp
;
3492 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3495 bnx2_poll_link(bp
, bnapi
);
3497 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3500 bnx2_poll_cnic(bp
, bnapi
);
3503 /* bnapi->last_status_idx is used below to tell the hw how
3504 * much work has been processed, so we must read it before
3505 * checking for more work.
3507 bnapi
->last_status_idx
= sblk
->status_idx
;
3509 if (unlikely(work_done
>= budget
))
3513 if (likely(!bnx2_has_work(bnapi
))) {
3514 napi_complete(napi
);
3515 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3516 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3517 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3518 bnapi
->last_status_idx
);
3521 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3522 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3523 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3524 bnapi
->last_status_idx
);
3526 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3527 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3528 bnapi
->last_status_idx
);
3536 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3537 * from set_multicast.
3540 bnx2_set_rx_mode(struct net_device
*dev
)
3542 struct bnx2
*bp
= netdev_priv(dev
);
3543 u32 rx_mode
, sort_mode
;
3544 struct netdev_hw_addr
*ha
;
3547 if (!netif_running(dev
))
3550 spin_lock_bh(&bp
->phy_lock
);
3552 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3553 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3554 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3555 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3556 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3557 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3558 if (dev
->flags
& IFF_PROMISC
) {
3559 /* Promiscuous mode. */
3560 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3561 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3562 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3564 else if (dev
->flags
& IFF_ALLMULTI
) {
3565 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3566 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3569 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3572 /* Accept one or more multicast(s). */
3573 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3578 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3580 netdev_for_each_mc_addr(ha
, dev
) {
3581 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3583 regidx
= (bit
& 0xe0) >> 5;
3585 mc_filter
[regidx
] |= (1 << bit
);
3588 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3589 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3593 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3596 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3597 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3598 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3599 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3600 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3601 /* Add all entries into to the match filter list */
3603 netdev_for_each_uc_addr(ha
, dev
) {
3604 bnx2_set_mac_addr(bp
, ha
->addr
,
3605 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3607 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3613 if (rx_mode
!= bp
->rx_mode
) {
3614 bp
->rx_mode
= rx_mode
;
3615 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3618 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3619 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3620 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3622 spin_unlock_bh(&bp
->phy_lock
);
3626 check_fw_section(const struct firmware
*fw
,
3627 const struct bnx2_fw_file_section
*section
,
3628 u32 alignment
, bool non_empty
)
3630 u32 offset
= be32_to_cpu(section
->offset
);
3631 u32 len
= be32_to_cpu(section
->len
);
3633 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3635 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3636 len
& (alignment
- 1))
3642 check_mips_fw_entry(const struct firmware
*fw
,
3643 const struct bnx2_mips_fw_file_entry
*entry
)
3645 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3646 check_fw_section(fw
, &entry
->data
, 4, false) ||
3647 check_fw_section(fw
, &entry
->rodata
, 4, false))
3652 static void bnx2_release_firmware(struct bnx2
*bp
)
3654 if (bp
->rv2p_firmware
) {
3655 release_firmware(bp
->mips_firmware
);
3656 release_firmware(bp
->rv2p_firmware
);
3657 bp
->rv2p_firmware
= NULL
;
3661 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3663 const char *mips_fw_file
, *rv2p_fw_file
;
3664 const struct bnx2_mips_fw_file
*mips_fw
;
3665 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3668 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3669 mips_fw_file
= FW_MIPS_FILE_09
;
3670 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3671 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3672 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3674 rv2p_fw_file
= FW_RV2P_FILE_09
;
3676 mips_fw_file
= FW_MIPS_FILE_06
;
3677 rv2p_fw_file
= FW_RV2P_FILE_06
;
3680 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3682 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3686 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3688 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3689 goto err_release_mips_firmware
;
3691 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3692 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3693 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3694 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3695 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3696 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3697 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3698 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3699 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3701 goto err_release_firmware
;
3703 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3704 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3705 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3706 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3708 goto err_release_firmware
;
3713 err_release_firmware
:
3714 release_firmware(bp
->rv2p_firmware
);
3715 bp
->rv2p_firmware
= NULL
;
3716 err_release_mips_firmware
:
3717 release_firmware(bp
->mips_firmware
);
3721 static int bnx2_request_firmware(struct bnx2
*bp
)
3723 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3727 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3730 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3731 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3732 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3739 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3740 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3742 u32 rv2p_code_len
, file_offset
;
3747 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3748 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3750 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3752 if (rv2p_proc
== RV2P_PROC1
) {
3753 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3754 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3756 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3757 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3760 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3761 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3763 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3766 val
= (i
/ 8) | cmd
;
3767 REG_WR(bp
, addr
, val
);
3770 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3771 for (i
= 0; i
< 8; i
++) {
3774 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3775 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3776 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3777 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3778 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3779 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3780 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3782 val
= (loc
/ 2) | cmd
;
3783 REG_WR(bp
, addr
, val
);
3787 /* Reset the processor, un-stall is done later. */
3788 if (rv2p_proc
== RV2P_PROC1
) {
3789 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3792 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3799 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3800 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3802 u32 addr
, len
, file_offset
;
3808 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3809 val
|= cpu_reg
->mode_value_halt
;
3810 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3811 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3813 /* Load the Text area. */
3814 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3815 len
= be32_to_cpu(fw_entry
->text
.len
);
3816 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3817 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3819 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3823 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3824 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3827 /* Load the Data area. */
3828 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3829 len
= be32_to_cpu(fw_entry
->data
.len
);
3830 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3831 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3833 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3837 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3838 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3841 /* Load the Read-Only area. */
3842 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3843 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3844 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3845 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3847 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3851 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3852 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3855 /* Clear the pre-fetch instruction. */
3856 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3858 val
= be32_to_cpu(fw_entry
->start_addr
);
3859 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3861 /* Start the CPU. */
3862 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3863 val
&= ~cpu_reg
->mode_value_halt
;
3864 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3865 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3871 bnx2_init_cpus(struct bnx2
*bp
)
3873 const struct bnx2_mips_fw_file
*mips_fw
=
3874 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3875 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3876 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3879 /* Initialize the RV2P processor. */
3880 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3881 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3883 /* Initialize the RX Processor. */
3884 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3888 /* Initialize the TX Processor. */
3889 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3893 /* Initialize the TX Patch-up Processor. */
3894 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3898 /* Initialize the Completion Processor. */
3899 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3903 /* Initialize the Command Processor. */
3904 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3911 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3915 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3921 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3922 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3923 PCI_PM_CTRL_PME_STATUS
);
3925 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3926 /* delay required during transition out of D3hot */
3929 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3930 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3931 val
&= ~BNX2_EMAC_MODE_MPKT
;
3932 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3934 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3935 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3936 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3947 autoneg
= bp
->autoneg
;
3948 advertising
= bp
->advertising
;
3950 if (bp
->phy_port
== PORT_TP
) {
3951 bp
->autoneg
= AUTONEG_SPEED
;
3952 bp
->advertising
= ADVERTISED_10baseT_Half
|
3953 ADVERTISED_10baseT_Full
|
3954 ADVERTISED_100baseT_Half
|
3955 ADVERTISED_100baseT_Full
|
3959 spin_lock_bh(&bp
->phy_lock
);
3960 bnx2_setup_phy(bp
, bp
->phy_port
);
3961 spin_unlock_bh(&bp
->phy_lock
);
3963 bp
->autoneg
= autoneg
;
3964 bp
->advertising
= advertising
;
3966 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3968 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3970 /* Enable port mode. */
3971 val
&= ~BNX2_EMAC_MODE_PORT
;
3972 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3973 BNX2_EMAC_MODE_ACPI_RCVD
|
3974 BNX2_EMAC_MODE_MPKT
;
3975 if (bp
->phy_port
== PORT_TP
)
3976 val
|= BNX2_EMAC_MODE_PORT_MII
;
3978 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3979 if (bp
->line_speed
== SPEED_2500
)
3980 val
|= BNX2_EMAC_MODE_25G_MODE
;
3983 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3985 /* receive all multicast */
3986 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3987 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3990 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3991 BNX2_EMAC_RX_MODE_SORT_MODE
);
3993 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3994 BNX2_RPM_SORT_USER0_MC_EN
;
3995 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3996 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3997 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3998 BNX2_RPM_SORT_USER0_ENA
);
4000 /* Need to enable EMAC and RPM for WOL. */
4001 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4002 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4003 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4004 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4006 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
4007 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4008 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
4010 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4013 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4016 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
4017 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
4020 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4021 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4022 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
4031 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
4033 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
4036 /* No more memory access after this point until
4037 * device is brought back to D0.
4049 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4054 /* Request access to the flash interface. */
4055 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4056 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4057 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4058 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4064 if (j
>= NVRAM_TIMEOUT_COUNT
)
4071 bnx2_release_nvram_lock(struct bnx2
*bp
)
4076 /* Relinquish nvram interface. */
4077 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4079 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4080 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4081 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4087 if (j
>= NVRAM_TIMEOUT_COUNT
)
4095 bnx2_enable_nvram_write(struct bnx2
*bp
)
4099 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4100 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4102 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4105 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4106 REG_WR(bp
, BNX2_NVM_COMMAND
,
4107 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4109 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4112 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4113 if (val
& BNX2_NVM_COMMAND_DONE
)
4117 if (j
>= NVRAM_TIMEOUT_COUNT
)
4124 bnx2_disable_nvram_write(struct bnx2
*bp
)
4128 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4129 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4134 bnx2_enable_nvram_access(struct bnx2
*bp
)
4138 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4139 /* Enable both bits, even on read. */
4140 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4141 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4145 bnx2_disable_nvram_access(struct bnx2
*bp
)
4149 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4150 /* Disable both bits, even after read. */
4151 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4152 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4153 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4157 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4162 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4163 /* Buffered flash, no erase needed */
4166 /* Build an erase command */
4167 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4168 BNX2_NVM_COMMAND_DOIT
;
4170 /* Need to clear DONE bit separately. */
4171 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4173 /* Address of the NVRAM to read from. */
4174 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4176 /* Issue an erase command. */
4177 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4179 /* Wait for completion. */
4180 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4185 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4186 if (val
& BNX2_NVM_COMMAND_DONE
)
4190 if (j
>= NVRAM_TIMEOUT_COUNT
)
4197 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4202 /* Build the command word. */
4203 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4205 /* Calculate an offset of a buffered flash, not needed for 5709. */
4206 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4207 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4208 bp
->flash_info
->page_bits
) +
4209 (offset
% bp
->flash_info
->page_size
);
4212 /* Need to clear DONE bit separately. */
4213 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4215 /* Address of the NVRAM to read from. */
4216 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4218 /* Issue a read command. */
4219 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4221 /* Wait for completion. */
4222 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4227 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4228 if (val
& BNX2_NVM_COMMAND_DONE
) {
4229 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4230 memcpy(ret_val
, &v
, 4);
4234 if (j
>= NVRAM_TIMEOUT_COUNT
)
4242 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4248 /* Build the command word. */
4249 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4251 /* Calculate an offset of a buffered flash, not needed for 5709. */
4252 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4253 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4254 bp
->flash_info
->page_bits
) +
4255 (offset
% bp
->flash_info
->page_size
);
4258 /* Need to clear DONE bit separately. */
4259 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4261 memcpy(&val32
, val
, 4);
4263 /* Write the data. */
4264 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4266 /* Address of the NVRAM to write to. */
4267 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4269 /* Issue the write command. */
4270 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4272 /* Wait for completion. */
4273 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4276 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4279 if (j
>= NVRAM_TIMEOUT_COUNT
)
4286 bnx2_init_nvram(struct bnx2
*bp
)
4289 int j
, entry_count
, rc
= 0;
4290 const struct flash_spec
*flash
;
4292 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4293 bp
->flash_info
= &flash_5709
;
4294 goto get_flash_size
;
4297 /* Determine the selected interface. */
4298 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4300 entry_count
= ARRAY_SIZE(flash_table
);
4302 if (val
& 0x40000000) {
4304 /* Flash interface has been reconfigured */
4305 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4307 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4308 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4309 bp
->flash_info
= flash
;
4316 /* Not yet been reconfigured */
4318 if (val
& (1 << 23))
4319 mask
= FLASH_BACKUP_STRAP_MASK
;
4321 mask
= FLASH_STRAP_MASK
;
4323 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4326 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4327 bp
->flash_info
= flash
;
4329 /* Request access to the flash interface. */
4330 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4333 /* Enable access to flash interface */
4334 bnx2_enable_nvram_access(bp
);
4336 /* Reconfigure the flash interface */
4337 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4338 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4339 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4340 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4342 /* Disable access to flash interface */
4343 bnx2_disable_nvram_access(bp
);
4344 bnx2_release_nvram_lock(bp
);
4349 } /* if (val & 0x40000000) */
4351 if (j
== entry_count
) {
4352 bp
->flash_info
= NULL
;
4353 pr_alert("Unknown flash/EEPROM type\n");
4358 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4359 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4361 bp
->flash_size
= val
;
4363 bp
->flash_size
= bp
->flash_info
->total_size
;
4369 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4373 u32 cmd_flags
, offset32
, len32
, extra
;
4378 /* Request access to the flash interface. */
4379 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4382 /* Enable access to flash interface */
4383 bnx2_enable_nvram_access(bp
);
4396 pre_len
= 4 - (offset
& 3);
4398 if (pre_len
>= len32
) {
4400 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4401 BNX2_NVM_COMMAND_LAST
;
4404 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4407 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4412 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4419 extra
= 4 - (len32
& 3);
4420 len32
= (len32
+ 4) & ~3;
4427 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4429 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4430 BNX2_NVM_COMMAND_LAST
;
4432 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4434 memcpy(ret_buf
, buf
, 4 - extra
);
4436 else if (len32
> 0) {
4439 /* Read the first word. */
4443 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4445 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4447 /* Advance to the next dword. */
4452 while (len32
> 4 && rc
== 0) {
4453 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4455 /* Advance to the next dword. */
4464 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4465 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4467 memcpy(ret_buf
, buf
, 4 - extra
);
4470 /* Disable access to flash interface */
4471 bnx2_disable_nvram_access(bp
);
4473 bnx2_release_nvram_lock(bp
);
4479 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4482 u32 written
, offset32
, len32
;
4483 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4485 int align_start
, align_end
;
4490 align_start
= align_end
= 0;
4492 if ((align_start
= (offset32
& 3))) {
4494 len32
+= align_start
;
4497 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4502 align_end
= 4 - (len32
& 3);
4504 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4508 if (align_start
|| align_end
) {
4509 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4510 if (align_buf
== NULL
)
4513 memcpy(align_buf
, start
, 4);
4516 memcpy(align_buf
+ len32
- 4, end
, 4);
4518 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4522 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4523 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4524 if (flash_buffer
== NULL
) {
4526 goto nvram_write_end
;
4531 while ((written
< len32
) && (rc
== 0)) {
4532 u32 page_start
, page_end
, data_start
, data_end
;
4533 u32 addr
, cmd_flags
;
4536 /* Find the page_start addr */
4537 page_start
= offset32
+ written
;
4538 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4539 /* Find the page_end addr */
4540 page_end
= page_start
+ bp
->flash_info
->page_size
;
4541 /* Find the data_start addr */
4542 data_start
= (written
== 0) ? offset32
: page_start
;
4543 /* Find the data_end addr */
4544 data_end
= (page_end
> offset32
+ len32
) ?
4545 (offset32
+ len32
) : page_end
;
4547 /* Request access to the flash interface. */
4548 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4549 goto nvram_write_end
;
4551 /* Enable access to flash interface */
4552 bnx2_enable_nvram_access(bp
);
4554 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4555 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4558 /* Read the whole page into the buffer
4559 * (non-buffer flash only) */
4560 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4561 if (j
== (bp
->flash_info
->page_size
- 4)) {
4562 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4564 rc
= bnx2_nvram_read_dword(bp
,
4570 goto nvram_write_end
;
4576 /* Enable writes to flash interface (unlock write-protect) */
4577 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4578 goto nvram_write_end
;
4580 /* Loop to write back the buffer data from page_start to
4583 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4584 /* Erase the page */
4585 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4586 goto nvram_write_end
;
4588 /* Re-enable the write again for the actual write */
4589 bnx2_enable_nvram_write(bp
);
4591 for (addr
= page_start
; addr
< data_start
;
4592 addr
+= 4, i
+= 4) {
4594 rc
= bnx2_nvram_write_dword(bp
, addr
,
4595 &flash_buffer
[i
], cmd_flags
);
4598 goto nvram_write_end
;
4604 /* Loop to write the new data from data_start to data_end */
4605 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4606 if ((addr
== page_end
- 4) ||
4607 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4608 (addr
== data_end
- 4))) {
4610 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4612 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4616 goto nvram_write_end
;
4622 /* Loop to write back the buffer data from data_end
4624 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4625 for (addr
= data_end
; addr
< page_end
;
4626 addr
+= 4, i
+= 4) {
4628 if (addr
== page_end
-4) {
4629 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4631 rc
= bnx2_nvram_write_dword(bp
, addr
,
4632 &flash_buffer
[i
], cmd_flags
);
4635 goto nvram_write_end
;
4641 /* Disable writes to flash interface (lock write-protect) */
4642 bnx2_disable_nvram_write(bp
);
4644 /* Disable access to flash interface */
4645 bnx2_disable_nvram_access(bp
);
4646 bnx2_release_nvram_lock(bp
);
4648 /* Increment written */
4649 written
+= data_end
- data_start
;
4653 kfree(flash_buffer
);
4659 bnx2_init_fw_cap(struct bnx2
*bp
)
4663 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4664 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4666 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4667 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4669 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4670 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4673 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4674 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4675 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4678 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4679 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4682 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4684 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4685 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4686 bp
->phy_port
= PORT_FIBRE
;
4688 bp
->phy_port
= PORT_TP
;
4690 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4691 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4694 if (netif_running(bp
->dev
) && sig
)
4695 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4699 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4701 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4703 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4704 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4708 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4714 /* Wait for the current PCI transaction to complete before
4715 * issuing a reset. */
4716 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4717 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
4718 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4719 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4720 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4721 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4722 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4723 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4726 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4727 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4728 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4729 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4731 for (i
= 0; i
< 100; i
++) {
4733 val
= REG_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4734 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4739 /* Wait for the firmware to tell us it is ok to issue a reset. */
4740 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4742 /* Deposit a driver reset signature so the firmware knows that
4743 * this is a soft reset. */
4744 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4745 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4747 /* Do a dummy read to force the chip to complete all current transaction
4748 * before we issue a reset. */
4749 val
= REG_RD(bp
, BNX2_MISC_ID
);
4751 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4752 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4753 REG_RD(bp
, BNX2_MISC_COMMAND
);
4756 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4757 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4759 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4762 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4763 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4764 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4767 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4769 /* Reading back any register after chip reset will hang the
4770 * bus on 5706 A0 and A1. The msleep below provides plenty
4771 * of margin for write posting.
4773 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4774 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4777 /* Reset takes approximate 30 usec */
4778 for (i
= 0; i
< 10; i
++) {
4779 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4780 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4781 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4786 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4787 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4788 pr_err("Chip reset did not complete\n");
4793 /* Make sure byte swapping is properly configured. */
4794 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4795 if (val
!= 0x01020304) {
4796 pr_err("Chip not in correct endian mode\n");
4800 /* Wait for the firmware to finish its initialization. */
4801 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4805 spin_lock_bh(&bp
->phy_lock
);
4806 old_port
= bp
->phy_port
;
4807 bnx2_init_fw_cap(bp
);
4808 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4809 old_port
!= bp
->phy_port
)
4810 bnx2_set_default_remote_link(bp
);
4811 spin_unlock_bh(&bp
->phy_lock
);
4813 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4814 /* Adjust the voltage regular to two steps lower. The default
4815 * of this register is 0x0000000e. */
4816 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4818 /* Remove bad rbuf memory from the free pool. */
4819 rc
= bnx2_alloc_bad_rbuf(bp
);
4822 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4823 bnx2_setup_msix_tbl(bp
);
4824 /* Prevent MSIX table reads and write from timing out */
4825 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4826 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4833 bnx2_init_chip(struct bnx2
*bp
)
4838 /* Make sure the interrupt is not active. */
4839 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4841 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4842 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4844 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4846 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4847 DMA_READ_CHANS
<< 12 |
4848 DMA_WRITE_CHANS
<< 16;
4850 val
|= (0x2 << 20) | (1 << 11);
4852 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4855 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4856 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4857 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4859 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4861 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4862 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4863 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4864 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4867 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4870 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4872 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4873 val16
& ~PCI_X_CMD_ERO
);
4876 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4877 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4878 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4879 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4881 /* Initialize context mapping and zero out the quick contexts. The
4882 * context block must have already been enabled. */
4883 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4884 rc
= bnx2_init_5709_context(bp
);
4888 bnx2_init_context(bp
);
4890 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4893 bnx2_init_nvram(bp
);
4895 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4897 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4898 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4899 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4900 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4901 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4902 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4903 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4906 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4908 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4909 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4910 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4912 val
= (BCM_PAGE_BITS
- 8) << 24;
4913 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4915 /* Configure page size. */
4916 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4917 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4918 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4919 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4921 val
= bp
->mac_addr
[0] +
4922 (bp
->mac_addr
[1] << 8) +
4923 (bp
->mac_addr
[2] << 16) +
4925 (bp
->mac_addr
[4] << 8) +
4926 (bp
->mac_addr
[5] << 16);
4927 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4929 /* Program the MTU. Also include 4 bytes for CRC32. */
4931 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4932 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4933 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4934 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4939 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4940 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4941 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4943 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4944 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4945 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4947 bp
->idle_chk_status_idx
= 0xffff;
4949 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4951 /* Set up how to generate a link change interrupt. */
4952 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4954 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4955 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4956 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4958 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4959 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4960 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4961 (u64
) bp
->stats_blk_mapping
>> 32);
4963 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4964 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4966 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4967 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4969 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4970 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4972 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4974 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4976 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4977 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4979 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4980 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4982 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4983 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4985 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4986 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4988 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4989 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4991 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4992 BNX2_HC_CONFIG_COLLECT_STATS
;
4995 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4996 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4997 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4999 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5002 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5003 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5005 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
5007 if (bp
->rx_ticks
< 25)
5008 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5010 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5012 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5013 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5014 BNX2_HC_SB_CONFIG_1
;
5017 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5018 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5019 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5021 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5022 (bp
->tx_quick_cons_trip_int
<< 16) |
5023 bp
->tx_quick_cons_trip
);
5025 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5026 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5028 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5029 (bp
->rx_quick_cons_trip_int
<< 16) |
5030 bp
->rx_quick_cons_trip
);
5032 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5033 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5036 /* Clear internal stats counters. */
5037 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5039 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5041 /* Initialize the receive filter. */
5042 bnx2_set_rx_mode(bp
->dev
);
5044 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5045 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5046 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5047 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5049 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5052 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5053 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5057 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5063 bnx2_clear_ring_states(struct bnx2
*bp
)
5065 struct bnx2_napi
*bnapi
;
5066 struct bnx2_tx_ring_info
*txr
;
5067 struct bnx2_rx_ring_info
*rxr
;
5070 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5071 bnapi
= &bp
->bnx2_napi
[i
];
5072 txr
= &bnapi
->tx_ring
;
5073 rxr
= &bnapi
->rx_ring
;
5076 txr
->hw_tx_cons
= 0;
5077 rxr
->rx_prod_bseq
= 0;
5080 rxr
->rx_pg_prod
= 0;
5081 rxr
->rx_pg_cons
= 0;
5086 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5088 u32 val
, offset0
, offset1
, offset2
, offset3
;
5089 u32 cid_addr
= GET_CID_ADDR(cid
);
5091 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5092 offset0
= BNX2_L2CTX_TYPE_XI
;
5093 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5094 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5095 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5097 offset0
= BNX2_L2CTX_TYPE
;
5098 offset1
= BNX2_L2CTX_CMD_TYPE
;
5099 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5100 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5102 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5103 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5105 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5106 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5108 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5109 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5111 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5112 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5116 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5120 struct bnx2_napi
*bnapi
;
5121 struct bnx2_tx_ring_info
*txr
;
5123 bnapi
= &bp
->bnx2_napi
[ring_num
];
5124 txr
= &bnapi
->tx_ring
;
5129 cid
= TX_TSS_CID
+ ring_num
- 1;
5131 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5133 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5135 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5136 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5139 txr
->tx_prod_bseq
= 0;
5141 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5142 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5144 bnx2_init_tx_context(bp
, cid
, txr
);
5148 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5154 for (i
= 0; i
< num_rings
; i
++) {
5157 rxbd
= &rx_ring
[i
][0];
5158 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5159 rxbd
->rx_bd_len
= buf_size
;
5160 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5162 if (i
== (num_rings
- 1))
5166 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5167 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5172 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5175 u16 prod
, ring_prod
;
5176 u32 cid
, rx_cid_addr
, val
;
5177 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5178 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5183 cid
= RX_RSS_CID
+ ring_num
- 1;
5185 rx_cid_addr
= GET_CID_ADDR(cid
);
5187 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5188 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5190 bnx2_init_rx_context(bp
, cid
);
5192 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5193 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5194 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5197 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5198 if (bp
->rx_pg_ring_size
) {
5199 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5200 rxr
->rx_pg_desc_mapping
,
5201 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5202 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5203 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5204 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5205 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5207 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5208 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5210 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5211 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5213 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5214 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5217 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5218 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5220 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5221 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5223 ring_prod
= prod
= rxr
->rx_pg_prod
;
5224 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5225 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5226 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5227 ring_num
, i
, bp
->rx_pg_ring_size
);
5230 prod
= NEXT_RX_BD(prod
);
5231 ring_prod
= RX_PG_RING_IDX(prod
);
5233 rxr
->rx_pg_prod
= prod
;
5235 ring_prod
= prod
= rxr
->rx_prod
;
5236 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5237 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5238 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5239 ring_num
, i
, bp
->rx_ring_size
);
5242 prod
= NEXT_RX_BD(prod
);
5243 ring_prod
= RX_RING_IDX(prod
);
5245 rxr
->rx_prod
= prod
;
5247 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5248 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5249 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5251 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5252 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5254 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5258 bnx2_init_all_rings(struct bnx2
*bp
)
5263 bnx2_clear_ring_states(bp
);
5265 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5266 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5267 bnx2_init_tx_ring(bp
, i
);
5269 if (bp
->num_tx_rings
> 1)
5270 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5273 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5274 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5276 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5277 bnx2_init_rx_ring(bp
, i
);
5279 if (bp
->num_rx_rings
> 1) {
5282 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5283 int shift
= (i
% 8) << 2;
5285 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5287 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5288 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5289 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5290 BNX2_RLUP_RSS_COMMAND_WRITE
|
5291 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5296 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5297 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5299 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5304 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5306 u32 max
, num_rings
= 1;
5308 while (ring_size
> MAX_RX_DESC_CNT
) {
5309 ring_size
-= MAX_RX_DESC_CNT
;
5312 /* round to next power of 2 */
5314 while ((max
& num_rings
) == 0)
5317 if (num_rings
!= max
)
5324 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5326 u32 rx_size
, rx_space
, jumbo_size
;
5328 /* 8 for CRC and VLAN */
5329 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5331 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5332 sizeof(struct skb_shared_info
);
5334 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5335 bp
->rx_pg_ring_size
= 0;
5336 bp
->rx_max_pg_ring
= 0;
5337 bp
->rx_max_pg_ring_idx
= 0;
5338 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5339 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5341 jumbo_size
= size
* pages
;
5342 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5343 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5345 bp
->rx_pg_ring_size
= jumbo_size
;
5346 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5348 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5349 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5350 bp
->rx_copy_thresh
= 0;
5353 bp
->rx_buf_use_size
= rx_size
;
5355 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5356 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5357 bp
->rx_ring_size
= size
;
5358 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5359 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5363 bnx2_free_tx_skbs(struct bnx2
*bp
)
5367 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5368 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5369 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5372 if (txr
->tx_buf_ring
== NULL
)
5375 for (j
= 0; j
< TX_DESC_CNT
; ) {
5376 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5377 struct sk_buff
*skb
= tx_buf
->skb
;
5385 dma_unmap_single(&bp
->pdev
->dev
,
5386 dma_unmap_addr(tx_buf
, mapping
),
5392 last
= tx_buf
->nr_frags
;
5394 for (k
= 0; k
< last
; k
++, j
++) {
5395 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5396 dma_unmap_page(&bp
->pdev
->dev
,
5397 dma_unmap_addr(tx_buf
, mapping
),
5398 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5407 bnx2_free_rx_skbs(struct bnx2
*bp
)
5411 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5412 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5413 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5416 if (rxr
->rx_buf_ring
== NULL
)
5419 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5420 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5421 struct sk_buff
*skb
= rx_buf
->skb
;
5426 dma_unmap_single(&bp
->pdev
->dev
,
5427 dma_unmap_addr(rx_buf
, mapping
),
5428 bp
->rx_buf_use_size
,
5429 PCI_DMA_FROMDEVICE
);
5435 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5436 bnx2_free_rx_page(bp
, rxr
, j
);
5441 bnx2_free_skbs(struct bnx2
*bp
)
5443 bnx2_free_tx_skbs(bp
);
5444 bnx2_free_rx_skbs(bp
);
5448 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5452 rc
= bnx2_reset_chip(bp
, reset_code
);
5457 if ((rc
= bnx2_init_chip(bp
)) != 0)
5460 bnx2_init_all_rings(bp
);
5465 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5469 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5472 spin_lock_bh(&bp
->phy_lock
);
5473 bnx2_init_phy(bp
, reset_phy
);
5475 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5476 bnx2_remote_phy_event(bp
);
5477 spin_unlock_bh(&bp
->phy_lock
);
5482 bnx2_shutdown_chip(struct bnx2
*bp
)
5486 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5487 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5489 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5491 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5493 return bnx2_reset_chip(bp
, reset_code
);
5497 bnx2_test_registers(struct bnx2
*bp
)
5501 static const struct {
5504 #define BNX2_FL_NOT_5709 1
5508 { 0x006c, 0, 0x00000000, 0x0000003f },
5509 { 0x0090, 0, 0xffffffff, 0x00000000 },
5510 { 0x0094, 0, 0x00000000, 0x00000000 },
5512 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5513 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5514 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5515 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5516 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5517 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5518 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5519 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5520 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5522 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5523 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5524 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5525 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5526 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5527 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5529 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5530 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5531 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5533 { 0x1000, 0, 0x00000000, 0x00000001 },
5534 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5536 { 0x1408, 0, 0x01c00800, 0x00000000 },
5537 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5538 { 0x14a8, 0, 0x00000000, 0x000001ff },
5539 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5540 { 0x14b0, 0, 0x00000002, 0x00000001 },
5541 { 0x14b8, 0, 0x00000000, 0x00000000 },
5542 { 0x14c0, 0, 0x00000000, 0x00000009 },
5543 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5544 { 0x14cc, 0, 0x00000000, 0x00000001 },
5545 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5547 { 0x1800, 0, 0x00000000, 0x00000001 },
5548 { 0x1804, 0, 0x00000000, 0x00000003 },
5550 { 0x2800, 0, 0x00000000, 0x00000001 },
5551 { 0x2804, 0, 0x00000000, 0x00003f01 },
5552 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5553 { 0x2810, 0, 0xffff0000, 0x00000000 },
5554 { 0x2814, 0, 0xffff0000, 0x00000000 },
5555 { 0x2818, 0, 0xffff0000, 0x00000000 },
5556 { 0x281c, 0, 0xffff0000, 0x00000000 },
5557 { 0x2834, 0, 0xffffffff, 0x00000000 },
5558 { 0x2840, 0, 0x00000000, 0xffffffff },
5559 { 0x2844, 0, 0x00000000, 0xffffffff },
5560 { 0x2848, 0, 0xffffffff, 0x00000000 },
5561 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5563 { 0x2c00, 0, 0x00000000, 0x00000011 },
5564 { 0x2c04, 0, 0x00000000, 0x00030007 },
5566 { 0x3c00, 0, 0x00000000, 0x00000001 },
5567 { 0x3c04, 0, 0x00000000, 0x00070000 },
5568 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5569 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5570 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5571 { 0x3c14, 0, 0x00000000, 0xffffffff },
5572 { 0x3c18, 0, 0x00000000, 0xffffffff },
5573 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5574 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5576 { 0x5004, 0, 0x00000000, 0x0000007f },
5577 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5579 { 0x5c00, 0, 0x00000000, 0x00000001 },
5580 { 0x5c04, 0, 0x00000000, 0x0003000f },
5581 { 0x5c08, 0, 0x00000003, 0x00000000 },
5582 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5583 { 0x5c10, 0, 0x00000000, 0xffffffff },
5584 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5585 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5586 { 0x5c88, 0, 0x00000000, 0x00077373 },
5587 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5589 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5590 { 0x680c, 0, 0xffffffff, 0x00000000 },
5591 { 0x6810, 0, 0xffffffff, 0x00000000 },
5592 { 0x6814, 0, 0xffffffff, 0x00000000 },
5593 { 0x6818, 0, 0xffffffff, 0x00000000 },
5594 { 0x681c, 0, 0xffffffff, 0x00000000 },
5595 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5596 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5597 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5598 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5599 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5600 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5601 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5602 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5603 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5604 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5605 { 0x684c, 0, 0xffffffff, 0x00000000 },
5606 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5607 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5608 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5609 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5610 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5611 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5613 { 0xffff, 0, 0x00000000, 0x00000000 },
5618 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5621 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5622 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5623 u16 flags
= reg_tbl
[i
].flags
;
5625 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5628 offset
= (u32
) reg_tbl
[i
].offset
;
5629 rw_mask
= reg_tbl
[i
].rw_mask
;
5630 ro_mask
= reg_tbl
[i
].ro_mask
;
5632 save_val
= readl(bp
->regview
+ offset
);
5634 writel(0, bp
->regview
+ offset
);
5636 val
= readl(bp
->regview
+ offset
);
5637 if ((val
& rw_mask
) != 0) {
5641 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5645 writel(0xffffffff, bp
->regview
+ offset
);
5647 val
= readl(bp
->regview
+ offset
);
5648 if ((val
& rw_mask
) != rw_mask
) {
5652 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5656 writel(save_val
, bp
->regview
+ offset
);
5660 writel(save_val
, bp
->regview
+ offset
);
5668 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5670 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5671 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5674 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5677 for (offset
= 0; offset
< size
; offset
+= 4) {
5679 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5681 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5691 bnx2_test_memory(struct bnx2
*bp
)
5695 static struct mem_entry
{
5698 } mem_tbl_5706
[] = {
5699 { 0x60000, 0x4000 },
5700 { 0xa0000, 0x3000 },
5701 { 0xe0000, 0x4000 },
5702 { 0x120000, 0x4000 },
5703 { 0x1a0000, 0x4000 },
5704 { 0x160000, 0x4000 },
5708 { 0x60000, 0x4000 },
5709 { 0xa0000, 0x3000 },
5710 { 0xe0000, 0x4000 },
5711 { 0x120000, 0x4000 },
5712 { 0x1a0000, 0x4000 },
5715 struct mem_entry
*mem_tbl
;
5717 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5718 mem_tbl
= mem_tbl_5709
;
5720 mem_tbl
= mem_tbl_5706
;
5722 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5723 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5724 mem_tbl
[i
].len
)) != 0) {
5732 #define BNX2_MAC_LOOPBACK 0
5733 #define BNX2_PHY_LOOPBACK 1
5736 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5738 unsigned int pkt_size
, num_pkts
, i
;
5739 struct sk_buff
*skb
, *rx_skb
;
5740 unsigned char *packet
;
5741 u16 rx_start_idx
, rx_idx
;
5744 struct sw_bd
*rx_buf
;
5745 struct l2_fhdr
*rx_hdr
;
5747 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5748 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5749 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5753 txr
= &tx_napi
->tx_ring
;
5754 rxr
= &bnapi
->rx_ring
;
5755 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5756 bp
->loopback
= MAC_LOOPBACK
;
5757 bnx2_set_mac_loopback(bp
);
5759 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5760 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5763 bp
->loopback
= PHY_LOOPBACK
;
5764 bnx2_set_phy_loopback(bp
);
5769 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5770 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5773 packet
= skb_put(skb
, pkt_size
);
5774 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5775 memset(packet
+ 6, 0x0, 8);
5776 for (i
= 14; i
< pkt_size
; i
++)
5777 packet
[i
] = (unsigned char) (i
& 0xff);
5779 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5781 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5786 REG_WR(bp
, BNX2_HC_COMMAND
,
5787 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5789 REG_RD(bp
, BNX2_HC_COMMAND
);
5792 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5796 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5798 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5799 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5800 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5801 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5804 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5805 txr
->tx_prod_bseq
+= pkt_size
;
5807 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5808 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5812 REG_WR(bp
, BNX2_HC_COMMAND
,
5813 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5815 REG_RD(bp
, BNX2_HC_COMMAND
);
5819 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5822 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5823 goto loopback_test_done
;
5825 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5826 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5827 goto loopback_test_done
;
5830 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5831 rx_skb
= rx_buf
->skb
;
5833 rx_hdr
= rx_buf
->desc
;
5834 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5836 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5837 dma_unmap_addr(rx_buf
, mapping
),
5838 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5840 if (rx_hdr
->l2_fhdr_status
&
5841 (L2_FHDR_ERRORS_BAD_CRC
|
5842 L2_FHDR_ERRORS_PHY_DECODE
|
5843 L2_FHDR_ERRORS_ALIGNMENT
|
5844 L2_FHDR_ERRORS_TOO_SHORT
|
5845 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5847 goto loopback_test_done
;
5850 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5851 goto loopback_test_done
;
5854 for (i
= 14; i
< pkt_size
; i
++) {
5855 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5856 goto loopback_test_done
;
5867 #define BNX2_MAC_LOOPBACK_FAILED 1
5868 #define BNX2_PHY_LOOPBACK_FAILED 2
5869 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5870 BNX2_PHY_LOOPBACK_FAILED)
5873 bnx2_test_loopback(struct bnx2
*bp
)
5877 if (!netif_running(bp
->dev
))
5878 return BNX2_LOOPBACK_FAILED
;
5880 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5881 spin_lock_bh(&bp
->phy_lock
);
5882 bnx2_init_phy(bp
, 1);
5883 spin_unlock_bh(&bp
->phy_lock
);
5884 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5885 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5886 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5887 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5891 #define NVRAM_SIZE 0x200
5892 #define CRC32_RESIDUAL 0xdebb20e3
5895 bnx2_test_nvram(struct bnx2
*bp
)
5897 __be32 buf
[NVRAM_SIZE
/ 4];
5898 u8
*data
= (u8
*) buf
;
5902 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5903 goto test_nvram_done
;
5905 magic
= be32_to_cpu(buf
[0]);
5906 if (magic
!= 0x669955aa) {
5908 goto test_nvram_done
;
5911 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5912 goto test_nvram_done
;
5914 csum
= ether_crc_le(0x100, data
);
5915 if (csum
!= CRC32_RESIDUAL
) {
5917 goto test_nvram_done
;
5920 csum
= ether_crc_le(0x100, data
+ 0x100);
5921 if (csum
!= CRC32_RESIDUAL
) {
5930 bnx2_test_link(struct bnx2
*bp
)
5934 if (!netif_running(bp
->dev
))
5937 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5942 spin_lock_bh(&bp
->phy_lock
);
5943 bnx2_enable_bmsr1(bp
);
5944 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5945 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5946 bnx2_disable_bmsr1(bp
);
5947 spin_unlock_bh(&bp
->phy_lock
);
5949 if (bmsr
& BMSR_LSTATUS
) {
5956 bnx2_test_intr(struct bnx2
*bp
)
5961 if (!netif_running(bp
->dev
))
5964 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5966 /* This register is not touched during run-time. */
5967 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5968 REG_RD(bp
, BNX2_HC_COMMAND
);
5970 for (i
= 0; i
< 10; i
++) {
5971 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5977 msleep_interruptible(10);
5985 /* Determining link for parallel detection. */
5987 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5989 u32 mode_ctl
, an_dbg
, exp
;
5991 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5994 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5995 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5997 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6000 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6001 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6002 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6004 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6007 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6008 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6009 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6011 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6018 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6022 spin_lock(&bp
->phy_lock
);
6023 if (bp
->serdes_an_pending
) {
6024 bp
->serdes_an_pending
--;
6026 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6029 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6031 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6033 if (bmcr
& BMCR_ANENABLE
) {
6034 if (bnx2_5706_serdes_has_link(bp
)) {
6035 bmcr
&= ~BMCR_ANENABLE
;
6036 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6037 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6038 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6042 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6043 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6046 bnx2_write_phy(bp
, 0x17, 0x0f01);
6047 bnx2_read_phy(bp
, 0x15, &phy2
);
6051 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6052 bmcr
|= BMCR_ANENABLE
;
6053 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6055 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6058 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6063 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6064 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6065 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6067 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6068 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6069 bnx2_5706s_force_link_dn(bp
, 1);
6070 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6073 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6076 spin_unlock(&bp
->phy_lock
);
6080 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6082 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6085 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6086 bp
->serdes_an_pending
= 0;
6090 spin_lock(&bp
->phy_lock
);
6091 if (bp
->serdes_an_pending
)
6092 bp
->serdes_an_pending
--;
6093 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6096 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6097 if (bmcr
& BMCR_ANENABLE
) {
6098 bnx2_enable_forced_2g5(bp
);
6099 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6101 bnx2_disable_forced_2g5(bp
);
6102 bp
->serdes_an_pending
= 2;
6103 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6107 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6109 spin_unlock(&bp
->phy_lock
);
6113 bnx2_timer(unsigned long data
)
6115 struct bnx2
*bp
= (struct bnx2
*) data
;
6117 if (!netif_running(bp
->dev
))
6120 if (atomic_read(&bp
->intr_sem
) != 0)
6121 goto bnx2_restart_timer
;
6123 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6124 BNX2_FLAG_USING_MSI
)
6125 bnx2_chk_missed_msi(bp
);
6127 bnx2_send_heart_beat(bp
);
6129 bp
->stats_blk
->stat_FwRxDrop
=
6130 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6132 /* workaround occasional corrupted counters */
6133 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6134 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6135 BNX2_HC_COMMAND_STATS_NOW
);
6137 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6138 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6139 bnx2_5706_serdes_timer(bp
);
6141 bnx2_5708_serdes_timer(bp
);
6145 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6149 bnx2_request_irq(struct bnx2
*bp
)
6151 unsigned long flags
;
6152 struct bnx2_irq
*irq
;
6155 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6158 flags
= IRQF_SHARED
;
6160 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6161 irq
= &bp
->irq_tbl
[i
];
6162 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6172 __bnx2_free_irq(struct bnx2
*bp
)
6174 struct bnx2_irq
*irq
;
6177 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6178 irq
= &bp
->irq_tbl
[i
];
6180 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6186 bnx2_free_irq(struct bnx2
*bp
)
6189 __bnx2_free_irq(bp
);
6190 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6191 pci_disable_msi(bp
->pdev
);
6192 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6193 pci_disable_msix(bp
->pdev
);
6195 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6199 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6201 int i
, total_vecs
, rc
;
6202 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6203 struct net_device
*dev
= bp
->dev
;
6204 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6206 bnx2_setup_msix_tbl(bp
);
6207 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6208 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6209 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6211 /* Need to flush the previous three writes to ensure MSI-X
6212 * is setup properly */
6213 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6215 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6216 msix_ent
[i
].entry
= i
;
6217 msix_ent
[i
].vector
= 0;
6220 total_vecs
= msix_vecs
;
6225 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6226 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6236 msix_vecs
= total_vecs
;
6240 bp
->irq_nvecs
= msix_vecs
;
6241 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6242 for (i
= 0; i
< total_vecs
; i
++) {
6243 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6244 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6245 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6250 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6252 int cpus
= num_online_cpus();
6253 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6255 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6256 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6258 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6260 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6261 bnx2_enable_msix(bp
, msix_vecs
);
6263 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6264 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6265 if (pci_enable_msi(bp
->pdev
) == 0) {
6266 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6267 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6268 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6269 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6271 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6273 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6277 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6278 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6280 bp
->num_rx_rings
= bp
->irq_nvecs
;
6281 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6284 /* Called with rtnl_lock */
6286 bnx2_open(struct net_device
*dev
)
6288 struct bnx2
*bp
= netdev_priv(dev
);
6291 rc
= bnx2_request_firmware(bp
);
6295 netif_carrier_off(dev
);
6297 bnx2_set_power_state(bp
, PCI_D0
);
6298 bnx2_disable_int(bp
);
6300 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6304 bnx2_napi_enable(bp
);
6305 rc
= bnx2_alloc_mem(bp
);
6309 rc
= bnx2_request_irq(bp
);
6313 rc
= bnx2_init_nic(bp
, 1);
6317 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6319 atomic_set(&bp
->intr_sem
, 0);
6321 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6323 bnx2_enable_int(bp
);
6325 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6326 /* Test MSI to make sure it is working
6327 * If MSI test fails, go back to INTx mode
6329 if (bnx2_test_intr(bp
) != 0) {
6330 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6332 bnx2_disable_int(bp
);
6335 bnx2_setup_int_mode(bp
, 1);
6337 rc
= bnx2_init_nic(bp
, 0);
6340 rc
= bnx2_request_irq(bp
);
6343 del_timer_sync(&bp
->timer
);
6346 bnx2_enable_int(bp
);
6349 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6350 netdev_info(dev
, "using MSI\n");
6351 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6352 netdev_info(dev
, "using MSIX\n");
6354 netif_tx_start_all_queues(dev
);
6359 bnx2_napi_disable(bp
);
6364 bnx2_release_firmware(bp
);
6369 bnx2_reset_task(struct work_struct
*work
)
6371 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6375 if (!netif_running(bp
->dev
)) {
6380 bnx2_netif_stop(bp
, true);
6382 rc
= bnx2_init_nic(bp
, 1);
6384 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6385 bnx2_napi_enable(bp
);
6391 atomic_set(&bp
->intr_sem
, 1);
6392 bnx2_netif_start(bp
, true);
6397 bnx2_dump_state(struct bnx2
*bp
)
6399 struct net_device
*dev
= bp
->dev
;
6402 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6403 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6404 atomic_read(&bp
->intr_sem
), val1
);
6405 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6406 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6407 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6408 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6409 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6410 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6411 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6412 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6413 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6414 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6415 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6416 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6417 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6421 bnx2_tx_timeout(struct net_device
*dev
)
6423 struct bnx2
*bp
= netdev_priv(dev
);
6425 bnx2_dump_state(bp
);
6426 bnx2_dump_mcp_state(bp
);
6428 /* This allows the netif to be shutdown gracefully before resetting */
6429 schedule_work(&bp
->reset_task
);
6432 /* Called with netif_tx_lock.
6433 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6434 * netif_wake_queue().
6437 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6439 struct bnx2
*bp
= netdev_priv(dev
);
6442 struct sw_tx_bd
*tx_buf
;
6443 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6444 u16 prod
, ring_prod
;
6446 struct bnx2_napi
*bnapi
;
6447 struct bnx2_tx_ring_info
*txr
;
6448 struct netdev_queue
*txq
;
6450 /* Determine which tx ring we will be placed on */
6451 i
= skb_get_queue_mapping(skb
);
6452 bnapi
= &bp
->bnx2_napi
[i
];
6453 txr
= &bnapi
->tx_ring
;
6454 txq
= netdev_get_tx_queue(dev
, i
);
6456 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6457 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6458 netif_tx_stop_queue(txq
);
6459 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6461 return NETDEV_TX_BUSY
;
6463 len
= skb_headlen(skb
);
6464 prod
= txr
->tx_prod
;
6465 ring_prod
= TX_RING_IDX(prod
);
6468 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6469 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6472 if (vlan_tx_tag_present(skb
)) {
6474 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6477 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6481 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6483 tcp_opt_len
= tcp_optlen(skb
);
6485 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6486 u32 tcp_off
= skb_transport_offset(skb
) -
6487 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6489 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6490 TX_BD_FLAGS_SW_FLAGS
;
6491 if (likely(tcp_off
== 0))
6492 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6495 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6496 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6497 ((tcp_off
& 0x10) <<
6498 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6499 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6503 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6504 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6505 (tcp_opt_len
>> 2)) << 8;
6511 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6512 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6514 return NETDEV_TX_OK
;
6517 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6519 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6521 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6523 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6524 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6525 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6526 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6528 last_frag
= skb_shinfo(skb
)->nr_frags
;
6529 tx_buf
->nr_frags
= last_frag
;
6530 tx_buf
->is_gso
= skb_is_gso(skb
);
6532 for (i
= 0; i
< last_frag
; i
++) {
6533 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6535 prod
= NEXT_TX_BD(prod
);
6536 ring_prod
= TX_RING_IDX(prod
);
6537 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6539 len
= skb_frag_size(frag
);
6540 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6542 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6544 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6547 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6548 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6549 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6550 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6553 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6555 prod
= NEXT_TX_BD(prod
);
6556 txr
->tx_prod_bseq
+= skb
->len
;
6558 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6559 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6563 txr
->tx_prod
= prod
;
6565 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6566 netif_tx_stop_queue(txq
);
6568 /* netif_tx_stop_queue() must be done before checking
6569 * tx index in bnx2_tx_avail() below, because in
6570 * bnx2_tx_int(), we update tx index before checking for
6571 * netif_tx_queue_stopped().
6574 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6575 netif_tx_wake_queue(txq
);
6578 return NETDEV_TX_OK
;
6580 /* save value of frag that failed */
6583 /* start back at beginning and unmap skb */
6584 prod
= txr
->tx_prod
;
6585 ring_prod
= TX_RING_IDX(prod
);
6586 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6588 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6589 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6591 /* unmap remaining mapped pages */
6592 for (i
= 0; i
< last_frag
; i
++) {
6593 prod
= NEXT_TX_BD(prod
);
6594 ring_prod
= TX_RING_IDX(prod
);
6595 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6596 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6597 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6602 return NETDEV_TX_OK
;
6605 /* Called with rtnl_lock */
6607 bnx2_close(struct net_device
*dev
)
6609 struct bnx2
*bp
= netdev_priv(dev
);
6611 bnx2_disable_int_sync(bp
);
6612 bnx2_napi_disable(bp
);
6613 del_timer_sync(&bp
->timer
);
6614 bnx2_shutdown_chip(bp
);
6620 netif_carrier_off(bp
->dev
);
6621 bnx2_set_power_state(bp
, PCI_D3hot
);
6626 bnx2_save_stats(struct bnx2
*bp
)
6628 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6629 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6632 /* The 1st 10 counters are 64-bit counters */
6633 for (i
= 0; i
< 20; i
+= 2) {
6637 hi
= temp_stats
[i
] + hw_stats
[i
];
6638 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6639 if (lo
> 0xffffffff)
6642 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6645 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6646 temp_stats
[i
] += hw_stats
[i
];
6649 #define GET_64BIT_NET_STATS64(ctr) \
6650 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6652 #define GET_64BIT_NET_STATS(ctr) \
6653 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6654 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6656 #define GET_32BIT_NET_STATS(ctr) \
6657 (unsigned long) (bp->stats_blk->ctr + \
6658 bp->temp_stats_blk->ctr)
6660 static struct rtnl_link_stats64
*
6661 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6663 struct bnx2
*bp
= netdev_priv(dev
);
6665 if (bp
->stats_blk
== NULL
)
6668 net_stats
->rx_packets
=
6669 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6670 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6671 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6673 net_stats
->tx_packets
=
6674 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6675 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6676 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6678 net_stats
->rx_bytes
=
6679 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6681 net_stats
->tx_bytes
=
6682 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6684 net_stats
->multicast
=
6685 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6687 net_stats
->collisions
=
6688 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6690 net_stats
->rx_length_errors
=
6691 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6692 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6694 net_stats
->rx_over_errors
=
6695 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6696 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6698 net_stats
->rx_frame_errors
=
6699 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6701 net_stats
->rx_crc_errors
=
6702 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6704 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6705 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6706 net_stats
->rx_crc_errors
;
6708 net_stats
->tx_aborted_errors
=
6709 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6710 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6712 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6713 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6714 net_stats
->tx_carrier_errors
= 0;
6716 net_stats
->tx_carrier_errors
=
6717 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6720 net_stats
->tx_errors
=
6721 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6722 net_stats
->tx_aborted_errors
+
6723 net_stats
->tx_carrier_errors
;
6725 net_stats
->rx_missed_errors
=
6726 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6727 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6728 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6733 /* All ethtool functions called with rtnl_lock */
6736 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6738 struct bnx2
*bp
= netdev_priv(dev
);
6739 int support_serdes
= 0, support_copper
= 0;
6741 cmd
->supported
= SUPPORTED_Autoneg
;
6742 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6745 } else if (bp
->phy_port
== PORT_FIBRE
)
6750 if (support_serdes
) {
6751 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6753 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6754 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6757 if (support_copper
) {
6758 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6759 SUPPORTED_10baseT_Full
|
6760 SUPPORTED_100baseT_Half
|
6761 SUPPORTED_100baseT_Full
|
6762 SUPPORTED_1000baseT_Full
|
6767 spin_lock_bh(&bp
->phy_lock
);
6768 cmd
->port
= bp
->phy_port
;
6769 cmd
->advertising
= bp
->advertising
;
6771 if (bp
->autoneg
& AUTONEG_SPEED
) {
6772 cmd
->autoneg
= AUTONEG_ENABLE
;
6774 cmd
->autoneg
= AUTONEG_DISABLE
;
6777 if (netif_carrier_ok(dev
)) {
6778 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6779 cmd
->duplex
= bp
->duplex
;
6782 ethtool_cmd_speed_set(cmd
, -1);
6785 spin_unlock_bh(&bp
->phy_lock
);
6787 cmd
->transceiver
= XCVR_INTERNAL
;
6788 cmd
->phy_address
= bp
->phy_addr
;
6794 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6796 struct bnx2
*bp
= netdev_priv(dev
);
6797 u8 autoneg
= bp
->autoneg
;
6798 u8 req_duplex
= bp
->req_duplex
;
6799 u16 req_line_speed
= bp
->req_line_speed
;
6800 u32 advertising
= bp
->advertising
;
6803 spin_lock_bh(&bp
->phy_lock
);
6805 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6806 goto err_out_unlock
;
6808 if (cmd
->port
!= bp
->phy_port
&&
6809 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6810 goto err_out_unlock
;
6812 /* If device is down, we can store the settings only if the user
6813 * is setting the currently active port.
6815 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6816 goto err_out_unlock
;
6818 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6819 autoneg
|= AUTONEG_SPEED
;
6821 advertising
= cmd
->advertising
;
6822 if (cmd
->port
== PORT_TP
) {
6823 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6825 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6827 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6829 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6831 advertising
|= ADVERTISED_Autoneg
;
6834 u32 speed
= ethtool_cmd_speed(cmd
);
6835 if (cmd
->port
== PORT_FIBRE
) {
6836 if ((speed
!= SPEED_1000
&&
6837 speed
!= SPEED_2500
) ||
6838 (cmd
->duplex
!= DUPLEX_FULL
))
6839 goto err_out_unlock
;
6841 if (speed
== SPEED_2500
&&
6842 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6843 goto err_out_unlock
;
6844 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
6845 goto err_out_unlock
;
6847 autoneg
&= ~AUTONEG_SPEED
;
6848 req_line_speed
= speed
;
6849 req_duplex
= cmd
->duplex
;
6853 bp
->autoneg
= autoneg
;
6854 bp
->advertising
= advertising
;
6855 bp
->req_line_speed
= req_line_speed
;
6856 bp
->req_duplex
= req_duplex
;
6859 /* If device is down, the new settings will be picked up when it is
6862 if (netif_running(dev
))
6863 err
= bnx2_setup_phy(bp
, cmd
->port
);
6866 spin_unlock_bh(&bp
->phy_lock
);
6872 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6874 struct bnx2
*bp
= netdev_priv(dev
);
6876 strcpy(info
->driver
, DRV_MODULE_NAME
);
6877 strcpy(info
->version
, DRV_MODULE_VERSION
);
6878 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6879 strcpy(info
->fw_version
, bp
->fw_version
);
6882 #define BNX2_REGDUMP_LEN (32 * 1024)
6885 bnx2_get_regs_len(struct net_device
*dev
)
6887 return BNX2_REGDUMP_LEN
;
6891 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6893 u32
*p
= _p
, i
, offset
;
6895 struct bnx2
*bp
= netdev_priv(dev
);
6896 static const u32 reg_boundaries
[] = {
6897 0x0000, 0x0098, 0x0400, 0x045c,
6898 0x0800, 0x0880, 0x0c00, 0x0c10,
6899 0x0c30, 0x0d08, 0x1000, 0x101c,
6900 0x1040, 0x1048, 0x1080, 0x10a4,
6901 0x1400, 0x1490, 0x1498, 0x14f0,
6902 0x1500, 0x155c, 0x1580, 0x15dc,
6903 0x1600, 0x1658, 0x1680, 0x16d8,
6904 0x1800, 0x1820, 0x1840, 0x1854,
6905 0x1880, 0x1894, 0x1900, 0x1984,
6906 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6907 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6908 0x2000, 0x2030, 0x23c0, 0x2400,
6909 0x2800, 0x2820, 0x2830, 0x2850,
6910 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6911 0x3c00, 0x3c94, 0x4000, 0x4010,
6912 0x4080, 0x4090, 0x43c0, 0x4458,
6913 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6914 0x4fc0, 0x5010, 0x53c0, 0x5444,
6915 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6916 0x5fc0, 0x6000, 0x6400, 0x6428,
6917 0x6800, 0x6848, 0x684c, 0x6860,
6918 0x6888, 0x6910, 0x8000
6923 memset(p
, 0, BNX2_REGDUMP_LEN
);
6925 if (!netif_running(bp
->dev
))
6929 offset
= reg_boundaries
[0];
6931 while (offset
< BNX2_REGDUMP_LEN
) {
6932 *p
++ = REG_RD(bp
, offset
);
6934 if (offset
== reg_boundaries
[i
+ 1]) {
6935 offset
= reg_boundaries
[i
+ 2];
6936 p
= (u32
*) (orig_p
+ offset
);
6943 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6945 struct bnx2
*bp
= netdev_priv(dev
);
6947 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6952 wol
->supported
= WAKE_MAGIC
;
6954 wol
->wolopts
= WAKE_MAGIC
;
6958 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6962 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6964 struct bnx2
*bp
= netdev_priv(dev
);
6966 if (wol
->wolopts
& ~WAKE_MAGIC
)
6969 if (wol
->wolopts
& WAKE_MAGIC
) {
6970 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6982 bnx2_nway_reset(struct net_device
*dev
)
6984 struct bnx2
*bp
= netdev_priv(dev
);
6987 if (!netif_running(dev
))
6990 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6994 spin_lock_bh(&bp
->phy_lock
);
6996 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6999 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7000 spin_unlock_bh(&bp
->phy_lock
);
7004 /* Force a link down visible on the other side */
7005 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7006 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7007 spin_unlock_bh(&bp
->phy_lock
);
7011 spin_lock_bh(&bp
->phy_lock
);
7013 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7014 bp
->serdes_an_pending
= 1;
7015 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7018 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7019 bmcr
&= ~BMCR_LOOPBACK
;
7020 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7022 spin_unlock_bh(&bp
->phy_lock
);
7028 bnx2_get_link(struct net_device
*dev
)
7030 struct bnx2
*bp
= netdev_priv(dev
);
7036 bnx2_get_eeprom_len(struct net_device
*dev
)
7038 struct bnx2
*bp
= netdev_priv(dev
);
7040 if (bp
->flash_info
== NULL
)
7043 return (int) bp
->flash_size
;
7047 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7050 struct bnx2
*bp
= netdev_priv(dev
);
7053 if (!netif_running(dev
))
7056 /* parameters already validated in ethtool_get_eeprom */
7058 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7064 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7067 struct bnx2
*bp
= netdev_priv(dev
);
7070 if (!netif_running(dev
))
7073 /* parameters already validated in ethtool_set_eeprom */
7075 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7081 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7083 struct bnx2
*bp
= netdev_priv(dev
);
7085 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7087 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7088 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7089 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7090 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7092 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7093 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7094 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7095 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7097 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7103 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7105 struct bnx2
*bp
= netdev_priv(dev
);
7107 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7108 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7110 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7111 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7113 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7114 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7116 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7117 if (bp
->rx_quick_cons_trip_int
> 0xff)
7118 bp
->rx_quick_cons_trip_int
= 0xff;
7120 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7121 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7123 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7124 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7126 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7127 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7129 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7130 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7133 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7134 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7135 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7136 bp
->stats_ticks
= USEC_PER_SEC
;
7138 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7139 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7140 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7142 if (netif_running(bp
->dev
)) {
7143 bnx2_netif_stop(bp
, true);
7144 bnx2_init_nic(bp
, 0);
7145 bnx2_netif_start(bp
, true);
7152 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7154 struct bnx2
*bp
= netdev_priv(dev
);
7156 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7157 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7159 ering
->rx_pending
= bp
->rx_ring_size
;
7160 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7162 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7163 ering
->tx_pending
= bp
->tx_ring_size
;
7167 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7169 if (netif_running(bp
->dev
)) {
7170 /* Reset will erase chipset stats; save them */
7171 bnx2_save_stats(bp
);
7173 bnx2_netif_stop(bp
, true);
7174 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7175 __bnx2_free_irq(bp
);
7180 bnx2_set_rx_ring_size(bp
, rx
);
7181 bp
->tx_ring_size
= tx
;
7183 if (netif_running(bp
->dev
)) {
7186 rc
= bnx2_alloc_mem(bp
);
7188 rc
= bnx2_request_irq(bp
);
7191 rc
= bnx2_init_nic(bp
, 0);
7194 bnx2_napi_enable(bp
);
7199 mutex_lock(&bp
->cnic_lock
);
7200 /* Let cnic know about the new status block. */
7201 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7202 bnx2_setup_cnic_irq_info(bp
);
7203 mutex_unlock(&bp
->cnic_lock
);
7205 bnx2_netif_start(bp
, true);
7211 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7213 struct bnx2
*bp
= netdev_priv(dev
);
7216 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7217 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7218 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7222 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7227 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7229 struct bnx2
*bp
= netdev_priv(dev
);
7231 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7232 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7233 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7237 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7239 struct bnx2
*bp
= netdev_priv(dev
);
7241 bp
->req_flow_ctrl
= 0;
7242 if (epause
->rx_pause
)
7243 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7244 if (epause
->tx_pause
)
7245 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7247 if (epause
->autoneg
) {
7248 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7251 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7254 if (netif_running(dev
)) {
7255 spin_lock_bh(&bp
->phy_lock
);
7256 bnx2_setup_phy(bp
, bp
->phy_port
);
7257 spin_unlock_bh(&bp
->phy_lock
);
7264 char string
[ETH_GSTRING_LEN
];
7265 } bnx2_stats_str_arr
[] = {
7267 { "rx_error_bytes" },
7269 { "tx_error_bytes" },
7270 { "rx_ucast_packets" },
7271 { "rx_mcast_packets" },
7272 { "rx_bcast_packets" },
7273 { "tx_ucast_packets" },
7274 { "tx_mcast_packets" },
7275 { "tx_bcast_packets" },
7276 { "tx_mac_errors" },
7277 { "tx_carrier_errors" },
7278 { "rx_crc_errors" },
7279 { "rx_align_errors" },
7280 { "tx_single_collisions" },
7281 { "tx_multi_collisions" },
7283 { "tx_excess_collisions" },
7284 { "tx_late_collisions" },
7285 { "tx_total_collisions" },
7288 { "rx_undersize_packets" },
7289 { "rx_oversize_packets" },
7290 { "rx_64_byte_packets" },
7291 { "rx_65_to_127_byte_packets" },
7292 { "rx_128_to_255_byte_packets" },
7293 { "rx_256_to_511_byte_packets" },
7294 { "rx_512_to_1023_byte_packets" },
7295 { "rx_1024_to_1522_byte_packets" },
7296 { "rx_1523_to_9022_byte_packets" },
7297 { "tx_64_byte_packets" },
7298 { "tx_65_to_127_byte_packets" },
7299 { "tx_128_to_255_byte_packets" },
7300 { "tx_256_to_511_byte_packets" },
7301 { "tx_512_to_1023_byte_packets" },
7302 { "tx_1024_to_1522_byte_packets" },
7303 { "tx_1523_to_9022_byte_packets" },
7304 { "rx_xon_frames" },
7305 { "rx_xoff_frames" },
7306 { "tx_xon_frames" },
7307 { "tx_xoff_frames" },
7308 { "rx_mac_ctrl_frames" },
7309 { "rx_filtered_packets" },
7310 { "rx_ftq_discards" },
7312 { "rx_fw_discards" },
7315 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7316 sizeof(bnx2_stats_str_arr[0]))
7318 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7320 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7321 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7322 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7323 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7324 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7325 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7326 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7327 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7328 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7329 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7330 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7331 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7332 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7333 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7334 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7335 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7336 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7337 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7338 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7339 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7340 STATS_OFFSET32(stat_EtherStatsCollisions
),
7341 STATS_OFFSET32(stat_EtherStatsFragments
),
7342 STATS_OFFSET32(stat_EtherStatsJabbers
),
7343 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7344 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7345 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7346 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7347 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7348 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7349 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7350 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7351 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7352 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7353 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7354 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7355 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7356 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7357 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7358 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7359 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7360 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7361 STATS_OFFSET32(stat_OutXonSent
),
7362 STATS_OFFSET32(stat_OutXoffSent
),
7363 STATS_OFFSET32(stat_MacControlFramesReceived
),
7364 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7365 STATS_OFFSET32(stat_IfInFTQDiscards
),
7366 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7367 STATS_OFFSET32(stat_FwRxDrop
),
7370 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7371 * skipped because of errata.
7373 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7374 8,0,8,8,8,8,8,8,8,8,
7375 4,0,4,4,4,4,4,4,4,4,
7376 4,4,4,4,4,4,4,4,4,4,
7377 4,4,4,4,4,4,4,4,4,4,
7381 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7382 8,0,8,8,8,8,8,8,8,8,
7383 4,4,4,4,4,4,4,4,4,4,
7384 4,4,4,4,4,4,4,4,4,4,
7385 4,4,4,4,4,4,4,4,4,4,
7389 #define BNX2_NUM_TESTS 6
7392 char string
[ETH_GSTRING_LEN
];
7393 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7394 { "register_test (offline)" },
7395 { "memory_test (offline)" },
7396 { "loopback_test (offline)" },
7397 { "nvram_test (online)" },
7398 { "interrupt_test (online)" },
7399 { "link_test (online)" },
7403 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7407 return BNX2_NUM_TESTS
;
7409 return BNX2_NUM_STATS
;
7416 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7418 struct bnx2
*bp
= netdev_priv(dev
);
7420 bnx2_set_power_state(bp
, PCI_D0
);
7422 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7423 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7426 bnx2_netif_stop(bp
, true);
7427 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7430 if (bnx2_test_registers(bp
) != 0) {
7432 etest
->flags
|= ETH_TEST_FL_FAILED
;
7434 if (bnx2_test_memory(bp
) != 0) {
7436 etest
->flags
|= ETH_TEST_FL_FAILED
;
7438 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7439 etest
->flags
|= ETH_TEST_FL_FAILED
;
7441 if (!netif_running(bp
->dev
))
7442 bnx2_shutdown_chip(bp
);
7444 bnx2_init_nic(bp
, 1);
7445 bnx2_netif_start(bp
, true);
7448 /* wait for link up */
7449 for (i
= 0; i
< 7; i
++) {
7452 msleep_interruptible(1000);
7456 if (bnx2_test_nvram(bp
) != 0) {
7458 etest
->flags
|= ETH_TEST_FL_FAILED
;
7460 if (bnx2_test_intr(bp
) != 0) {
7462 etest
->flags
|= ETH_TEST_FL_FAILED
;
7465 if (bnx2_test_link(bp
) != 0) {
7467 etest
->flags
|= ETH_TEST_FL_FAILED
;
7470 if (!netif_running(bp
->dev
))
7471 bnx2_set_power_state(bp
, PCI_D3hot
);
7475 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7477 switch (stringset
) {
7479 memcpy(buf
, bnx2_stats_str_arr
,
7480 sizeof(bnx2_stats_str_arr
));
7483 memcpy(buf
, bnx2_tests_str_arr
,
7484 sizeof(bnx2_tests_str_arr
));
7490 bnx2_get_ethtool_stats(struct net_device
*dev
,
7491 struct ethtool_stats
*stats
, u64
*buf
)
7493 struct bnx2
*bp
= netdev_priv(dev
);
7495 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7496 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7497 u8
*stats_len_arr
= NULL
;
7499 if (hw_stats
== NULL
) {
7500 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7504 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7505 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7506 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7507 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7508 stats_len_arr
= bnx2_5706_stats_len_arr
;
7510 stats_len_arr
= bnx2_5708_stats_len_arr
;
7512 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7513 unsigned long offset
;
7515 if (stats_len_arr
[i
] == 0) {
7516 /* skip this counter */
7521 offset
= bnx2_stats_offset_arr
[i
];
7522 if (stats_len_arr
[i
] == 4) {
7523 /* 4-byte counter */
7524 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7525 *(temp_stats
+ offset
);
7528 /* 8-byte counter */
7529 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7530 *(hw_stats
+ offset
+ 1) +
7531 (((u64
) *(temp_stats
+ offset
)) << 32) +
7532 *(temp_stats
+ offset
+ 1);
7537 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7539 struct bnx2
*bp
= netdev_priv(dev
);
7542 case ETHTOOL_ID_ACTIVE
:
7543 bnx2_set_power_state(bp
, PCI_D0
);
7545 bp
->leds_save
= REG_RD(bp
, BNX2_MISC_CFG
);
7546 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7547 return 1; /* cycle on/off once per second */
7550 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7551 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7552 BNX2_EMAC_LED_100MB_OVERRIDE
|
7553 BNX2_EMAC_LED_10MB_OVERRIDE
|
7554 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7555 BNX2_EMAC_LED_TRAFFIC
);
7558 case ETHTOOL_ID_OFF
:
7559 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7562 case ETHTOOL_ID_INACTIVE
:
7563 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7564 REG_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7566 if (!netif_running(dev
))
7567 bnx2_set_power_state(bp
, PCI_D3hot
);
7575 bnx2_fix_features(struct net_device
*dev
, u32 features
)
7577 struct bnx2
*bp
= netdev_priv(dev
);
7579 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
7580 features
|= NETIF_F_HW_VLAN_RX
;
7586 bnx2_set_features(struct net_device
*dev
, u32 features
)
7588 struct bnx2
*bp
= netdev_priv(dev
);
7590 /* TSO with VLAN tag won't work with current firmware */
7591 if (features
& NETIF_F_HW_VLAN_TX
)
7592 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7594 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7596 if ((!!(features
& NETIF_F_HW_VLAN_RX
) !=
7597 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7598 netif_running(dev
)) {
7599 bnx2_netif_stop(bp
, false);
7600 dev
->features
= features
;
7601 bnx2_set_rx_mode(dev
);
7602 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7603 bnx2_netif_start(bp
, false);
7610 static const struct ethtool_ops bnx2_ethtool_ops
= {
7611 .get_settings
= bnx2_get_settings
,
7612 .set_settings
= bnx2_set_settings
,
7613 .get_drvinfo
= bnx2_get_drvinfo
,
7614 .get_regs_len
= bnx2_get_regs_len
,
7615 .get_regs
= bnx2_get_regs
,
7616 .get_wol
= bnx2_get_wol
,
7617 .set_wol
= bnx2_set_wol
,
7618 .nway_reset
= bnx2_nway_reset
,
7619 .get_link
= bnx2_get_link
,
7620 .get_eeprom_len
= bnx2_get_eeprom_len
,
7621 .get_eeprom
= bnx2_get_eeprom
,
7622 .set_eeprom
= bnx2_set_eeprom
,
7623 .get_coalesce
= bnx2_get_coalesce
,
7624 .set_coalesce
= bnx2_set_coalesce
,
7625 .get_ringparam
= bnx2_get_ringparam
,
7626 .set_ringparam
= bnx2_set_ringparam
,
7627 .get_pauseparam
= bnx2_get_pauseparam
,
7628 .set_pauseparam
= bnx2_set_pauseparam
,
7629 .self_test
= bnx2_self_test
,
7630 .get_strings
= bnx2_get_strings
,
7631 .set_phys_id
= bnx2_set_phys_id
,
7632 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7633 .get_sset_count
= bnx2_get_sset_count
,
7636 /* Called with rtnl_lock */
7638 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7640 struct mii_ioctl_data
*data
= if_mii(ifr
);
7641 struct bnx2
*bp
= netdev_priv(dev
);
7646 data
->phy_id
= bp
->phy_addr
;
7652 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7655 if (!netif_running(dev
))
7658 spin_lock_bh(&bp
->phy_lock
);
7659 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7660 spin_unlock_bh(&bp
->phy_lock
);
7662 data
->val_out
= mii_regval
;
7668 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7671 if (!netif_running(dev
))
7674 spin_lock_bh(&bp
->phy_lock
);
7675 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7676 spin_unlock_bh(&bp
->phy_lock
);
7687 /* Called with rtnl_lock */
7689 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7691 struct sockaddr
*addr
= p
;
7692 struct bnx2
*bp
= netdev_priv(dev
);
7694 if (!is_valid_ether_addr(addr
->sa_data
))
7697 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7698 if (netif_running(dev
))
7699 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7704 /* Called with rtnl_lock */
7706 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7708 struct bnx2
*bp
= netdev_priv(dev
);
7710 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7711 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7715 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
);
7718 #ifdef CONFIG_NET_POLL_CONTROLLER
7720 poll_bnx2(struct net_device
*dev
)
7722 struct bnx2
*bp
= netdev_priv(dev
);
7725 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7726 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7728 disable_irq(irq
->vector
);
7729 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7730 enable_irq(irq
->vector
);
7735 static void __devinit
7736 bnx2_get_5709_media(struct bnx2
*bp
)
7738 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7739 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7742 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7744 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7745 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7749 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7750 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7752 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7754 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7759 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7767 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7773 static void __devinit
7774 bnx2_get_pci_speed(struct bnx2
*bp
)
7778 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7779 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7782 bp
->flags
|= BNX2_FLAG_PCIX
;
7784 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7786 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7788 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7789 bp
->bus_speed_mhz
= 133;
7792 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7793 bp
->bus_speed_mhz
= 100;
7796 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7797 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7798 bp
->bus_speed_mhz
= 66;
7801 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7802 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7803 bp
->bus_speed_mhz
= 50;
7806 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7807 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7808 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7809 bp
->bus_speed_mhz
= 33;
7814 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7815 bp
->bus_speed_mhz
= 66;
7817 bp
->bus_speed_mhz
= 33;
7820 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7821 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7825 static void __devinit
7826 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7830 unsigned int block_end
, rosize
, len
;
7832 #define BNX2_VPD_NVRAM_OFFSET 0x300
7833 #define BNX2_VPD_LEN 128
7834 #define BNX2_MAX_VER_SLEN 30
7836 data
= kmalloc(256, GFP_KERNEL
);
7840 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7845 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7846 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7847 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7848 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7849 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7852 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7856 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7857 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7858 block_end
= i
+ rosize
;
7860 if (block_end
> BNX2_VPD_LEN
)
7863 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7864 PCI_VPD_RO_KEYWORD_MFR_ID
);
7868 len
= pci_vpd_info_field_size(&data
[j
]);
7870 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7871 if (j
+ len
> block_end
|| len
!= 4 ||
7872 memcmp(&data
[j
], "1028", 4))
7875 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7876 PCI_VPD_RO_KEYWORD_VENDOR0
);
7880 len
= pci_vpd_info_field_size(&data
[j
]);
7882 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7883 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7886 memcpy(bp
->fw_version
, &data
[j
], len
);
7887 bp
->fw_version
[len
] = ' ';
7893 static int __devinit
7894 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7897 unsigned long mem_len
;
7900 u64 dma_mask
, persist_dma_mask
;
7903 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7904 bp
= netdev_priv(dev
);
7909 bp
->temp_stats_blk
=
7910 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7912 if (bp
->temp_stats_blk
== NULL
) {
7917 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7918 rc
= pci_enable_device(pdev
);
7920 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7924 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7926 "Cannot find PCI device base address, aborting\n");
7928 goto err_out_disable
;
7931 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7933 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7934 goto err_out_disable
;
7937 pci_set_master(pdev
);
7939 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7940 if (bp
->pm_cap
== 0) {
7942 "Cannot find power management capability, aborting\n");
7944 goto err_out_release
;
7950 spin_lock_init(&bp
->phy_lock
);
7951 spin_lock_init(&bp
->indirect_lock
);
7953 mutex_init(&bp
->cnic_lock
);
7955 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7957 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7958 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7959 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7960 dev
->irq
= pdev
->irq
;
7962 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7965 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7967 goto err_out_release
;
7970 bnx2_set_power_state(bp
, PCI_D0
);
7972 /* Configure byte swap and enable write to the reg_window registers.
7973 * Rely on CPU to do target byte swapping on big endian systems
7974 * The chip's target access swapping will not swap all accesses
7976 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
7977 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7978 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7980 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7982 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7983 if (!pci_is_pcie(pdev
)) {
7984 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
7988 bp
->flags
|= BNX2_FLAG_PCIE
;
7989 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7990 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7992 /* AER (Advanced Error Reporting) hooks */
7993 err
= pci_enable_pcie_error_reporting(pdev
);
7995 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
7998 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7999 if (bp
->pcix_cap
== 0) {
8001 "Cannot find PCIX capability, aborting\n");
8005 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8008 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
8009 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
8010 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8013 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
8014 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
8015 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8018 /* 5708 cannot support DMA addresses > 40-bit. */
8019 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
8020 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8022 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8024 /* Configure DMA attributes. */
8025 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8026 dev
->features
|= NETIF_F_HIGHDMA
;
8027 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8030 "pci_set_consistent_dma_mask failed, aborting\n");
8033 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8034 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8038 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8039 bnx2_get_pci_speed(bp
);
8041 /* 5706A0 may falsely detect SERR and PERR. */
8042 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8043 reg
= REG_RD(bp
, PCI_COMMAND
);
8044 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8045 REG_WR(bp
, PCI_COMMAND
, reg
);
8047 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
8048 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8051 "5706 A1 can only be used in a PCIX bus, aborting\n");
8055 bnx2_init_nvram(bp
);
8057 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8059 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8060 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8061 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8063 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8065 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8067 /* Get the permanent MAC address. First we need to make sure the
8068 * firmware is actually running.
8070 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8072 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8073 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8074 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8079 bnx2_read_vpd_fw_ver(bp
);
8081 j
= strlen(bp
->fw_version
);
8082 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8083 for (i
= 0; i
< 3 && j
< 24; i
++) {
8087 bp
->fw_version
[j
++] = 'b';
8088 bp
->fw_version
[j
++] = 'c';
8089 bp
->fw_version
[j
++] = ' ';
8091 num
= (u8
) (reg
>> (24 - (i
* 8)));
8092 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8093 if (num
>= k
|| !skip0
|| k
== 1) {
8094 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8099 bp
->fw_version
[j
++] = '.';
8101 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8102 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8105 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8106 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8108 for (i
= 0; i
< 30; i
++) {
8109 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8110 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8115 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8116 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8117 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8118 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8119 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8122 bp
->fw_version
[j
++] = ' ';
8123 for (i
= 0; i
< 3 && j
< 28; i
++) {
8124 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8125 reg
= be32_to_cpu(reg
);
8126 memcpy(&bp
->fw_version
[j
], ®
, 4);
8131 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8132 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8133 bp
->mac_addr
[1] = (u8
) reg
;
8135 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8136 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8137 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8138 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8139 bp
->mac_addr
[5] = (u8
) reg
;
8141 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8142 bnx2_set_rx_ring_size(bp
, 255);
8144 bp
->tx_quick_cons_trip_int
= 2;
8145 bp
->tx_quick_cons_trip
= 20;
8146 bp
->tx_ticks_int
= 18;
8149 bp
->rx_quick_cons_trip_int
= 2;
8150 bp
->rx_quick_cons_trip
= 12;
8151 bp
->rx_ticks_int
= 18;
8154 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8156 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8160 /* Disable WOL support if we are running on a SERDES chip. */
8161 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8162 bnx2_get_5709_media(bp
);
8163 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8164 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8166 bp
->phy_port
= PORT_TP
;
8167 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8168 bp
->phy_port
= PORT_FIBRE
;
8169 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8170 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8171 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8174 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8175 /* Don't do parallel detect on this board because of
8176 * some board problems. The link will not go down
8177 * if we do parallel detect.
8179 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8180 pdev
->subsystem_device
== 0x310c)
8181 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8184 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8185 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8187 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8188 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8189 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8190 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8191 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8192 CHIP_REV(bp
) == CHIP_REV_Bx
))
8193 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8195 bnx2_init_fw_cap(bp
);
8197 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8198 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8199 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8200 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8201 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8205 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8206 bp
->tx_quick_cons_trip_int
=
8207 bp
->tx_quick_cons_trip
;
8208 bp
->tx_ticks_int
= bp
->tx_ticks
;
8209 bp
->rx_quick_cons_trip_int
=
8210 bp
->rx_quick_cons_trip
;
8211 bp
->rx_ticks_int
= bp
->rx_ticks
;
8212 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8213 bp
->com_ticks_int
= bp
->com_ticks
;
8214 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8217 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8219 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8220 * with byte enables disabled on the unused 32-bit word. This is legal
8221 * but causes problems on the AMD 8132 which will eventually stop
8222 * responding after a while.
8224 * AMD believes this incompatibility is unique to the 5706, and
8225 * prefers to locally disable MSI rather than globally disabling it.
8227 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8228 struct pci_dev
*amd_8132
= NULL
;
8230 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8231 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8234 if (amd_8132
->revision
>= 0x10 &&
8235 amd_8132
->revision
<= 0x13) {
8237 pci_dev_put(amd_8132
);
8243 bnx2_set_default_link(bp
);
8244 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8246 init_timer(&bp
->timer
);
8247 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8248 bp
->timer
.data
= (unsigned long) bp
;
8249 bp
->timer
.function
= bnx2_timer
;
8252 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8253 bp
->cnic_eth_dev
.max_iscsi_conn
=
8254 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8255 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8257 pci_save_state(pdev
);
8262 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8263 pci_disable_pcie_error_reporting(pdev
);
8264 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8268 iounmap(bp
->regview
);
8273 pci_release_regions(pdev
);
8276 pci_disable_device(pdev
);
8277 pci_set_drvdata(pdev
, NULL
);
8283 static char * __devinit
8284 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8288 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8289 s
+= sprintf(s
, "PCI Express");
8291 s
+= sprintf(s
, "PCI");
8292 if (bp
->flags
& BNX2_FLAG_PCIX
)
8293 s
+= sprintf(s
, "-X");
8294 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8295 s
+= sprintf(s
, " 32-bit");
8297 s
+= sprintf(s
, " 64-bit");
8298 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8304 bnx2_del_napi(struct bnx2
*bp
)
8308 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8309 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8313 bnx2_init_napi(struct bnx2
*bp
)
8317 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8318 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8319 int (*poll
)(struct napi_struct
*, int);
8324 poll
= bnx2_poll_msix
;
8326 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8331 static const struct net_device_ops bnx2_netdev_ops
= {
8332 .ndo_open
= bnx2_open
,
8333 .ndo_start_xmit
= bnx2_start_xmit
,
8334 .ndo_stop
= bnx2_close
,
8335 .ndo_get_stats64
= bnx2_get_stats64
,
8336 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8337 .ndo_do_ioctl
= bnx2_ioctl
,
8338 .ndo_validate_addr
= eth_validate_addr
,
8339 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8340 .ndo_change_mtu
= bnx2_change_mtu
,
8341 .ndo_fix_features
= bnx2_fix_features
,
8342 .ndo_set_features
= bnx2_set_features
,
8343 .ndo_tx_timeout
= bnx2_tx_timeout
,
8344 #ifdef CONFIG_NET_POLL_CONTROLLER
8345 .ndo_poll_controller
= poll_bnx2
,
8349 static int __devinit
8350 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8352 static int version_printed
= 0;
8353 struct net_device
*dev
= NULL
;
8358 if (version_printed
++ == 0)
8359 pr_info("%s", version
);
8361 /* dev zeroed in init_etherdev */
8362 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8367 rc
= bnx2_init_board(pdev
, dev
);
8373 dev
->netdev_ops
= &bnx2_netdev_ops
;
8374 dev
->watchdog_timeo
= TX_TIMEOUT
;
8375 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8377 bp
= netdev_priv(dev
);
8379 pci_set_drvdata(pdev
, dev
);
8381 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8382 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8384 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8385 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8386 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8388 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8389 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8391 dev
->vlan_features
= dev
->hw_features
;
8392 dev
->hw_features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8393 dev
->features
|= dev
->hw_features
;
8394 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8396 if ((rc
= register_netdev(dev
))) {
8397 dev_err(&pdev
->dev
, "Cannot register net device\n");
8401 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8402 board_info
[ent
->driver_data
].name
,
8403 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8404 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8405 bnx2_bus_string(bp
, str
),
8407 bp
->pdev
->irq
, dev
->dev_addr
);
8413 iounmap(bp
->regview
);
8414 pci_release_regions(pdev
);
8415 pci_disable_device(pdev
);
8416 pci_set_drvdata(pdev
, NULL
);
8421 static void __devexit
8422 bnx2_remove_one(struct pci_dev
*pdev
)
8424 struct net_device
*dev
= pci_get_drvdata(pdev
);
8425 struct bnx2
*bp
= netdev_priv(dev
);
8427 unregister_netdev(dev
);
8429 del_timer_sync(&bp
->timer
);
8430 cancel_work_sync(&bp
->reset_task
);
8433 iounmap(bp
->regview
);
8435 kfree(bp
->temp_stats_blk
);
8437 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8438 pci_disable_pcie_error_reporting(pdev
);
8439 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8442 bnx2_release_firmware(bp
);
8446 pci_release_regions(pdev
);
8447 pci_disable_device(pdev
);
8448 pci_set_drvdata(pdev
, NULL
);
8452 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8454 struct net_device
*dev
= pci_get_drvdata(pdev
);
8455 struct bnx2
*bp
= netdev_priv(dev
);
8457 /* PCI register 4 needs to be saved whether netif_running() or not.
8458 * MSI address and data need to be saved if using MSI and
8461 pci_save_state(pdev
);
8462 if (!netif_running(dev
))
8465 cancel_work_sync(&bp
->reset_task
);
8466 bnx2_netif_stop(bp
, true);
8467 netif_device_detach(dev
);
8468 del_timer_sync(&bp
->timer
);
8469 bnx2_shutdown_chip(bp
);
8471 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8476 bnx2_resume(struct pci_dev
*pdev
)
8478 struct net_device
*dev
= pci_get_drvdata(pdev
);
8479 struct bnx2
*bp
= netdev_priv(dev
);
8481 pci_restore_state(pdev
);
8482 if (!netif_running(dev
))
8485 bnx2_set_power_state(bp
, PCI_D0
);
8486 netif_device_attach(dev
);
8487 bnx2_init_nic(bp
, 1);
8488 bnx2_netif_start(bp
, true);
8493 * bnx2_io_error_detected - called when PCI error is detected
8494 * @pdev: Pointer to PCI device
8495 * @state: The current pci connection state
8497 * This function is called after a PCI bus error affecting
8498 * this device has been detected.
8500 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8501 pci_channel_state_t state
)
8503 struct net_device
*dev
= pci_get_drvdata(pdev
);
8504 struct bnx2
*bp
= netdev_priv(dev
);
8507 netif_device_detach(dev
);
8509 if (state
== pci_channel_io_perm_failure
) {
8511 return PCI_ERS_RESULT_DISCONNECT
;
8514 if (netif_running(dev
)) {
8515 bnx2_netif_stop(bp
, true);
8516 del_timer_sync(&bp
->timer
);
8517 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8520 pci_disable_device(pdev
);
8523 /* Request a slot slot reset. */
8524 return PCI_ERS_RESULT_NEED_RESET
;
8528 * bnx2_io_slot_reset - called after the pci bus has been reset.
8529 * @pdev: Pointer to PCI device
8531 * Restart the card from scratch, as if from a cold-boot.
8533 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8535 struct net_device
*dev
= pci_get_drvdata(pdev
);
8536 struct bnx2
*bp
= netdev_priv(dev
);
8537 pci_ers_result_t result
;
8541 if (pci_enable_device(pdev
)) {
8543 "Cannot re-enable PCI device after reset\n");
8544 result
= PCI_ERS_RESULT_DISCONNECT
;
8546 pci_set_master(pdev
);
8547 pci_restore_state(pdev
);
8548 pci_save_state(pdev
);
8550 if (netif_running(dev
)) {
8551 bnx2_set_power_state(bp
, PCI_D0
);
8552 bnx2_init_nic(bp
, 1);
8554 result
= PCI_ERS_RESULT_RECOVERED
;
8558 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8561 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8564 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8565 err
); /* non-fatal, continue */
8572 * bnx2_io_resume - called when traffic can start flowing again.
8573 * @pdev: Pointer to PCI device
8575 * This callback is called when the error recovery driver tells us that
8576 * its OK to resume normal operation.
8578 static void bnx2_io_resume(struct pci_dev
*pdev
)
8580 struct net_device
*dev
= pci_get_drvdata(pdev
);
8581 struct bnx2
*bp
= netdev_priv(dev
);
8584 if (netif_running(dev
))
8585 bnx2_netif_start(bp
, true);
8587 netif_device_attach(dev
);
8591 static struct pci_error_handlers bnx2_err_handler
= {
8592 .error_detected
= bnx2_io_error_detected
,
8593 .slot_reset
= bnx2_io_slot_reset
,
8594 .resume
= bnx2_io_resume
,
8597 static struct pci_driver bnx2_pci_driver
= {
8598 .name
= DRV_MODULE_NAME
,
8599 .id_table
= bnx2_pci_tbl
,
8600 .probe
= bnx2_init_one
,
8601 .remove
= __devexit_p(bnx2_remove_one
),
8602 .suspend
= bnx2_suspend
,
8603 .resume
= bnx2_resume
,
8604 .err_handler
= &bnx2_err_handler
,
8607 static int __init
bnx2_init(void)
8609 return pci_register_driver(&bnx2_pci_driver
);
8612 static void __exit
bnx2_cleanup(void)
8614 pci_unregister_driver(&bnx2_pci_driver
);
8617 module_init(bnx2_init
);
8618 module_exit(bnx2_cleanup
);