1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32
igb_get_invariants_82575(struct e1000_hw
*);
39 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
40 static void igb_release_phy_82575(struct e1000_hw
*);
41 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
42 static void igb_release_nvm_82575(struct e1000_hw
*);
43 static s32
igb_check_for_link_82575(struct e1000_hw
*);
44 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
45 static s32
igb_init_hw_82575(struct e1000_hw
*);
46 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
47 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
48 static s32
igb_read_phy_reg_82580(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_write_phy_reg_82580(struct e1000_hw
*, u32
, u16
);
50 static s32
igb_reset_hw_82575(struct e1000_hw
*);
51 static s32
igb_reset_hw_82580(struct e1000_hw
*);
52 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
53 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
54 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
55 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
57 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
58 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
60 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
61 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
62 static bool igb_sgmii_active_82575(struct e1000_hw
*);
63 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
64 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
65 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
66 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
67 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
68 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
69 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
70 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
71 static const u16 e1000_82580_rxpbs_table
[] =
72 { 36, 72, 144, 1, 2, 4, 8, 16,
74 #define E1000_82580_RXPBS_TABLE_SIZE \
75 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
78 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
79 * @hw: pointer to the HW structure
81 * Called to determine if the I2C pins are being used for I2C or as an
82 * external MDIO interface since the two options are mutually exclusive.
84 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
87 bool ext_mdio
= false;
89 switch (hw
->mac
.type
) {
92 reg
= rd32(E1000_MDIC
);
93 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
97 reg
= rd32(E1000_MDICNFG
);
98 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
106 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
108 struct e1000_phy_info
*phy
= &hw
->phy
;
109 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
110 struct e1000_mac_info
*mac
= &hw
->mac
;
111 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
117 switch (hw
->device_id
) {
118 case E1000_DEV_ID_82575EB_COPPER
:
119 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
120 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
121 mac
->type
= e1000_82575
;
123 case E1000_DEV_ID_82576
:
124 case E1000_DEV_ID_82576_NS
:
125 case E1000_DEV_ID_82576_NS_SERDES
:
126 case E1000_DEV_ID_82576_FIBER
:
127 case E1000_DEV_ID_82576_SERDES
:
128 case E1000_DEV_ID_82576_QUAD_COPPER
:
129 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
130 case E1000_DEV_ID_82576_SERDES_QUAD
:
131 mac
->type
= e1000_82576
;
133 case E1000_DEV_ID_82580_COPPER
:
134 case E1000_DEV_ID_82580_FIBER
:
135 case E1000_DEV_ID_82580_QUAD_FIBER
:
136 case E1000_DEV_ID_82580_SERDES
:
137 case E1000_DEV_ID_82580_SGMII
:
138 case E1000_DEV_ID_82580_COPPER_DUAL
:
139 case E1000_DEV_ID_DH89XXCC_SGMII
:
140 case E1000_DEV_ID_DH89XXCC_SERDES
:
141 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
142 case E1000_DEV_ID_DH89XXCC_SFP
:
143 mac
->type
= e1000_82580
;
145 case E1000_DEV_ID_I350_COPPER
:
146 case E1000_DEV_ID_I350_FIBER
:
147 case E1000_DEV_ID_I350_SERDES
:
148 case E1000_DEV_ID_I350_SGMII
:
149 mac
->type
= e1000_i350
;
152 return -E1000_ERR_MAC_INIT
;
158 * The 82575 uses bits 22:23 for link mode. The mode can be changed
159 * based on the EEPROM. We cannot rely upon device ID. There
160 * is no distinguishable difference between fiber and internal
161 * SerDes mode on the 82575. There can be an external PHY attached
162 * on the SGMII interface. For this, we'll set sgmii_active to true.
164 phy
->media_type
= e1000_media_type_copper
;
165 dev_spec
->sgmii_active
= false;
167 ctrl_ext
= rd32(E1000_CTRL_EXT
);
168 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
169 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
170 dev_spec
->sgmii_active
= true;
172 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
173 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
174 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
180 /* Set mta register count */
181 mac
->mta_reg_count
= 128;
182 /* Set rar entry count */
183 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
184 if (mac
->type
== e1000_82576
)
185 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
186 if (mac
->type
== e1000_82580
)
187 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
188 if (mac
->type
== e1000_i350
)
189 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
191 if (mac
->type
>= e1000_82580
)
192 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
194 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
195 /* Set if part includes ASF firmware */
196 mac
->asf_firmware_present
= true;
197 /* Set if manageability features are enabled. */
198 mac
->arc_subsystem_valid
=
199 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
201 /* enable EEE on i350 parts */
202 if (mac
->type
== e1000_i350
)
203 dev_spec
->eee_disable
= false;
205 dev_spec
->eee_disable
= true;
206 /* physical interface link setup */
207 mac
->ops
.setup_physical_interface
=
208 (hw
->phy
.media_type
== e1000_media_type_copper
)
209 ? igb_setup_copper_link_82575
210 : igb_setup_serdes_link_82575
;
212 /* NVM initialization */
213 eecd
= rd32(E1000_EECD
);
215 nvm
->opcode_bits
= 8;
217 switch (nvm
->override
) {
218 case e1000_nvm_override_spi_large
:
220 nvm
->address_bits
= 16;
222 case e1000_nvm_override_spi_small
:
224 nvm
->address_bits
= 8;
227 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
228 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
232 nvm
->type
= e1000_nvm_eeprom_spi
;
234 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
235 E1000_EECD_SIZE_EX_SHIFT
);
238 * Added to a constant, "size" becomes the left-shift value
239 * for setting word_size.
241 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
244 * Check for invalid size
246 if ((hw
->mac
.type
== e1000_82576
) && (size
> 15)) {
247 printk("igb: The NVM size is not valid, "
248 "defaulting to 32K.\n");
251 nvm
->word_size
= 1 << size
;
252 if (nvm
->word_size
== (1 << 15))
253 nvm
->page_size
= 128;
255 /* NVM Function Pointers */
256 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
257 if (nvm
->word_size
< (1 << 15))
258 nvm
->ops
.read
= igb_read_nvm_eerd
;
260 nvm
->ops
.read
= igb_read_nvm_spi
;
262 nvm
->ops
.release
= igb_release_nvm_82575
;
263 switch (hw
->mac
.type
) {
265 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
266 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
269 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
270 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
273 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
274 nvm
->ops
.update
= igb_update_nvm_checksum
;
276 nvm
->ops
.write
= igb_write_nvm_spi
;
278 /* if part supports SR-IOV then initialize mailbox parameters */
282 igb_init_mbx_params_pf(hw
);
288 /* setup PHY parameters */
289 if (phy
->media_type
!= e1000_media_type_copper
) {
290 phy
->type
= e1000_phy_none
;
294 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
295 phy
->reset_delay_us
= 100;
297 ctrl_ext
= rd32(E1000_CTRL_EXT
);
299 /* PHY function pointers */
300 if (igb_sgmii_active_82575(hw
)) {
301 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
302 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
304 phy
->ops
.reset
= igb_phy_hw_reset
;
305 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
308 wr32(E1000_CTRL_EXT
, ctrl_ext
);
309 igb_reset_mdicnfg_82580(hw
);
311 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
312 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
313 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
314 } else if (hw
->mac
.type
>= e1000_82580
) {
315 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
316 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
318 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
319 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
323 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
324 E1000_STATUS_FUNC_SHIFT
;
326 /* Set phy->phy_addr and phy->id. */
327 ret_val
= igb_get_phy_id_82575(hw
);
331 /* Verify phy id and set remaining function pointers */
333 case I347AT4_E_PHY_ID
:
334 case M88E1112_E_PHY_ID
:
335 case M88E1111_I_PHY_ID
:
336 phy
->type
= e1000_phy_m88
;
337 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
339 if (phy
->id
== I347AT4_E_PHY_ID
||
340 phy
->id
== M88E1112_E_PHY_ID
)
341 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
343 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
345 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
347 case IGP03E1000_E_PHY_ID
:
348 phy
->type
= e1000_phy_igp_3
;
349 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
350 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
351 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
352 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
353 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
355 case I82580_I_PHY_ID
:
357 phy
->type
= e1000_phy_82580
;
358 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_82580
;
359 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
360 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
363 return -E1000_ERR_PHY
;
370 * igb_acquire_phy_82575 - Acquire rights to access PHY
371 * @hw: pointer to the HW structure
373 * Acquire access rights to the correct PHY. This is a
374 * function pointer entry point called by the api module.
376 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
378 u16 mask
= E1000_SWFW_PHY0_SM
;
380 if (hw
->bus
.func
== E1000_FUNC_1
)
381 mask
= E1000_SWFW_PHY1_SM
;
382 else if (hw
->bus
.func
== E1000_FUNC_2
)
383 mask
= E1000_SWFW_PHY2_SM
;
384 else if (hw
->bus
.func
== E1000_FUNC_3
)
385 mask
= E1000_SWFW_PHY3_SM
;
387 return igb_acquire_swfw_sync_82575(hw
, mask
);
391 * igb_release_phy_82575 - Release rights to access PHY
392 * @hw: pointer to the HW structure
394 * A wrapper to release access rights to the correct PHY. This is a
395 * function pointer entry point called by the api module.
397 static void igb_release_phy_82575(struct e1000_hw
*hw
)
399 u16 mask
= E1000_SWFW_PHY0_SM
;
401 if (hw
->bus
.func
== E1000_FUNC_1
)
402 mask
= E1000_SWFW_PHY1_SM
;
403 else if (hw
->bus
.func
== E1000_FUNC_2
)
404 mask
= E1000_SWFW_PHY2_SM
;
405 else if (hw
->bus
.func
== E1000_FUNC_3
)
406 mask
= E1000_SWFW_PHY3_SM
;
408 igb_release_swfw_sync_82575(hw
, mask
);
412 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
417 * Reads the PHY register at offset using the serial gigabit media independent
418 * interface and stores the retrieved information in data.
420 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
423 s32 ret_val
= -E1000_ERR_PARAM
;
425 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
426 hw_dbg("PHY Address %u is out of range\n", offset
);
430 ret_val
= hw
->phy
.ops
.acquire(hw
);
434 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
436 hw
->phy
.ops
.release(hw
);
443 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
444 * @hw: pointer to the HW structure
445 * @offset: register offset to write to
446 * @data: data to write at register offset
448 * Writes the data to PHY register at the offset using the serial gigabit
449 * media independent interface.
451 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
454 s32 ret_val
= -E1000_ERR_PARAM
;
457 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
458 hw_dbg("PHY Address %d is out of range\n", offset
);
462 ret_val
= hw
->phy
.ops
.acquire(hw
);
466 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
468 hw
->phy
.ops
.release(hw
);
475 * igb_get_phy_id_82575 - Retrieve PHY addr and id
476 * @hw: pointer to the HW structure
478 * Retrieves the PHY address and ID for both PHY's which do and do not use
481 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
483 struct e1000_phy_info
*phy
= &hw
->phy
;
490 * For SGMII PHYs, we try the list of possible addresses until
491 * we find one that works. For non-SGMII PHYs
492 * (e.g. integrated copper PHYs), an address of 1 should
493 * work. The result of this function should mean phy->phy_addr
494 * and phy->id are set correctly.
496 if (!(igb_sgmii_active_82575(hw
))) {
498 ret_val
= igb_get_phy_id(hw
);
502 if (igb_sgmii_uses_mdio_82575(hw
)) {
503 switch (hw
->mac
.type
) {
506 mdic
= rd32(E1000_MDIC
);
507 mdic
&= E1000_MDIC_PHY_MASK
;
508 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
512 mdic
= rd32(E1000_MDICNFG
);
513 mdic
&= E1000_MDICNFG_PHY_MASK
;
514 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
517 ret_val
= -E1000_ERR_PHY
;
521 ret_val
= igb_get_phy_id(hw
);
525 /* Power on sgmii phy if it is disabled */
526 ctrl_ext
= rd32(E1000_CTRL_EXT
);
527 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
532 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
533 * Therefore, we need to test 1-7
535 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
536 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
538 hw_dbg("Vendor ID 0x%08X read at address %u\n",
541 * At the time of this writing, The M88 part is
542 * the only supported SGMII PHY product.
544 if (phy_id
== M88_VENDOR
)
547 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
551 /* A valid PHY type couldn't be found. */
552 if (phy
->addr
== 8) {
554 ret_val
= -E1000_ERR_PHY
;
557 ret_val
= igb_get_phy_id(hw
);
560 /* restore previous sfp cage power state */
561 wr32(E1000_CTRL_EXT
, ctrl_ext
);
568 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
569 * @hw: pointer to the HW structure
571 * Resets the PHY using the serial gigabit media independent interface.
573 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
578 * This isn't a true "hard" reset, but is the only reset
579 * available to us at this time.
582 hw_dbg("Soft resetting SGMII attached PHY...\n");
585 * SFP documentation requires the following to configure the SPF module
586 * to work on SGMII. No further documentation is given.
588 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
592 ret_val
= igb_phy_sw_reset(hw
);
599 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
600 * @hw: pointer to the HW structure
601 * @active: true to enable LPLU, false to disable
603 * Sets the LPLU D0 state according to the active flag. When
604 * activating LPLU this function also disables smart speed
605 * and vice versa. LPLU will not be activated unless the
606 * device autonegotiation advertisement meets standards of
607 * either 10 or 10/100 or 10/100/1000 at all duplexes.
608 * This is a function pointer entry point only called by
609 * PHY setup routines.
611 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
613 struct e1000_phy_info
*phy
= &hw
->phy
;
617 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
622 data
|= IGP02E1000_PM_D0_LPLU
;
623 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
628 /* When LPLU is enabled, we should disable SmartSpeed */
629 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
631 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
632 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
637 data
&= ~IGP02E1000_PM_D0_LPLU
;
638 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
641 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
642 * during Dx states where the power conservation is most
643 * important. During driver activity we should enable
644 * SmartSpeed, so performance is maintained.
646 if (phy
->smart_speed
== e1000_smart_speed_on
) {
647 ret_val
= phy
->ops
.read_reg(hw
,
648 IGP01E1000_PHY_PORT_CONFIG
, &data
);
652 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
653 ret_val
= phy
->ops
.write_reg(hw
,
654 IGP01E1000_PHY_PORT_CONFIG
, data
);
657 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
658 ret_val
= phy
->ops
.read_reg(hw
,
659 IGP01E1000_PHY_PORT_CONFIG
, &data
);
663 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
664 ret_val
= phy
->ops
.write_reg(hw
,
665 IGP01E1000_PHY_PORT_CONFIG
, data
);
676 * igb_acquire_nvm_82575 - Request for access to EEPROM
677 * @hw: pointer to the HW structure
679 * Acquire the necessary semaphores for exclusive access to the EEPROM.
680 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
681 * Return successful if access grant bit set, else clear the request for
682 * EEPROM access and return -E1000_ERR_NVM (-1).
684 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
688 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
692 ret_val
= igb_acquire_nvm(hw
);
695 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
702 * igb_release_nvm_82575 - Release exclusive access to EEPROM
703 * @hw: pointer to the HW structure
705 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
706 * then release the semaphores acquired.
708 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
711 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
715 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
716 * @hw: pointer to the HW structure
717 * @mask: specifies which semaphore to acquire
719 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
720 * will also specify which port we're acquiring the lock for.
722 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
726 u32 fwmask
= mask
<< 16;
728 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
730 while (i
< timeout
) {
731 if (igb_get_hw_semaphore(hw
)) {
732 ret_val
= -E1000_ERR_SWFW_SYNC
;
736 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
737 if (!(swfw_sync
& (fwmask
| swmask
)))
741 * Firmware currently using resource (fwmask)
742 * or other software thread using resource (swmask)
744 igb_put_hw_semaphore(hw
);
750 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
751 ret_val
= -E1000_ERR_SWFW_SYNC
;
756 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
758 igb_put_hw_semaphore(hw
);
765 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
766 * @hw: pointer to the HW structure
767 * @mask: specifies which semaphore to acquire
769 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
770 * will also specify which port we're releasing the lock for.
772 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
776 while (igb_get_hw_semaphore(hw
) != 0);
779 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
781 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
783 igb_put_hw_semaphore(hw
);
787 * igb_get_cfg_done_82575 - Read config done bit
788 * @hw: pointer to the HW structure
790 * Read the management control register for the config done bit for
791 * completion status. NOTE: silicon which is EEPROM-less will fail trying
792 * to read the config done bit, so an error is *ONLY* logged and returns
793 * 0. If we were to return with error, EEPROM-less silicon
794 * would not be able to be reset or change link.
796 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
798 s32 timeout
= PHY_CFG_TIMEOUT
;
800 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
802 if (hw
->bus
.func
== 1)
803 mask
= E1000_NVM_CFG_DONE_PORT_1
;
804 else if (hw
->bus
.func
== E1000_FUNC_2
)
805 mask
= E1000_NVM_CFG_DONE_PORT_2
;
806 else if (hw
->bus
.func
== E1000_FUNC_3
)
807 mask
= E1000_NVM_CFG_DONE_PORT_3
;
810 if (rd32(E1000_EEMNGCTL
) & mask
)
816 hw_dbg("MNG configuration cycle has not completed.\n");
818 /* If EEPROM is not marked present, init the PHY manually */
819 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
820 (hw
->phy
.type
== e1000_phy_igp_3
))
821 igb_phy_init_script_igp3(hw
);
827 * igb_check_for_link_82575 - Check for link
828 * @hw: pointer to the HW structure
830 * If sgmii is enabled, then use the pcs register to determine link, otherwise
831 * use the generic interface for determining link.
833 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
838 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
839 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
842 * Use this flag to determine if link needs to be checked or
843 * not. If we have link clear the flag so that we do not
844 * continue to check for link.
846 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
848 ret_val
= igb_check_for_copper_link(hw
);
855 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
856 * @hw: pointer to the HW structure
858 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
863 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
864 !igb_sgmii_active_82575(hw
))
867 /* Enable PCS to turn on link */
868 reg
= rd32(E1000_PCS_CFG0
);
869 reg
|= E1000_PCS_CFG_PCS_EN
;
870 wr32(E1000_PCS_CFG0
, reg
);
872 /* Power up the laser */
873 reg
= rd32(E1000_CTRL_EXT
);
874 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
875 wr32(E1000_CTRL_EXT
, reg
);
877 /* flush the write to verify completion */
883 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
884 * @hw: pointer to the HW structure
885 * @speed: stores the current speed
886 * @duplex: stores the current duplex
888 * Using the physical coding sub-layer (PCS), retrieve the current speed and
889 * duplex, then store the values in the pointers provided.
891 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
894 struct e1000_mac_info
*mac
= &hw
->mac
;
897 /* Set up defaults for the return values of this function */
898 mac
->serdes_has_link
= false;
903 * Read the PCS Status register for link state. For non-copper mode,
904 * the status register is not accurate. The PCS status register is
907 pcs
= rd32(E1000_PCS_LSTAT
);
910 * The link up bit determines when link is up on autoneg. The sync ok
911 * gets set once both sides sync up and agree upon link. Stable link
912 * can be determined by checking for both link up and link sync ok
914 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
915 mac
->serdes_has_link
= true;
917 /* Detect and store PCS speed */
918 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
920 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
926 /* Detect and store PCS duplex */
927 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
928 *duplex
= FULL_DUPLEX
;
930 *duplex
= HALF_DUPLEX
;
938 * igb_shutdown_serdes_link_82575 - Remove link during power down
939 * @hw: pointer to the HW structure
941 * In the case of fiber serdes, shut down optics and PCS on driver unload
942 * when management pass thru is not enabled.
944 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
948 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
949 igb_sgmii_active_82575(hw
))
952 if (!igb_enable_mng_pass_thru(hw
)) {
953 /* Disable PCS to turn off link */
954 reg
= rd32(E1000_PCS_CFG0
);
955 reg
&= ~E1000_PCS_CFG_PCS_EN
;
956 wr32(E1000_PCS_CFG0
, reg
);
958 /* shutdown the laser */
959 reg
= rd32(E1000_CTRL_EXT
);
960 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
961 wr32(E1000_CTRL_EXT
, reg
);
963 /* flush the write to verify completion */
970 * igb_reset_hw_82575 - Reset hardware
971 * @hw: pointer to the HW structure
973 * This resets the hardware into a known state. This is a
974 * function pointer entry point called by the api module.
976 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
982 * Prevent the PCI-E bus from sticking if there is no TLP connection
983 * on the last TLP read/write transaction when MAC is reset.
985 ret_val
= igb_disable_pcie_master(hw
);
987 hw_dbg("PCI-E Master disable polling has failed.\n");
989 /* set the completion timeout for interface */
990 ret_val
= igb_set_pcie_completion_timeout(hw
);
992 hw_dbg("PCI-E Set completion timeout has failed.\n");
995 hw_dbg("Masking off all interrupts\n");
996 wr32(E1000_IMC
, 0xffffffff);
999 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1004 ctrl
= rd32(E1000_CTRL
);
1006 hw_dbg("Issuing a global reset to MAC\n");
1007 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1009 ret_val
= igb_get_auto_rd_done(hw
);
1012 * When auto config read does not complete, do not
1013 * return with an error. This can happen in situations
1014 * where there is no eeprom and prevents getting link.
1016 hw_dbg("Auto Read Done did not complete\n");
1019 /* If EEPROM is not present, run manual init scripts */
1020 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1021 igb_reset_init_script_82575(hw
);
1023 /* Clear any pending interrupt events. */
1024 wr32(E1000_IMC
, 0xffffffff);
1025 icr
= rd32(E1000_ICR
);
1027 /* Install any alternate MAC address into RAR0 */
1028 ret_val
= igb_check_alt_mac_addr(hw
);
1034 * igb_init_hw_82575 - Initialize hardware
1035 * @hw: pointer to the HW structure
1037 * This inits the hardware readying it for operation.
1039 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1041 struct e1000_mac_info
*mac
= &hw
->mac
;
1043 u16 i
, rar_count
= mac
->rar_entry_count
;
1045 /* Initialize identification LED */
1046 ret_val
= igb_id_led_init(hw
);
1048 hw_dbg("Error initializing identification LED\n");
1049 /* This is not fatal and we should not stop init due to this */
1052 /* Disabling VLAN filtering */
1053 hw_dbg("Initializing the IEEE VLAN\n");
1054 if (hw
->mac
.type
== e1000_i350
)
1055 igb_clear_vfta_i350(hw
);
1059 /* Setup the receive address */
1060 igb_init_rx_addrs(hw
, rar_count
);
1062 /* Zero out the Multicast HASH table */
1063 hw_dbg("Zeroing the MTA\n");
1064 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1065 array_wr32(E1000_MTA
, i
, 0);
1067 /* Zero out the Unicast HASH table */
1068 hw_dbg("Zeroing the UTA\n");
1069 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1070 array_wr32(E1000_UTA
, i
, 0);
1072 /* Setup link and flow control */
1073 ret_val
= igb_setup_link(hw
);
1076 * Clear all of the statistics registers (clear on read). It is
1077 * important that we do this after we have tried to establish link
1078 * because the symbol error count will increment wildly if there
1081 igb_clear_hw_cntrs_82575(hw
);
1087 * igb_setup_copper_link_82575 - Configure copper link settings
1088 * @hw: pointer to the HW structure
1090 * Configures the link for auto-neg or forced speed and duplex. Then we check
1091 * for link, once link is established calls to configure collision distance
1092 * and flow control are called.
1094 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1099 ctrl
= rd32(E1000_CTRL
);
1100 ctrl
|= E1000_CTRL_SLU
;
1101 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1102 wr32(E1000_CTRL
, ctrl
);
1104 ret_val
= igb_setup_serdes_link_82575(hw
);
1108 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1109 /* allow time for SFP cage time to power up phy */
1112 ret_val
= hw
->phy
.ops
.reset(hw
);
1114 hw_dbg("Error resetting the PHY.\n");
1118 switch (hw
->phy
.type
) {
1120 if (hw
->phy
.id
== I347AT4_E_PHY_ID
||
1121 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1122 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1124 ret_val
= igb_copper_link_setup_m88(hw
);
1126 case e1000_phy_igp_3
:
1127 ret_val
= igb_copper_link_setup_igp(hw
);
1129 case e1000_phy_82580
:
1130 ret_val
= igb_copper_link_setup_82580(hw
);
1133 ret_val
= -E1000_ERR_PHY
;
1140 ret_val
= igb_setup_copper_link(hw
);
1146 * igb_setup_serdes_link_82575 - Setup link for serdes
1147 * @hw: pointer to the HW structure
1149 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1150 * used on copper connections where the serialized gigabit media independent
1151 * interface (sgmii), or serdes fiber is being used. Configures the link
1152 * for auto-negotiation or forces speed/duplex.
1154 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1156 u32 ctrl_ext
, ctrl_reg
, reg
;
1158 s32 ret_val
= E1000_SUCCESS
;
1161 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1162 !igb_sgmii_active_82575(hw
))
1167 * On the 82575, SerDes loopback mode persists until it is
1168 * explicitly turned off or a power cycle is performed. A read to
1169 * the register does not indicate its status. Therefore, we ensure
1170 * loopback mode is disabled during initialization.
1172 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1174 /* power on the sfp cage if present */
1175 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1176 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1177 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1179 ctrl_reg
= rd32(E1000_CTRL
);
1180 ctrl_reg
|= E1000_CTRL_SLU
;
1182 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1183 /* set both sw defined pins */
1184 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1186 /* Set switch control to serdes energy detect */
1187 reg
= rd32(E1000_CONNSW
);
1188 reg
|= E1000_CONNSW_ENRGSRC
;
1189 wr32(E1000_CONNSW
, reg
);
1192 reg
= rd32(E1000_PCS_LCTL
);
1194 /* default pcs_autoneg to the same setting as mac autoneg */
1195 pcs_autoneg
= hw
->mac
.autoneg
;
1197 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1198 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1199 /* sgmii mode lets the phy handle forcing speed/duplex */
1201 /* autoneg time out should be disabled for SGMII mode */
1202 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1204 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1205 /* disable PCS autoneg and support parallel detect only */
1206 pcs_autoneg
= false;
1208 if (hw
->mac
.type
== e1000_82575
||
1209 hw
->mac
.type
== e1000_82576
) {
1210 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &data
);
1212 printk(KERN_DEBUG
"NVM Read Error\n\n");
1216 if (data
& E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT
)
1217 pcs_autoneg
= false;
1221 * non-SGMII modes only supports a speed of 1000/Full for the
1222 * link so it is best to just force the MAC and let the pcs
1223 * link either autoneg or be forced to 1000/Full
1225 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1226 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1228 /* set speed of 1000/Full if speed/duplex is forced */
1229 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1233 wr32(E1000_CTRL
, ctrl_reg
);
1236 * New SerDes mode allows for forcing speed or autonegotiating speed
1237 * at 1gb. Autoneg should be default set by most drivers. This is the
1238 * mode that will be compatible with older link partners and switches.
1239 * However, both are supported by the hardware and some drivers/tools.
1241 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1242 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1245 * We force flow control to prevent the CTRL register values from being
1246 * overwritten by the autonegotiated flow control values
1248 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1251 /* Set PCS register for autoneg */
1252 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1253 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1254 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1256 /* Set PCS register for forced link */
1257 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1259 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1262 wr32(E1000_PCS_LCTL
, reg
);
1264 if (!igb_sgmii_active_82575(hw
))
1265 igb_force_mac_fc(hw
);
1271 * igb_sgmii_active_82575 - Return sgmii state
1272 * @hw: pointer to the HW structure
1274 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1275 * which can be enabled for use in the embedded applications. Simply
1276 * return the current state of the sgmii interface.
1278 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1280 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1281 return dev_spec
->sgmii_active
;
1285 * igb_reset_init_script_82575 - Inits HW defaults after reset
1286 * @hw: pointer to the HW structure
1288 * Inits recommended HW defaults after a reset when there is no EEPROM
1289 * detected. This is only for the 82575.
1291 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1293 if (hw
->mac
.type
== e1000_82575
) {
1294 hw_dbg("Running reset init script for 82575\n");
1295 /* SerDes configuration via SERDESCTRL */
1296 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1297 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1298 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1299 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1301 /* CCM configuration via CCMCTL register */
1302 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1303 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1305 /* PCIe lanes configuration */
1306 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1307 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1308 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1309 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1311 /* PCIe PLL Configuration */
1312 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1313 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1314 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1321 * igb_read_mac_addr_82575 - Read device MAC address
1322 * @hw: pointer to the HW structure
1324 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1329 * If there's an alternate MAC address place it in RAR0
1330 * so that it will override the Si installed default perm
1333 ret_val
= igb_check_alt_mac_addr(hw
);
1337 ret_val
= igb_read_mac_addr(hw
);
1344 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1345 * @hw: pointer to the HW structure
1347 * In the case of a PHY power down to save power, or to turn off link during a
1348 * driver unload, or wake on lan is not enabled, remove the link.
1350 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1352 /* If the management interface is not enabled, then power down */
1353 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1354 igb_power_down_phy_copper(hw
);
1358 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1359 * @hw: pointer to the HW structure
1361 * Clears the hardware counters by reading the counter registers.
1363 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1365 igb_clear_hw_cntrs_base(hw
);
1371 rd32(E1000_PRC1023
);
1372 rd32(E1000_PRC1522
);
1377 rd32(E1000_PTC1023
);
1378 rd32(E1000_PTC1522
);
1380 rd32(E1000_ALGNERRC
);
1383 rd32(E1000_CEXTERR
);
1394 rd32(E1000_ICRXPTC
);
1395 rd32(E1000_ICRXATC
);
1396 rd32(E1000_ICTXPTC
);
1397 rd32(E1000_ICTXATC
);
1398 rd32(E1000_ICTXQEC
);
1399 rd32(E1000_ICTXQMTC
);
1400 rd32(E1000_ICRXDMTC
);
1407 rd32(E1000_HTCBDPC
);
1412 rd32(E1000_LENERRS
);
1414 /* This register should not be read in copper configurations */
1415 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1416 igb_sgmii_active_82575(hw
))
1421 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1422 * @hw: pointer to the HW structure
1424 * After rx enable if managability is enabled then there is likely some
1425 * bad data at the start of the fifo and possibly in the DMA fifo. This
1426 * function clears the fifos and flushes any packets that came in as rx was
1429 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1431 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1434 if (hw
->mac
.type
!= e1000_82575
||
1435 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1438 /* Disable all RX queues */
1439 for (i
= 0; i
< 4; i
++) {
1440 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1441 wr32(E1000_RXDCTL(i
),
1442 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1444 /* Poll all queues to verify they have shut down */
1445 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1448 for (i
= 0; i
< 4; i
++)
1449 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1450 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1455 hw_dbg("Queue disable timed out after 10ms\n");
1457 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1458 * incoming packets are rejected. Set enable and wait 2ms so that
1459 * any packet that was coming in as RCTL.EN was set is flushed
1461 rfctl
= rd32(E1000_RFCTL
);
1462 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1464 rlpml
= rd32(E1000_RLPML
);
1465 wr32(E1000_RLPML
, 0);
1467 rctl
= rd32(E1000_RCTL
);
1468 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1469 temp_rctl
|= E1000_RCTL_LPE
;
1471 wr32(E1000_RCTL
, temp_rctl
);
1472 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1476 /* Enable RX queues that were previously enabled and restore our
1479 for (i
= 0; i
< 4; i
++)
1480 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1481 wr32(E1000_RCTL
, rctl
);
1484 wr32(E1000_RLPML
, rlpml
);
1485 wr32(E1000_RFCTL
, rfctl
);
1487 /* Flush receive errors generated by workaround */
1494 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1495 * @hw: pointer to the HW structure
1497 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1498 * however the hardware default for these parts is 500us to 1ms which is less
1499 * than the 10ms recommended by the pci-e spec. To address this we need to
1500 * increase the value to either 10ms to 200ms for capability version 1 config,
1501 * or 16ms to 55ms for version 2.
1503 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1505 u32 gcr
= rd32(E1000_GCR
);
1509 /* only take action if timeout value is defaulted to 0 */
1510 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1514 * if capababilities version is type 1 we can write the
1515 * timeout of 10ms to 200ms through the GCR register
1517 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1518 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1523 * for version 2 capabilities we need to write the config space
1524 * directly in order to set the completion timeout value for
1527 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1532 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1534 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1537 /* disable completion timeout resend */
1538 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1540 wr32(E1000_GCR
, gcr
);
1545 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1546 * @hw: pointer to the hardware struct
1547 * @enable: state to enter, either enabled or disabled
1548 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1550 * enables/disables L2 switch anti-spoofing functionality.
1552 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
1556 switch (hw
->mac
.type
) {
1559 dtxswc
= rd32(E1000_DTXSWC
);
1561 dtxswc
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
1562 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1563 /* The PF can spoof - it has to in order to
1564 * support emulation mode NICs */
1565 dtxswc
^= (1 << pf
| 1 << (pf
+ MAX_NUM_VFS
));
1567 dtxswc
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
1568 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1570 wr32(E1000_DTXSWC
, dtxswc
);
1578 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1579 * @hw: pointer to the hardware struct
1580 * @enable: state to enter, either enabled or disabled
1582 * enables/disables L2 switch loopback functionality.
1584 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1588 switch (hw
->mac
.type
) {
1590 dtxswc
= rd32(E1000_DTXSWC
);
1592 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1594 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1595 wr32(E1000_DTXSWC
, dtxswc
);
1598 dtxswc
= rd32(E1000_TXSWC
);
1600 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1602 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1603 wr32(E1000_TXSWC
, dtxswc
);
1606 /* Currently no other hardware supports loopback */
1614 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1615 * @hw: pointer to the hardware struct
1616 * @enable: state to enter, either enabled or disabled
1618 * enables/disables replication of packets across multiple pools.
1620 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1622 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1625 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1627 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1629 wr32(E1000_VT_CTL
, vt_ctl
);
1633 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1634 * @hw: pointer to the HW structure
1635 * @offset: register offset to be read
1636 * @data: pointer to the read data
1638 * Reads the MDI control register in the PHY at offset and stores the
1639 * information read to data.
1641 static s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
1646 ret_val
= hw
->phy
.ops
.acquire(hw
);
1650 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
1652 hw
->phy
.ops
.release(hw
);
1659 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1660 * @hw: pointer to the HW structure
1661 * @offset: register offset to write to
1662 * @data: data to write to register at offset
1664 * Writes data to MDI control register in the PHY at offset.
1666 static s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
1671 ret_val
= hw
->phy
.ops
.acquire(hw
);
1675 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
1677 hw
->phy
.ops
.release(hw
);
1684 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1685 * @hw: pointer to the HW structure
1687 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1688 * the values found in the EEPROM. This addresses an issue in which these
1689 * bits are not restored from EEPROM after reset.
1691 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
1697 if (hw
->mac
.type
!= e1000_82580
)
1699 if (!igb_sgmii_active_82575(hw
))
1702 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1703 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1706 hw_dbg("NVM Read Error\n");
1710 mdicnfg
= rd32(E1000_MDICNFG
);
1711 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
1712 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
1713 if (nvm_data
& NVM_WORD24_COM_MDIO
)
1714 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
1715 wr32(E1000_MDICNFG
, mdicnfg
);
1721 * igb_reset_hw_82580 - Reset hardware
1722 * @hw: pointer to the HW structure
1724 * This resets function or entire device (all ports, etc.)
1727 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
1730 /* BH SW mailbox bit in SW_FW_SYNC */
1731 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
1733 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
1736 hw
->dev_spec
._82575
.global_device_reset
= false;
1738 /* Get current control state. */
1739 ctrl
= rd32(E1000_CTRL
);
1742 * Prevent the PCI-E bus from sticking if there is no TLP connection
1743 * on the last TLP read/write transaction when MAC is reset.
1745 ret_val
= igb_disable_pcie_master(hw
);
1747 hw_dbg("PCI-E Master disable polling has failed.\n");
1749 hw_dbg("Masking off all interrupts\n");
1750 wr32(E1000_IMC
, 0xffffffff);
1751 wr32(E1000_RCTL
, 0);
1752 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1757 /* Determine whether or not a global dev reset is requested */
1758 if (global_device_reset
&&
1759 igb_acquire_swfw_sync_82575(hw
, swmbsw_mask
))
1760 global_device_reset
= false;
1762 if (global_device_reset
&&
1763 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
1764 ctrl
|= E1000_CTRL_DEV_RST
;
1766 ctrl
|= E1000_CTRL_RST
;
1768 wr32(E1000_CTRL
, ctrl
);
1771 /* Add delay to insure DEV_RST has time to complete */
1772 if (global_device_reset
)
1775 ret_val
= igb_get_auto_rd_done(hw
);
1778 * When auto config read does not complete, do not
1779 * return with an error. This can happen in situations
1780 * where there is no eeprom and prevents getting link.
1782 hw_dbg("Auto Read Done did not complete\n");
1785 /* If EEPROM is not present, run manual init scripts */
1786 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1787 igb_reset_init_script_82575(hw
);
1789 /* clear global device reset status bit */
1790 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
1792 /* Clear any pending interrupt events. */
1793 wr32(E1000_IMC
, 0xffffffff);
1794 icr
= rd32(E1000_ICR
);
1796 ret_val
= igb_reset_mdicnfg_82580(hw
);
1798 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1800 /* Install any alternate MAC address into RAR0 */
1801 ret_val
= igb_check_alt_mac_addr(hw
);
1803 /* Release semaphore */
1804 if (global_device_reset
)
1805 igb_release_swfw_sync_82575(hw
, swmbsw_mask
);
1811 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1812 * @data: data received by reading RXPBS register
1814 * The 82580 uses a table based approach for packet buffer allocation sizes.
1815 * This function converts the retrieved value into the correct table value
1816 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1817 * 0x0 36 72 144 1 2 4 8 16
1818 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1820 u16
igb_rxpbs_adjust_82580(u32 data
)
1824 if (data
< E1000_82580_RXPBS_TABLE_SIZE
)
1825 ret_val
= e1000_82580_rxpbs_table
[data
];
1831 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1833 * @hw: pointer to the HW structure
1834 * @offset: offset in words of the checksum protected region
1836 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1837 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1839 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
1846 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
1847 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1849 hw_dbg("NVM Read Error\n");
1852 checksum
+= nvm_data
;
1855 if (checksum
!= (u16
) NVM_SUM
) {
1856 hw_dbg("NVM Checksum Invalid\n");
1857 ret_val
= -E1000_ERR_NVM
;
1866 * igb_update_nvm_checksum_with_offset - Update EEPROM
1868 * @hw: pointer to the HW structure
1869 * @offset: offset in words of the checksum protected region
1871 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1872 * up to the checksum. Then calculates the EEPROM checksum and writes the
1873 * value to the EEPROM.
1875 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1881 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
1882 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1884 hw_dbg("NVM Read Error while updating checksum.\n");
1887 checksum
+= nvm_data
;
1889 checksum
= (u16
) NVM_SUM
- checksum
;
1890 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
1893 hw_dbg("NVM Write Error while updating checksum.\n");
1900 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1901 * @hw: pointer to the HW structure
1903 * Calculates the EEPROM section checksum by reading/adding each word of
1904 * the EEPROM and then verifies that the sum of the EEPROM is
1907 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
1910 u16 eeprom_regions_count
= 1;
1914 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1916 hw_dbg("NVM Read Error\n");
1920 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
1921 /* if checksums compatibility bit is set validate checksums
1922 * for all 4 ports. */
1923 eeprom_regions_count
= 4;
1926 for (j
= 0; j
< eeprom_regions_count
; j
++) {
1927 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1928 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1939 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1940 * @hw: pointer to the HW structure
1942 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1943 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1944 * checksum and writes the value to the EEPROM.
1946 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
1952 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1954 hw_dbg("NVM Read Error while updating checksum"
1955 " compatibility bit.\n");
1959 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
1960 /* set compatibility bit to validate checksums appropriately */
1961 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
1962 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
1965 hw_dbg("NVM Write Error while updating checksum"
1966 " compatibility bit.\n");
1971 for (j
= 0; j
< 4; j
++) {
1972 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1973 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
1983 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1984 * @hw: pointer to the HW structure
1986 * Calculates the EEPROM section checksum by reading/adding each word of
1987 * the EEPROM and then verifies that the sum of the EEPROM is
1990 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
1996 for (j
= 0; j
< 4; j
++) {
1997 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1998 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2009 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2010 * @hw: pointer to the HW structure
2012 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2013 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2014 * checksum and writes the value to the EEPROM.
2016 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
2022 for (j
= 0; j
< 4; j
++) {
2023 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2024 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2034 * igb_set_eee_i350 - Enable/disable EEE support
2035 * @hw: pointer to the HW structure
2037 * Enable/disable EEE based on setting in dev_spec structure.
2040 s32
igb_set_eee_i350(struct e1000_hw
*hw
)
2043 u32 ipcnfg
, eeer
, ctrl_ext
;
2045 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2046 if ((hw
->mac
.type
!= e1000_i350
) ||
2047 (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
))
2049 ipcnfg
= rd32(E1000_IPCNFG
);
2050 eeer
= rd32(E1000_EEER
);
2052 /* enable or disable per user setting */
2053 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2054 ipcnfg
|= (E1000_IPCNFG_EEE_1G_AN
|
2055 E1000_IPCNFG_EEE_100M_AN
);
2056 eeer
|= (E1000_EEER_TX_LPI_EN
|
2057 E1000_EEER_RX_LPI_EN
|
2061 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2062 E1000_IPCNFG_EEE_100M_AN
);
2063 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2064 E1000_EEER_RX_LPI_EN
|
2067 wr32(E1000_IPCNFG
, ipcnfg
);
2068 wr32(E1000_EEER
, eeer
);
2074 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2075 .init_hw
= igb_init_hw_82575
,
2076 .check_for_link
= igb_check_for_link_82575
,
2077 .rar_set
= igb_rar_set
,
2078 .read_mac_addr
= igb_read_mac_addr_82575
,
2079 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
2082 static struct e1000_phy_operations e1000_phy_ops_82575
= {
2083 .acquire
= igb_acquire_phy_82575
,
2084 .get_cfg_done
= igb_get_cfg_done_82575
,
2085 .release
= igb_release_phy_82575
,
2088 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2089 .acquire
= igb_acquire_nvm_82575
,
2090 .read
= igb_read_nvm_eerd
,
2091 .release
= igb_release_nvm_82575
,
2092 .write
= igb_write_nvm_spi
,
2095 const struct e1000_info e1000_82575_info
= {
2096 .get_invariants
= igb_get_invariants_82575
,
2097 .mac_ops
= &e1000_mac_ops_82575
,
2098 .phy_ops
= &e1000_phy_ops_82575
,
2099 .nvm_ops
= &e1000_nvm_ops_82575
,