usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / net / ethernet / neterion / s2io.c
blobc27fb3dda9f49d7dfc6ac9c87c0f9ff6994323cd
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 int ret;
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108 return ret;
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
360 * Constants to be programmed into the Xena's registers, to configure
361 * the XAUI.
364 #define END_SIGN 0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 /* Set address */
367 0x8000051536750000ULL, 0x80000515367500E0ULL,
368 /* Write data */
369 0x8000051536750004ULL, 0x80000515367500E4ULL,
370 /* Set address */
371 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 /* Write data */
373 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 /* Set address */
375 0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 /* Write data */
377 0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 /* Set address */
379 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 /* Write data */
381 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 /* Done */
383 END_SIGN
386 static const u64 xena_dtx_cfg[] = {
387 /* Set address */
388 0x8000051500000000ULL, 0x80000515000000E0ULL,
389 /* Write data */
390 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 /* Set address */
392 0x8001051500000000ULL, 0x80010515000000E0ULL,
393 /* Write data */
394 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 /* Set address */
396 0x8002051500000000ULL, 0x80020515000000E0ULL,
397 /* Write data */
398 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 END_SIGN
403 * Constants for Fixing the MacAddress problem seen mostly on
404 * Alpha machines.
406 static const u64 fix_mac[] = {
407 0x0060000000000000ULL, 0x0060600000000000ULL,
408 0x0040600000000000ULL, 0x0000600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0060600000000000ULL,
419 0x0020600000000000ULL, 0x0000600000000000ULL,
420 0x0040600000000000ULL, 0x0060600000000000ULL,
421 END_SIGN
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
471 * S2IO device table.
472 * This table lists all the devices that this driver supports.
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 PCI_ANY_ID, PCI_ANY_ID},
477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 PCI_ANY_ID, PCI_ANY_ID},
479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 PCI_ANY_ID, PCI_ANY_ID},
481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 PCI_ANY_ID, PCI_ANY_ID},
483 {0,}
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
488 static struct pci_error_handlers s2io_err_handler = {
489 .error_detected = s2io_io_error_detected,
490 .slot_reset = s2io_io_slot_reset,
491 .resume = s2io_io_resume,
494 static struct pci_driver s2io_driver = {
495 .name = "S2IO",
496 .id_table = s2io_tbl,
497 .probe = s2io_init_nic,
498 .remove = __devexit_p(s2io_rem_nic),
499 .err_handler = &s2io_err_handler,
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
508 if (!sp->config.multiq) {
509 int i;
511 for (i = 0; i < sp->config.tx_fifo_num; i++)
512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
514 netif_tx_stop_all_queues(sp->dev);
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
519 if (!sp->config.multiq)
520 sp->mac_control.fifos[fifo_no].queue_state =
521 FIFO_QUEUE_STOP;
523 netif_tx_stop_all_queues(sp->dev);
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
528 if (!sp->config.multiq) {
529 int i;
531 for (i = 0; i < sp->config.tx_fifo_num; i++)
532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
534 netif_tx_start_all_queues(sp->dev);
537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
539 if (!sp->config.multiq)
540 sp->mac_control.fifos[fifo_no].queue_state =
541 FIFO_QUEUE_START;
543 netif_tx_start_all_queues(sp->dev);
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
548 if (!sp->config.multiq) {
549 int i;
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
554 netif_tx_wake_all_queues(sp->dev);
557 static inline void s2io_wake_tx_queue(
558 struct fifo_info *fifo, int cnt, u8 multiq)
561 if (multiq) {
562 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
564 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
565 if (netif_queue_stopped(fifo->dev)) {
566 fifo->queue_state = FIFO_QUEUE_START;
567 netif_wake_queue(fifo->dev);
573 * init_shared_mem - Allocation and Initialization of Memory
574 * @nic: Device private variable.
575 * Description: The function allocates all the memory areas shared
576 * between the NIC and the driver. This includes Tx descriptors,
577 * Rx descriptors and the statistics block.
580 static int init_shared_mem(struct s2io_nic *nic)
582 u32 size;
583 void *tmp_v_addr, *tmp_v_addr_next;
584 dma_addr_t tmp_p_addr, tmp_p_addr_next;
585 struct RxD_block *pre_rxd_blk = NULL;
586 int i, j, blk_cnt;
587 int lst_size, lst_per_page;
588 struct net_device *dev = nic->dev;
589 unsigned long tmp;
590 struct buffAdd *ba;
591 struct config_param *config = &nic->config;
592 struct mac_info *mac_control = &nic->mac_control;
593 unsigned long long mem_allocated = 0;
595 /* Allocation and initialization of TXDLs in FIFOs */
596 size = 0;
597 for (i = 0; i < config->tx_fifo_num; i++) {
598 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
600 size += tx_cfg->fifo_len;
602 if (size > MAX_AVAILABLE_TXDS) {
603 DBG_PRINT(ERR_DBG,
604 "Too many TxDs requested: %d, max supported: %d\n",
605 size, MAX_AVAILABLE_TXDS);
606 return -EINVAL;
609 size = 0;
610 for (i = 0; i < config->tx_fifo_num; i++) {
611 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
613 size = tx_cfg->fifo_len;
615 * Legal values are from 2 to 8192
617 if (size < 2) {
618 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 "Valid lengths are 2 through 8192\n",
620 i, size);
621 return -EINVAL;
625 lst_size = (sizeof(struct TxD) * config->max_txds);
626 lst_per_page = PAGE_SIZE / lst_size;
628 for (i = 0; i < config->tx_fifo_num; i++) {
629 struct fifo_info *fifo = &mac_control->fifos[i];
630 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 int fifo_len = tx_cfg->fifo_len;
632 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
634 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 if (!fifo->list_info) {
636 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
637 return -ENOMEM;
639 mem_allocated += list_holder_size;
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 lst_per_page);
644 struct fifo_info *fifo = &mac_control->fifos[i];
645 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
647 fifo->tx_curr_put_info.offset = 0;
648 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 fifo->tx_curr_get_info.offset = 0;
650 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 fifo->fifo_no = i;
652 fifo->nic = nic;
653 fifo->max_txds = MAX_SKB_FRAGS + 2;
654 fifo->dev = dev;
656 for (j = 0; j < page_num; j++) {
657 int k = 0;
658 dma_addr_t tmp_p;
659 void *tmp_v;
660 tmp_v = pci_alloc_consistent(nic->pdev,
661 PAGE_SIZE, &tmp_p);
662 if (!tmp_v) {
663 DBG_PRINT(INFO_DBG,
664 "pci_alloc_consistent failed for TxDL\n");
665 return -ENOMEM;
667 /* If we got a zero DMA address(can happen on
668 * certain platforms like PPC), reallocate.
669 * Store virtual address of page we don't want,
670 * to be freed later.
672 if (!tmp_p) {
673 mac_control->zerodma_virt_addr = tmp_v;
674 DBG_PRINT(INIT_DBG,
675 "%s: Zero DMA address for TxDL. "
676 "Virtual address %p\n",
677 dev->name, tmp_v);
678 tmp_v = pci_alloc_consistent(nic->pdev,
679 PAGE_SIZE, &tmp_p);
680 if (!tmp_v) {
681 DBG_PRINT(INFO_DBG,
682 "pci_alloc_consistent failed for TxDL\n");
683 return -ENOMEM;
685 mem_allocated += PAGE_SIZE;
687 while (k < lst_per_page) {
688 int l = (j * lst_per_page) + k;
689 if (l == tx_cfg->fifo_len)
690 break;
691 fifo->list_info[l].list_virt_addr =
692 tmp_v + (k * lst_size);
693 fifo->list_info[l].list_phy_addr =
694 tmp_p + (k * lst_size);
695 k++;
700 for (i = 0; i < config->tx_fifo_num; i++) {
701 struct fifo_info *fifo = &mac_control->fifos[i];
702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
704 size = tx_cfg->fifo_len;
705 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 if (!fifo->ufo_in_band_v)
707 return -ENOMEM;
708 mem_allocated += (size * sizeof(u64));
711 /* Allocation and initialization of RXDs in Rings */
712 size = 0;
713 for (i = 0; i < config->rx_ring_num; i++) {
714 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 struct ring_info *ring = &mac_control->rings[i];
717 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
718 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 "multiple of RxDs per Block\n",
720 dev->name, i);
721 return FAILURE;
723 size += rx_cfg->num_rxd;
724 ring->block_count = rx_cfg->num_rxd /
725 (rxd_count[nic->rxd_mode] + 1);
726 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
728 if (nic->rxd_mode == RXD_MODE_1)
729 size = (size * (sizeof(struct RxD1)));
730 else
731 size = (size * (sizeof(struct RxD3)));
733 for (i = 0; i < config->rx_ring_num; i++) {
734 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 struct ring_info *ring = &mac_control->rings[i];
737 ring->rx_curr_get_info.block_index = 0;
738 ring->rx_curr_get_info.offset = 0;
739 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 ring->rx_curr_put_info.block_index = 0;
741 ring->rx_curr_put_info.offset = 0;
742 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 ring->nic = nic;
744 ring->ring_no = i;
746 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
747 /* Allocating all the Rx blocks */
748 for (j = 0; j < blk_cnt; j++) {
749 struct rx_block_info *rx_blocks;
750 int l;
752 rx_blocks = &ring->rx_blocks[j];
753 size = SIZE_OF_BLOCK; /* size is always page size */
754 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 &tmp_p_addr);
756 if (tmp_v_addr == NULL) {
758 * In case of failure, free_shared_mem()
759 * is called, which should free any
760 * memory that was alloced till the
761 * failure happened.
763 rx_blocks->block_virt_addr = tmp_v_addr;
764 return -ENOMEM;
766 mem_allocated += size;
767 memset(tmp_v_addr, 0, size);
769 size = sizeof(struct rxd_info) *
770 rxd_count[nic->rxd_mode];
771 rx_blocks->block_virt_addr = tmp_v_addr;
772 rx_blocks->block_dma_addr = tmp_p_addr;
773 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
774 if (!rx_blocks->rxds)
775 return -ENOMEM;
776 mem_allocated += size;
777 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
778 rx_blocks->rxds[l].virt_addr =
779 rx_blocks->block_virt_addr +
780 (rxd_size[nic->rxd_mode] * l);
781 rx_blocks->rxds[l].dma_addr =
782 rx_blocks->block_dma_addr +
783 (rxd_size[nic->rxd_mode] * l);
786 /* Interlinking all Rx Blocks */
787 for (j = 0; j < blk_cnt; j++) {
788 int next = (j + 1) % blk_cnt;
789 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
794 pre_rxd_blk = tmp_v_addr;
795 pre_rxd_blk->reserved_2_pNext_RxD_block =
796 (unsigned long)tmp_v_addr_next;
797 pre_rxd_blk->pNext_RxD_Blk_physical =
798 (u64)tmp_p_addr_next;
801 if (nic->rxd_mode == RXD_MODE_3B) {
803 * Allocation of Storages for buffer addresses in 2BUFF mode
804 * and the buffers as well.
806 for (i = 0; i < config->rx_ring_num; i++) {
807 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 struct ring_info *ring = &mac_control->rings[i];
810 blk_cnt = rx_cfg->num_rxd /
811 (rxd_count[nic->rxd_mode] + 1);
812 size = sizeof(struct buffAdd *) * blk_cnt;
813 ring->ba = kmalloc(size, GFP_KERNEL);
814 if (!ring->ba)
815 return -ENOMEM;
816 mem_allocated += size;
817 for (j = 0; j < blk_cnt; j++) {
818 int k = 0;
820 size = sizeof(struct buffAdd) *
821 (rxd_count[nic->rxd_mode] + 1);
822 ring->ba[j] = kmalloc(size, GFP_KERNEL);
823 if (!ring->ba[j])
824 return -ENOMEM;
825 mem_allocated += size;
826 while (k != rxd_count[nic->rxd_mode]) {
827 ba = &ring->ba[j][k];
828 size = BUF0_LEN + ALIGN_SIZE;
829 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
830 if (!ba->ba_0_org)
831 return -ENOMEM;
832 mem_allocated += size;
833 tmp = (unsigned long)ba->ba_0_org;
834 tmp += ALIGN_SIZE;
835 tmp &= ~((unsigned long)ALIGN_SIZE);
836 ba->ba_0 = (void *)tmp;
838 size = BUF1_LEN + ALIGN_SIZE;
839 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
840 if (!ba->ba_1_org)
841 return -ENOMEM;
842 mem_allocated += size;
843 tmp = (unsigned long)ba->ba_1_org;
844 tmp += ALIGN_SIZE;
845 tmp &= ~((unsigned long)ALIGN_SIZE);
846 ba->ba_1 = (void *)tmp;
847 k++;
853 /* Allocation and initialization of Statistics block */
854 size = sizeof(struct stat_block);
855 mac_control->stats_mem =
856 pci_alloc_consistent(nic->pdev, size,
857 &mac_control->stats_mem_phy);
859 if (!mac_control->stats_mem) {
861 * In case of failure, free_shared_mem() is called, which
862 * should free any memory that was alloced till the
863 * failure happened.
865 return -ENOMEM;
867 mem_allocated += size;
868 mac_control->stats_mem_sz = size;
870 tmp_v_addr = mac_control->stats_mem;
871 mac_control->stats_info = tmp_v_addr;
872 memset(tmp_v_addr, 0, size);
873 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
875 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
876 return SUCCESS;
880 * free_shared_mem - Free the allocated Memory
881 * @nic: Device private variable.
882 * Description: This function is to free all memory locations allocated by
883 * the init_shared_mem() function and return it to the kernel.
886 static void free_shared_mem(struct s2io_nic *nic)
888 int i, j, blk_cnt, size;
889 void *tmp_v_addr;
890 dma_addr_t tmp_p_addr;
891 int lst_size, lst_per_page;
892 struct net_device *dev;
893 int page_num = 0;
894 struct config_param *config;
895 struct mac_info *mac_control;
896 struct stat_block *stats;
897 struct swStat *swstats;
899 if (!nic)
900 return;
902 dev = nic->dev;
904 config = &nic->config;
905 mac_control = &nic->mac_control;
906 stats = mac_control->stats_info;
907 swstats = &stats->sw_stat;
909 lst_size = sizeof(struct TxD) * config->max_txds;
910 lst_per_page = PAGE_SIZE / lst_size;
912 for (i = 0; i < config->tx_fifo_num; i++) {
913 struct fifo_info *fifo = &mac_control->fifos[i];
914 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
916 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
917 for (j = 0; j < page_num; j++) {
918 int mem_blks = (j * lst_per_page);
919 struct list_info_hold *fli;
921 if (!fifo->list_info)
922 return;
924 fli = &fifo->list_info[mem_blks];
925 if (!fli->list_virt_addr)
926 break;
927 pci_free_consistent(nic->pdev, PAGE_SIZE,
928 fli->list_virt_addr,
929 fli->list_phy_addr);
930 swstats->mem_freed += PAGE_SIZE;
932 /* If we got a zero DMA address during allocation,
933 * free the page now
935 if (mac_control->zerodma_virt_addr) {
936 pci_free_consistent(nic->pdev, PAGE_SIZE,
937 mac_control->zerodma_virt_addr,
938 (dma_addr_t)0);
939 DBG_PRINT(INIT_DBG,
940 "%s: Freeing TxDL with zero DMA address. "
941 "Virtual address %p\n",
942 dev->name, mac_control->zerodma_virt_addr);
943 swstats->mem_freed += PAGE_SIZE;
945 kfree(fifo->list_info);
946 swstats->mem_freed += tx_cfg->fifo_len *
947 sizeof(struct list_info_hold);
950 size = SIZE_OF_BLOCK;
951 for (i = 0; i < config->rx_ring_num; i++) {
952 struct ring_info *ring = &mac_control->rings[i];
954 blk_cnt = ring->block_count;
955 for (j = 0; j < blk_cnt; j++) {
956 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
958 if (tmp_v_addr == NULL)
959 break;
960 pci_free_consistent(nic->pdev, size,
961 tmp_v_addr, tmp_p_addr);
962 swstats->mem_freed += size;
963 kfree(ring->rx_blocks[j].rxds);
964 swstats->mem_freed += sizeof(struct rxd_info) *
965 rxd_count[nic->rxd_mode];
969 if (nic->rxd_mode == RXD_MODE_3B) {
970 /* Freeing buffer storage addresses in 2BUFF mode. */
971 for (i = 0; i < config->rx_ring_num; i++) {
972 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 struct ring_info *ring = &mac_control->rings[i];
975 blk_cnt = rx_cfg->num_rxd /
976 (rxd_count[nic->rxd_mode] + 1);
977 for (j = 0; j < blk_cnt; j++) {
978 int k = 0;
979 if (!ring->ba[j])
980 continue;
981 while (k != rxd_count[nic->rxd_mode]) {
982 struct buffAdd *ba = &ring->ba[j][k];
983 kfree(ba->ba_0_org);
984 swstats->mem_freed +=
985 BUF0_LEN + ALIGN_SIZE;
986 kfree(ba->ba_1_org);
987 swstats->mem_freed +=
988 BUF1_LEN + ALIGN_SIZE;
989 k++;
991 kfree(ring->ba[j]);
992 swstats->mem_freed += sizeof(struct buffAdd) *
993 (rxd_count[nic->rxd_mode] + 1);
995 kfree(ring->ba);
996 swstats->mem_freed += sizeof(struct buffAdd *) *
997 blk_cnt;
1001 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002 struct fifo_info *fifo = &mac_control->fifos[i];
1003 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1005 if (fifo->ufo_in_band_v) {
1006 swstats->mem_freed += tx_cfg->fifo_len *
1007 sizeof(u64);
1008 kfree(fifo->ufo_in_band_v);
1012 if (mac_control->stats_mem) {
1013 swstats->mem_freed += mac_control->stats_mem_sz;
1014 pci_free_consistent(nic->pdev,
1015 mac_control->stats_mem_sz,
1016 mac_control->stats_mem,
1017 mac_control->stats_mem_phy);
1022 * s2io_verify_pci_mode -
1025 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1027 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028 register u64 val64 = 0;
1029 int mode;
1031 val64 = readq(&bar0->pci_mode);
1032 mode = (u8)GET_PCI_MODE(val64);
1034 if (val64 & PCI_MODE_UNKNOWN_MODE)
1035 return -1; /* Unknown PCI mode */
1036 return mode;
1039 #define NEC_VENID 0x1033
1040 #define NEC_DEVID 0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1043 struct pci_dev *tdev = NULL;
1044 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1045 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046 if (tdev->bus == s2io_pdev->bus->parent) {
1047 pci_dev_put(tdev);
1048 return 1;
1052 return 0;
1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1057 * s2io_print_pci_mode -
1059 static int s2io_print_pci_mode(struct s2io_nic *nic)
1061 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062 register u64 val64 = 0;
1063 int mode;
1064 struct config_param *config = &nic->config;
1065 const char *pcimode;
1067 val64 = readq(&bar0->pci_mode);
1068 mode = (u8)GET_PCI_MODE(val64);
1070 if (val64 & PCI_MODE_UNKNOWN_MODE)
1071 return -1; /* Unknown PCI mode */
1073 config->bus_speed = bus_speed[mode];
1075 if (s2io_on_nec_bridge(nic->pdev)) {
1076 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077 nic->dev->name);
1078 return mode;
1081 switch (mode) {
1082 case PCI_MODE_PCI_33:
1083 pcimode = "33MHz PCI bus";
1084 break;
1085 case PCI_MODE_PCI_66:
1086 pcimode = "66MHz PCI bus";
1087 break;
1088 case PCI_MODE_PCIX_M1_66:
1089 pcimode = "66MHz PCIX(M1) bus";
1090 break;
1091 case PCI_MODE_PCIX_M1_100:
1092 pcimode = "100MHz PCIX(M1) bus";
1093 break;
1094 case PCI_MODE_PCIX_M1_133:
1095 pcimode = "133MHz PCIX(M1) bus";
1096 break;
1097 case PCI_MODE_PCIX_M2_66:
1098 pcimode = "133MHz PCIX(M2) bus";
1099 break;
1100 case PCI_MODE_PCIX_M2_100:
1101 pcimode = "200MHz PCIX(M2) bus";
1102 break;
1103 case PCI_MODE_PCIX_M2_133:
1104 pcimode = "266MHz PCIX(M2) bus";
1105 break;
1106 default:
1107 pcimode = "unsupported bus!";
1108 mode = -1;
1111 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1114 return mode;
1118 * init_tti - Initialization transmit traffic interrupt scheme
1119 * @nic: device private variable
1120 * @link: link status (UP/DOWN) used to enable/disable continuous
1121 * transmit interrupts
1122 * Description: The function configures transmit traffic interrupts
1123 * Return Value: SUCCESS on success and
1124 * '-1' on failure
1127 static int init_tti(struct s2io_nic *nic, int link)
1129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 register u64 val64 = 0;
1131 int i;
1132 struct config_param *config = &nic->config;
1134 for (i = 0; i < config->tx_fifo_num; i++) {
1136 * TTI Initialization. Default Tx timer gets us about
1137 * 250 interrupts per sec. Continuous interrupts are enabled
1138 * by default.
1140 if (nic->device_type == XFRAME_II_DEVICE) {
1141 int count = (nic->config.bus_speed * 125)/2;
1142 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 } else
1144 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1146 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150 if (i == 0)
1151 if (use_continuous_tx_intrs && (link == LINK_UP))
1152 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153 writeq(val64, &bar0->tti_data1_mem);
1155 if (nic->config.intr_type == MSI_X) {
1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 } else {
1161 if ((nic->config.tx_steering_type ==
1162 TX_DEFAULT_STEERING) &&
1163 (config->tx_fifo_num > 1) &&
1164 (i >= nic->udp_fifo_idx) &&
1165 (i < (nic->udp_fifo_idx +
1166 nic->total_udp_fifos)))
1167 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 else
1172 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 TTI_DATA2_MEM_TX_UFC_D(0x80);
1178 writeq(val64, &bar0->tti_data2_mem);
1180 val64 = TTI_CMD_MEM_WE |
1181 TTI_CMD_MEM_STROBE_NEW_CMD |
1182 TTI_CMD_MEM_OFFSET(i);
1183 writeq(val64, &bar0->tti_command_mem);
1185 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186 TTI_CMD_MEM_STROBE_NEW_CMD,
1187 S2IO_BIT_RESET) != SUCCESS)
1188 return FAILURE;
1191 return SUCCESS;
1195 * init_nic - Initialization of hardware
1196 * @nic: device private variable
1197 * Description: The function sequentially configures every block
1198 * of the H/W from their reset values.
1199 * Return Value: SUCCESS on success and
1200 * '-1' on failure (endian settings incorrect).
1203 static int init_nic(struct s2io_nic *nic)
1205 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206 struct net_device *dev = nic->dev;
1207 register u64 val64 = 0;
1208 void __iomem *add;
1209 u32 time;
1210 int i, j;
1211 int dtx_cnt = 0;
1212 unsigned long long mem_share;
1213 int mem_size;
1214 struct config_param *config = &nic->config;
1215 struct mac_info *mac_control = &nic->mac_control;
1217 /* to set the swapper controle on the card */
1218 if (s2io_set_swapper(nic)) {
1219 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220 return -EIO;
1224 * Herc requires EOI to be removed from reset before XGXS, so..
1226 if (nic->device_type & XFRAME_II_DEVICE) {
1227 val64 = 0xA500000000ULL;
1228 writeq(val64, &bar0->sw_reset);
1229 msleep(500);
1230 val64 = readq(&bar0->sw_reset);
1233 /* Remove XGXS from reset state */
1234 val64 = 0;
1235 writeq(val64, &bar0->sw_reset);
1236 msleep(500);
1237 val64 = readq(&bar0->sw_reset);
1239 /* Ensure that it's safe to access registers by checking
1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1242 if (nic->device_type == XFRAME_II_DEVICE) {
1243 for (i = 0; i < 50; i++) {
1244 val64 = readq(&bar0->adapter_status);
1245 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 break;
1247 msleep(10);
1249 if (i == 50)
1250 return -ENODEV;
1253 /* Enable Receiving broadcasts */
1254 add = &bar0->mac_cfg;
1255 val64 = readq(&bar0->mac_cfg);
1256 val64 |= MAC_RMAC_BCAST_ENABLE;
1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258 writel((u32)val64, add);
1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 writel((u32) (val64 >> 32), (add + 4));
1262 /* Read registers in all blocks */
1263 val64 = readq(&bar0->mac_int_mask);
1264 val64 = readq(&bar0->mc_int_mask);
1265 val64 = readq(&bar0->xgxs_int_mask);
1267 /* Set MTU */
1268 val64 = dev->mtu;
1269 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274 &bar0->dtx_control, UF);
1275 if (dtx_cnt & 0x1)
1276 msleep(1); /* Necessary!! */
1277 dtx_cnt++;
1279 } else {
1280 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 &bar0->dtx_control, UF);
1283 val64 = readq(&bar0->dtx_control);
1284 dtx_cnt++;
1288 /* Tx DMA Initialization */
1289 val64 = 0;
1290 writeq(val64, &bar0->tx_fifo_partition_0);
1291 writeq(val64, &bar0->tx_fifo_partition_1);
1292 writeq(val64, &bar0->tx_fifo_partition_2);
1293 writeq(val64, &bar0->tx_fifo_partition_3);
1295 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1298 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1301 if (i == (config->tx_fifo_num - 1)) {
1302 if (i % 2 == 0)
1303 i++;
1306 switch (i) {
1307 case 1:
1308 writeq(val64, &bar0->tx_fifo_partition_0);
1309 val64 = 0;
1310 j = 0;
1311 break;
1312 case 3:
1313 writeq(val64, &bar0->tx_fifo_partition_1);
1314 val64 = 0;
1315 j = 0;
1316 break;
1317 case 5:
1318 writeq(val64, &bar0->tx_fifo_partition_2);
1319 val64 = 0;
1320 j = 0;
1321 break;
1322 case 7:
1323 writeq(val64, &bar0->tx_fifo_partition_3);
1324 val64 = 0;
1325 j = 0;
1326 break;
1327 default:
1328 j++;
1329 break;
1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1337 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1340 val64 = readq(&bar0->tx_fifo_partition_0);
1341 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1345 * Initialization of Tx_PA_CONFIG register to ignore packet
1346 * integrity checking.
1348 val64 = readq(&bar0->tx_pa_cfg);
1349 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 TX_PA_CFG_IGNORE_SNAP_OUI |
1351 TX_PA_CFG_IGNORE_LLC_CTRL |
1352 TX_PA_CFG_IGNORE_L2_ERR;
1353 writeq(val64, &bar0->tx_pa_cfg);
1355 /* Rx DMA intialization. */
1356 val64 = 0;
1357 for (i = 0; i < config->rx_ring_num; i++) {
1358 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1360 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1362 writeq(val64, &bar0->rx_queue_priority);
1365 * Allocating equal share of memory to all the
1366 * configured Rings.
1368 val64 = 0;
1369 if (nic->device_type & XFRAME_II_DEVICE)
1370 mem_size = 32;
1371 else
1372 mem_size = 64;
1374 for (i = 0; i < config->rx_ring_num; i++) {
1375 switch (i) {
1376 case 0:
1377 mem_share = (mem_size / config->rx_ring_num +
1378 mem_size % config->rx_ring_num);
1379 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 continue;
1381 case 1:
1382 mem_share = (mem_size / config->rx_ring_num);
1383 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 continue;
1385 case 2:
1386 mem_share = (mem_size / config->rx_ring_num);
1387 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 continue;
1389 case 3:
1390 mem_share = (mem_size / config->rx_ring_num);
1391 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 continue;
1393 case 4:
1394 mem_share = (mem_size / config->rx_ring_num);
1395 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 continue;
1397 case 5:
1398 mem_share = (mem_size / config->rx_ring_num);
1399 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 continue;
1401 case 6:
1402 mem_share = (mem_size / config->rx_ring_num);
1403 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 continue;
1405 case 7:
1406 mem_share = (mem_size / config->rx_ring_num);
1407 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 continue;
1411 writeq(val64, &bar0->rx_queue_cfg);
1414 * Filling Tx round robin registers
1415 * as per the number of FIFOs for equal scheduling priority
1417 switch (config->tx_fifo_num) {
1418 case 1:
1419 val64 = 0x0;
1420 writeq(val64, &bar0->tx_w_round_robin_0);
1421 writeq(val64, &bar0->tx_w_round_robin_1);
1422 writeq(val64, &bar0->tx_w_round_robin_2);
1423 writeq(val64, &bar0->tx_w_round_robin_3);
1424 writeq(val64, &bar0->tx_w_round_robin_4);
1425 break;
1426 case 2:
1427 val64 = 0x0001000100010001ULL;
1428 writeq(val64, &bar0->tx_w_round_robin_0);
1429 writeq(val64, &bar0->tx_w_round_robin_1);
1430 writeq(val64, &bar0->tx_w_round_robin_2);
1431 writeq(val64, &bar0->tx_w_round_robin_3);
1432 val64 = 0x0001000100000000ULL;
1433 writeq(val64, &bar0->tx_w_round_robin_4);
1434 break;
1435 case 3:
1436 val64 = 0x0001020001020001ULL;
1437 writeq(val64, &bar0->tx_w_round_robin_0);
1438 val64 = 0x0200010200010200ULL;
1439 writeq(val64, &bar0->tx_w_round_robin_1);
1440 val64 = 0x0102000102000102ULL;
1441 writeq(val64, &bar0->tx_w_round_robin_2);
1442 val64 = 0x0001020001020001ULL;
1443 writeq(val64, &bar0->tx_w_round_robin_3);
1444 val64 = 0x0200010200000000ULL;
1445 writeq(val64, &bar0->tx_w_round_robin_4);
1446 break;
1447 case 4:
1448 val64 = 0x0001020300010203ULL;
1449 writeq(val64, &bar0->tx_w_round_robin_0);
1450 writeq(val64, &bar0->tx_w_round_robin_1);
1451 writeq(val64, &bar0->tx_w_round_robin_2);
1452 writeq(val64, &bar0->tx_w_round_robin_3);
1453 val64 = 0x0001020300000000ULL;
1454 writeq(val64, &bar0->tx_w_round_robin_4);
1455 break;
1456 case 5:
1457 val64 = 0x0001020304000102ULL;
1458 writeq(val64, &bar0->tx_w_round_robin_0);
1459 val64 = 0x0304000102030400ULL;
1460 writeq(val64, &bar0->tx_w_round_robin_1);
1461 val64 = 0x0102030400010203ULL;
1462 writeq(val64, &bar0->tx_w_round_robin_2);
1463 val64 = 0x0400010203040001ULL;
1464 writeq(val64, &bar0->tx_w_round_robin_3);
1465 val64 = 0x0203040000000000ULL;
1466 writeq(val64, &bar0->tx_w_round_robin_4);
1467 break;
1468 case 6:
1469 val64 = 0x0001020304050001ULL;
1470 writeq(val64, &bar0->tx_w_round_robin_0);
1471 val64 = 0x0203040500010203ULL;
1472 writeq(val64, &bar0->tx_w_round_robin_1);
1473 val64 = 0x0405000102030405ULL;
1474 writeq(val64, &bar0->tx_w_round_robin_2);
1475 val64 = 0x0001020304050001ULL;
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 val64 = 0x0203040500000000ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 7:
1481 val64 = 0x0001020304050600ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 val64 = 0x0102030405060001ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 val64 = 0x0203040506000102ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_2);
1487 val64 = 0x0304050600010203ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0405060000000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 8:
1493 val64 = 0x0001020304050607ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0001020300000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1503 /* Enable all configured Tx FIFO partitions */
1504 val64 = readq(&bar0->tx_fifo_partition_0);
1505 val64 |= (TX_FIFO_PARTITION_EN);
1506 writeq(val64, &bar0->tx_fifo_partition_0);
1508 /* Filling the Rx round robin registers as per the
1509 * number of Rings and steering based on QoS with
1510 * equal priority.
1512 switch (config->rx_ring_num) {
1513 case 1:
1514 val64 = 0x0;
1515 writeq(val64, &bar0->rx_w_round_robin_0);
1516 writeq(val64, &bar0->rx_w_round_robin_1);
1517 writeq(val64, &bar0->rx_w_round_robin_2);
1518 writeq(val64, &bar0->rx_w_round_robin_3);
1519 writeq(val64, &bar0->rx_w_round_robin_4);
1521 val64 = 0x8080808080808080ULL;
1522 writeq(val64, &bar0->rts_qos_steering);
1523 break;
1524 case 2:
1525 val64 = 0x0001000100010001ULL;
1526 writeq(val64, &bar0->rx_w_round_robin_0);
1527 writeq(val64, &bar0->rx_w_round_robin_1);
1528 writeq(val64, &bar0->rx_w_round_robin_2);
1529 writeq(val64, &bar0->rx_w_round_robin_3);
1530 val64 = 0x0001000100000000ULL;
1531 writeq(val64, &bar0->rx_w_round_robin_4);
1533 val64 = 0x8080808040404040ULL;
1534 writeq(val64, &bar0->rts_qos_steering);
1535 break;
1536 case 3:
1537 val64 = 0x0001020001020001ULL;
1538 writeq(val64, &bar0->rx_w_round_robin_0);
1539 val64 = 0x0200010200010200ULL;
1540 writeq(val64, &bar0->rx_w_round_robin_1);
1541 val64 = 0x0102000102000102ULL;
1542 writeq(val64, &bar0->rx_w_round_robin_2);
1543 val64 = 0x0001020001020001ULL;
1544 writeq(val64, &bar0->rx_w_round_robin_3);
1545 val64 = 0x0200010200000000ULL;
1546 writeq(val64, &bar0->rx_w_round_robin_4);
1548 val64 = 0x8080804040402020ULL;
1549 writeq(val64, &bar0->rts_qos_steering);
1550 break;
1551 case 4:
1552 val64 = 0x0001020300010203ULL;
1553 writeq(val64, &bar0->rx_w_round_robin_0);
1554 writeq(val64, &bar0->rx_w_round_robin_1);
1555 writeq(val64, &bar0->rx_w_round_robin_2);
1556 writeq(val64, &bar0->rx_w_round_robin_3);
1557 val64 = 0x0001020300000000ULL;
1558 writeq(val64, &bar0->rx_w_round_robin_4);
1560 val64 = 0x8080404020201010ULL;
1561 writeq(val64, &bar0->rts_qos_steering);
1562 break;
1563 case 5:
1564 val64 = 0x0001020304000102ULL;
1565 writeq(val64, &bar0->rx_w_round_robin_0);
1566 val64 = 0x0304000102030400ULL;
1567 writeq(val64, &bar0->rx_w_round_robin_1);
1568 val64 = 0x0102030400010203ULL;
1569 writeq(val64, &bar0->rx_w_round_robin_2);
1570 val64 = 0x0400010203040001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 val64 = 0x0203040000000000ULL;
1573 writeq(val64, &bar0->rx_w_round_robin_4);
1575 val64 = 0x8080404020201008ULL;
1576 writeq(val64, &bar0->rts_qos_steering);
1577 break;
1578 case 6:
1579 val64 = 0x0001020304050001ULL;
1580 writeq(val64, &bar0->rx_w_round_robin_0);
1581 val64 = 0x0203040500010203ULL;
1582 writeq(val64, &bar0->rx_w_round_robin_1);
1583 val64 = 0x0405000102030405ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_2);
1585 val64 = 0x0001020304050001ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_3);
1587 val64 = 0x0203040500000000ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_4);
1590 val64 = 0x8080404020100804ULL;
1591 writeq(val64, &bar0->rts_qos_steering);
1592 break;
1593 case 7:
1594 val64 = 0x0001020304050600ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_0);
1596 val64 = 0x0102030405060001ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_1);
1598 val64 = 0x0203040506000102ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_2);
1600 val64 = 0x0304050600010203ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_3);
1602 val64 = 0x0405060000000000ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_4);
1605 val64 = 0x8080402010080402ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1607 break;
1608 case 8:
1609 val64 = 0x0001020304050607ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_0);
1611 writeq(val64, &bar0->rx_w_round_robin_1);
1612 writeq(val64, &bar0->rx_w_round_robin_2);
1613 writeq(val64, &bar0->rx_w_round_robin_3);
1614 val64 = 0x0001020300000000ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_4);
1617 val64 = 0x8040201008040201ULL;
1618 writeq(val64, &bar0->rts_qos_steering);
1619 break;
1622 /* UDP Fix */
1623 val64 = 0;
1624 for (i = 0; i < 8; i++)
1625 writeq(val64, &bar0->rts_frm_len_n[i]);
1627 /* Set the default rts frame length for the rings configured */
1628 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 for (i = 0 ; i < config->rx_ring_num ; i++)
1630 writeq(val64, &bar0->rts_frm_len_n[i]);
1632 /* Set the frame length for the configured rings
1633 * desired by the user
1635 for (i = 0; i < config->rx_ring_num; i++) {
1636 /* If rts_frm_len[i] == 0 then it is assumed that user not
1637 * specified frame length steering.
1638 * If the user provides the frame length then program
1639 * the rts_frm_len register for those values or else
1640 * leave it as it is.
1642 if (rts_frm_len[i] != 0) {
1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644 &bar0->rts_frm_len_n[i]);
1648 /* Disable differentiated services steering logic */
1649 for (i = 0; i < 64; i++) {
1650 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651 DBG_PRINT(ERR_DBG,
1652 "%s: rts_ds_steer failed on codepoint %d\n",
1653 dev->name, i);
1654 return -ENODEV;
1658 /* Program statistics memory */
1659 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1661 if (nic->device_type == XFRAME_II_DEVICE) {
1662 val64 = STAT_BC(0x320);
1663 writeq(val64, &bar0->stat_byte_cnt);
1667 * Initializing the sampling rate for the device to calculate the
1668 * bandwidth utilization.
1670 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672 writeq(val64, &bar0->mac_link_util);
1675 * Initializing the Transmit and Receive Traffic Interrupt
1676 * Scheme.
1679 /* Initialize TTI */
1680 if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 return -ENODEV;
1683 /* RTI Initialization */
1684 if (nic->device_type == XFRAME_II_DEVICE) {
1686 * Programmed to generate Apprx 500 Intrs per
1687 * second
1689 int count = (nic->config.bus_speed * 125)/4;
1690 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 } else
1692 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1698 writeq(val64, &bar0->rti_data1_mem);
1700 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 if (nic->config.intr_type == MSI_X)
1703 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 RTI_DATA2_MEM_RX_UFC_D(0x40));
1705 else
1706 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 RTI_DATA2_MEM_RX_UFC_D(0x80));
1708 writeq(val64, &bar0->rti_data2_mem);
1710 for (i = 0; i < config->rx_ring_num; i++) {
1711 val64 = RTI_CMD_MEM_WE |
1712 RTI_CMD_MEM_STROBE_NEW_CMD |
1713 RTI_CMD_MEM_OFFSET(i);
1714 writeq(val64, &bar0->rti_command_mem);
1717 * Once the operation completes, the Strobe bit of the
1718 * command register will be reset. We poll for this
1719 * particular condition. We wait for a maximum of 500ms
1720 * for the operation to complete, if it's not complete
1721 * by then we return error.
1723 time = 0;
1724 while (true) {
1725 val64 = readq(&bar0->rti_command_mem);
1726 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 break;
1729 if (time > 10) {
1730 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731 dev->name);
1732 return -ENODEV;
1734 time++;
1735 msleep(50);
1740 * Initializing proper values as Pause threshold into all
1741 * the 8 Queues on Rx side.
1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1746 /* Disable RMAC PAD STRIPPING */
1747 add = &bar0->mac_cfg;
1748 val64 = readq(&bar0->mac_cfg);
1749 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 writel((u32) (val64), add);
1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 writel((u32) (val64 >> 32), (add + 4));
1754 val64 = readq(&bar0->mac_cfg);
1756 /* Enable FCS stripping by adapter */
1757 add = &bar0->mac_cfg;
1758 val64 = readq(&bar0->mac_cfg);
1759 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 if (nic->device_type == XFRAME_II_DEVICE)
1761 writeq(val64, &bar0->mac_cfg);
1762 else {
1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 writel((u32) (val64), add);
1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 writel((u32) (val64 >> 32), (add + 4));
1770 * Set the time value to be inserted in the pause frame
1771 * generated by xena.
1773 val64 = readq(&bar0->rmac_pause_cfg);
1774 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 writeq(val64, &bar0->rmac_pause_cfg);
1779 * Set the Threshold Limit for Generating the pause frame
1780 * If the amount of data in any Queue exceeds ratio of
1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 * pause frame is generated
1784 val64 = 0;
1785 for (i = 0; i < 4; i++) {
1786 val64 |= (((u64)0xFF00 |
1787 nic->mac_control.mc_pause_threshold_q0q3)
1788 << (i * 2 * 8));
1790 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1792 val64 = 0;
1793 for (i = 0; i < 4; i++) {
1794 val64 |= (((u64)0xFF00 |
1795 nic->mac_control.mc_pause_threshold_q4q7)
1796 << (i * 2 * 8));
1798 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1801 * TxDMA will stop Read request if the number of read split has
1802 * exceeded the limit pointed by shared_splits
1804 val64 = readq(&bar0->pic_control);
1805 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 writeq(val64, &bar0->pic_control);
1808 if (nic->config.bus_speed == 266) {
1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 writeq(0x0, &bar0->read_retry_delay);
1811 writeq(0x0, &bar0->write_retry_delay);
1815 * Programming the Herc to split every write transaction
1816 * that does not start on an ADB to reduce disconnects.
1818 if (nic->device_type == XFRAME_II_DEVICE) {
1819 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 MISC_LINK_STABILITY_PRD(3);
1821 writeq(val64, &bar0->misc_control);
1822 val64 = readq(&bar0->pic_control2);
1823 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824 writeq(val64, &bar0->pic_control2);
1826 if (strstr(nic->product_name, "CX4")) {
1827 val64 = TMAC_AVG_IPG(0x17);
1828 writeq(val64, &bar0->tmac_avg_ipg);
1831 return SUCCESS;
1833 #define LINK_UP_DOWN_INTERRUPT 1
1834 #define MAC_RMAC_ERR_TIMER 2
1836 static int s2io_link_fault_indication(struct s2io_nic *nic)
1838 if (nic->device_type == XFRAME_II_DEVICE)
1839 return LINK_UP_DOWN_INTERRUPT;
1840 else
1841 return MAC_RMAC_ERR_TIMER;
1845 * do_s2io_write_bits - update alarm bits in alarm register
1846 * @value: alarm bits
1847 * @flag: interrupt status
1848 * @addr: address value
1849 * Description: update alarm bits in alarm register
1850 * Return Value:
1851 * NONE.
1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1855 u64 temp64;
1857 temp64 = readq(addr);
1859 if (flag == ENABLE_INTRS)
1860 temp64 &= ~((u64)value);
1861 else
1862 temp64 |= ((u64)value);
1863 writeq(temp64, addr);
1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 register u64 gen_int_mask = 0;
1870 u64 interruptible;
1872 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873 if (mask & TX_DMA_INTR) {
1874 gen_int_mask |= TXDMA_INT_M;
1876 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877 TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1881 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 &bar0->pfc_err_mask);
1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 PCC_TXB_ECC_SG_ERR,
1896 flag, &bar0->pcc_err_mask);
1898 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1901 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 flag, &bar0->lso_err_mask);
1906 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907 flag, &bar0->tpa_err_mask);
1909 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1912 if (mask & TX_MAC_INTR) {
1913 gen_int_mask |= TXMAC_INT_M;
1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915 &bar0->mac_int_mask);
1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 flag, &bar0->mac_tmac_err_mask);
1922 if (mask & TX_XGXS_INTR) {
1923 gen_int_mask |= TXXGXS_INT_M;
1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925 &bar0->xgxs_int_mask);
1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 flag, &bar0->xgxs_txgxs_err_mask);
1931 if (mask & RX_DMA_INTR) {
1932 gen_int_mask |= RXDMA_INT_M;
1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 flag, &bar0->rxdma_int_mask);
1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 &bar0->prc_pcix_err_mask);
1944 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 &bar0->rpa_err_mask);
1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 RDA_FRM_ECC_SG_ERR |
1951 RDA_MISC_ERR|RDA_PCIX_ERR,
1952 flag, &bar0->rda_err_mask);
1953 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 flag, &bar0->rti_err_mask);
1958 if (mask & RX_MAC_INTR) {
1959 gen_int_mask |= RXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961 &bar0->mac_int_mask);
1962 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 RMAC_DOUBLE_ECC_ERR);
1965 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 do_s2io_write_bits(interruptible,
1968 flag, &bar0->mac_rmac_err_mask);
1971 if (mask & RX_XGXS_INTR) {
1972 gen_int_mask |= RXXGXS_INT_M;
1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974 &bar0->xgxs_int_mask);
1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976 &bar0->xgxs_rxgxs_err_mask);
1979 if (mask & MC_INTR) {
1980 gen_int_mask |= MC_INT_M;
1981 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 flag, &bar0->mc_int_mask);
1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 &bar0->mc_err_mask);
1987 nic->general_int_mask = gen_int_mask;
1989 /* Remove this line when alarm interrupts are enabled */
1990 nic->general_int_mask = 0;
1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1995 * @nic: device private variable,
1996 * @mask: A mask indicating which Intr block must be modified and,
1997 * @flag: A flag indicating whether to enable or disable the Intrs.
1998 * Description: This function will either disable or enable the interrupts
1999 * depending on the flag argument. The mask argument can be used to
2000 * enable/disable any Intr block.
2001 * Return Value: NONE.
2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2006 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007 register u64 temp64 = 0, intr_mask = 0;
2009 intr_mask = nic->general_int_mask;
2011 /* Top level interrupt classification */
2012 /* PIC Interrupts */
2013 if (mask & TX_PIC_INTR) {
2014 /* Enable PIC Intrs in the general intr mask register */
2015 intr_mask |= TXPIC_INT_M;
2016 if (flag == ENABLE_INTRS) {
2018 * If Hercules adapter enable GPIO otherwise
2019 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020 * interrupts for now.
2021 * TODO
2023 if (s2io_link_fault_indication(nic) ==
2024 LINK_UP_DOWN_INTERRUPT) {
2025 do_s2io_write_bits(PIC_INT_GPIO, flag,
2026 &bar0->pic_int_mask);
2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028 &bar0->gpio_int_mask);
2029 } else
2030 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031 } else if (flag == DISABLE_INTRS) {
2033 * Disable PIC Intrs in the general
2034 * intr mask register
2036 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2040 /* Tx traffic interrupts */
2041 if (mask & TX_TRAFFIC_INTR) {
2042 intr_mask |= TXTRAFFIC_INT_M;
2043 if (flag == ENABLE_INTRS) {
2045 * Enable all the Tx side interrupts
2046 * writing 0 Enables all 64 TX interrupt levels
2048 writeq(0x0, &bar0->tx_traffic_mask);
2049 } else if (flag == DISABLE_INTRS) {
2051 * Disable Tx Traffic Intrs in the general intr mask
2052 * register.
2054 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2058 /* Rx traffic interrupts */
2059 if (mask & RX_TRAFFIC_INTR) {
2060 intr_mask |= RXTRAFFIC_INT_M;
2061 if (flag == ENABLE_INTRS) {
2062 /* writing 0 Enables all 8 RX interrupt levels */
2063 writeq(0x0, &bar0->rx_traffic_mask);
2064 } else if (flag == DISABLE_INTRS) {
2066 * Disable Rx Traffic Intrs in the general intr mask
2067 * register.
2069 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2073 temp64 = readq(&bar0->general_int_mask);
2074 if (flag == ENABLE_INTRS)
2075 temp64 &= ~((u64)intr_mask);
2076 else
2077 temp64 = DISABLE_ALL_INTRS;
2078 writeq(temp64, &bar0->general_int_mask);
2080 nic->general_int_mask = readq(&bar0->general_int_mask);
2084 * verify_pcc_quiescent- Checks for PCC quiescent state
2085 * Return: 1 If PCC is quiescence
2086 * 0 If PCC is not quiescence
2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2090 int ret = 0, herc;
2091 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092 u64 val64 = readq(&bar0->adapter_status);
2094 herc = (sp->device_type == XFRAME_II_DEVICE);
2096 if (flag == false) {
2097 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 ret = 1;
2100 } else {
2101 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102 ret = 1;
2104 } else {
2105 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107 ADAPTER_STATUS_RMAC_PCC_IDLE))
2108 ret = 1;
2109 } else {
2110 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112 ret = 1;
2116 return ret;
2119 * verify_xena_quiescence - Checks whether the H/W is ready
2120 * Description: Returns whether the H/W is ready to go or not. Depending
2121 * on whether adapter enable bit was written or not the comparison
2122 * differs and the calling function passes the input argument flag to
2123 * indicate this.
2124 * Return: 1 If xena is quiescence
2125 * 0 If Xena is not quiescence
2128 static int verify_xena_quiescence(struct s2io_nic *sp)
2130 int mode;
2131 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132 u64 val64 = readq(&bar0->adapter_status);
2133 mode = s2io_verify_pci_mode(sp);
2135 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137 return 0;
2139 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141 return 0;
2143 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145 return 0;
2147 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149 return 0;
2151 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153 return 0;
2155 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157 return 0;
2159 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161 return 0;
2163 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165 return 0;
2169 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 * the the P_PLL_LOCK bit in the adapter_status register will
2171 * not be asserted.
2173 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174 sp->device_type == XFRAME_II_DEVICE &&
2175 mode != PCI_MODE_PCI_33) {
2176 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177 return 0;
2179 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182 return 0;
2184 return 1;
2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
2190 * Description :
2191 * New procedure to clear mac address reading problems on Alpha platforms
2195 static void fix_mac_address(struct s2io_nic *sp)
2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 int i = 0;
2200 while (fix_mac[i] != END_SIGN) {
2201 writeq(fix_mac[i++], &bar0->gpio_control);
2202 udelay(10);
2203 (void) readq(&bar0->gpio_control);
2208 * start_nic - Turns the device on
2209 * @nic : device private variable.
2210 * Description:
2211 * This function actually turns the device on. Before this function is
2212 * called,all Registers are configured from their reset states
2213 * and shared memory is allocated but the NIC is still quiescent. On
2214 * calling this function, the device interrupts are cleared and the NIC is
2215 * literally switched on by writing into the adapter control register.
2216 * Return Value:
2217 * SUCCESS on success and -1 on failure.
2220 static int start_nic(struct s2io_nic *nic)
2222 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223 struct net_device *dev = nic->dev;
2224 register u64 val64 = 0;
2225 u16 subid, i;
2226 struct config_param *config = &nic->config;
2227 struct mac_info *mac_control = &nic->mac_control;
2229 /* PRC Initialization and configuration */
2230 for (i = 0; i < config->rx_ring_num; i++) {
2231 struct ring_info *ring = &mac_control->rings[i];
2233 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234 &bar0->prc_rxd0_n[i]);
2236 val64 = readq(&bar0->prc_ctrl_n[i]);
2237 if (nic->rxd_mode == RXD_MODE_1)
2238 val64 |= PRC_CTRL_RC_ENABLED;
2239 else
2240 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241 if (nic->device_type == XFRAME_II_DEVICE)
2242 val64 |= PRC_CTRL_GROUP_READS;
2243 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245 writeq(val64, &bar0->prc_ctrl_n[i]);
2248 if (nic->rxd_mode == RXD_MODE_3B) {
2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 val64 = readq(&bar0->rx_pa_cfg);
2251 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 writeq(val64, &bar0->rx_pa_cfg);
2255 if (vlan_tag_strip == 0) {
2256 val64 = readq(&bar0->rx_pa_cfg);
2257 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 writeq(val64, &bar0->rx_pa_cfg);
2259 nic->vlan_strip_flag = 0;
2263 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 * for around 100ms, which is approximately the time required
2265 * for the device to be ready for operation.
2267 val64 = readq(&bar0->mc_rldram_mrs);
2268 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 val64 = readq(&bar0->mc_rldram_mrs);
2272 msleep(100); /* Delay by around 100 ms. */
2274 /* Enabling ECC Protection. */
2275 val64 = readq(&bar0->adapter_control);
2276 val64 &= ~ADAPTER_ECC_EN;
2277 writeq(val64, &bar0->adapter_control);
2280 * Verify if the device is ready to be enabled, if so enable
2281 * it.
2283 val64 = readq(&bar0->adapter_status);
2284 if (!verify_xena_quiescence(nic)) {
2285 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 "Adapter status reads: 0x%llx\n",
2287 dev->name, (unsigned long long)val64);
2288 return FAILURE;
2292 * With some switches, link might be already up at this point.
2293 * Because of this weird behavior, when we enable laser,
2294 * we may not get link. We need to handle this. We cannot
2295 * figure out which switch is misbehaving. So we are forced to
2296 * make a global change.
2299 /* Enabling Laser. */
2300 val64 = readq(&bar0->adapter_control);
2301 val64 |= ADAPTER_EOI_TX_ON;
2302 writeq(val64, &bar0->adapter_control);
2304 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2306 * Dont see link state interrupts initially on some switches,
2307 * so directly scheduling the link state task here.
2309 schedule_work(&nic->set_link_task);
2311 /* SXE-002: Initialize link and activity LED */
2312 subid = nic->pdev->subsystem_device;
2313 if (((subid & 0xFF) >= 0x07) &&
2314 (nic->device_type == XFRAME_I_DEVICE)) {
2315 val64 = readq(&bar0->gpio_control);
2316 val64 |= 0x0000800000000000ULL;
2317 writeq(val64, &bar0->gpio_control);
2318 val64 = 0x0411040400000000ULL;
2319 writeq(val64, (void __iomem *)bar0 + 0x2700);
2322 return SUCCESS;
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 struct TxD *txdlp, int get_off)
2330 struct s2io_nic *nic = fifo_data->nic;
2331 struct sk_buff *skb;
2332 struct TxD *txds;
2333 u16 j, frg_cnt;
2335 txds = txdlp;
2336 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 sizeof(u64), PCI_DMA_TODEVICE);
2339 txds++;
2342 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343 if (!skb) {
2344 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345 return NULL;
2347 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348 skb_headlen(skb), PCI_DMA_TODEVICE);
2349 frg_cnt = skb_shinfo(skb)->nr_frags;
2350 if (frg_cnt) {
2351 txds++;
2352 for (j = 0; j < frg_cnt; j++, txds++) {
2353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354 if (!txds->Buffer_Pointer)
2355 break;
2356 pci_unmap_page(nic->pdev,
2357 (dma_addr_t)txds->Buffer_Pointer,
2358 skb_frag_size(frag), PCI_DMA_TODEVICE);
2361 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 return skb;
2366 * free_tx_buffers - Free all queued Tx buffers
2367 * @nic : device private variable.
2368 * Description:
2369 * Free all queued Tx buffers.
2370 * Return Value: void
2373 static void free_tx_buffers(struct s2io_nic *nic)
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
2377 struct TxD *txdp;
2378 int i, j;
2379 int cnt = 0;
2380 struct config_param *config = &nic->config;
2381 struct mac_info *mac_control = &nic->mac_control;
2382 struct stat_block *stats = mac_control->stats_info;
2383 struct swStat *swstats = &stats->sw_stat;
2385 for (i = 0; i < config->tx_fifo_num; i++) {
2386 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 struct fifo_info *fifo = &mac_control->fifos[i];
2388 unsigned long flags;
2390 spin_lock_irqsave(&fifo->tx_lock, flags);
2391 for (j = 0; j < tx_cfg->fifo_len; j++) {
2392 txdp = fifo->list_info[j].list_virt_addr;
2393 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 if (skb) {
2395 swstats->mem_freed += skb->truesize;
2396 dev_kfree_skb(skb);
2397 cnt++;
2400 DBG_PRINT(INTR_DBG,
2401 "%s: forcibly freeing %d skbs on FIFO%d\n",
2402 dev->name, cnt, i);
2403 fifo->tx_curr_get_info.offset = 0;
2404 fifo->tx_curr_put_info.offset = 0;
2405 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2410 * stop_nic - To stop the nic
2411 * @nic ; device private variable.
2412 * Description:
2413 * This function does exactly the opposite of what the start_nic()
2414 * function does. This function is called to stop the device.
2415 * Return Value:
2416 * void.
2419 static void stop_nic(struct s2io_nic *nic)
2421 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422 register u64 val64 = 0;
2423 u16 interruptible;
2425 /* Disable all interrupts */
2426 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428 interruptible |= TX_PIC_INTR;
2429 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 val64 = readq(&bar0->adapter_control);
2433 val64 &= ~(ADAPTER_CNTL_EN);
2434 writeq(val64, &bar0->adapter_control);
2438 * fill_rx_buffers - Allocates the Rx side skbs
2439 * @ring_info: per ring structure
2440 * @from_card_up: If this is true, we will map the buffer to get
2441 * the dma address for buf0 and buf1 to give it to the card.
2442 * Else we will sync the already mapped buffer to give it to the card.
2443 * Description:
2444 * The function allocates Rx side skbs and puts the physical
2445 * address of these buffers into the RxD buffer pointers, so that the NIC
2446 * can DMA the received frame into these locations.
2447 * The NIC supports 3 receive modes, viz
2448 * 1. single buffer,
2449 * 2. three buffer and
2450 * 3. Five buffer modes.
2451 * Each mode defines how many fragments the received frame will be split
2452 * up into by the NIC. The frame is split into L3 header, L4 Header,
2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 * is split into 3 fragments. As of now only single buffer mode is
2455 * supported.
2456 * Return Value:
2457 * SUCCESS on success or an appropriate -ve value on failure.
2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460 int from_card_up)
2462 struct sk_buff *skb;
2463 struct RxD_t *rxdp;
2464 int off, size, block_no, block_no1;
2465 u32 alloc_tab = 0;
2466 u32 alloc_cnt;
2467 u64 tmp;
2468 struct buffAdd *ba;
2469 struct RxD_t *first_rxdp = NULL;
2470 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471 int rxd_index = 0;
2472 struct RxD1 *rxdp1;
2473 struct RxD3 *rxdp3;
2474 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2476 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2478 block_no1 = ring->rx_curr_get_info.block_index;
2479 while (alloc_tab < alloc_cnt) {
2480 block_no = ring->rx_curr_put_info.block_index;
2482 off = ring->rx_curr_put_info.offset;
2484 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2486 rxd_index = off + 1;
2487 if (block_no)
2488 rxd_index += (block_no * ring->rxd_count);
2490 if ((block_no == block_no1) &&
2491 (off == ring->rx_curr_get_info.offset) &&
2492 (rxdp->Host_Control)) {
2493 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 ring->dev->name);
2495 goto end;
2497 if (off && (off == ring->rxd_count)) {
2498 ring->rx_curr_put_info.block_index++;
2499 if (ring->rx_curr_put_info.block_index ==
2500 ring->block_count)
2501 ring->rx_curr_put_info.block_index = 0;
2502 block_no = ring->rx_curr_put_info.block_index;
2503 off = 0;
2504 ring->rx_curr_put_info.offset = off;
2505 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507 ring->dev->name, rxdp);
2511 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512 ((ring->rxd_mode == RXD_MODE_3B) &&
2513 (rxdp->Control_2 & s2BIT(0)))) {
2514 ring->rx_curr_put_info.offset = off;
2515 goto end;
2517 /* calculate size of skb based on ring mode */
2518 size = ring->mtu +
2519 HEADER_ETHERNET_II_802_3_SIZE +
2520 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521 if (ring->rxd_mode == RXD_MODE_1)
2522 size += NET_IP_ALIGN;
2523 else
2524 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2526 /* allocate skb */
2527 skb = dev_alloc_skb(size);
2528 if (!skb) {
2529 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 ring->dev->name);
2531 if (first_rxdp) {
2532 wmb();
2533 first_rxdp->Control_1 |= RXD_OWN_XENA;
2535 swstats->mem_alloc_fail_cnt++;
2537 return -ENOMEM ;
2539 swstats->mem_allocated += skb->truesize;
2541 if (ring->rxd_mode == RXD_MODE_1) {
2542 /* 1 buffer mode - normal operation mode */
2543 rxdp1 = (struct RxD1 *)rxdp;
2544 memset(rxdp, 0, sizeof(struct RxD1));
2545 skb_reserve(skb, NET_IP_ALIGN);
2546 rxdp1->Buffer0_ptr =
2547 pci_map_single(ring->pdev, skb->data,
2548 size - NET_IP_ALIGN,
2549 PCI_DMA_FROMDEVICE);
2550 if (pci_dma_mapping_error(nic->pdev,
2551 rxdp1->Buffer0_ptr))
2552 goto pci_map_failed;
2554 rxdp->Control_2 =
2555 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556 rxdp->Host_Control = (unsigned long)skb;
2557 } else if (ring->rxd_mode == RXD_MODE_3B) {
2559 * 2 buffer mode -
2560 * 2 buffer mode provides 128
2561 * byte aligned receive buffers.
2564 rxdp3 = (struct RxD3 *)rxdp;
2565 /* save buffer pointers to avoid frequent dma mapping */
2566 Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 Buffer1_ptr = rxdp3->Buffer1_ptr;
2568 memset(rxdp, 0, sizeof(struct RxD3));
2569 /* restore the buffer pointers for dma sync*/
2570 rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 rxdp3->Buffer1_ptr = Buffer1_ptr;
2573 ba = &ring->ba[block_no][off];
2574 skb_reserve(skb, BUF0_LEN);
2575 tmp = (u64)(unsigned long)skb->data;
2576 tmp += ALIGN_SIZE;
2577 tmp &= ~ALIGN_SIZE;
2578 skb->data = (void *) (unsigned long)tmp;
2579 skb_reset_tail_pointer(skb);
2581 if (from_card_up) {
2582 rxdp3->Buffer0_ptr =
2583 pci_map_single(ring->pdev, ba->ba_0,
2584 BUF0_LEN,
2585 PCI_DMA_FROMDEVICE);
2586 if (pci_dma_mapping_error(nic->pdev,
2587 rxdp3->Buffer0_ptr))
2588 goto pci_map_failed;
2589 } else
2590 pci_dma_sync_single_for_device(ring->pdev,
2591 (dma_addr_t)rxdp3->Buffer0_ptr,
2592 BUF0_LEN,
2593 PCI_DMA_FROMDEVICE);
2595 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596 if (ring->rxd_mode == RXD_MODE_3B) {
2597 /* Two buffer mode */
2600 * Buffer2 will have L3/L4 header plus
2601 * L4 payload
2603 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 skb->data,
2605 ring->mtu + 4,
2606 PCI_DMA_FROMDEVICE);
2608 if (pci_dma_mapping_error(nic->pdev,
2609 rxdp3->Buffer2_ptr))
2610 goto pci_map_failed;
2612 if (from_card_up) {
2613 rxdp3->Buffer1_ptr =
2614 pci_map_single(ring->pdev,
2615 ba->ba_1,
2616 BUF1_LEN,
2617 PCI_DMA_FROMDEVICE);
2619 if (pci_dma_mapping_error(nic->pdev,
2620 rxdp3->Buffer1_ptr)) {
2621 pci_unmap_single(ring->pdev,
2622 (dma_addr_t)(unsigned long)
2623 skb->data,
2624 ring->mtu + 4,
2625 PCI_DMA_FROMDEVICE);
2626 goto pci_map_failed;
2629 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631 (ring->mtu + 4);
2633 rxdp->Control_2 |= s2BIT(0);
2634 rxdp->Host_Control = (unsigned long) (skb);
2636 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 rxdp->Control_1 |= RXD_OWN_XENA;
2638 off++;
2639 if (off == (ring->rxd_count + 1))
2640 off = 0;
2641 ring->rx_curr_put_info.offset = off;
2643 rxdp->Control_2 |= SET_RXD_MARKER;
2644 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 if (first_rxdp) {
2646 wmb();
2647 first_rxdp->Control_1 |= RXD_OWN_XENA;
2649 first_rxdp = rxdp;
2651 ring->rx_bufs_left += 1;
2652 alloc_tab++;
2655 end:
2656 /* Transfer ownership of first descriptor to adapter just before
2657 * exiting. Before that, use memory barrier so that ownership
2658 * and other fields are seen by adapter correctly.
2660 if (first_rxdp) {
2661 wmb();
2662 first_rxdp->Control_1 |= RXD_OWN_XENA;
2665 return SUCCESS;
2667 pci_map_failed:
2668 swstats->pci_map_fail_cnt++;
2669 swstats->mem_freed += skb->truesize;
2670 dev_kfree_skb_irq(skb);
2671 return -ENOMEM;
2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2676 struct net_device *dev = sp->dev;
2677 int j;
2678 struct sk_buff *skb;
2679 struct RxD_t *rxdp;
2680 struct RxD1 *rxdp1;
2681 struct RxD3 *rxdp3;
2682 struct mac_info *mac_control = &sp->mac_control;
2683 struct stat_block *stats = mac_control->stats_info;
2684 struct swStat *swstats = &stats->sw_stat;
2686 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 rxdp = mac_control->rings[ring_no].
2688 rx_blocks[blk].rxds[j].virt_addr;
2689 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 if (!skb)
2691 continue;
2692 if (sp->rxd_mode == RXD_MODE_1) {
2693 rxdp1 = (struct RxD1 *)rxdp;
2694 pci_unmap_single(sp->pdev,
2695 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 dev->mtu +
2697 HEADER_ETHERNET_II_802_3_SIZE +
2698 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 PCI_DMA_FROMDEVICE);
2700 memset(rxdp, 0, sizeof(struct RxD1));
2701 } else if (sp->rxd_mode == RXD_MODE_3B) {
2702 rxdp3 = (struct RxD3 *)rxdp;
2703 pci_unmap_single(sp->pdev,
2704 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 BUF0_LEN,
2706 PCI_DMA_FROMDEVICE);
2707 pci_unmap_single(sp->pdev,
2708 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 BUF1_LEN,
2710 PCI_DMA_FROMDEVICE);
2711 pci_unmap_single(sp->pdev,
2712 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 dev->mtu + 4,
2714 PCI_DMA_FROMDEVICE);
2715 memset(rxdp, 0, sizeof(struct RxD3));
2717 swstats->mem_freed += skb->truesize;
2718 dev_kfree_skb(skb);
2719 mac_control->rings[ring_no].rx_bufs_left -= 1;
2724 * free_rx_buffers - Frees all Rx buffers
2725 * @sp: device private variable.
2726 * Description:
2727 * This function will free all Rx buffers allocated by host.
2728 * Return Value:
2729 * NONE.
2732 static void free_rx_buffers(struct s2io_nic *sp)
2734 struct net_device *dev = sp->dev;
2735 int i, blk = 0, buf_cnt = 0;
2736 struct config_param *config = &sp->config;
2737 struct mac_info *mac_control = &sp->mac_control;
2739 for (i = 0; i < config->rx_ring_num; i++) {
2740 struct ring_info *ring = &mac_control->rings[i];
2742 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743 free_rxd_blk(sp, i, blk);
2745 ring->rx_curr_put_info.block_index = 0;
2746 ring->rx_curr_get_info.block_index = 0;
2747 ring->rx_curr_put_info.offset = 0;
2748 ring->rx_curr_get_info.offset = 0;
2749 ring->rx_bufs_left = 0;
2750 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751 dev->name, buf_cnt, i);
2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2757 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 ring->dev->name);
2761 return 0;
2765 * s2io_poll - Rx interrupt handler for NAPI support
2766 * @napi : pointer to the napi structure.
2767 * @budget : The number of packets that were budgeted to be processed
2768 * during one pass through the 'Poll" function.
2769 * Description:
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2773 * Return value:
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2777 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2779 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 struct net_device *dev = ring->dev;
2781 int pkts_processed = 0;
2782 u8 __iomem *addr = NULL;
2783 u8 val8 = 0;
2784 struct s2io_nic *nic = netdev_priv(dev);
2785 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786 int budget_org = budget;
2788 if (unlikely(!is_s2io_card_up(nic)))
2789 return 0;
2791 pkts_processed = rx_intr_handler(ring, budget);
2792 s2io_chk_rx_buffers(nic, ring);
2794 if (pkts_processed < budget_org) {
2795 napi_complete(napi);
2796 /*Re Enable MSI-Rx Vector*/
2797 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798 addr += 7 - ring->ring_no;
2799 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 writeb(val8, addr);
2801 val8 = readb(addr);
2803 return pkts_processed;
2806 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2808 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809 int pkts_processed = 0;
2810 int ring_pkts_processed, i;
2811 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 int budget_org = budget;
2813 struct config_param *config = &nic->config;
2814 struct mac_info *mac_control = &nic->mac_control;
2816 if (unlikely(!is_s2io_card_up(nic)))
2817 return 0;
2819 for (i = 0; i < config->rx_ring_num; i++) {
2820 struct ring_info *ring = &mac_control->rings[i];
2821 ring_pkts_processed = rx_intr_handler(ring, budget);
2822 s2io_chk_rx_buffers(nic, ring);
2823 pkts_processed += ring_pkts_processed;
2824 budget -= ring_pkts_processed;
2825 if (budget <= 0)
2826 break;
2828 if (pkts_processed < budget_org) {
2829 napi_complete(napi);
2830 /* Re enable the Rx interrupts for the ring */
2831 writeq(0, &bar0->rx_traffic_mask);
2832 readl(&bar0->rx_traffic_mask);
2834 return pkts_processed;
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2839 * s2io_netpoll - netpoll event handler entry point
2840 * @dev : pointer to the device structure.
2841 * Description:
2842 * This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
2847 static void s2io_netpoll(struct net_device *dev)
2849 struct s2io_nic *nic = netdev_priv(dev);
2850 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2851 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2852 int i;
2853 struct config_param *config = &nic->config;
2854 struct mac_info *mac_control = &nic->mac_control;
2856 if (pci_channel_offline(nic->pdev))
2857 return;
2859 disable_irq(dev->irq);
2861 writeq(val64, &bar0->rx_traffic_int);
2862 writeq(val64, &bar0->tx_traffic_int);
2864 /* we need to free up the transmitted skbufs or else netpoll will
2865 * run out of skbs and will fail and eventually netpoll application such
2866 * as netdump will fail.
2868 for (i = 0; i < config->tx_fifo_num; i++)
2869 tx_intr_handler(&mac_control->fifos[i]);
2871 /* check for received packet and indicate up to network */
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 struct ring_info *ring = &mac_control->rings[i];
2875 rx_intr_handler(ring, 0);
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 struct ring_info *ring = &mac_control->rings[i];
2881 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2882 DBG_PRINT(INFO_DBG,
2883 "%s: Out of memory in Rx Netpoll!!\n",
2884 dev->name);
2885 break;
2888 enable_irq(dev->irq);
2890 #endif
2893 * rx_intr_handler - Rx interrupt handler
2894 * @ring_info: per ring structure.
2895 * @budget: budget for napi processing.
2896 * Description:
2897 * If the interrupt is because of a received frame or if the
2898 * receive ring contains fresh as yet un-processed frames,this function is
2899 * called. It picks out the RxD at which place the last Rx processing had
2900 * stopped and sends the skb to the OSM's Rx handler and then increments
2901 * the offset.
2902 * Return Value:
2903 * No. of napi packets processed.
2905 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2907 int get_block, put_block;
2908 struct rx_curr_get_info get_info, put_info;
2909 struct RxD_t *rxdp;
2910 struct sk_buff *skb;
2911 int pkt_cnt = 0, napi_pkts = 0;
2912 int i;
2913 struct RxD1 *rxdp1;
2914 struct RxD3 *rxdp3;
2916 get_info = ring_data->rx_curr_get_info;
2917 get_block = get_info.block_index;
2918 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2919 put_block = put_info.block_index;
2920 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2922 while (RXD_IS_UP2DT(rxdp)) {
2924 * If your are next to put index then it's
2925 * FIFO full condition
2927 if ((get_block == put_block) &&
2928 (get_info.offset + 1) == put_info.offset) {
2929 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2930 ring_data->dev->name);
2931 break;
2933 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2934 if (skb == NULL) {
2935 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2936 ring_data->dev->name);
2937 return 0;
2939 if (ring_data->rxd_mode == RXD_MODE_1) {
2940 rxdp1 = (struct RxD1 *)rxdp;
2941 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2942 rxdp1->Buffer0_ptr,
2943 ring_data->mtu +
2944 HEADER_ETHERNET_II_802_3_SIZE +
2945 HEADER_802_2_SIZE +
2946 HEADER_SNAP_SIZE,
2947 PCI_DMA_FROMDEVICE);
2948 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2949 rxdp3 = (struct RxD3 *)rxdp;
2950 pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 (dma_addr_t)rxdp3->Buffer0_ptr,
2952 BUF0_LEN,
2953 PCI_DMA_FROMDEVICE);
2954 pci_unmap_single(ring_data->pdev,
2955 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 ring_data->mtu + 4,
2957 PCI_DMA_FROMDEVICE);
2959 prefetch(skb->data);
2960 rx_osm_handler(ring_data, rxdp);
2961 get_info.offset++;
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 rxdp = ring_data->rx_blocks[get_block].
2964 rxds[get_info.offset].virt_addr;
2965 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2966 get_info.offset = 0;
2967 ring_data->rx_curr_get_info.offset = get_info.offset;
2968 get_block++;
2969 if (get_block == ring_data->block_count)
2970 get_block = 0;
2971 ring_data->rx_curr_get_info.block_index = get_block;
2972 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2975 if (ring_data->nic->config.napi) {
2976 budget--;
2977 napi_pkts++;
2978 if (!budget)
2979 break;
2981 pkt_cnt++;
2982 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 break;
2985 if (ring_data->lro) {
2986 /* Clear all LRO sessions before exiting */
2987 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2988 struct lro *lro = &ring_data->lro0_n[i];
2989 if (lro->in_use) {
2990 update_L3L4_header(ring_data->nic, lro);
2991 queue_rx_frame(lro->parent, lro->vlan_tag);
2992 clear_lro_session(lro);
2996 return napi_pkts;
3000 * tx_intr_handler - Transmit interrupt handler
3001 * @nic : device private variable
3002 * Description:
3003 * If an interrupt was raised to indicate DMA complete of the
3004 * Tx packet, this function is called. It identifies the last TxD
3005 * whose buffer was freed and frees all skbs whose data have already
3006 * DMA'ed into the NICs internal memory.
3007 * Return Value:
3008 * NONE
3011 static void tx_intr_handler(struct fifo_info *fifo_data)
3013 struct s2io_nic *nic = fifo_data->nic;
3014 struct tx_curr_get_info get_info, put_info;
3015 struct sk_buff *skb = NULL;
3016 struct TxD *txdlp;
3017 int pkt_cnt = 0;
3018 unsigned long flags = 0;
3019 u8 err_mask;
3020 struct stat_block *stats = nic->mac_control.stats_info;
3021 struct swStat *swstats = &stats->sw_stat;
3023 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3024 return;
3026 get_info = fifo_data->tx_curr_get_info;
3027 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3028 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3029 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 (get_info.offset != put_info.offset) &&
3031 (txdlp->Host_Control)) {
3032 /* Check for TxD errors */
3033 if (txdlp->Control_1 & TXD_T_CODE) {
3034 unsigned long long err;
3035 err = txdlp->Control_1 & TXD_T_CODE;
3036 if (err & 0x1) {
3037 swstats->parity_err_cnt++;
3040 /* update t_code statistics */
3041 err_mask = err >> 48;
3042 switch (err_mask) {
3043 case 2:
3044 swstats->tx_buf_abort_cnt++;
3045 break;
3047 case 3:
3048 swstats->tx_desc_abort_cnt++;
3049 break;
3051 case 7:
3052 swstats->tx_parity_err_cnt++;
3053 break;
3055 case 10:
3056 swstats->tx_link_loss_cnt++;
3057 break;
3059 case 15:
3060 swstats->tx_list_proc_err_cnt++;
3061 break;
3065 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3066 if (skb == NULL) {
3067 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3068 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 __func__);
3070 return;
3072 pkt_cnt++;
3074 /* Updating the statistics block */
3075 swstats->mem_freed += skb->truesize;
3076 dev_kfree_skb_irq(skb);
3078 get_info.offset++;
3079 if (get_info.offset == get_info.fifo_len + 1)
3080 get_info.offset = 0;
3081 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3082 fifo_data->tx_curr_get_info.offset = get_info.offset;
3085 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3087 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3091 * s2io_mdio_write - Function to write in to MDIO registers
3092 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 * @addr : address value
3094 * @value : data value
3095 * @dev : pointer to net_device structure
3096 * Description:
3097 * This function is used to write values to the MDIO registers
3098 * NONE
3100 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 struct net_device *dev)
3103 u64 val64;
3104 struct s2io_nic *sp = netdev_priv(dev);
3105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3107 /* address transaction */
3108 val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 MDIO_MMD_DEV_ADDR(mmd_type) |
3110 MDIO_MMS_PRT_ADDR(0x0);
3111 writeq(val64, &bar0->mdio_control);
3112 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 writeq(val64, &bar0->mdio_control);
3114 udelay(100);
3116 /* Data transaction */
3117 val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 MDIO_MMD_DEV_ADDR(mmd_type) |
3119 MDIO_MMS_PRT_ADDR(0x0) |
3120 MDIO_MDIO_DATA(value) |
3121 MDIO_OP(MDIO_OP_WRITE_TRANS);
3122 writeq(val64, &bar0->mdio_control);
3123 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 writeq(val64, &bar0->mdio_control);
3125 udelay(100);
3127 val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 MDIO_MMD_DEV_ADDR(mmd_type) |
3129 MDIO_MMS_PRT_ADDR(0x0) |
3130 MDIO_OP(MDIO_OP_READ_TRANS);
3131 writeq(val64, &bar0->mdio_control);
3132 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 writeq(val64, &bar0->mdio_control);
3134 udelay(100);
3138 * s2io_mdio_read - Function to write in to MDIO registers
3139 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 * @addr : address value
3141 * @dev : pointer to net_device structure
3142 * Description:
3143 * This function is used to read values to the MDIO registers
3144 * NONE
3146 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3148 u64 val64 = 0x0;
3149 u64 rval64 = 0x0;
3150 struct s2io_nic *sp = netdev_priv(dev);
3151 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3153 /* address transaction */
3154 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 | MDIO_MMS_PRT_ADDR(0x0));
3157 writeq(val64, &bar0->mdio_control);
3158 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 writeq(val64, &bar0->mdio_control);
3160 udelay(100);
3162 /* Data transaction */
3163 val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 MDIO_MMD_DEV_ADDR(mmd_type) |
3165 MDIO_MMS_PRT_ADDR(0x0) |
3166 MDIO_OP(MDIO_OP_READ_TRANS);
3167 writeq(val64, &bar0->mdio_control);
3168 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 writeq(val64, &bar0->mdio_control);
3170 udelay(100);
3172 /* Read the value from regs */
3173 rval64 = readq(&bar0->mdio_control);
3174 rval64 = rval64 & 0xFFFF0000;
3175 rval64 = rval64 >> 16;
3176 return rval64;
3180 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181 * @counter : counter value to be updated
3182 * @flag : flag to indicate the status
3183 * @type : counter type
3184 * Description:
3185 * This function is to check the status of the xpak counters value
3186 * NONE
3189 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 u16 flag, u16 type)
3192 u64 mask = 0x3;
3193 u64 val64;
3194 int i;
3195 for (i = 0; i < index; i++)
3196 mask = mask << 0x2;
3198 if (flag > 0) {
3199 *counter = *counter + 1;
3200 val64 = *regs_stat & mask;
3201 val64 = val64 >> (index * 0x2);
3202 val64 = val64 + 1;
3203 if (val64 == 3) {
3204 switch (type) {
3205 case 1:
3206 DBG_PRINT(ERR_DBG,
3207 "Take Xframe NIC out of service.\n");
3208 DBG_PRINT(ERR_DBG,
3209 "Excessive temperatures may result in premature transceiver failure.\n");
3210 break;
3211 case 2:
3212 DBG_PRINT(ERR_DBG,
3213 "Take Xframe NIC out of service.\n");
3214 DBG_PRINT(ERR_DBG,
3215 "Excessive bias currents may indicate imminent laser diode failure.\n");
3216 break;
3217 case 3:
3218 DBG_PRINT(ERR_DBG,
3219 "Take Xframe NIC out of service.\n");
3220 DBG_PRINT(ERR_DBG,
3221 "Excessive laser output power may saturate far-end receiver.\n");
3222 break;
3223 default:
3224 DBG_PRINT(ERR_DBG,
3225 "Incorrect XPAK Alarm type\n");
3227 val64 = 0x0;
3229 val64 = val64 << (index * 0x2);
3230 *regs_stat = (*regs_stat & (~mask)) | (val64);
3232 } else {
3233 *regs_stat = *regs_stat & (~mask);
3238 * s2io_updt_xpak_counter - Function to update the xpak counters
3239 * @dev : pointer to net_device struct
3240 * Description:
3241 * This function is to upate the status of the xpak counters value
3242 * NONE
3244 static void s2io_updt_xpak_counter(struct net_device *dev)
3246 u16 flag = 0x0;
3247 u16 type = 0x0;
3248 u16 val16 = 0x0;
3249 u64 val64 = 0x0;
3250 u64 addr = 0x0;
3252 struct s2io_nic *sp = netdev_priv(dev);
3253 struct stat_block *stats = sp->mac_control.stats_info;
3254 struct xpakStat *xstats = &stats->xpak_stat;
3256 /* Check the communication with the MDIO slave */
3257 addr = MDIO_CTRL1;
3258 val64 = 0x0;
3259 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3261 DBG_PRINT(ERR_DBG,
3262 "ERR: MDIO slave access failed - Returned %llx\n",
3263 (unsigned long long)val64);
3264 return;
3267 /* Check for the expected value of control reg 1 */
3268 if (val64 != MDIO_CTRL1_SPEED10G) {
3269 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 "Returned: %llx- Expected: 0x%x\n",
3271 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3272 return;
3275 /* Loading the DOM register to MDIO register */
3276 addr = 0xA100;
3277 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3280 /* Reading the Alarm flags */
3281 addr = 0xA070;
3282 val64 = 0x0;
3283 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3285 flag = CHECKBIT(val64, 0x7);
3286 type = 1;
3287 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 &xstats->xpak_regs_stat,
3289 0x0, flag, type);
3291 if (CHECKBIT(val64, 0x6))
3292 xstats->alarm_transceiver_temp_low++;
3294 flag = CHECKBIT(val64, 0x3);
3295 type = 2;
3296 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 &xstats->xpak_regs_stat,
3298 0x2, flag, type);
3300 if (CHECKBIT(val64, 0x2))
3301 xstats->alarm_laser_bias_current_low++;
3303 flag = CHECKBIT(val64, 0x1);
3304 type = 3;
3305 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 &xstats->xpak_regs_stat,
3307 0x4, flag, type);
3309 if (CHECKBIT(val64, 0x0))
3310 xstats->alarm_laser_output_power_low++;
3312 /* Reading the Warning flags */
3313 addr = 0xA074;
3314 val64 = 0x0;
3315 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3317 if (CHECKBIT(val64, 0x7))
3318 xstats->warn_transceiver_temp_high++;
3320 if (CHECKBIT(val64, 0x6))
3321 xstats->warn_transceiver_temp_low++;
3323 if (CHECKBIT(val64, 0x3))
3324 xstats->warn_laser_bias_current_high++;
3326 if (CHECKBIT(val64, 0x2))
3327 xstats->warn_laser_bias_current_low++;
3329 if (CHECKBIT(val64, 0x1))
3330 xstats->warn_laser_output_power_high++;
3332 if (CHECKBIT(val64, 0x0))
3333 xstats->warn_laser_output_power_low++;
3337 * wait_for_cmd_complete - waits for a command to complete.
3338 * @sp : private member of the device structure, which is a pointer to the
3339 * s2io_nic structure.
3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
3343 * Return value:
3344 * SUCCESS on success and FAILURE on failure.
3347 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348 int bit_state)
3350 int ret = FAILURE, cnt = 0, delay = 1;
3351 u64 val64;
3353 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 return FAILURE;
3356 do {
3357 val64 = readq(addr);
3358 if (bit_state == S2IO_BIT_RESET) {
3359 if (!(val64 & busy_bit)) {
3360 ret = SUCCESS;
3361 break;
3363 } else {
3364 if (val64 & busy_bit) {
3365 ret = SUCCESS;
3366 break;
3370 if (in_interrupt())
3371 mdelay(delay);
3372 else
3373 msleep(delay);
3375 if (++cnt >= 10)
3376 delay = 50;
3377 } while (cnt < 20);
3378 return ret;
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3386 static u16 check_pci_device_id(u16 id)
3388 switch (id) {
3389 case PCI_DEVICE_ID_HERC_WIN:
3390 case PCI_DEVICE_ID_HERC_UNI:
3391 return XFRAME_II_DEVICE;
3392 case PCI_DEVICE_ID_S2IO_UNI:
3393 case PCI_DEVICE_ID_S2IO_WIN:
3394 return XFRAME_I_DEVICE;
3395 default:
3396 return PCI_ANY_ID;
3401 * s2io_reset - Resets the card.
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
3404 * restores the previously saved PCI configuration space registers as
3405 * the card reset also resets the configuration space.
3406 * Return value:
3407 * void.
3410 static void s2io_reset(struct s2io_nic *sp)
3412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413 u64 val64;
3414 u16 subid, pci_cmd;
3415 int i;
3416 u16 val16;
3417 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419 struct stat_block *stats;
3420 struct swStat *swstats;
3422 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3423 __func__, pci_name(sp->pdev));
3425 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3428 val64 = SW_RESET_ALL;
3429 writeq(val64, &bar0->sw_reset);
3430 if (strstr(sp->product_name, "CX4"))
3431 msleep(750);
3432 msleep(250);
3433 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3435 /* Restore the PCI state saved during initialization. */
3436 pci_restore_state(sp->pdev);
3437 pci_save_state(sp->pdev);
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 break;
3441 msleep(200);
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3447 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3449 s2io_init_pci(sp);
3451 /* Set swapper to enable I/O register access */
3452 s2io_set_swapper(sp);
3454 /* restore mac_addr entries */
3455 do_s2io_restore_unicast_mc(sp);
3457 /* Restore the MSIX table entries from local variables */
3458 restore_xmsi_data(sp);
3460 /* Clear certain PCI/PCI-X fields after reset */
3461 if (sp->device_type == XFRAME_II_DEVICE) {
3462 /* Clear "detected parity error" bit */
3463 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3465 /* Clearing PCIX Ecc status register */
3466 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3468 /* Clearing PCI_STATUS error reflected here */
3469 writeq(s2BIT(62), &bar0->txpic_int_reg);
3472 /* Reset device statistics maintained by OS */
3473 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3475 stats = sp->mac_control.stats_info;
3476 swstats = &stats->sw_stat;
3478 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3479 up_cnt = swstats->link_up_cnt;
3480 down_cnt = swstats->link_down_cnt;
3481 up_time = swstats->link_up_time;
3482 down_time = swstats->link_down_time;
3483 reset_cnt = swstats->soft_reset_cnt;
3484 mem_alloc_cnt = swstats->mem_allocated;
3485 mem_free_cnt = swstats->mem_freed;
3486 watchdog_cnt = swstats->watchdog_timer_cnt;
3488 memset(stats, 0, sizeof(struct stat_block));
3490 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491 swstats->link_up_cnt = up_cnt;
3492 swstats->link_down_cnt = down_cnt;
3493 swstats->link_up_time = up_time;
3494 swstats->link_down_time = down_time;
3495 swstats->soft_reset_cnt = reset_cnt;
3496 swstats->mem_allocated = mem_alloc_cnt;
3497 swstats->mem_freed = mem_free_cnt;
3498 swstats->watchdog_timer_cnt = watchdog_cnt;
3500 /* SXE-002: Configure link and activity LED to turn it off */
3501 subid = sp->pdev->subsystem_device;
3502 if (((subid & 0xFF) >= 0x07) &&
3503 (sp->device_type == XFRAME_I_DEVICE)) {
3504 val64 = readq(&bar0->gpio_control);
3505 val64 |= 0x0000800000000000ULL;
3506 writeq(val64, &bar0->gpio_control);
3507 val64 = 0x0411040400000000ULL;
3508 writeq(val64, (void __iomem *)bar0 + 0x2700);
3512 * Clear spurious ECC interrupts that would have occurred on
3513 * XFRAME II cards after reset.
3515 if (sp->device_type == XFRAME_II_DEVICE) {
3516 val64 = readq(&bar0->pcc_err_reg);
3517 writeq(val64, &bar0->pcc_err_reg);
3520 sp->device_enabled_once = false;
3524 * s2io_set_swapper - to set the swapper controle on the card
3525 * @sp : private member of the device structure,
3526 * pointer to the s2io_nic structure.
3527 * Description: Function to set the swapper control on the card
3528 * correctly depending on the 'endianness' of the system.
3529 * Return value:
3530 * SUCCESS on success and FAILURE on failure.
3533 static int s2io_set_swapper(struct s2io_nic *sp)
3535 struct net_device *dev = sp->dev;
3536 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3537 u64 val64, valt, valr;
3540 * Set proper endian settings and verify the same by reading
3541 * the PIF Feed-back register.
3544 val64 = readq(&bar0->pif_rd_swapper_fb);
3545 if (val64 != 0x0123456789ABCDEFULL) {
3546 int i = 0;
3547 static const u64 value[] = {
3548 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3549 0x8100008181000081ULL, /* FE=1, SE=0 */
3550 0x4200004242000042ULL, /* FE=0, SE=1 */
3551 0 /* FE=0, SE=0 */
3554 while (i < 4) {
3555 writeq(value[i], &bar0->swapper_ctrl);
3556 val64 = readq(&bar0->pif_rd_swapper_fb);
3557 if (val64 == 0x0123456789ABCDEFULL)
3558 break;
3559 i++;
3561 if (i == 4) {
3562 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 "feedback read %llx\n",
3564 dev->name, (unsigned long long)val64);
3565 return FAILURE;
3567 valr = value[i];
3568 } else {
3569 valr = readq(&bar0->swapper_ctrl);
3572 valt = 0x0123456789ABCDEFULL;
3573 writeq(valt, &bar0->xmsi_address);
3574 val64 = readq(&bar0->xmsi_address);
3576 if (val64 != valt) {
3577 int i = 0;
3578 static const u64 value[] = {
3579 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3580 0x0081810000818100ULL, /* FE=1, SE=0 */
3581 0x0042420000424200ULL, /* FE=0, SE=1 */
3582 0 /* FE=0, SE=0 */
3585 while (i < 4) {
3586 writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 writeq(valt, &bar0->xmsi_address);
3588 val64 = readq(&bar0->xmsi_address);
3589 if (val64 == valt)
3590 break;
3591 i++;
3593 if (i == 4) {
3594 unsigned long long x = val64;
3595 DBG_PRINT(ERR_DBG,
3596 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3597 return FAILURE;
3600 val64 = readq(&bar0->swapper_ctrl);
3601 val64 &= 0xFFFF000000000000ULL;
3603 #ifdef __BIG_ENDIAN
3605 * The device by default set to a big endian format, so a
3606 * big endian driver need not set anything.
3608 val64 |= (SWAPPER_CTRL_TXP_FE |
3609 SWAPPER_CTRL_TXP_SE |
3610 SWAPPER_CTRL_TXD_R_FE |
3611 SWAPPER_CTRL_TXD_W_FE |
3612 SWAPPER_CTRL_TXF_R_FE |
3613 SWAPPER_CTRL_RXD_R_FE |
3614 SWAPPER_CTRL_RXD_W_FE |
3615 SWAPPER_CTRL_RXF_W_FE |
3616 SWAPPER_CTRL_XMSI_FE |
3617 SWAPPER_CTRL_STATS_FE |
3618 SWAPPER_CTRL_STATS_SE);
3619 if (sp->config.intr_type == INTA)
3620 val64 |= SWAPPER_CTRL_XMSI_SE;
3621 writeq(val64, &bar0->swapper_ctrl);
3622 #else
3624 * Initially we enable all bits to make it accessible by the
3625 * driver, then we selectively enable only those bits that
3626 * we want to set.
3628 val64 |= (SWAPPER_CTRL_TXP_FE |
3629 SWAPPER_CTRL_TXP_SE |
3630 SWAPPER_CTRL_TXD_R_FE |
3631 SWAPPER_CTRL_TXD_R_SE |
3632 SWAPPER_CTRL_TXD_W_FE |
3633 SWAPPER_CTRL_TXD_W_SE |
3634 SWAPPER_CTRL_TXF_R_FE |
3635 SWAPPER_CTRL_RXD_R_FE |
3636 SWAPPER_CTRL_RXD_R_SE |
3637 SWAPPER_CTRL_RXD_W_FE |
3638 SWAPPER_CTRL_RXD_W_SE |
3639 SWAPPER_CTRL_RXF_W_FE |
3640 SWAPPER_CTRL_XMSI_FE |
3641 SWAPPER_CTRL_STATS_FE |
3642 SWAPPER_CTRL_STATS_SE);
3643 if (sp->config.intr_type == INTA)
3644 val64 |= SWAPPER_CTRL_XMSI_SE;
3645 writeq(val64, &bar0->swapper_ctrl);
3646 #endif
3647 val64 = readq(&bar0->swapper_ctrl);
3650 * Verifying if endian settings are accurate by reading a
3651 * feedback register.
3653 val64 = readq(&bar0->pif_rd_swapper_fb);
3654 if (val64 != 0x0123456789ABCDEFULL) {
3655 /* Endian settings are incorrect, calls for another dekko. */
3656 DBG_PRINT(ERR_DBG,
3657 "%s: Endian settings are wrong, feedback read %llx\n",
3658 dev->name, (unsigned long long)val64);
3659 return FAILURE;
3662 return SUCCESS;
3665 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668 u64 val64;
3669 int ret = 0, cnt = 0;
3671 do {
3672 val64 = readq(&bar0->xmsi_access);
3673 if (!(val64 & s2BIT(15)))
3674 break;
3675 mdelay(1);
3676 cnt++;
3677 } while (cnt < 5);
3678 if (cnt == 5) {
3679 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 ret = 1;
3683 return ret;
3686 static void restore_xmsi_data(struct s2io_nic *nic)
3688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3689 u64 val64;
3690 int i, msix_index;
3692 if (nic->device_type == XFRAME_I_DEVICE)
3693 return;
3695 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3697 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3699 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3700 writeq(val64, &bar0->xmsi_access);
3701 if (wait_for_msix_trans(nic, msix_index)) {
3702 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 __func__, msix_index);
3704 continue;
3709 static void store_xmsi_data(struct s2io_nic *nic)
3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712 u64 val64, addr, data;
3713 int i, msix_index;
3715 if (nic->device_type == XFRAME_I_DEVICE)
3716 return;
3718 /* Store and display */
3719 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3721 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3722 writeq(val64, &bar0->xmsi_access);
3723 if (wait_for_msix_trans(nic, msix_index)) {
3724 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 __func__, msix_index);
3726 continue;
3728 addr = readq(&bar0->xmsi_address);
3729 data = readq(&bar0->xmsi_data);
3730 if (addr && data) {
3731 nic->msix_info[i].addr = addr;
3732 nic->msix_info[i].data = data;
3737 static int s2io_enable_msi_x(struct s2io_nic *nic)
3739 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740 u64 rx_mat;
3741 u16 msi_control; /* Temp variable */
3742 int ret, i, j, msix_indx = 1;
3743 int size;
3744 struct stat_block *stats = nic->mac_control.stats_info;
3745 struct swStat *swstats = &stats->sw_stat;
3747 size = nic->num_entries * sizeof(struct msix_entry);
3748 nic->entries = kzalloc(size, GFP_KERNEL);
3749 if (!nic->entries) {
3750 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 __func__);
3752 swstats->mem_alloc_fail_cnt++;
3753 return -ENOMEM;
3755 swstats->mem_allocated += size;
3757 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3758 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3759 if (!nic->s2io_entries) {
3760 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3761 __func__);
3762 swstats->mem_alloc_fail_cnt++;
3763 kfree(nic->entries);
3764 swstats->mem_freed
3765 += (nic->num_entries * sizeof(struct msix_entry));
3766 return -ENOMEM;
3768 swstats->mem_allocated += size;
3770 nic->entries[0].entry = 0;
3771 nic->s2io_entries[0].entry = 0;
3772 nic->s2io_entries[0].in_use = MSIX_FLG;
3773 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3776 for (i = 1; i < nic->num_entries; i++) {
3777 nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3779 nic->s2io_entries[i].arg = NULL;
3780 nic->s2io_entries[i].in_use = 0;
3783 rx_mat = readq(&bar0->rx_mat);
3784 for (j = 0; j < nic->config.rx_ring_num; j++) {
3785 rx_mat |= RX_MAT_SET(j, msix_indx);
3786 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 msix_indx += 8;
3791 writeq(rx_mat, &bar0->rx_mat);
3792 readq(&bar0->rx_mat);
3794 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3795 /* We fail init if error or we get less vectors than min required */
3796 if (ret) {
3797 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3798 kfree(nic->entries);
3799 swstats->mem_freed += nic->num_entries *
3800 sizeof(struct msix_entry);
3801 kfree(nic->s2io_entries);
3802 swstats->mem_freed += nic->num_entries *
3803 sizeof(struct s2io_msix_entry);
3804 nic->entries = NULL;
3805 nic->s2io_entries = NULL;
3806 return -ENOMEM;
3810 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 * in the herc NIC. (Temp change, needs to be removed later)
3813 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 msi_control |= 0x1; /* Enable MSI */
3815 pci_write_config_word(nic->pdev, 0x42, msi_control);
3817 return 0;
3820 /* Handle software interrupt used during MSI(X) test */
3821 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3823 struct s2io_nic *sp = dev_id;
3825 sp->msi_detected = 1;
3826 wake_up(&sp->msi_wait);
3828 return IRQ_HANDLED;
3831 /* Test interrupt path by forcing a a software IRQ */
3832 static int s2io_test_msi(struct s2io_nic *sp)
3834 struct pci_dev *pdev = sp->pdev;
3835 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 int err;
3837 u64 val64, saved64;
3839 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3840 sp->name, sp);
3841 if (err) {
3842 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3843 sp->dev->name, pci_name(pdev), pdev->irq);
3844 return err;
3847 init_waitqueue_head(&sp->msi_wait);
3848 sp->msi_detected = 0;
3850 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 writeq(val64, &bar0->scheduled_int_ctrl);
3856 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3858 if (!sp->msi_detected) {
3859 /* MSI(X) test failed, go back to INTx mode */
3860 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3861 "using MSI(X) during test\n",
3862 sp->dev->name, pci_name(pdev));
3864 err = -EOPNOTSUPP;
3867 free_irq(sp->entries[1].vector, sp);
3869 writeq(saved64, &bar0->scheduled_int_ctrl);
3871 return err;
3874 static void remove_msix_isr(struct s2io_nic *sp)
3876 int i;
3877 u16 msi_control;
3879 for (i = 0; i < sp->num_entries; i++) {
3880 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3881 int vector = sp->entries[i].vector;
3882 void *arg = sp->s2io_entries[i].arg;
3883 free_irq(vector, arg);
3887 kfree(sp->entries);
3888 kfree(sp->s2io_entries);
3889 sp->entries = NULL;
3890 sp->s2io_entries = NULL;
3892 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 msi_control &= 0xFFFE; /* Disable MSI */
3894 pci_write_config_word(sp->pdev, 0x42, msi_control);
3896 pci_disable_msix(sp->pdev);
3899 static void remove_inta_isr(struct s2io_nic *sp)
3901 struct net_device *dev = sp->dev;
3903 free_irq(sp->pdev->irq, dev);
3906 /* ********************************************************* *
3907 * Functions defined below concern the OS part of the driver *
3908 * ********************************************************* */
3911 * s2io_open - open entry point of the driver
3912 * @dev : pointer to the device structure.
3913 * Description:
3914 * This function is the open entry point of the driver. It mainly calls a
3915 * function to allocate Rx buffers and inserts them into the buffer
3916 * descriptors and then enables the Rx part of the NIC.
3917 * Return value:
3918 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3919 * file on failure.
3922 static int s2io_open(struct net_device *dev)
3924 struct s2io_nic *sp = netdev_priv(dev);
3925 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3926 int err = 0;
3929 * Make sure you have link off by default every time
3930 * Nic is initialized
3932 netif_carrier_off(dev);
3933 sp->last_link_state = 0;
3935 /* Initialize H/W and enable interrupts */
3936 err = s2io_card_up(sp);
3937 if (err) {
3938 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3939 dev->name);
3940 goto hw_init_failed;
3943 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3944 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3945 s2io_card_down(sp);
3946 err = -ENODEV;
3947 goto hw_init_failed;
3949 s2io_start_all_tx_queue(sp);
3950 return 0;
3952 hw_init_failed:
3953 if (sp->config.intr_type == MSI_X) {
3954 if (sp->entries) {
3955 kfree(sp->entries);
3956 swstats->mem_freed += sp->num_entries *
3957 sizeof(struct msix_entry);
3959 if (sp->s2io_entries) {
3960 kfree(sp->s2io_entries);
3961 swstats->mem_freed += sp->num_entries *
3962 sizeof(struct s2io_msix_entry);
3965 return err;
3969 * s2io_close -close entry point of the driver
3970 * @dev : device pointer.
3971 * Description:
3972 * This is the stop entry point of the driver. It needs to undo exactly
3973 * whatever was done by the open entry point,thus it's usually referred to
3974 * as the close function.Among other things this function mainly stops the
3975 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3976 * Return value:
3977 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3978 * file on failure.
3981 static int s2io_close(struct net_device *dev)
3983 struct s2io_nic *sp = netdev_priv(dev);
3984 struct config_param *config = &sp->config;
3985 u64 tmp64;
3986 int offset;
3988 /* Return if the device is already closed *
3989 * Can happen when s2io_card_up failed in change_mtu *
3991 if (!is_s2io_card_up(sp))
3992 return 0;
3994 s2io_stop_all_tx_queue(sp);
3995 /* delete all populated mac entries */
3996 for (offset = 1; offset < config->max_mc_addr; offset++) {
3997 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3998 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3999 do_s2io_delete_unicast_mc(sp, tmp64);
4002 s2io_card_down(sp);
4004 return 0;
4008 * s2io_xmit - Tx entry point of te driver
4009 * @skb : the socket buffer containing the Tx data.
4010 * @dev : device pointer.
4011 * Description :
4012 * This function is the Tx entry point of the driver. S2IO NIC supports
4013 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4014 * NOTE: when device can't queue the pkt,just the trans_start variable will
4015 * not be upadted.
4016 * Return value:
4017 * 0 on success & 1 on failure.
4020 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4022 struct s2io_nic *sp = netdev_priv(dev);
4023 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4024 register u64 val64;
4025 struct TxD *txdp;
4026 struct TxFIFO_element __iomem *tx_fifo;
4027 unsigned long flags = 0;
4028 u16 vlan_tag = 0;
4029 struct fifo_info *fifo = NULL;
4030 int do_spin_lock = 1;
4031 int offload_type;
4032 int enable_per_list_interrupt = 0;
4033 struct config_param *config = &sp->config;
4034 struct mac_info *mac_control = &sp->mac_control;
4035 struct stat_block *stats = mac_control->stats_info;
4036 struct swStat *swstats = &stats->sw_stat;
4038 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4040 if (unlikely(skb->len <= 0)) {
4041 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4042 dev_kfree_skb_any(skb);
4043 return NETDEV_TX_OK;
4046 if (!is_s2io_card_up(sp)) {
4047 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4048 dev->name);
4049 dev_kfree_skb(skb);
4050 return NETDEV_TX_OK;
4053 queue = 0;
4054 if (vlan_tx_tag_present(skb))
4055 vlan_tag = vlan_tx_tag_get(skb);
4056 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4057 if (skb->protocol == htons(ETH_P_IP)) {
4058 struct iphdr *ip;
4059 struct tcphdr *th;
4060 ip = ip_hdr(skb);
4062 if (!ip_is_fragment(ip)) {
4063 th = (struct tcphdr *)(((unsigned char *)ip) +
4064 ip->ihl*4);
4066 if (ip->protocol == IPPROTO_TCP) {
4067 queue_len = sp->total_tcp_fifos;
4068 queue = (ntohs(th->source) +
4069 ntohs(th->dest)) &
4070 sp->fifo_selector[queue_len - 1];
4071 if (queue >= queue_len)
4072 queue = queue_len - 1;
4073 } else if (ip->protocol == IPPROTO_UDP) {
4074 queue_len = sp->total_udp_fifos;
4075 queue = (ntohs(th->source) +
4076 ntohs(th->dest)) &
4077 sp->fifo_selector[queue_len - 1];
4078 if (queue >= queue_len)
4079 queue = queue_len - 1;
4080 queue += sp->udp_fifo_idx;
4081 if (skb->len > 1024)
4082 enable_per_list_interrupt = 1;
4083 do_spin_lock = 0;
4087 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4088 /* get fifo number based on skb->priority value */
4089 queue = config->fifo_mapping
4090 [skb->priority & (MAX_TX_FIFOS - 1)];
4091 fifo = &mac_control->fifos[queue];
4093 if (do_spin_lock)
4094 spin_lock_irqsave(&fifo->tx_lock, flags);
4095 else {
4096 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4097 return NETDEV_TX_LOCKED;
4100 if (sp->config.multiq) {
4101 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4102 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4103 return NETDEV_TX_BUSY;
4105 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4106 if (netif_queue_stopped(dev)) {
4107 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4108 return NETDEV_TX_BUSY;
4112 put_off = (u16)fifo->tx_curr_put_info.offset;
4113 get_off = (u16)fifo->tx_curr_get_info.offset;
4114 txdp = fifo->list_info[put_off].list_virt_addr;
4116 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4117 /* Avoid "put" pointer going beyond "get" pointer */
4118 if (txdp->Host_Control ||
4119 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4120 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4121 s2io_stop_tx_queue(sp, fifo->fifo_no);
4122 dev_kfree_skb(skb);
4123 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4124 return NETDEV_TX_OK;
4127 offload_type = s2io_offload_type(skb);
4128 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4129 txdp->Control_1 |= TXD_TCP_LSO_EN;
4130 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4132 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4133 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4134 TXD_TX_CKO_TCP_EN |
4135 TXD_TX_CKO_UDP_EN);
4137 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4138 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4139 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4140 if (enable_per_list_interrupt)
4141 if (put_off & (queue_len >> 5))
4142 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4143 if (vlan_tag) {
4144 txdp->Control_2 |= TXD_VLAN_ENABLE;
4145 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4148 frg_len = skb_headlen(skb);
4149 if (offload_type == SKB_GSO_UDP) {
4150 int ufo_size;
4152 ufo_size = s2io_udp_mss(skb);
4153 ufo_size &= ~7;
4154 txdp->Control_1 |= TXD_UFO_EN;
4155 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4156 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4157 #ifdef __BIG_ENDIAN
4158 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4159 fifo->ufo_in_band_v[put_off] =
4160 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4161 #else
4162 fifo->ufo_in_band_v[put_off] =
4163 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4164 #endif
4165 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4166 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4167 fifo->ufo_in_band_v,
4168 sizeof(u64),
4169 PCI_DMA_TODEVICE);
4170 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4171 goto pci_map_failed;
4172 txdp++;
4175 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4176 frg_len, PCI_DMA_TODEVICE);
4177 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4178 goto pci_map_failed;
4180 txdp->Host_Control = (unsigned long)skb;
4181 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4182 if (offload_type == SKB_GSO_UDP)
4183 txdp->Control_1 |= TXD_UFO_EN;
4185 frg_cnt = skb_shinfo(skb)->nr_frags;
4186 /* For fragmented SKB. */
4187 for (i = 0; i < frg_cnt; i++) {
4188 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4189 /* A '0' length fragment will be ignored */
4190 if (!skb_frag_size(frag))
4191 continue;
4192 txdp++;
4193 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4194 frag, 0,
4195 skb_frag_size(frag),
4196 DMA_TO_DEVICE);
4197 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4198 if (offload_type == SKB_GSO_UDP)
4199 txdp->Control_1 |= TXD_UFO_EN;
4201 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4203 if (offload_type == SKB_GSO_UDP)
4204 frg_cnt++; /* as Txd0 was used for inband header */
4206 tx_fifo = mac_control->tx_FIFO_start[queue];
4207 val64 = fifo->list_info[put_off].list_phy_addr;
4208 writeq(val64, &tx_fifo->TxDL_Pointer);
4210 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4211 TX_FIFO_LAST_LIST);
4212 if (offload_type)
4213 val64 |= TX_FIFO_SPECIAL_FUNC;
4215 writeq(val64, &tx_fifo->List_Control);
4217 mmiowb();
4219 put_off++;
4220 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4221 put_off = 0;
4222 fifo->tx_curr_put_info.offset = put_off;
4224 /* Avoid "put" pointer going beyond "get" pointer */
4225 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4226 swstats->fifo_full_cnt++;
4227 DBG_PRINT(TX_DBG,
4228 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4229 put_off, get_off);
4230 s2io_stop_tx_queue(sp, fifo->fifo_no);
4232 swstats->mem_allocated += skb->truesize;
4233 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4235 if (sp->config.intr_type == MSI_X)
4236 tx_intr_handler(fifo);
4238 return NETDEV_TX_OK;
4240 pci_map_failed:
4241 swstats->pci_map_fail_cnt++;
4242 s2io_stop_tx_queue(sp, fifo->fifo_no);
4243 swstats->mem_freed += skb->truesize;
4244 dev_kfree_skb(skb);
4245 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4246 return NETDEV_TX_OK;
4249 static void
4250 s2io_alarm_handle(unsigned long data)
4252 struct s2io_nic *sp = (struct s2io_nic *)data;
4253 struct net_device *dev = sp->dev;
4255 s2io_handle_errors(dev);
4256 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4259 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4261 struct ring_info *ring = (struct ring_info *)dev_id;
4262 struct s2io_nic *sp = ring->nic;
4263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4265 if (unlikely(!is_s2io_card_up(sp)))
4266 return IRQ_HANDLED;
4268 if (sp->config.napi) {
4269 u8 __iomem *addr = NULL;
4270 u8 val8 = 0;
4272 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4273 addr += (7 - ring->ring_no);
4274 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4275 writeb(val8, addr);
4276 val8 = readb(addr);
4277 napi_schedule(&ring->napi);
4278 } else {
4279 rx_intr_handler(ring, 0);
4280 s2io_chk_rx_buffers(sp, ring);
4283 return IRQ_HANDLED;
4286 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4288 int i;
4289 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4290 struct s2io_nic *sp = fifos->nic;
4291 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4292 struct config_param *config = &sp->config;
4293 u64 reason;
4295 if (unlikely(!is_s2io_card_up(sp)))
4296 return IRQ_NONE;
4298 reason = readq(&bar0->general_int_status);
4299 if (unlikely(reason == S2IO_MINUS_ONE))
4300 /* Nothing much can be done. Get out */
4301 return IRQ_HANDLED;
4303 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4304 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4306 if (reason & GEN_INTR_TXPIC)
4307 s2io_txpic_intr_handle(sp);
4309 if (reason & GEN_INTR_TXTRAFFIC)
4310 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4312 for (i = 0; i < config->tx_fifo_num; i++)
4313 tx_intr_handler(&fifos[i]);
4315 writeq(sp->general_int_mask, &bar0->general_int_mask);
4316 readl(&bar0->general_int_status);
4317 return IRQ_HANDLED;
4319 /* The interrupt was not raised by us */
4320 return IRQ_NONE;
4323 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4325 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4326 u64 val64;
4328 val64 = readq(&bar0->pic_int_status);
4329 if (val64 & PIC_INT_GPIO) {
4330 val64 = readq(&bar0->gpio_int_reg);
4331 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4332 (val64 & GPIO_INT_REG_LINK_UP)) {
4334 * This is unstable state so clear both up/down
4335 * interrupt and adapter to re-evaluate the link state.
4337 val64 |= GPIO_INT_REG_LINK_DOWN;
4338 val64 |= GPIO_INT_REG_LINK_UP;
4339 writeq(val64, &bar0->gpio_int_reg);
4340 val64 = readq(&bar0->gpio_int_mask);
4341 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4342 GPIO_INT_MASK_LINK_DOWN);
4343 writeq(val64, &bar0->gpio_int_mask);
4344 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4345 val64 = readq(&bar0->adapter_status);
4346 /* Enable Adapter */
4347 val64 = readq(&bar0->adapter_control);
4348 val64 |= ADAPTER_CNTL_EN;
4349 writeq(val64, &bar0->adapter_control);
4350 val64 |= ADAPTER_LED_ON;
4351 writeq(val64, &bar0->adapter_control);
4352 if (!sp->device_enabled_once)
4353 sp->device_enabled_once = 1;
4355 s2io_link(sp, LINK_UP);
4357 * unmask link down interrupt and mask link-up
4358 * intr
4360 val64 = readq(&bar0->gpio_int_mask);
4361 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4362 val64 |= GPIO_INT_MASK_LINK_UP;
4363 writeq(val64, &bar0->gpio_int_mask);
4365 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4366 val64 = readq(&bar0->adapter_status);
4367 s2io_link(sp, LINK_DOWN);
4368 /* Link is down so unmaks link up interrupt */
4369 val64 = readq(&bar0->gpio_int_mask);
4370 val64 &= ~GPIO_INT_MASK_LINK_UP;
4371 val64 |= GPIO_INT_MASK_LINK_DOWN;
4372 writeq(val64, &bar0->gpio_int_mask);
4374 /* turn off LED */
4375 val64 = readq(&bar0->adapter_control);
4376 val64 = val64 & (~ADAPTER_LED_ON);
4377 writeq(val64, &bar0->adapter_control);
4380 val64 = readq(&bar0->gpio_int_mask);
4384 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4385 * @value: alarm bits
4386 * @addr: address value
4387 * @cnt: counter variable
4388 * Description: Check for alarm and increment the counter
4389 * Return Value:
4390 * 1 - if alarm bit set
4391 * 0 - if alarm bit is not set
4393 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4394 unsigned long long *cnt)
4396 u64 val64;
4397 val64 = readq(addr);
4398 if (val64 & value) {
4399 writeq(val64, addr);
4400 (*cnt)++;
4401 return 1;
4403 return 0;
4408 * s2io_handle_errors - Xframe error indication handler
4409 * @nic: device private variable
4410 * Description: Handle alarms such as loss of link, single or
4411 * double ECC errors, critical and serious errors.
4412 * Return Value:
4413 * NONE
4415 static void s2io_handle_errors(void *dev_id)
4417 struct net_device *dev = (struct net_device *)dev_id;
4418 struct s2io_nic *sp = netdev_priv(dev);
4419 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4420 u64 temp64 = 0, val64 = 0;
4421 int i = 0;
4423 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4424 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4426 if (!is_s2io_card_up(sp))
4427 return;
4429 if (pci_channel_offline(sp->pdev))
4430 return;
4432 memset(&sw_stat->ring_full_cnt, 0,
4433 sizeof(sw_stat->ring_full_cnt));
4435 /* Handling the XPAK counters update */
4436 if (stats->xpak_timer_count < 72000) {
4437 /* waiting for an hour */
4438 stats->xpak_timer_count++;
4439 } else {
4440 s2io_updt_xpak_counter(dev);
4441 /* reset the count to zero */
4442 stats->xpak_timer_count = 0;
4445 /* Handling link status change error Intr */
4446 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4447 val64 = readq(&bar0->mac_rmac_err_reg);
4448 writeq(val64, &bar0->mac_rmac_err_reg);
4449 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4450 schedule_work(&sp->set_link_task);
4453 /* In case of a serious error, the device will be Reset. */
4454 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4455 &sw_stat->serious_err_cnt))
4456 goto reset;
4458 /* Check for data parity error */
4459 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4460 &sw_stat->parity_err_cnt))
4461 goto reset;
4463 /* Check for ring full counter */
4464 if (sp->device_type == XFRAME_II_DEVICE) {
4465 val64 = readq(&bar0->ring_bump_counter1);
4466 for (i = 0; i < 4; i++) {
4467 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4468 temp64 >>= 64 - ((i+1)*16);
4469 sw_stat->ring_full_cnt[i] += temp64;
4472 val64 = readq(&bar0->ring_bump_counter2);
4473 for (i = 0; i < 4; i++) {
4474 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4475 temp64 >>= 64 - ((i+1)*16);
4476 sw_stat->ring_full_cnt[i+4] += temp64;
4480 val64 = readq(&bar0->txdma_int_status);
4481 /*check for pfc_err*/
4482 if (val64 & TXDMA_PFC_INT) {
4483 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4484 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4485 PFC_PCIX_ERR,
4486 &bar0->pfc_err_reg,
4487 &sw_stat->pfc_err_cnt))
4488 goto reset;
4489 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4490 &bar0->pfc_err_reg,
4491 &sw_stat->pfc_err_cnt);
4494 /*check for tda_err*/
4495 if (val64 & TXDMA_TDA_INT) {
4496 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4497 TDA_SM0_ERR_ALARM |
4498 TDA_SM1_ERR_ALARM,
4499 &bar0->tda_err_reg,
4500 &sw_stat->tda_err_cnt))
4501 goto reset;
4502 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4503 &bar0->tda_err_reg,
4504 &sw_stat->tda_err_cnt);
4506 /*check for pcc_err*/
4507 if (val64 & TXDMA_PCC_INT) {
4508 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4509 PCC_N_SERR | PCC_6_COF_OV_ERR |
4510 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4511 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4512 PCC_TXB_ECC_DB_ERR,
4513 &bar0->pcc_err_reg,
4514 &sw_stat->pcc_err_cnt))
4515 goto reset;
4516 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4517 &bar0->pcc_err_reg,
4518 &sw_stat->pcc_err_cnt);
4521 /*check for tti_err*/
4522 if (val64 & TXDMA_TTI_INT) {
4523 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4524 &bar0->tti_err_reg,
4525 &sw_stat->tti_err_cnt))
4526 goto reset;
4527 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4528 &bar0->tti_err_reg,
4529 &sw_stat->tti_err_cnt);
4532 /*check for lso_err*/
4533 if (val64 & TXDMA_LSO_INT) {
4534 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4535 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4536 &bar0->lso_err_reg,
4537 &sw_stat->lso_err_cnt))
4538 goto reset;
4539 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4540 &bar0->lso_err_reg,
4541 &sw_stat->lso_err_cnt);
4544 /*check for tpa_err*/
4545 if (val64 & TXDMA_TPA_INT) {
4546 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4547 &bar0->tpa_err_reg,
4548 &sw_stat->tpa_err_cnt))
4549 goto reset;
4550 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4551 &bar0->tpa_err_reg,
4552 &sw_stat->tpa_err_cnt);
4555 /*check for sm_err*/
4556 if (val64 & TXDMA_SM_INT) {
4557 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4558 &bar0->sm_err_reg,
4559 &sw_stat->sm_err_cnt))
4560 goto reset;
4563 val64 = readq(&bar0->mac_int_status);
4564 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4565 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4566 &bar0->mac_tmac_err_reg,
4567 &sw_stat->mac_tmac_err_cnt))
4568 goto reset;
4569 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4570 TMAC_DESC_ECC_SG_ERR |
4571 TMAC_DESC_ECC_DB_ERR,
4572 &bar0->mac_tmac_err_reg,
4573 &sw_stat->mac_tmac_err_cnt);
4576 val64 = readq(&bar0->xgxs_int_status);
4577 if (val64 & XGXS_INT_STATUS_TXGXS) {
4578 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4579 &bar0->xgxs_txgxs_err_reg,
4580 &sw_stat->xgxs_txgxs_err_cnt))
4581 goto reset;
4582 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4583 &bar0->xgxs_txgxs_err_reg,
4584 &sw_stat->xgxs_txgxs_err_cnt);
4587 val64 = readq(&bar0->rxdma_int_status);
4588 if (val64 & RXDMA_INT_RC_INT_M) {
4589 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4590 RC_FTC_ECC_DB_ERR |
4591 RC_PRCn_SM_ERR_ALARM |
4592 RC_FTC_SM_ERR_ALARM,
4593 &bar0->rc_err_reg,
4594 &sw_stat->rc_err_cnt))
4595 goto reset;
4596 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4597 RC_FTC_ECC_SG_ERR |
4598 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4599 &sw_stat->rc_err_cnt);
4600 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4601 PRC_PCI_AB_WR_Rn |
4602 PRC_PCI_AB_F_WR_Rn,
4603 &bar0->prc_pcix_err_reg,
4604 &sw_stat->prc_pcix_err_cnt))
4605 goto reset;
4606 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4607 PRC_PCI_DP_WR_Rn |
4608 PRC_PCI_DP_F_WR_Rn,
4609 &bar0->prc_pcix_err_reg,
4610 &sw_stat->prc_pcix_err_cnt);
4613 if (val64 & RXDMA_INT_RPA_INT_M) {
4614 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4615 &bar0->rpa_err_reg,
4616 &sw_stat->rpa_err_cnt))
4617 goto reset;
4618 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4619 &bar0->rpa_err_reg,
4620 &sw_stat->rpa_err_cnt);
4623 if (val64 & RXDMA_INT_RDA_INT_M) {
4624 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4625 RDA_FRM_ECC_DB_N_AERR |
4626 RDA_SM1_ERR_ALARM |
4627 RDA_SM0_ERR_ALARM |
4628 RDA_RXD_ECC_DB_SERR,
4629 &bar0->rda_err_reg,
4630 &sw_stat->rda_err_cnt))
4631 goto reset;
4632 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4633 RDA_FRM_ECC_SG_ERR |
4634 RDA_MISC_ERR |
4635 RDA_PCIX_ERR,
4636 &bar0->rda_err_reg,
4637 &sw_stat->rda_err_cnt);
4640 if (val64 & RXDMA_INT_RTI_INT_M) {
4641 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4642 &bar0->rti_err_reg,
4643 &sw_stat->rti_err_cnt))
4644 goto reset;
4645 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4646 &bar0->rti_err_reg,
4647 &sw_stat->rti_err_cnt);
4650 val64 = readq(&bar0->mac_int_status);
4651 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4652 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4653 &bar0->mac_rmac_err_reg,
4654 &sw_stat->mac_rmac_err_cnt))
4655 goto reset;
4656 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4657 RMAC_SINGLE_ECC_ERR |
4658 RMAC_DOUBLE_ECC_ERR,
4659 &bar0->mac_rmac_err_reg,
4660 &sw_stat->mac_rmac_err_cnt);
4663 val64 = readq(&bar0->xgxs_int_status);
4664 if (val64 & XGXS_INT_STATUS_RXGXS) {
4665 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4666 &bar0->xgxs_rxgxs_err_reg,
4667 &sw_stat->xgxs_rxgxs_err_cnt))
4668 goto reset;
4671 val64 = readq(&bar0->mc_int_status);
4672 if (val64 & MC_INT_STATUS_MC_INT) {
4673 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4674 &bar0->mc_err_reg,
4675 &sw_stat->mc_err_cnt))
4676 goto reset;
4678 /* Handling Ecc errors */
4679 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4680 writeq(val64, &bar0->mc_err_reg);
4681 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4682 sw_stat->double_ecc_errs++;
4683 if (sp->device_type != XFRAME_II_DEVICE) {
4685 * Reset XframeI only if critical error
4687 if (val64 &
4688 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4689 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4690 goto reset;
4692 } else
4693 sw_stat->single_ecc_errs++;
4696 return;
4698 reset:
4699 s2io_stop_all_tx_queue(sp);
4700 schedule_work(&sp->rst_timer_task);
4701 sw_stat->soft_reset_cnt++;
4705 * s2io_isr - ISR handler of the device .
4706 * @irq: the irq of the device.
4707 * @dev_id: a void pointer to the dev structure of the NIC.
4708 * Description: This function is the ISR handler of the device. It
4709 * identifies the reason for the interrupt and calls the relevant
4710 * service routines. As a contongency measure, this ISR allocates the
4711 * recv buffers, if their numbers are below the panic value which is
4712 * presently set to 25% of the original number of rcv buffers allocated.
4713 * Return value:
4714 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4715 * IRQ_NONE: will be returned if interrupt is not from our device
4717 static irqreturn_t s2io_isr(int irq, void *dev_id)
4719 struct net_device *dev = (struct net_device *)dev_id;
4720 struct s2io_nic *sp = netdev_priv(dev);
4721 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4722 int i;
4723 u64 reason = 0;
4724 struct mac_info *mac_control;
4725 struct config_param *config;
4727 /* Pretend we handled any irq's from a disconnected card */
4728 if (pci_channel_offline(sp->pdev))
4729 return IRQ_NONE;
4731 if (!is_s2io_card_up(sp))
4732 return IRQ_NONE;
4734 config = &sp->config;
4735 mac_control = &sp->mac_control;
4738 * Identify the cause for interrupt and call the appropriate
4739 * interrupt handler. Causes for the interrupt could be;
4740 * 1. Rx of packet.
4741 * 2. Tx complete.
4742 * 3. Link down.
4744 reason = readq(&bar0->general_int_status);
4746 if (unlikely(reason == S2IO_MINUS_ONE))
4747 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4749 if (reason &
4750 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4751 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4753 if (config->napi) {
4754 if (reason & GEN_INTR_RXTRAFFIC) {
4755 napi_schedule(&sp->napi);
4756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4757 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4758 readl(&bar0->rx_traffic_int);
4760 } else {
4762 * rx_traffic_int reg is an R1 register, writing all 1's
4763 * will ensure that the actual interrupt causing bit
4764 * get's cleared and hence a read can be avoided.
4766 if (reason & GEN_INTR_RXTRAFFIC)
4767 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4769 for (i = 0; i < config->rx_ring_num; i++) {
4770 struct ring_info *ring = &mac_control->rings[i];
4772 rx_intr_handler(ring, 0);
4777 * tx_traffic_int reg is an R1 register, writing all 1's
4778 * will ensure that the actual interrupt causing bit get's
4779 * cleared and hence a read can be avoided.
4781 if (reason & GEN_INTR_TXTRAFFIC)
4782 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4784 for (i = 0; i < config->tx_fifo_num; i++)
4785 tx_intr_handler(&mac_control->fifos[i]);
4787 if (reason & GEN_INTR_TXPIC)
4788 s2io_txpic_intr_handle(sp);
4791 * Reallocate the buffers from the interrupt handler itself.
4793 if (!config->napi) {
4794 for (i = 0; i < config->rx_ring_num; i++) {
4795 struct ring_info *ring = &mac_control->rings[i];
4797 s2io_chk_rx_buffers(sp, ring);
4800 writeq(sp->general_int_mask, &bar0->general_int_mask);
4801 readl(&bar0->general_int_status);
4803 return IRQ_HANDLED;
4805 } else if (!reason) {
4806 /* The interrupt was not raised by us */
4807 return IRQ_NONE;
4810 return IRQ_HANDLED;
4814 * s2io_updt_stats -
4816 static void s2io_updt_stats(struct s2io_nic *sp)
4818 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4819 u64 val64;
4820 int cnt = 0;
4822 if (is_s2io_card_up(sp)) {
4823 /* Apprx 30us on a 133 MHz bus */
4824 val64 = SET_UPDT_CLICKS(10) |
4825 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4826 writeq(val64, &bar0->stat_cfg);
4827 do {
4828 udelay(100);
4829 val64 = readq(&bar0->stat_cfg);
4830 if (!(val64 & s2BIT(0)))
4831 break;
4832 cnt++;
4833 if (cnt == 5)
4834 break; /* Updt failed */
4835 } while (1);
4840 * s2io_get_stats - Updates the device statistics structure.
4841 * @dev : pointer to the device structure.
4842 * Description:
4843 * This function updates the device statistics structure in the s2io_nic
4844 * structure and returns a pointer to the same.
4845 * Return value:
4846 * pointer to the updated net_device_stats structure.
4848 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4850 struct s2io_nic *sp = netdev_priv(dev);
4851 struct mac_info *mac_control = &sp->mac_control;
4852 struct stat_block *stats = mac_control->stats_info;
4853 u64 delta;
4855 /* Configure Stats for immediate updt */
4856 s2io_updt_stats(sp);
4858 /* A device reset will cause the on-adapter statistics to be zero'ed.
4859 * This can be done while running by changing the MTU. To prevent the
4860 * system from having the stats zero'ed, the driver keeps a copy of the
4861 * last update to the system (which is also zero'ed on reset). This
4862 * enables the driver to accurately know the delta between the last
4863 * update and the current update.
4865 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4866 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4867 sp->stats.rx_packets += delta;
4868 dev->stats.rx_packets += delta;
4870 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4871 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4872 sp->stats.tx_packets += delta;
4873 dev->stats.tx_packets += delta;
4875 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4876 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4877 sp->stats.rx_bytes += delta;
4878 dev->stats.rx_bytes += delta;
4880 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4881 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4882 sp->stats.tx_bytes += delta;
4883 dev->stats.tx_bytes += delta;
4885 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4886 sp->stats.rx_errors += delta;
4887 dev->stats.rx_errors += delta;
4889 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4890 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4891 sp->stats.tx_errors += delta;
4892 dev->stats.tx_errors += delta;
4894 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4895 sp->stats.rx_dropped += delta;
4896 dev->stats.rx_dropped += delta;
4898 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4899 sp->stats.tx_dropped += delta;
4900 dev->stats.tx_dropped += delta;
4902 /* The adapter MAC interprets pause frames as multicast packets, but
4903 * does not pass them up. This erroneously increases the multicast
4904 * packet count and needs to be deducted when the multicast frame count
4905 * is queried.
4907 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4908 le32_to_cpu(stats->rmac_vld_mcst_frms);
4909 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4910 delta -= sp->stats.multicast;
4911 sp->stats.multicast += delta;
4912 dev->stats.multicast += delta;
4914 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4915 le32_to_cpu(stats->rmac_usized_frms)) +
4916 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4917 sp->stats.rx_length_errors += delta;
4918 dev->stats.rx_length_errors += delta;
4920 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4921 sp->stats.rx_crc_errors += delta;
4922 dev->stats.rx_crc_errors += delta;
4924 return &dev->stats;
4928 * s2io_set_multicast - entry point for multicast address enable/disable.
4929 * @dev : pointer to the device structure
4930 * Description:
4931 * This function is a driver entry point which gets called by the kernel
4932 * whenever multicast addresses must be enabled/disabled. This also gets
4933 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4934 * determine, if multicast address must be enabled or if promiscuous mode
4935 * is to be disabled etc.
4936 * Return value:
4937 * void.
4940 static void s2io_set_multicast(struct net_device *dev)
4942 int i, j, prev_cnt;
4943 struct netdev_hw_addr *ha;
4944 struct s2io_nic *sp = netdev_priv(dev);
4945 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4946 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4947 0xfeffffffffffULL;
4948 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4949 void __iomem *add;
4950 struct config_param *config = &sp->config;
4952 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4953 /* Enable all Multicast addresses */
4954 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4955 &bar0->rmac_addr_data0_mem);
4956 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4957 &bar0->rmac_addr_data1_mem);
4958 val64 = RMAC_ADDR_CMD_MEM_WE |
4959 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4960 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4961 writeq(val64, &bar0->rmac_addr_cmd_mem);
4962 /* Wait till command completes */
4963 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4964 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4965 S2IO_BIT_RESET);
4967 sp->m_cast_flg = 1;
4968 sp->all_multi_pos = config->max_mc_addr - 1;
4969 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4970 /* Disable all Multicast addresses */
4971 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4972 &bar0->rmac_addr_data0_mem);
4973 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4974 &bar0->rmac_addr_data1_mem);
4975 val64 = RMAC_ADDR_CMD_MEM_WE |
4976 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4977 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4978 writeq(val64, &bar0->rmac_addr_cmd_mem);
4979 /* Wait till command completes */
4980 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4981 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4982 S2IO_BIT_RESET);
4984 sp->m_cast_flg = 0;
4985 sp->all_multi_pos = 0;
4988 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4989 /* Put the NIC into promiscuous mode */
4990 add = &bar0->mac_cfg;
4991 val64 = readq(&bar0->mac_cfg);
4992 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4994 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995 writel((u32)val64, add);
4996 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4997 writel((u32) (val64 >> 32), (add + 4));
4999 if (vlan_tag_strip != 1) {
5000 val64 = readq(&bar0->rx_pa_cfg);
5001 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5002 writeq(val64, &bar0->rx_pa_cfg);
5003 sp->vlan_strip_flag = 0;
5006 val64 = readq(&bar0->mac_cfg);
5007 sp->promisc_flg = 1;
5008 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5009 dev->name);
5010 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5011 /* Remove the NIC from promiscuous mode */
5012 add = &bar0->mac_cfg;
5013 val64 = readq(&bar0->mac_cfg);
5014 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 writel((u32)val64, add);
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 writel((u32) (val64 >> 32), (add + 4));
5021 if (vlan_tag_strip != 0) {
5022 val64 = readq(&bar0->rx_pa_cfg);
5023 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5024 writeq(val64, &bar0->rx_pa_cfg);
5025 sp->vlan_strip_flag = 1;
5028 val64 = readq(&bar0->mac_cfg);
5029 sp->promisc_flg = 0;
5030 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5033 /* Update individual M_CAST address list */
5034 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5035 if (netdev_mc_count(dev) >
5036 (config->max_mc_addr - config->max_mac_addr)) {
5037 DBG_PRINT(ERR_DBG,
5038 "%s: No more Rx filters can be added - "
5039 "please enable ALL_MULTI instead\n",
5040 dev->name);
5041 return;
5044 prev_cnt = sp->mc_addr_count;
5045 sp->mc_addr_count = netdev_mc_count(dev);
5047 /* Clear out the previous list of Mc in the H/W. */
5048 for (i = 0; i < prev_cnt; i++) {
5049 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5050 &bar0->rmac_addr_data0_mem);
5051 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5052 &bar0->rmac_addr_data1_mem);
5053 val64 = RMAC_ADDR_CMD_MEM_WE |
5054 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5055 RMAC_ADDR_CMD_MEM_OFFSET
5056 (config->mc_start_offset + i);
5057 writeq(val64, &bar0->rmac_addr_cmd_mem);
5059 /* Wait for command completes */
5060 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062 S2IO_BIT_RESET)) {
5063 DBG_PRINT(ERR_DBG,
5064 "%s: Adding Multicasts failed\n",
5065 dev->name);
5066 return;
5070 /* Create the new Rx filter list and update the same in H/W. */
5071 i = 0;
5072 netdev_for_each_mc_addr(ha, dev) {
5073 mac_addr = 0;
5074 for (j = 0; j < ETH_ALEN; j++) {
5075 mac_addr |= ha->addr[j];
5076 mac_addr <<= 8;
5078 mac_addr >>= 8;
5079 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5080 &bar0->rmac_addr_data0_mem);
5081 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5082 &bar0->rmac_addr_data1_mem);
5083 val64 = RMAC_ADDR_CMD_MEM_WE |
5084 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5085 RMAC_ADDR_CMD_MEM_OFFSET
5086 (i + config->mc_start_offset);
5087 writeq(val64, &bar0->rmac_addr_cmd_mem);
5089 /* Wait for command completes */
5090 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5091 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5092 S2IO_BIT_RESET)) {
5093 DBG_PRINT(ERR_DBG,
5094 "%s: Adding Multicasts failed\n",
5095 dev->name);
5096 return;
5098 i++;
5103 /* read from CAM unicast & multicast addresses and store it in
5104 * def_mac_addr structure
5106 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5108 int offset;
5109 u64 mac_addr = 0x0;
5110 struct config_param *config = &sp->config;
5112 /* store unicast & multicast mac addresses */
5113 for (offset = 0; offset < config->max_mc_addr; offset++) {
5114 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5115 /* if read fails disable the entry */
5116 if (mac_addr == FAILURE)
5117 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5118 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5122 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5123 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5125 int offset;
5126 struct config_param *config = &sp->config;
5127 /* restore unicast mac address */
5128 for (offset = 0; offset < config->max_mac_addr; offset++)
5129 do_s2io_prog_unicast(sp->dev,
5130 sp->def_mac_addr[offset].mac_addr);
5132 /* restore multicast mac address */
5133 for (offset = config->mc_start_offset;
5134 offset < config->max_mc_addr; offset++)
5135 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5138 /* add a multicast MAC address to CAM */
5139 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5141 int i;
5142 u64 mac_addr = 0;
5143 struct config_param *config = &sp->config;
5145 for (i = 0; i < ETH_ALEN; i++) {
5146 mac_addr <<= 8;
5147 mac_addr |= addr[i];
5149 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5150 return SUCCESS;
5152 /* check if the multicast mac already preset in CAM */
5153 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5154 u64 tmp64;
5155 tmp64 = do_s2io_read_unicast_mc(sp, i);
5156 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5157 break;
5159 if (tmp64 == mac_addr)
5160 return SUCCESS;
5162 if (i == config->max_mc_addr) {
5163 DBG_PRINT(ERR_DBG,
5164 "CAM full no space left for multicast MAC\n");
5165 return FAILURE;
5167 /* Update the internal structure with this new mac address */
5168 do_s2io_copy_mac_addr(sp, i, mac_addr);
5170 return do_s2io_add_mac(sp, mac_addr, i);
5173 /* add MAC address to CAM */
5174 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5176 u64 val64;
5177 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5179 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5180 &bar0->rmac_addr_data0_mem);
5182 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5183 RMAC_ADDR_CMD_MEM_OFFSET(off);
5184 writeq(val64, &bar0->rmac_addr_cmd_mem);
5186 /* Wait till command completes */
5187 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5188 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5189 S2IO_BIT_RESET)) {
5190 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5191 return FAILURE;
5193 return SUCCESS;
5195 /* deletes a specified unicast/multicast mac entry from CAM */
5196 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5198 int offset;
5199 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5200 struct config_param *config = &sp->config;
5202 for (offset = 1;
5203 offset < config->max_mc_addr; offset++) {
5204 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5205 if (tmp64 == addr) {
5206 /* disable the entry by writing 0xffffffffffffULL */
5207 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5208 return FAILURE;
5209 /* store the new mac list from CAM */
5210 do_s2io_store_unicast_mc(sp);
5211 return SUCCESS;
5214 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5215 (unsigned long long)addr);
5216 return FAILURE;
5219 /* read mac entries from CAM */
5220 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5222 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5223 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5225 /* read mac addr */
5226 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5227 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5228 writeq(val64, &bar0->rmac_addr_cmd_mem);
5230 /* Wait till command completes */
5231 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5232 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5233 S2IO_BIT_RESET)) {
5234 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5235 return FAILURE;
5237 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5239 return tmp64 >> 16;
5243 * s2io_set_mac_addr driver entry point
5246 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5248 struct sockaddr *addr = p;
5250 if (!is_valid_ether_addr(addr->sa_data))
5251 return -EINVAL;
5253 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5255 /* store the MAC address in CAM */
5256 return do_s2io_prog_unicast(dev, dev->dev_addr);
5259 * do_s2io_prog_unicast - Programs the Xframe mac address
5260 * @dev : pointer to the device structure.
5261 * @addr: a uchar pointer to the new mac address which is to be set.
5262 * Description : This procedure will program the Xframe to receive
5263 * frames with new Mac Address
5264 * Return value: SUCCESS on success and an appropriate (-)ve integer
5265 * as defined in errno.h file on failure.
5268 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5270 struct s2io_nic *sp = netdev_priv(dev);
5271 register u64 mac_addr = 0, perm_addr = 0;
5272 int i;
5273 u64 tmp64;
5274 struct config_param *config = &sp->config;
5277 * Set the new MAC address as the new unicast filter and reflect this
5278 * change on the device address registered with the OS. It will be
5279 * at offset 0.
5281 for (i = 0; i < ETH_ALEN; i++) {
5282 mac_addr <<= 8;
5283 mac_addr |= addr[i];
5284 perm_addr <<= 8;
5285 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5288 /* check if the dev_addr is different than perm_addr */
5289 if (mac_addr == perm_addr)
5290 return SUCCESS;
5292 /* check if the mac already preset in CAM */
5293 for (i = 1; i < config->max_mac_addr; i++) {
5294 tmp64 = do_s2io_read_unicast_mc(sp, i);
5295 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5296 break;
5298 if (tmp64 == mac_addr) {
5299 DBG_PRINT(INFO_DBG,
5300 "MAC addr:0x%llx already present in CAM\n",
5301 (unsigned long long)mac_addr);
5302 return SUCCESS;
5305 if (i == config->max_mac_addr) {
5306 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5307 return FAILURE;
5309 /* Update the internal structure with this new mac address */
5310 do_s2io_copy_mac_addr(sp, i, mac_addr);
5312 return do_s2io_add_mac(sp, mac_addr, i);
5316 * s2io_ethtool_sset - Sets different link parameters.
5317 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5318 * @info: pointer to the structure with parameters given by ethtool to set
5319 * link information.
5320 * Description:
5321 * The function sets different link parameters provided by the user onto
5322 * the NIC.
5323 * Return value:
5324 * 0 on success.
5327 static int s2io_ethtool_sset(struct net_device *dev,
5328 struct ethtool_cmd *info)
5330 struct s2io_nic *sp = netdev_priv(dev);
5331 if ((info->autoneg == AUTONEG_ENABLE) ||
5332 (ethtool_cmd_speed(info) != SPEED_10000) ||
5333 (info->duplex != DUPLEX_FULL))
5334 return -EINVAL;
5335 else {
5336 s2io_close(sp->dev);
5337 s2io_open(sp->dev);
5340 return 0;
5344 * s2io_ethtol_gset - Return link specific information.
5345 * @sp : private member of the device structure, pointer to the
5346 * s2io_nic structure.
5347 * @info : pointer to the structure with parameters given by ethtool
5348 * to return link information.
5349 * Description:
5350 * Returns link specific information like speed, duplex etc.. to ethtool.
5351 * Return value :
5352 * return 0 on success.
5355 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5357 struct s2io_nic *sp = netdev_priv(dev);
5358 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5360 info->port = PORT_FIBRE;
5362 /* info->transceiver */
5363 info->transceiver = XCVR_EXTERNAL;
5365 if (netif_carrier_ok(sp->dev)) {
5366 ethtool_cmd_speed_set(info, SPEED_10000);
5367 info->duplex = DUPLEX_FULL;
5368 } else {
5369 ethtool_cmd_speed_set(info, -1);
5370 info->duplex = -1;
5373 info->autoneg = AUTONEG_DISABLE;
5374 return 0;
5378 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5379 * @sp : private member of the device structure, which is a pointer to the
5380 * s2io_nic structure.
5381 * @info : pointer to the structure with parameters given by ethtool to
5382 * return driver information.
5383 * Description:
5384 * Returns driver specefic information like name, version etc.. to ethtool.
5385 * Return value:
5386 * void
5389 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5390 struct ethtool_drvinfo *info)
5392 struct s2io_nic *sp = netdev_priv(dev);
5394 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5395 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5396 strncpy(info->fw_version, "", sizeof(info->fw_version));
5397 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5398 info->regdump_len = XENA_REG_SPACE;
5399 info->eedump_len = XENA_EEPROM_SPACE;
5403 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5404 * @sp: private member of the device structure, which is a pointer to the
5405 * s2io_nic structure.
5406 * @regs : pointer to the structure with parameters given by ethtool for
5407 * dumping the registers.
5408 * @reg_space: The input argumnet into which all the registers are dumped.
5409 * Description:
5410 * Dumps the entire register space of xFrame NIC into the user given
5411 * buffer area.
5412 * Return value :
5413 * void .
5416 static void s2io_ethtool_gregs(struct net_device *dev,
5417 struct ethtool_regs *regs, void *space)
5419 int i;
5420 u64 reg;
5421 u8 *reg_space = (u8 *)space;
5422 struct s2io_nic *sp = netdev_priv(dev);
5424 regs->len = XENA_REG_SPACE;
5425 regs->version = sp->pdev->subsystem_device;
5427 for (i = 0; i < regs->len; i += 8) {
5428 reg = readq(sp->bar0 + i);
5429 memcpy((reg_space + i), &reg, 8);
5434 * s2io_set_led - control NIC led
5436 static void s2io_set_led(struct s2io_nic *sp, bool on)
5438 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5439 u16 subid = sp->pdev->subsystem_device;
5440 u64 val64;
5442 if ((sp->device_type == XFRAME_II_DEVICE) ||
5443 ((subid & 0xFF) >= 0x07)) {
5444 val64 = readq(&bar0->gpio_control);
5445 if (on)
5446 val64 |= GPIO_CTRL_GPIO_0;
5447 else
5448 val64 &= ~GPIO_CTRL_GPIO_0;
5450 writeq(val64, &bar0->gpio_control);
5451 } else {
5452 val64 = readq(&bar0->adapter_control);
5453 if (on)
5454 val64 |= ADAPTER_LED_ON;
5455 else
5456 val64 &= ~ADAPTER_LED_ON;
5458 writeq(val64, &bar0->adapter_control);
5464 * s2io_ethtool_set_led - To physically identify the nic on the system.
5465 * @dev : network device
5466 * @state: led setting
5468 * Description: Used to physically identify the NIC on the system.
5469 * The Link LED will blink for a time specified by the user for
5470 * identification.
5471 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5472 * identification is possible only if it's link is up.
5475 static int s2io_ethtool_set_led(struct net_device *dev,
5476 enum ethtool_phys_id_state state)
5478 struct s2io_nic *sp = netdev_priv(dev);
5479 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5480 u16 subid = sp->pdev->subsystem_device;
5482 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5483 u64 val64 = readq(&bar0->adapter_control);
5484 if (!(val64 & ADAPTER_CNTL_EN)) {
5485 pr_err("Adapter Link down, cannot blink LED\n");
5486 return -EAGAIN;
5490 switch (state) {
5491 case ETHTOOL_ID_ACTIVE:
5492 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5493 return 1; /* cycle on/off once per second */
5495 case ETHTOOL_ID_ON:
5496 s2io_set_led(sp, true);
5497 break;
5499 case ETHTOOL_ID_OFF:
5500 s2io_set_led(sp, false);
5501 break;
5503 case ETHTOOL_ID_INACTIVE:
5504 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5505 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5508 return 0;
5511 static void s2io_ethtool_gringparam(struct net_device *dev,
5512 struct ethtool_ringparam *ering)
5514 struct s2io_nic *sp = netdev_priv(dev);
5515 int i, tx_desc_count = 0, rx_desc_count = 0;
5517 if (sp->rxd_mode == RXD_MODE_1) {
5518 ering->rx_max_pending = MAX_RX_DESC_1;
5519 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5520 } else {
5521 ering->rx_max_pending = MAX_RX_DESC_2;
5522 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5525 ering->tx_max_pending = MAX_TX_DESC;
5527 for (i = 0; i < sp->config.rx_ring_num; i++)
5528 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5529 ering->rx_pending = rx_desc_count;
5530 ering->rx_jumbo_pending = rx_desc_count;
5532 for (i = 0; i < sp->config.tx_fifo_num; i++)
5533 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5534 ering->tx_pending = tx_desc_count;
5535 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5539 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5540 * @sp : private member of the device structure, which is a pointer to the
5541 * s2io_nic structure.
5542 * @ep : pointer to the structure with pause parameters given by ethtool.
5543 * Description:
5544 * Returns the Pause frame generation and reception capability of the NIC.
5545 * Return value:
5546 * void
5548 static void s2io_ethtool_getpause_data(struct net_device *dev,
5549 struct ethtool_pauseparam *ep)
5551 u64 val64;
5552 struct s2io_nic *sp = netdev_priv(dev);
5553 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5555 val64 = readq(&bar0->rmac_pause_cfg);
5556 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5557 ep->tx_pause = true;
5558 if (val64 & RMAC_PAUSE_RX_ENABLE)
5559 ep->rx_pause = true;
5560 ep->autoneg = false;
5564 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5565 * @sp : private member of the device structure, which is a pointer to the
5566 * s2io_nic structure.
5567 * @ep : pointer to the structure with pause parameters given by ethtool.
5568 * Description:
5569 * It can be used to set or reset Pause frame generation or reception
5570 * support of the NIC.
5571 * Return value:
5572 * int, returns 0 on Success
5575 static int s2io_ethtool_setpause_data(struct net_device *dev,
5576 struct ethtool_pauseparam *ep)
5578 u64 val64;
5579 struct s2io_nic *sp = netdev_priv(dev);
5580 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5582 val64 = readq(&bar0->rmac_pause_cfg);
5583 if (ep->tx_pause)
5584 val64 |= RMAC_PAUSE_GEN_ENABLE;
5585 else
5586 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5587 if (ep->rx_pause)
5588 val64 |= RMAC_PAUSE_RX_ENABLE;
5589 else
5590 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5591 writeq(val64, &bar0->rmac_pause_cfg);
5592 return 0;
5596 * read_eeprom - reads 4 bytes of data from user given offset.
5597 * @sp : private member of the device structure, which is a pointer to the
5598 * s2io_nic structure.
5599 * @off : offset at which the data must be written
5600 * @data : Its an output parameter where the data read at the given
5601 * offset is stored.
5602 * Description:
5603 * Will read 4 bytes of data from the user given offset and return the
5604 * read data.
5605 * NOTE: Will allow to read only part of the EEPROM visible through the
5606 * I2C bus.
5607 * Return value:
5608 * -1 on failure and 0 on success.
5611 #define S2IO_DEV_ID 5
5612 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5614 int ret = -1;
5615 u32 exit_cnt = 0;
5616 u64 val64;
5617 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5619 if (sp->device_type == XFRAME_I_DEVICE) {
5620 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5621 I2C_CONTROL_ADDR(off) |
5622 I2C_CONTROL_BYTE_CNT(0x3) |
5623 I2C_CONTROL_READ |
5624 I2C_CONTROL_CNTL_START;
5625 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5627 while (exit_cnt < 5) {
5628 val64 = readq(&bar0->i2c_control);
5629 if (I2C_CONTROL_CNTL_END(val64)) {
5630 *data = I2C_CONTROL_GET_DATA(val64);
5631 ret = 0;
5632 break;
5634 msleep(50);
5635 exit_cnt++;
5639 if (sp->device_type == XFRAME_II_DEVICE) {
5640 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5641 SPI_CONTROL_BYTECNT(0x3) |
5642 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5643 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5644 val64 |= SPI_CONTROL_REQ;
5645 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5646 while (exit_cnt < 5) {
5647 val64 = readq(&bar0->spi_control);
5648 if (val64 & SPI_CONTROL_NACK) {
5649 ret = 1;
5650 break;
5651 } else if (val64 & SPI_CONTROL_DONE) {
5652 *data = readq(&bar0->spi_data);
5653 *data &= 0xffffff;
5654 ret = 0;
5655 break;
5657 msleep(50);
5658 exit_cnt++;
5661 return ret;
5665 * write_eeprom - actually writes the relevant part of the data value.
5666 * @sp : private member of the device structure, which is a pointer to the
5667 * s2io_nic structure.
5668 * @off : offset at which the data must be written
5669 * @data : The data that is to be written
5670 * @cnt : Number of bytes of the data that are actually to be written into
5671 * the Eeprom. (max of 3)
5672 * Description:
5673 * Actually writes the relevant part of the data value into the Eeprom
5674 * through the I2C bus.
5675 * Return value:
5676 * 0 on success, -1 on failure.
5679 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5681 int exit_cnt = 0, ret = -1;
5682 u64 val64;
5683 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5685 if (sp->device_type == XFRAME_I_DEVICE) {
5686 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5687 I2C_CONTROL_ADDR(off) |
5688 I2C_CONTROL_BYTE_CNT(cnt) |
5689 I2C_CONTROL_SET_DATA((u32)data) |
5690 I2C_CONTROL_CNTL_START;
5691 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5693 while (exit_cnt < 5) {
5694 val64 = readq(&bar0->i2c_control);
5695 if (I2C_CONTROL_CNTL_END(val64)) {
5696 if (!(val64 & I2C_CONTROL_NACK))
5697 ret = 0;
5698 break;
5700 msleep(50);
5701 exit_cnt++;
5705 if (sp->device_type == XFRAME_II_DEVICE) {
5706 int write_cnt = (cnt == 8) ? 0 : cnt;
5707 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5709 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5710 SPI_CONTROL_BYTECNT(write_cnt) |
5711 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5712 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5713 val64 |= SPI_CONTROL_REQ;
5714 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5715 while (exit_cnt < 5) {
5716 val64 = readq(&bar0->spi_control);
5717 if (val64 & SPI_CONTROL_NACK) {
5718 ret = 1;
5719 break;
5720 } else if (val64 & SPI_CONTROL_DONE) {
5721 ret = 0;
5722 break;
5724 msleep(50);
5725 exit_cnt++;
5728 return ret;
5730 static void s2io_vpd_read(struct s2io_nic *nic)
5732 u8 *vpd_data;
5733 u8 data;
5734 int i = 0, cnt, len, fail = 0;
5735 int vpd_addr = 0x80;
5736 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5738 if (nic->device_type == XFRAME_II_DEVICE) {
5739 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5740 vpd_addr = 0x80;
5741 } else {
5742 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5743 vpd_addr = 0x50;
5745 strcpy(nic->serial_num, "NOT AVAILABLE");
5747 vpd_data = kmalloc(256, GFP_KERNEL);
5748 if (!vpd_data) {
5749 swstats->mem_alloc_fail_cnt++;
5750 return;
5752 swstats->mem_allocated += 256;
5754 for (i = 0; i < 256; i += 4) {
5755 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5756 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5757 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5758 for (cnt = 0; cnt < 5; cnt++) {
5759 msleep(2);
5760 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5761 if (data == 0x80)
5762 break;
5764 if (cnt >= 5) {
5765 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5766 fail = 1;
5767 break;
5769 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5770 (u32 *)&vpd_data[i]);
5773 if (!fail) {
5774 /* read serial number of adapter */
5775 for (cnt = 0; cnt < 252; cnt++) {
5776 if ((vpd_data[cnt] == 'S') &&
5777 (vpd_data[cnt+1] == 'N')) {
5778 len = vpd_data[cnt+2];
5779 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5780 memcpy(nic->serial_num,
5781 &vpd_data[cnt + 3],
5782 len);
5783 memset(nic->serial_num+len,
5785 VPD_STRING_LEN-len);
5786 break;
5792 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5793 len = vpd_data[1];
5794 memcpy(nic->product_name, &vpd_data[3], len);
5795 nic->product_name[len] = 0;
5797 kfree(vpd_data);
5798 swstats->mem_freed += 256;
5802 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5803 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5804 * @eeprom : pointer to the user level structure provided by ethtool,
5805 * containing all relevant information.
5806 * @data_buf : user defined value to be written into Eeprom.
5807 * Description: Reads the values stored in the Eeprom at given offset
5808 * for a given length. Stores these values int the input argument data
5809 * buffer 'data_buf' and returns these to the caller (ethtool.)
5810 * Return value:
5811 * int 0 on success
5814 static int s2io_ethtool_geeprom(struct net_device *dev,
5815 struct ethtool_eeprom *eeprom, u8 * data_buf)
5817 u32 i, valid;
5818 u64 data;
5819 struct s2io_nic *sp = netdev_priv(dev);
5821 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5823 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5824 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5826 for (i = 0; i < eeprom->len; i += 4) {
5827 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5828 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5829 return -EFAULT;
5831 valid = INV(data);
5832 memcpy((data_buf + i), &valid, 4);
5834 return 0;
5838 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5839 * @sp : private member of the device structure, which is a pointer to the
5840 * s2io_nic structure.
5841 * @eeprom : pointer to the user level structure provided by ethtool,
5842 * containing all relevant information.
5843 * @data_buf ; user defined value to be written into Eeprom.
5844 * Description:
5845 * Tries to write the user provided value in the Eeprom, at the offset
5846 * given by the user.
5847 * Return value:
5848 * 0 on success, -EFAULT on failure.
5851 static int s2io_ethtool_seeprom(struct net_device *dev,
5852 struct ethtool_eeprom *eeprom,
5853 u8 *data_buf)
5855 int len = eeprom->len, cnt = 0;
5856 u64 valid = 0, data;
5857 struct s2io_nic *sp = netdev_priv(dev);
5859 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5860 DBG_PRINT(ERR_DBG,
5861 "ETHTOOL_WRITE_EEPROM Err: "
5862 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5863 (sp->pdev->vendor | (sp->pdev->device << 16)),
5864 eeprom->magic);
5865 return -EFAULT;
5868 while (len) {
5869 data = (u32)data_buf[cnt] & 0x000000FF;
5870 if (data)
5871 valid = (u32)(data << 24);
5872 else
5873 valid = data;
5875 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5876 DBG_PRINT(ERR_DBG,
5877 "ETHTOOL_WRITE_EEPROM Err: "
5878 "Cannot write into the specified offset\n");
5879 return -EFAULT;
5881 cnt++;
5882 len--;
5885 return 0;
5889 * s2io_register_test - reads and writes into all clock domains.
5890 * @sp : private member of the device structure, which is a pointer to the
5891 * s2io_nic structure.
5892 * @data : variable that returns the result of each of the test conducted b
5893 * by the driver.
5894 * Description:
5895 * Read and write into all clock domains. The NIC has 3 clock domains,
5896 * see that registers in all the three regions are accessible.
5897 * Return value:
5898 * 0 on success.
5901 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5904 u64 val64 = 0, exp_val;
5905 int fail = 0;
5907 val64 = readq(&bar0->pif_rd_swapper_fb);
5908 if (val64 != 0x123456789abcdefULL) {
5909 fail = 1;
5910 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5913 val64 = readq(&bar0->rmac_pause_cfg);
5914 if (val64 != 0xc000ffff00000000ULL) {
5915 fail = 1;
5916 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5919 val64 = readq(&bar0->rx_queue_cfg);
5920 if (sp->device_type == XFRAME_II_DEVICE)
5921 exp_val = 0x0404040404040404ULL;
5922 else
5923 exp_val = 0x0808080808080808ULL;
5924 if (val64 != exp_val) {
5925 fail = 1;
5926 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5929 val64 = readq(&bar0->xgxs_efifo_cfg);
5930 if (val64 != 0x000000001923141EULL) {
5931 fail = 1;
5932 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5935 val64 = 0x5A5A5A5A5A5A5A5AULL;
5936 writeq(val64, &bar0->xmsi_data);
5937 val64 = readq(&bar0->xmsi_data);
5938 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5939 fail = 1;
5940 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5943 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5944 writeq(val64, &bar0->xmsi_data);
5945 val64 = readq(&bar0->xmsi_data);
5946 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5947 fail = 1;
5948 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5951 *data = fail;
5952 return fail;
5956 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5957 * @sp : private member of the device structure, which is a pointer to the
5958 * s2io_nic structure.
5959 * @data:variable that returns the result of each of the test conducted by
5960 * the driver.
5961 * Description:
5962 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5963 * register.
5964 * Return value:
5965 * 0 on success.
5968 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5970 int fail = 0;
5971 u64 ret_data, org_4F0, org_7F0;
5972 u8 saved_4F0 = 0, saved_7F0 = 0;
5973 struct net_device *dev = sp->dev;
5975 /* Test Write Error at offset 0 */
5976 /* Note that SPI interface allows write access to all areas
5977 * of EEPROM. Hence doing all negative testing only for Xframe I.
5979 if (sp->device_type == XFRAME_I_DEVICE)
5980 if (!write_eeprom(sp, 0, 0, 3))
5981 fail = 1;
5983 /* Save current values at offsets 0x4F0 and 0x7F0 */
5984 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5985 saved_4F0 = 1;
5986 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5987 saved_7F0 = 1;
5989 /* Test Write at offset 4f0 */
5990 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5991 fail = 1;
5992 if (read_eeprom(sp, 0x4F0, &ret_data))
5993 fail = 1;
5995 if (ret_data != 0x012345) {
5996 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5997 "Data written %llx Data read %llx\n",
5998 dev->name, (unsigned long long)0x12345,
5999 (unsigned long long)ret_data);
6000 fail = 1;
6003 /* Reset the EEPROM data go FFFF */
6004 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6006 /* Test Write Request Error at offset 0x7c */
6007 if (sp->device_type == XFRAME_I_DEVICE)
6008 if (!write_eeprom(sp, 0x07C, 0, 3))
6009 fail = 1;
6011 /* Test Write Request at offset 0x7f0 */
6012 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6013 fail = 1;
6014 if (read_eeprom(sp, 0x7F0, &ret_data))
6015 fail = 1;
6017 if (ret_data != 0x012345) {
6018 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6019 "Data written %llx Data read %llx\n",
6020 dev->name, (unsigned long long)0x12345,
6021 (unsigned long long)ret_data);
6022 fail = 1;
6025 /* Reset the EEPROM data go FFFF */
6026 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6028 if (sp->device_type == XFRAME_I_DEVICE) {
6029 /* Test Write Error at offset 0x80 */
6030 if (!write_eeprom(sp, 0x080, 0, 3))
6031 fail = 1;
6033 /* Test Write Error at offset 0xfc */
6034 if (!write_eeprom(sp, 0x0FC, 0, 3))
6035 fail = 1;
6037 /* Test Write Error at offset 0x100 */
6038 if (!write_eeprom(sp, 0x100, 0, 3))
6039 fail = 1;
6041 /* Test Write Error at offset 4ec */
6042 if (!write_eeprom(sp, 0x4EC, 0, 3))
6043 fail = 1;
6046 /* Restore values at offsets 0x4F0 and 0x7F0 */
6047 if (saved_4F0)
6048 write_eeprom(sp, 0x4F0, org_4F0, 3);
6049 if (saved_7F0)
6050 write_eeprom(sp, 0x7F0, org_7F0, 3);
6052 *data = fail;
6053 return fail;
6057 * s2io_bist_test - invokes the MemBist test of the card .
6058 * @sp : private member of the device structure, which is a pointer to the
6059 * s2io_nic structure.
6060 * @data:variable that returns the result of each of the test conducted by
6061 * the driver.
6062 * Description:
6063 * This invokes the MemBist test of the card. We give around
6064 * 2 secs time for the Test to complete. If it's still not complete
6065 * within this peiod, we consider that the test failed.
6066 * Return value:
6067 * 0 on success and -1 on failure.
6070 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6072 u8 bist = 0;
6073 int cnt = 0, ret = -1;
6075 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6076 bist |= PCI_BIST_START;
6077 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6079 while (cnt < 20) {
6080 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6081 if (!(bist & PCI_BIST_START)) {
6082 *data = (bist & PCI_BIST_CODE_MASK);
6083 ret = 0;
6084 break;
6086 msleep(100);
6087 cnt++;
6090 return ret;
6094 * s2io-link_test - verifies the link state of the nic
6095 * @sp ; private member of the device structure, which is a pointer to the
6096 * s2io_nic structure.
6097 * @data: variable that returns the result of each of the test conducted by
6098 * the driver.
6099 * Description:
6100 * The function verifies the link state of the NIC and updates the input
6101 * argument 'data' appropriately.
6102 * Return value:
6103 * 0 on success.
6106 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6108 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6109 u64 val64;
6111 val64 = readq(&bar0->adapter_status);
6112 if (!(LINK_IS_UP(val64)))
6113 *data = 1;
6114 else
6115 *data = 0;
6117 return *data;
6121 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6122 * @sp - private member of the device structure, which is a pointer to the
6123 * s2io_nic structure.
6124 * @data - variable that returns the result of each of the test
6125 * conducted by the driver.
6126 * Description:
6127 * This is one of the offline test that tests the read and write
6128 * access to the RldRam chip on the NIC.
6129 * Return value:
6130 * 0 on success.
6133 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6136 u64 val64;
6137 int cnt, iteration = 0, test_fail = 0;
6139 val64 = readq(&bar0->adapter_control);
6140 val64 &= ~ADAPTER_ECC_EN;
6141 writeq(val64, &bar0->adapter_control);
6143 val64 = readq(&bar0->mc_rldram_test_ctrl);
6144 val64 |= MC_RLDRAM_TEST_MODE;
6145 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6147 val64 = readq(&bar0->mc_rldram_mrs);
6148 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6149 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6151 val64 |= MC_RLDRAM_MRS_ENABLE;
6152 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6154 while (iteration < 2) {
6155 val64 = 0x55555555aaaa0000ULL;
6156 if (iteration == 1)
6157 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6158 writeq(val64, &bar0->mc_rldram_test_d0);
6160 val64 = 0xaaaa5a5555550000ULL;
6161 if (iteration == 1)
6162 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6163 writeq(val64, &bar0->mc_rldram_test_d1);
6165 val64 = 0x55aaaaaaaa5a0000ULL;
6166 if (iteration == 1)
6167 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168 writeq(val64, &bar0->mc_rldram_test_d2);
6170 val64 = (u64) (0x0000003ffffe0100ULL);
6171 writeq(val64, &bar0->mc_rldram_test_add);
6173 val64 = MC_RLDRAM_TEST_MODE |
6174 MC_RLDRAM_TEST_WRITE |
6175 MC_RLDRAM_TEST_GO;
6176 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6178 for (cnt = 0; cnt < 5; cnt++) {
6179 val64 = readq(&bar0->mc_rldram_test_ctrl);
6180 if (val64 & MC_RLDRAM_TEST_DONE)
6181 break;
6182 msleep(200);
6185 if (cnt == 5)
6186 break;
6188 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6189 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6191 for (cnt = 0; cnt < 5; cnt++) {
6192 val64 = readq(&bar0->mc_rldram_test_ctrl);
6193 if (val64 & MC_RLDRAM_TEST_DONE)
6194 break;
6195 msleep(500);
6198 if (cnt == 5)
6199 break;
6201 val64 = readq(&bar0->mc_rldram_test_ctrl);
6202 if (!(val64 & MC_RLDRAM_TEST_PASS))
6203 test_fail = 1;
6205 iteration++;
6208 *data = test_fail;
6210 /* Bring the adapter out of test mode */
6211 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6213 return test_fail;
6217 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6218 * @sp : private member of the device structure, which is a pointer to the
6219 * s2io_nic structure.
6220 * @ethtest : pointer to a ethtool command specific structure that will be
6221 * returned to the user.
6222 * @data : variable that returns the result of each of the test
6223 * conducted by the driver.
6224 * Description:
6225 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6226 * the health of the card.
6227 * Return value:
6228 * void
6231 static void s2io_ethtool_test(struct net_device *dev,
6232 struct ethtool_test *ethtest,
6233 uint64_t *data)
6235 struct s2io_nic *sp = netdev_priv(dev);
6236 int orig_state = netif_running(sp->dev);
6238 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6239 /* Offline Tests. */
6240 if (orig_state)
6241 s2io_close(sp->dev);
6243 if (s2io_register_test(sp, &data[0]))
6244 ethtest->flags |= ETH_TEST_FL_FAILED;
6246 s2io_reset(sp);
6248 if (s2io_rldram_test(sp, &data[3]))
6249 ethtest->flags |= ETH_TEST_FL_FAILED;
6251 s2io_reset(sp);
6253 if (s2io_eeprom_test(sp, &data[1]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6256 if (s2io_bist_test(sp, &data[4]))
6257 ethtest->flags |= ETH_TEST_FL_FAILED;
6259 if (orig_state)
6260 s2io_open(sp->dev);
6262 data[2] = 0;
6263 } else {
6264 /* Online Tests. */
6265 if (!orig_state) {
6266 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6267 dev->name);
6268 data[0] = -1;
6269 data[1] = -1;
6270 data[2] = -1;
6271 data[3] = -1;
6272 data[4] = -1;
6275 if (s2io_link_test(sp, &data[2]))
6276 ethtest->flags |= ETH_TEST_FL_FAILED;
6278 data[0] = 0;
6279 data[1] = 0;
6280 data[3] = 0;
6281 data[4] = 0;
6285 static void s2io_get_ethtool_stats(struct net_device *dev,
6286 struct ethtool_stats *estats,
6287 u64 *tmp_stats)
6289 int i = 0, k;
6290 struct s2io_nic *sp = netdev_priv(dev);
6291 struct stat_block *stats = sp->mac_control.stats_info;
6292 struct swStat *swstats = &stats->sw_stat;
6293 struct xpakStat *xstats = &stats->xpak_stat;
6295 s2io_updt_stats(sp);
6296 tmp_stats[i++] =
6297 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6298 le32_to_cpu(stats->tmac_frms);
6299 tmp_stats[i++] =
6300 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6301 le32_to_cpu(stats->tmac_data_octets);
6302 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6303 tmp_stats[i++] =
6304 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6305 le32_to_cpu(stats->tmac_mcst_frms);
6306 tmp_stats[i++] =
6307 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6308 le32_to_cpu(stats->tmac_bcst_frms);
6309 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6310 tmp_stats[i++] =
6311 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6312 le32_to_cpu(stats->tmac_ttl_octets);
6313 tmp_stats[i++] =
6314 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6315 le32_to_cpu(stats->tmac_ucst_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6318 le32_to_cpu(stats->tmac_nucst_frms);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6321 le32_to_cpu(stats->tmac_any_err_frms);
6322 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6323 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6326 le32_to_cpu(stats->tmac_vld_ip);
6327 tmp_stats[i++] =
6328 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6329 le32_to_cpu(stats->tmac_drop_ip);
6330 tmp_stats[i++] =
6331 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6332 le32_to_cpu(stats->tmac_icmp);
6333 tmp_stats[i++] =
6334 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6335 le32_to_cpu(stats->tmac_rst_tcp);
6336 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6337 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6338 le32_to_cpu(stats->tmac_udp);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6341 le32_to_cpu(stats->rmac_vld_frms);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6344 le32_to_cpu(stats->rmac_data_octets);
6345 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6346 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6347 tmp_stats[i++] =
6348 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6349 le32_to_cpu(stats->rmac_vld_mcst_frms);
6350 tmp_stats[i++] =
6351 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6352 le32_to_cpu(stats->rmac_vld_bcst_frms);
6353 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6354 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6356 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6357 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6360 le32_to_cpu(stats->rmac_ttl_octets);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6363 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6366 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6369 le32_to_cpu(stats->rmac_discarded_frms);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6372 << 32 | le32_to_cpu(stats->rmac_drop_events);
6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6374 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6377 le32_to_cpu(stats->rmac_usized_frms);
6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6380 le32_to_cpu(stats->rmac_osized_frms);
6381 tmp_stats[i++] =
6382 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6383 le32_to_cpu(stats->rmac_frag_frms);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6386 le32_to_cpu(stats->rmac_jabber_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6391 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6392 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6395 le32_to_cpu(stats->rmac_ip);
6396 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6397 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6398 tmp_stats[i++] =
6399 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6400 le32_to_cpu(stats->rmac_drop_ip);
6401 tmp_stats[i++] =
6402 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6403 le32_to_cpu(stats->rmac_icmp);
6404 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6405 tmp_stats[i++] =
6406 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_udp);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6410 le32_to_cpu(stats->rmac_err_drp_udp);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6426 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6427 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6428 tmp_stats[i++] =
6429 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6430 le32_to_cpu(stats->rmac_pause_cnt);
6431 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6432 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6433 tmp_stats[i++] =
6434 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6435 le32_to_cpu(stats->rmac_accepted_ip);
6436 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6437 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6456 /* Enhanced statistics exist only for Hercules */
6457 if (sp->device_type == XFRAME_II_DEVICE) {
6458 tmp_stats[i++] =
6459 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6460 tmp_stats[i++] =
6461 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6462 tmp_stats[i++] =
6463 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6468 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6474 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6475 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6476 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6479 tmp_stats[i++] = 0;
6480 tmp_stats[i++] = swstats->single_ecc_errs;
6481 tmp_stats[i++] = swstats->double_ecc_errs;
6482 tmp_stats[i++] = swstats->parity_err_cnt;
6483 tmp_stats[i++] = swstats->serious_err_cnt;
6484 tmp_stats[i++] = swstats->soft_reset_cnt;
6485 tmp_stats[i++] = swstats->fifo_full_cnt;
6486 for (k = 0; k < MAX_RX_RINGS; k++)
6487 tmp_stats[i++] = swstats->ring_full_cnt[k];
6488 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6489 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6490 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6491 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6492 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6493 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6494 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6495 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6496 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6497 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6498 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6499 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6500 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6501 tmp_stats[i++] = swstats->sending_both;
6502 tmp_stats[i++] = swstats->outof_sequence_pkts;
6503 tmp_stats[i++] = swstats->flush_max_pkts;
6504 if (swstats->num_aggregations) {
6505 u64 tmp = swstats->sum_avg_pkts_aggregated;
6506 int count = 0;
6508 * Since 64-bit divide does not work on all platforms,
6509 * do repeated subtraction.
6511 while (tmp >= swstats->num_aggregations) {
6512 tmp -= swstats->num_aggregations;
6513 count++;
6515 tmp_stats[i++] = count;
6516 } else
6517 tmp_stats[i++] = 0;
6518 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6519 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6520 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6521 tmp_stats[i++] = swstats->mem_allocated;
6522 tmp_stats[i++] = swstats->mem_freed;
6523 tmp_stats[i++] = swstats->link_up_cnt;
6524 tmp_stats[i++] = swstats->link_down_cnt;
6525 tmp_stats[i++] = swstats->link_up_time;
6526 tmp_stats[i++] = swstats->link_down_time;
6528 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6529 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6530 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6531 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6532 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6534 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6535 tmp_stats[i++] = swstats->rx_abort_cnt;
6536 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6537 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6538 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6539 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6540 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6541 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6542 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6543 tmp_stats[i++] = swstats->tda_err_cnt;
6544 tmp_stats[i++] = swstats->pfc_err_cnt;
6545 tmp_stats[i++] = swstats->pcc_err_cnt;
6546 tmp_stats[i++] = swstats->tti_err_cnt;
6547 tmp_stats[i++] = swstats->tpa_err_cnt;
6548 tmp_stats[i++] = swstats->sm_err_cnt;
6549 tmp_stats[i++] = swstats->lso_err_cnt;
6550 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6551 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6552 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6553 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6554 tmp_stats[i++] = swstats->rc_err_cnt;
6555 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6556 tmp_stats[i++] = swstats->rpa_err_cnt;
6557 tmp_stats[i++] = swstats->rda_err_cnt;
6558 tmp_stats[i++] = swstats->rti_err_cnt;
6559 tmp_stats[i++] = swstats->mc_err_cnt;
6562 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6564 return XENA_REG_SPACE;
6568 static int s2io_get_eeprom_len(struct net_device *dev)
6570 return XENA_EEPROM_SPACE;
6573 static int s2io_get_sset_count(struct net_device *dev, int sset)
6575 struct s2io_nic *sp = netdev_priv(dev);
6577 switch (sset) {
6578 case ETH_SS_TEST:
6579 return S2IO_TEST_LEN;
6580 case ETH_SS_STATS:
6581 switch (sp->device_type) {
6582 case XFRAME_I_DEVICE:
6583 return XFRAME_I_STAT_LEN;
6584 case XFRAME_II_DEVICE:
6585 return XFRAME_II_STAT_LEN;
6586 default:
6587 return 0;
6589 default:
6590 return -EOPNOTSUPP;
6594 static void s2io_ethtool_get_strings(struct net_device *dev,
6595 u32 stringset, u8 *data)
6597 int stat_size = 0;
6598 struct s2io_nic *sp = netdev_priv(dev);
6600 switch (stringset) {
6601 case ETH_SS_TEST:
6602 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6603 break;
6604 case ETH_SS_STATS:
6605 stat_size = sizeof(ethtool_xena_stats_keys);
6606 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6607 if (sp->device_type == XFRAME_II_DEVICE) {
6608 memcpy(data + stat_size,
6609 &ethtool_enhanced_stats_keys,
6610 sizeof(ethtool_enhanced_stats_keys));
6611 stat_size += sizeof(ethtool_enhanced_stats_keys);
6614 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6615 sizeof(ethtool_driver_stats_keys));
6619 static int s2io_set_features(struct net_device *dev, u32 features)
6621 struct s2io_nic *sp = netdev_priv(dev);
6622 u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6624 if (changed && netif_running(dev)) {
6625 int rc;
6627 s2io_stop_all_tx_queue(sp);
6628 s2io_card_down(sp);
6629 dev->features = features;
6630 rc = s2io_card_up(sp);
6631 if (rc)
6632 s2io_reset(sp);
6633 else
6634 s2io_start_all_tx_queue(sp);
6636 return rc ? rc : 1;
6639 return 0;
6642 static const struct ethtool_ops netdev_ethtool_ops = {
6643 .get_settings = s2io_ethtool_gset,
6644 .set_settings = s2io_ethtool_sset,
6645 .get_drvinfo = s2io_ethtool_gdrvinfo,
6646 .get_regs_len = s2io_ethtool_get_regs_len,
6647 .get_regs = s2io_ethtool_gregs,
6648 .get_link = ethtool_op_get_link,
6649 .get_eeprom_len = s2io_get_eeprom_len,
6650 .get_eeprom = s2io_ethtool_geeprom,
6651 .set_eeprom = s2io_ethtool_seeprom,
6652 .get_ringparam = s2io_ethtool_gringparam,
6653 .get_pauseparam = s2io_ethtool_getpause_data,
6654 .set_pauseparam = s2io_ethtool_setpause_data,
6655 .self_test = s2io_ethtool_test,
6656 .get_strings = s2io_ethtool_get_strings,
6657 .set_phys_id = s2io_ethtool_set_led,
6658 .get_ethtool_stats = s2io_get_ethtool_stats,
6659 .get_sset_count = s2io_get_sset_count,
6663 * s2io_ioctl - Entry point for the Ioctl
6664 * @dev : Device pointer.
6665 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6666 * a proprietary structure used to pass information to the driver.
6667 * @cmd : This is used to distinguish between the different commands that
6668 * can be passed to the IOCTL functions.
6669 * Description:
6670 * Currently there are no special functionality supported in IOCTL, hence
6671 * function always return EOPNOTSUPPORTED
6674 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6676 return -EOPNOTSUPP;
6680 * s2io_change_mtu - entry point to change MTU size for the device.
6681 * @dev : device pointer.
6682 * @new_mtu : the new MTU size for the device.
6683 * Description: A driver entry point to change MTU size for the device.
6684 * Before changing the MTU the device must be stopped.
6685 * Return value:
6686 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6687 * file on failure.
6690 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6692 struct s2io_nic *sp = netdev_priv(dev);
6693 int ret = 0;
6695 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6696 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6697 return -EPERM;
6700 dev->mtu = new_mtu;
6701 if (netif_running(dev)) {
6702 s2io_stop_all_tx_queue(sp);
6703 s2io_card_down(sp);
6704 ret = s2io_card_up(sp);
6705 if (ret) {
6706 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6707 __func__);
6708 return ret;
6710 s2io_wake_all_tx_queue(sp);
6711 } else { /* Device is down */
6712 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6713 u64 val64 = new_mtu;
6715 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6718 return ret;
6722 * s2io_set_link - Set the LInk status
6723 * @data: long pointer to device private structue
6724 * Description: Sets the link status for the adapter
6727 static void s2io_set_link(struct work_struct *work)
6729 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6730 set_link_task);
6731 struct net_device *dev = nic->dev;
6732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6733 register u64 val64;
6734 u16 subid;
6736 rtnl_lock();
6738 if (!netif_running(dev))
6739 goto out_unlock;
6741 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6742 /* The card is being reset, no point doing anything */
6743 goto out_unlock;
6746 subid = nic->pdev->subsystem_device;
6747 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6749 * Allow a small delay for the NICs self initiated
6750 * cleanup to complete.
6752 msleep(100);
6755 val64 = readq(&bar0->adapter_status);
6756 if (LINK_IS_UP(val64)) {
6757 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6758 if (verify_xena_quiescence(nic)) {
6759 val64 = readq(&bar0->adapter_control);
6760 val64 |= ADAPTER_CNTL_EN;
6761 writeq(val64, &bar0->adapter_control);
6762 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6763 nic->device_type, subid)) {
6764 val64 = readq(&bar0->gpio_control);
6765 val64 |= GPIO_CTRL_GPIO_0;
6766 writeq(val64, &bar0->gpio_control);
6767 val64 = readq(&bar0->gpio_control);
6768 } else {
6769 val64 |= ADAPTER_LED_ON;
6770 writeq(val64, &bar0->adapter_control);
6772 nic->device_enabled_once = true;
6773 } else {
6774 DBG_PRINT(ERR_DBG,
6775 "%s: Error: device is not Quiescent\n",
6776 dev->name);
6777 s2io_stop_all_tx_queue(nic);
6780 val64 = readq(&bar0->adapter_control);
6781 val64 |= ADAPTER_LED_ON;
6782 writeq(val64, &bar0->adapter_control);
6783 s2io_link(nic, LINK_UP);
6784 } else {
6785 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6786 subid)) {
6787 val64 = readq(&bar0->gpio_control);
6788 val64 &= ~GPIO_CTRL_GPIO_0;
6789 writeq(val64, &bar0->gpio_control);
6790 val64 = readq(&bar0->gpio_control);
6792 /* turn off LED */
6793 val64 = readq(&bar0->adapter_control);
6794 val64 = val64 & (~ADAPTER_LED_ON);
6795 writeq(val64, &bar0->adapter_control);
6796 s2io_link(nic, LINK_DOWN);
6798 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6800 out_unlock:
6801 rtnl_unlock();
6804 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6805 struct buffAdd *ba,
6806 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6807 u64 *temp2, int size)
6809 struct net_device *dev = sp->dev;
6810 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6812 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6813 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6814 /* allocate skb */
6815 if (*skb) {
6816 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6818 * As Rx frame are not going to be processed,
6819 * using same mapped address for the Rxd
6820 * buffer pointer
6822 rxdp1->Buffer0_ptr = *temp0;
6823 } else {
6824 *skb = dev_alloc_skb(size);
6825 if (!(*skb)) {
6826 DBG_PRINT(INFO_DBG,
6827 "%s: Out of memory to allocate %s\n",
6828 dev->name, "1 buf mode SKBs");
6829 stats->mem_alloc_fail_cnt++;
6830 return -ENOMEM ;
6832 stats->mem_allocated += (*skb)->truesize;
6833 /* storing the mapped addr in a temp variable
6834 * such it will be used for next rxd whose
6835 * Host Control is NULL
6837 rxdp1->Buffer0_ptr = *temp0 =
6838 pci_map_single(sp->pdev, (*skb)->data,
6839 size - NET_IP_ALIGN,
6840 PCI_DMA_FROMDEVICE);
6841 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6842 goto memalloc_failed;
6843 rxdp->Host_Control = (unsigned long) (*skb);
6845 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6846 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6847 /* Two buffer Mode */
6848 if (*skb) {
6849 rxdp3->Buffer2_ptr = *temp2;
6850 rxdp3->Buffer0_ptr = *temp0;
6851 rxdp3->Buffer1_ptr = *temp1;
6852 } else {
6853 *skb = dev_alloc_skb(size);
6854 if (!(*skb)) {
6855 DBG_PRINT(INFO_DBG,
6856 "%s: Out of memory to allocate %s\n",
6857 dev->name,
6858 "2 buf mode SKBs");
6859 stats->mem_alloc_fail_cnt++;
6860 return -ENOMEM;
6862 stats->mem_allocated += (*skb)->truesize;
6863 rxdp3->Buffer2_ptr = *temp2 =
6864 pci_map_single(sp->pdev, (*skb)->data,
6865 dev->mtu + 4,
6866 PCI_DMA_FROMDEVICE);
6867 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6868 goto memalloc_failed;
6869 rxdp3->Buffer0_ptr = *temp0 =
6870 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6871 PCI_DMA_FROMDEVICE);
6872 if (pci_dma_mapping_error(sp->pdev,
6873 rxdp3->Buffer0_ptr)) {
6874 pci_unmap_single(sp->pdev,
6875 (dma_addr_t)rxdp3->Buffer2_ptr,
6876 dev->mtu + 4,
6877 PCI_DMA_FROMDEVICE);
6878 goto memalloc_failed;
6880 rxdp->Host_Control = (unsigned long) (*skb);
6882 /* Buffer-1 will be dummy buffer not used */
6883 rxdp3->Buffer1_ptr = *temp1 =
6884 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6885 PCI_DMA_FROMDEVICE);
6886 if (pci_dma_mapping_error(sp->pdev,
6887 rxdp3->Buffer1_ptr)) {
6888 pci_unmap_single(sp->pdev,
6889 (dma_addr_t)rxdp3->Buffer0_ptr,
6890 BUF0_LEN, PCI_DMA_FROMDEVICE);
6891 pci_unmap_single(sp->pdev,
6892 (dma_addr_t)rxdp3->Buffer2_ptr,
6893 dev->mtu + 4,
6894 PCI_DMA_FROMDEVICE);
6895 goto memalloc_failed;
6899 return 0;
6901 memalloc_failed:
6902 stats->pci_map_fail_cnt++;
6903 stats->mem_freed += (*skb)->truesize;
6904 dev_kfree_skb(*skb);
6905 return -ENOMEM;
6908 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6909 int size)
6911 struct net_device *dev = sp->dev;
6912 if (sp->rxd_mode == RXD_MODE_1) {
6913 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6914 } else if (sp->rxd_mode == RXD_MODE_3B) {
6915 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6916 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6917 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6921 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6923 int i, j, k, blk_cnt = 0, size;
6924 struct config_param *config = &sp->config;
6925 struct mac_info *mac_control = &sp->mac_control;
6926 struct net_device *dev = sp->dev;
6927 struct RxD_t *rxdp = NULL;
6928 struct sk_buff *skb = NULL;
6929 struct buffAdd *ba = NULL;
6930 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6932 /* Calculate the size based on ring mode */
6933 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6934 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6935 if (sp->rxd_mode == RXD_MODE_1)
6936 size += NET_IP_ALIGN;
6937 else if (sp->rxd_mode == RXD_MODE_3B)
6938 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6940 for (i = 0; i < config->rx_ring_num; i++) {
6941 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6942 struct ring_info *ring = &mac_control->rings[i];
6944 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6946 for (j = 0; j < blk_cnt; j++) {
6947 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6948 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6949 if (sp->rxd_mode == RXD_MODE_3B)
6950 ba = &ring->ba[j][k];
6951 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6952 (u64 *)&temp0_64,
6953 (u64 *)&temp1_64,
6954 (u64 *)&temp2_64,
6955 size) == -ENOMEM) {
6956 return 0;
6959 set_rxd_buffer_size(sp, rxdp, size);
6960 wmb();
6961 /* flip the Ownership bit to Hardware */
6962 rxdp->Control_1 |= RXD_OWN_XENA;
6966 return 0;
6970 static int s2io_add_isr(struct s2io_nic *sp)
6972 int ret = 0;
6973 struct net_device *dev = sp->dev;
6974 int err = 0;
6976 if (sp->config.intr_type == MSI_X)
6977 ret = s2io_enable_msi_x(sp);
6978 if (ret) {
6979 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6980 sp->config.intr_type = INTA;
6984 * Store the values of the MSIX table in
6985 * the struct s2io_nic structure
6987 store_xmsi_data(sp);
6989 /* After proper initialization of H/W, register ISR */
6990 if (sp->config.intr_type == MSI_X) {
6991 int i, msix_rx_cnt = 0;
6993 for (i = 0; i < sp->num_entries; i++) {
6994 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6995 if (sp->s2io_entries[i].type ==
6996 MSIX_RING_TYPE) {
6997 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6998 dev->name, i);
6999 err = request_irq(sp->entries[i].vector,
7000 s2io_msix_ring_handle,
7002 sp->desc[i],
7003 sp->s2io_entries[i].arg);
7004 } else if (sp->s2io_entries[i].type ==
7005 MSIX_ALARM_TYPE) {
7006 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7007 dev->name, i);
7008 err = request_irq(sp->entries[i].vector,
7009 s2io_msix_fifo_handle,
7011 sp->desc[i],
7012 sp->s2io_entries[i].arg);
7015 /* if either data or addr is zero print it. */
7016 if (!(sp->msix_info[i].addr &&
7017 sp->msix_info[i].data)) {
7018 DBG_PRINT(ERR_DBG,
7019 "%s @Addr:0x%llx Data:0x%llx\n",
7020 sp->desc[i],
7021 (unsigned long long)
7022 sp->msix_info[i].addr,
7023 (unsigned long long)
7024 ntohl(sp->msix_info[i].data));
7025 } else
7026 msix_rx_cnt++;
7027 if (err) {
7028 remove_msix_isr(sp);
7030 DBG_PRINT(ERR_DBG,
7031 "%s:MSI-X-%d registration "
7032 "failed\n", dev->name, i);
7034 DBG_PRINT(ERR_DBG,
7035 "%s: Defaulting to INTA\n",
7036 dev->name);
7037 sp->config.intr_type = INTA;
7038 break;
7040 sp->s2io_entries[i].in_use =
7041 MSIX_REGISTERED_SUCCESS;
7044 if (!err) {
7045 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7046 DBG_PRINT(INFO_DBG,
7047 "MSI-X-TX entries enabled through alarm vector\n");
7050 if (sp->config.intr_type == INTA) {
7051 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7052 sp->name, dev);
7053 if (err) {
7054 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7055 dev->name);
7056 return -1;
7059 return 0;
7062 static void s2io_rem_isr(struct s2io_nic *sp)
7064 if (sp->config.intr_type == MSI_X)
7065 remove_msix_isr(sp);
7066 else
7067 remove_inta_isr(sp);
7070 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7072 int cnt = 0;
7073 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7074 register u64 val64 = 0;
7075 struct config_param *config;
7076 config = &sp->config;
7078 if (!is_s2io_card_up(sp))
7079 return;
7081 del_timer_sync(&sp->alarm_timer);
7082 /* If s2io_set_link task is executing, wait till it completes. */
7083 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7084 msleep(50);
7085 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7087 /* Disable napi */
7088 if (sp->config.napi) {
7089 int off = 0;
7090 if (config->intr_type == MSI_X) {
7091 for (; off < sp->config.rx_ring_num; off++)
7092 napi_disable(&sp->mac_control.rings[off].napi);
7094 else
7095 napi_disable(&sp->napi);
7098 /* disable Tx and Rx traffic on the NIC */
7099 if (do_io)
7100 stop_nic(sp);
7102 s2io_rem_isr(sp);
7104 /* stop the tx queue, indicate link down */
7105 s2io_link(sp, LINK_DOWN);
7107 /* Check if the device is Quiescent and then Reset the NIC */
7108 while (do_io) {
7109 /* As per the HW requirement we need to replenish the
7110 * receive buffer to avoid the ring bump. Since there is
7111 * no intention of processing the Rx frame at this pointwe are
7112 * just setting the ownership bit of rxd in Each Rx
7113 * ring to HW and set the appropriate buffer size
7114 * based on the ring mode
7116 rxd_owner_bit_reset(sp);
7118 val64 = readq(&bar0->adapter_status);
7119 if (verify_xena_quiescence(sp)) {
7120 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7121 break;
7124 msleep(50);
7125 cnt++;
7126 if (cnt == 10) {
7127 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7128 "adapter status reads 0x%llx\n",
7129 (unsigned long long)val64);
7130 break;
7133 if (do_io)
7134 s2io_reset(sp);
7136 /* Free all Tx buffers */
7137 free_tx_buffers(sp);
7139 /* Free all Rx buffers */
7140 free_rx_buffers(sp);
7142 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7145 static void s2io_card_down(struct s2io_nic *sp)
7147 do_s2io_card_down(sp, 1);
7150 static int s2io_card_up(struct s2io_nic *sp)
7152 int i, ret = 0;
7153 struct config_param *config;
7154 struct mac_info *mac_control;
7155 struct net_device *dev = (struct net_device *)sp->dev;
7156 u16 interruptible;
7158 /* Initialize the H/W I/O registers */
7159 ret = init_nic(sp);
7160 if (ret != 0) {
7161 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7162 dev->name);
7163 if (ret != -EIO)
7164 s2io_reset(sp);
7165 return ret;
7169 * Initializing the Rx buffers. For now we are considering only 1
7170 * Rx ring and initializing buffers into 30 Rx blocks
7172 config = &sp->config;
7173 mac_control = &sp->mac_control;
7175 for (i = 0; i < config->rx_ring_num; i++) {
7176 struct ring_info *ring = &mac_control->rings[i];
7178 ring->mtu = dev->mtu;
7179 ring->lro = !!(dev->features & NETIF_F_LRO);
7180 ret = fill_rx_buffers(sp, ring, 1);
7181 if (ret) {
7182 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7183 dev->name);
7184 s2io_reset(sp);
7185 free_rx_buffers(sp);
7186 return -ENOMEM;
7188 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7189 ring->rx_bufs_left);
7192 /* Initialise napi */
7193 if (config->napi) {
7194 if (config->intr_type == MSI_X) {
7195 for (i = 0; i < sp->config.rx_ring_num; i++)
7196 napi_enable(&sp->mac_control.rings[i].napi);
7197 } else {
7198 napi_enable(&sp->napi);
7202 /* Maintain the state prior to the open */
7203 if (sp->promisc_flg)
7204 sp->promisc_flg = 0;
7205 if (sp->m_cast_flg) {
7206 sp->m_cast_flg = 0;
7207 sp->all_multi_pos = 0;
7210 /* Setting its receive mode */
7211 s2io_set_multicast(dev);
7213 if (dev->features & NETIF_F_LRO) {
7214 /* Initialize max aggregatable pkts per session based on MTU */
7215 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7216 /* Check if we can use (if specified) user provided value */
7217 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7218 sp->lro_max_aggr_per_sess = lro_max_pkts;
7221 /* Enable Rx Traffic and interrupts on the NIC */
7222 if (start_nic(sp)) {
7223 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7224 s2io_reset(sp);
7225 free_rx_buffers(sp);
7226 return -ENODEV;
7229 /* Add interrupt service routine */
7230 if (s2io_add_isr(sp) != 0) {
7231 if (sp->config.intr_type == MSI_X)
7232 s2io_rem_isr(sp);
7233 s2io_reset(sp);
7234 free_rx_buffers(sp);
7235 return -ENODEV;
7238 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7240 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7242 /* Enable select interrupts */
7243 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7244 if (sp->config.intr_type != INTA) {
7245 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7246 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7247 } else {
7248 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7249 interruptible |= TX_PIC_INTR;
7250 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7253 return 0;
7257 * s2io_restart_nic - Resets the NIC.
7258 * @data : long pointer to the device private structure
7259 * Description:
7260 * This function is scheduled to be run by the s2io_tx_watchdog
7261 * function after 0.5 secs to reset the NIC. The idea is to reduce
7262 * the run time of the watch dog routine which is run holding a
7263 * spin lock.
7266 static void s2io_restart_nic(struct work_struct *work)
7268 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7269 struct net_device *dev = sp->dev;
7271 rtnl_lock();
7273 if (!netif_running(dev))
7274 goto out_unlock;
7276 s2io_card_down(sp);
7277 if (s2io_card_up(sp)) {
7278 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7280 s2io_wake_all_tx_queue(sp);
7281 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7282 out_unlock:
7283 rtnl_unlock();
7287 * s2io_tx_watchdog - Watchdog for transmit side.
7288 * @dev : Pointer to net device structure
7289 * Description:
7290 * This function is triggered if the Tx Queue is stopped
7291 * for a pre-defined amount of time when the Interface is still up.
7292 * If the Interface is jammed in such a situation, the hardware is
7293 * reset (by s2io_close) and restarted again (by s2io_open) to
7294 * overcome any problem that might have been caused in the hardware.
7295 * Return value:
7296 * void
7299 static void s2io_tx_watchdog(struct net_device *dev)
7301 struct s2io_nic *sp = netdev_priv(dev);
7302 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7304 if (netif_carrier_ok(dev)) {
7305 swstats->watchdog_timer_cnt++;
7306 schedule_work(&sp->rst_timer_task);
7307 swstats->soft_reset_cnt++;
7312 * rx_osm_handler - To perform some OS related operations on SKB.
7313 * @sp: private member of the device structure,pointer to s2io_nic structure.
7314 * @skb : the socket buffer pointer.
7315 * @len : length of the packet
7316 * @cksum : FCS checksum of the frame.
7317 * @ring_no : the ring from which this RxD was extracted.
7318 * Description:
7319 * This function is called by the Rx interrupt serivce routine to perform
7320 * some OS related operations on the SKB before passing it to the upper
7321 * layers. It mainly checks if the checksum is OK, if so adds it to the
7322 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7323 * to the upper layer. If the checksum is wrong, it increments the Rx
7324 * packet error count, frees the SKB and returns error.
7325 * Return value:
7326 * SUCCESS on success and -1 on failure.
7328 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7330 struct s2io_nic *sp = ring_data->nic;
7331 struct net_device *dev = (struct net_device *)ring_data->dev;
7332 struct sk_buff *skb = (struct sk_buff *)
7333 ((unsigned long)rxdp->Host_Control);
7334 int ring_no = ring_data->ring_no;
7335 u16 l3_csum, l4_csum;
7336 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7337 struct lro *uninitialized_var(lro);
7338 u8 err_mask;
7339 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7341 skb->dev = dev;
7343 if (err) {
7344 /* Check for parity error */
7345 if (err & 0x1)
7346 swstats->parity_err_cnt++;
7348 err_mask = err >> 48;
7349 switch (err_mask) {
7350 case 1:
7351 swstats->rx_parity_err_cnt++;
7352 break;
7354 case 2:
7355 swstats->rx_abort_cnt++;
7356 break;
7358 case 3:
7359 swstats->rx_parity_abort_cnt++;
7360 break;
7362 case 4:
7363 swstats->rx_rda_fail_cnt++;
7364 break;
7366 case 5:
7367 swstats->rx_unkn_prot_cnt++;
7368 break;
7370 case 6:
7371 swstats->rx_fcs_err_cnt++;
7372 break;
7374 case 7:
7375 swstats->rx_buf_size_err_cnt++;
7376 break;
7378 case 8:
7379 swstats->rx_rxd_corrupt_cnt++;
7380 break;
7382 case 15:
7383 swstats->rx_unkn_err_cnt++;
7384 break;
7387 * Drop the packet if bad transfer code. Exception being
7388 * 0x5, which could be due to unsupported IPv6 extension header.
7389 * In this case, we let stack handle the packet.
7390 * Note that in this case, since checksum will be incorrect,
7391 * stack will validate the same.
7393 if (err_mask != 0x5) {
7394 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7395 dev->name, err_mask);
7396 dev->stats.rx_crc_errors++;
7397 swstats->mem_freed
7398 += skb->truesize;
7399 dev_kfree_skb(skb);
7400 ring_data->rx_bufs_left -= 1;
7401 rxdp->Host_Control = 0;
7402 return 0;
7406 rxdp->Host_Control = 0;
7407 if (sp->rxd_mode == RXD_MODE_1) {
7408 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7410 skb_put(skb, len);
7411 } else if (sp->rxd_mode == RXD_MODE_3B) {
7412 int get_block = ring_data->rx_curr_get_info.block_index;
7413 int get_off = ring_data->rx_curr_get_info.offset;
7414 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7415 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7416 unsigned char *buff = skb_push(skb, buf0_len);
7418 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7419 memcpy(buff, ba->ba_0, buf0_len);
7420 skb_put(skb, buf2_len);
7423 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7424 ((!ring_data->lro) ||
7425 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7426 (dev->features & NETIF_F_RXCSUM)) {
7427 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7428 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7429 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7431 * NIC verifies if the Checksum of the received
7432 * frame is Ok or not and accordingly returns
7433 * a flag in the RxD.
7435 skb->ip_summed = CHECKSUM_UNNECESSARY;
7436 if (ring_data->lro) {
7437 u32 tcp_len = 0;
7438 u8 *tcp;
7439 int ret = 0;
7441 ret = s2io_club_tcp_session(ring_data,
7442 skb->data, &tcp,
7443 &tcp_len, &lro,
7444 rxdp, sp);
7445 switch (ret) {
7446 case 3: /* Begin anew */
7447 lro->parent = skb;
7448 goto aggregate;
7449 case 1: /* Aggregate */
7450 lro_append_pkt(sp, lro, skb, tcp_len);
7451 goto aggregate;
7452 case 4: /* Flush session */
7453 lro_append_pkt(sp, lro, skb, tcp_len);
7454 queue_rx_frame(lro->parent,
7455 lro->vlan_tag);
7456 clear_lro_session(lro);
7457 swstats->flush_max_pkts++;
7458 goto aggregate;
7459 case 2: /* Flush both */
7460 lro->parent->data_len = lro->frags_len;
7461 swstats->sending_both++;
7462 queue_rx_frame(lro->parent,
7463 lro->vlan_tag);
7464 clear_lro_session(lro);
7465 goto send_up;
7466 case 0: /* sessions exceeded */
7467 case -1: /* non-TCP or not L2 aggregatable */
7468 case 5: /*
7469 * First pkt in session not
7470 * L3/L4 aggregatable
7472 break;
7473 default:
7474 DBG_PRINT(ERR_DBG,
7475 "%s: Samadhana!!\n",
7476 __func__);
7477 BUG();
7480 } else {
7482 * Packet with erroneous checksum, let the
7483 * upper layers deal with it.
7485 skb_checksum_none_assert(skb);
7487 } else
7488 skb_checksum_none_assert(skb);
7490 swstats->mem_freed += skb->truesize;
7491 send_up:
7492 skb_record_rx_queue(skb, ring_no);
7493 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7494 aggregate:
7495 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7496 return SUCCESS;
7500 * s2io_link - stops/starts the Tx queue.
7501 * @sp : private member of the device structure, which is a pointer to the
7502 * s2io_nic structure.
7503 * @link : inidicates whether link is UP/DOWN.
7504 * Description:
7505 * This function stops/starts the Tx queue depending on whether the link
7506 * status of the NIC is is down or up. This is called by the Alarm
7507 * interrupt handler whenever a link change interrupt comes up.
7508 * Return value:
7509 * void.
7512 static void s2io_link(struct s2io_nic *sp, int link)
7514 struct net_device *dev = (struct net_device *)sp->dev;
7515 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7517 if (link != sp->last_link_state) {
7518 init_tti(sp, link);
7519 if (link == LINK_DOWN) {
7520 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7521 s2io_stop_all_tx_queue(sp);
7522 netif_carrier_off(dev);
7523 if (swstats->link_up_cnt)
7524 swstats->link_up_time =
7525 jiffies - sp->start_time;
7526 swstats->link_down_cnt++;
7527 } else {
7528 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7529 if (swstats->link_down_cnt)
7530 swstats->link_down_time =
7531 jiffies - sp->start_time;
7532 swstats->link_up_cnt++;
7533 netif_carrier_on(dev);
7534 s2io_wake_all_tx_queue(sp);
7537 sp->last_link_state = link;
7538 sp->start_time = jiffies;
7542 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7543 * @sp : private member of the device structure, which is a pointer to the
7544 * s2io_nic structure.
7545 * Description:
7546 * This function initializes a few of the PCI and PCI-X configuration registers
7547 * with recommended values.
7548 * Return value:
7549 * void
7552 static void s2io_init_pci(struct s2io_nic *sp)
7554 u16 pci_cmd = 0, pcix_cmd = 0;
7556 /* Enable Data Parity Error Recovery in PCI-X command register. */
7557 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7558 &(pcix_cmd));
7559 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560 (pcix_cmd | 1));
7561 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7562 &(pcix_cmd));
7564 /* Set the PErr Response bit in PCI command register. */
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 pci_write_config_word(sp->pdev, PCI_COMMAND,
7567 (pci_cmd | PCI_COMMAND_PARITY));
7568 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7571 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7572 u8 *dev_multiq)
7574 int i;
7576 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7577 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7578 "(%d) not supported\n", tx_fifo_num);
7580 if (tx_fifo_num < 1)
7581 tx_fifo_num = 1;
7582 else
7583 tx_fifo_num = MAX_TX_FIFOS;
7585 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7588 if (multiq)
7589 *dev_multiq = multiq;
7591 if (tx_steering_type && (1 == tx_fifo_num)) {
7592 if (tx_steering_type != TX_DEFAULT_STEERING)
7593 DBG_PRINT(ERR_DBG,
7594 "Tx steering is not supported with "
7595 "one fifo. Disabling Tx steering.\n");
7596 tx_steering_type = NO_STEERING;
7599 if ((tx_steering_type < NO_STEERING) ||
7600 (tx_steering_type > TX_DEFAULT_STEERING)) {
7601 DBG_PRINT(ERR_DBG,
7602 "Requested transmit steering not supported\n");
7603 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7604 tx_steering_type = NO_STEERING;
7607 if (rx_ring_num > MAX_RX_RINGS) {
7608 DBG_PRINT(ERR_DBG,
7609 "Requested number of rx rings not supported\n");
7610 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7611 MAX_RX_RINGS);
7612 rx_ring_num = MAX_RX_RINGS;
7615 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7616 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7617 "Defaulting to INTA\n");
7618 *dev_intr_type = INTA;
7621 if ((*dev_intr_type == MSI_X) &&
7622 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7623 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7624 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7625 "Defaulting to INTA\n");
7626 *dev_intr_type = INTA;
7629 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7630 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7631 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7632 rx_ring_mode = 1;
7635 for (i = 0; i < MAX_RX_RINGS; i++)
7636 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7637 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7638 "supported\nDefaulting to %d\n",
7639 MAX_RX_BLOCKS_PER_RING);
7640 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7643 return SUCCESS;
7647 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7648 * or Traffic class respectively.
7649 * @nic: device private variable
7650 * Description: The function configures the receive steering to
7651 * desired receive ring.
7652 * Return Value: SUCCESS on success and
7653 * '-1' on failure (endian settings incorrect).
7655 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7657 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7658 register u64 val64 = 0;
7660 if (ds_codepoint > 63)
7661 return FAILURE;
7663 val64 = RTS_DS_MEM_DATA(ring);
7664 writeq(val64, &bar0->rts_ds_mem_data);
7666 val64 = RTS_DS_MEM_CTRL_WE |
7667 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7668 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7670 writeq(val64, &bar0->rts_ds_mem_ctrl);
7672 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7673 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7674 S2IO_BIT_RESET);
7677 static const struct net_device_ops s2io_netdev_ops = {
7678 .ndo_open = s2io_open,
7679 .ndo_stop = s2io_close,
7680 .ndo_get_stats = s2io_get_stats,
7681 .ndo_start_xmit = s2io_xmit,
7682 .ndo_validate_addr = eth_validate_addr,
7683 .ndo_set_rx_mode = s2io_set_multicast,
7684 .ndo_do_ioctl = s2io_ioctl,
7685 .ndo_set_mac_address = s2io_set_mac_addr,
7686 .ndo_change_mtu = s2io_change_mtu,
7687 .ndo_set_features = s2io_set_features,
7688 .ndo_tx_timeout = s2io_tx_watchdog,
7689 #ifdef CONFIG_NET_POLL_CONTROLLER
7690 .ndo_poll_controller = s2io_netpoll,
7691 #endif
7695 * s2io_init_nic - Initialization of the adapter .
7696 * @pdev : structure containing the PCI related information of the device.
7697 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7698 * Description:
7699 * The function initializes an adapter identified by the pci_dec structure.
7700 * All OS related initialization including memory and device structure and
7701 * initlaization of the device private variable is done. Also the swapper
7702 * control register is initialized to enable read and write into the I/O
7703 * registers of the device.
7704 * Return value:
7705 * returns 0 on success and negative on failure.
7708 static int __devinit
7709 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7711 struct s2io_nic *sp;
7712 struct net_device *dev;
7713 int i, j, ret;
7714 int dma_flag = false;
7715 u32 mac_up, mac_down;
7716 u64 val64 = 0, tmp64 = 0;
7717 struct XENA_dev_config __iomem *bar0 = NULL;
7718 u16 subid;
7719 struct config_param *config;
7720 struct mac_info *mac_control;
7721 int mode;
7722 u8 dev_intr_type = intr_type;
7723 u8 dev_multiq = 0;
7725 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7726 if (ret)
7727 return ret;
7729 ret = pci_enable_device(pdev);
7730 if (ret) {
7731 DBG_PRINT(ERR_DBG,
7732 "%s: pci_enable_device failed\n", __func__);
7733 return ret;
7736 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7738 dma_flag = true;
7739 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7740 DBG_PRINT(ERR_DBG,
7741 "Unable to obtain 64bit DMA "
7742 "for consistent allocations\n");
7743 pci_disable_device(pdev);
7744 return -ENOMEM;
7746 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7747 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7748 } else {
7749 pci_disable_device(pdev);
7750 return -ENOMEM;
7752 ret = pci_request_regions(pdev, s2io_driver_name);
7753 if (ret) {
7754 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7755 __func__, ret);
7756 pci_disable_device(pdev);
7757 return -ENODEV;
7759 if (dev_multiq)
7760 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7761 else
7762 dev = alloc_etherdev(sizeof(struct s2io_nic));
7763 if (dev == NULL) {
7764 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7765 pci_disable_device(pdev);
7766 pci_release_regions(pdev);
7767 return -ENODEV;
7770 pci_set_master(pdev);
7771 pci_set_drvdata(pdev, dev);
7772 SET_NETDEV_DEV(dev, &pdev->dev);
7774 /* Private member variable initialized to s2io NIC structure */
7775 sp = netdev_priv(dev);
7776 sp->dev = dev;
7777 sp->pdev = pdev;
7778 sp->high_dma_flag = dma_flag;
7779 sp->device_enabled_once = false;
7780 if (rx_ring_mode == 1)
7781 sp->rxd_mode = RXD_MODE_1;
7782 if (rx_ring_mode == 2)
7783 sp->rxd_mode = RXD_MODE_3B;
7785 sp->config.intr_type = dev_intr_type;
7787 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7788 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7789 sp->device_type = XFRAME_II_DEVICE;
7790 else
7791 sp->device_type = XFRAME_I_DEVICE;
7794 /* Initialize some PCI/PCI-X fields of the NIC. */
7795 s2io_init_pci(sp);
7798 * Setting the device configuration parameters.
7799 * Most of these parameters can be specified by the user during
7800 * module insertion as they are module loadable parameters. If
7801 * these parameters are not not specified during load time, they
7802 * are initialized with default values.
7804 config = &sp->config;
7805 mac_control = &sp->mac_control;
7807 config->napi = napi;
7808 config->tx_steering_type = tx_steering_type;
7810 /* Tx side parameters. */
7811 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7812 config->tx_fifo_num = MAX_TX_FIFOS;
7813 else
7814 config->tx_fifo_num = tx_fifo_num;
7816 /* Initialize the fifos used for tx steering */
7817 if (config->tx_fifo_num < 5) {
7818 if (config->tx_fifo_num == 1)
7819 sp->total_tcp_fifos = 1;
7820 else
7821 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7822 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7823 sp->total_udp_fifos = 1;
7824 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7825 } else {
7826 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7827 FIFO_OTHER_MAX_NUM);
7828 sp->udp_fifo_idx = sp->total_tcp_fifos;
7829 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7830 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7833 config->multiq = dev_multiq;
7834 for (i = 0; i < config->tx_fifo_num; i++) {
7835 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7837 tx_cfg->fifo_len = tx_fifo_len[i];
7838 tx_cfg->fifo_priority = i;
7841 /* mapping the QoS priority to the configured fifos */
7842 for (i = 0; i < MAX_TX_FIFOS; i++)
7843 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7845 /* map the hashing selector table to the configured fifos */
7846 for (i = 0; i < config->tx_fifo_num; i++)
7847 sp->fifo_selector[i] = fifo_selector[i];
7850 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7851 for (i = 0; i < config->tx_fifo_num; i++) {
7852 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7854 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7855 if (tx_cfg->fifo_len < 65) {
7856 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7857 break;
7860 /* + 2 because one Txd for skb->data and one Txd for UFO */
7861 config->max_txds = MAX_SKB_FRAGS + 2;
7863 /* Rx side parameters. */
7864 config->rx_ring_num = rx_ring_num;
7865 for (i = 0; i < config->rx_ring_num; i++) {
7866 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7867 struct ring_info *ring = &mac_control->rings[i];
7869 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7870 rx_cfg->ring_priority = i;
7871 ring->rx_bufs_left = 0;
7872 ring->rxd_mode = sp->rxd_mode;
7873 ring->rxd_count = rxd_count[sp->rxd_mode];
7874 ring->pdev = sp->pdev;
7875 ring->dev = sp->dev;
7878 for (i = 0; i < rx_ring_num; i++) {
7879 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7881 rx_cfg->ring_org = RING_ORG_BUFF1;
7882 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7885 /* Setting Mac Control parameters */
7886 mac_control->rmac_pause_time = rmac_pause_time;
7887 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7888 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7891 /* initialize the shared memory used by the NIC and the host */
7892 if (init_shared_mem(sp)) {
7893 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7894 ret = -ENOMEM;
7895 goto mem_alloc_failed;
7898 sp->bar0 = pci_ioremap_bar(pdev, 0);
7899 if (!sp->bar0) {
7900 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7901 dev->name);
7902 ret = -ENOMEM;
7903 goto bar0_remap_failed;
7906 sp->bar1 = pci_ioremap_bar(pdev, 2);
7907 if (!sp->bar1) {
7908 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7909 dev->name);
7910 ret = -ENOMEM;
7911 goto bar1_remap_failed;
7914 dev->irq = pdev->irq;
7915 dev->base_addr = (unsigned long)sp->bar0;
7917 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7918 for (j = 0; j < MAX_TX_FIFOS; j++) {
7919 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7922 /* Driver entry points */
7923 dev->netdev_ops = &s2io_netdev_ops;
7924 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7925 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7926 NETIF_F_TSO | NETIF_F_TSO6 |
7927 NETIF_F_RXCSUM | NETIF_F_LRO;
7928 dev->features |= dev->hw_features |
7929 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7930 if (sp->device_type & XFRAME_II_DEVICE) {
7931 dev->hw_features |= NETIF_F_UFO;
7932 if (ufo)
7933 dev->features |= NETIF_F_UFO;
7935 if (sp->high_dma_flag == true)
7936 dev->features |= NETIF_F_HIGHDMA;
7937 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7938 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7939 INIT_WORK(&sp->set_link_task, s2io_set_link);
7941 pci_save_state(sp->pdev);
7943 /* Setting swapper control on the NIC, for proper reset operation */
7944 if (s2io_set_swapper(sp)) {
7945 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7946 dev->name);
7947 ret = -EAGAIN;
7948 goto set_swap_failed;
7951 /* Verify if the Herc works on the slot its placed into */
7952 if (sp->device_type & XFRAME_II_DEVICE) {
7953 mode = s2io_verify_pci_mode(sp);
7954 if (mode < 0) {
7955 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7956 __func__);
7957 ret = -EBADSLT;
7958 goto set_swap_failed;
7962 if (sp->config.intr_type == MSI_X) {
7963 sp->num_entries = config->rx_ring_num + 1;
7964 ret = s2io_enable_msi_x(sp);
7966 if (!ret) {
7967 ret = s2io_test_msi(sp);
7968 /* rollback MSI-X, will re-enable during add_isr() */
7969 remove_msix_isr(sp);
7971 if (ret) {
7973 DBG_PRINT(ERR_DBG,
7974 "MSI-X requested but failed to enable\n");
7975 sp->config.intr_type = INTA;
7979 if (config->intr_type == MSI_X) {
7980 for (i = 0; i < config->rx_ring_num ; i++) {
7981 struct ring_info *ring = &mac_control->rings[i];
7983 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7985 } else {
7986 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7989 /* Not needed for Herc */
7990 if (sp->device_type & XFRAME_I_DEVICE) {
7992 * Fix for all "FFs" MAC address problems observed on
7993 * Alpha platforms
7995 fix_mac_address(sp);
7996 s2io_reset(sp);
8000 * MAC address initialization.
8001 * For now only one mac address will be read and used.
8003 bar0 = sp->bar0;
8004 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8005 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8006 writeq(val64, &bar0->rmac_addr_cmd_mem);
8007 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8008 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8009 S2IO_BIT_RESET);
8010 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8011 mac_down = (u32)tmp64;
8012 mac_up = (u32) (tmp64 >> 32);
8014 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8015 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8016 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8017 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8018 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8019 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8021 /* Set the factory defined MAC address initially */
8022 dev->addr_len = ETH_ALEN;
8023 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8024 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8026 /* initialize number of multicast & unicast MAC entries variables */
8027 if (sp->device_type == XFRAME_I_DEVICE) {
8028 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8029 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8030 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8031 } else if (sp->device_type == XFRAME_II_DEVICE) {
8032 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8033 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8034 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8037 /* store mac addresses from CAM to s2io_nic structure */
8038 do_s2io_store_unicast_mc(sp);
8040 /* Configure MSIX vector for number of rings configured plus one */
8041 if ((sp->device_type == XFRAME_II_DEVICE) &&
8042 (config->intr_type == MSI_X))
8043 sp->num_entries = config->rx_ring_num + 1;
8045 /* Store the values of the MSIX table in the s2io_nic structure */
8046 store_xmsi_data(sp);
8047 /* reset Nic and bring it to known state */
8048 s2io_reset(sp);
8051 * Initialize link state flags
8052 * and the card state parameter
8054 sp->state = 0;
8056 /* Initialize spinlocks */
8057 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8058 struct fifo_info *fifo = &mac_control->fifos[i];
8060 spin_lock_init(&fifo->tx_lock);
8064 * SXE-002: Configure link and activity LED to init state
8065 * on driver load.
8067 subid = sp->pdev->subsystem_device;
8068 if ((subid & 0xFF) >= 0x07) {
8069 val64 = readq(&bar0->gpio_control);
8070 val64 |= 0x0000800000000000ULL;
8071 writeq(val64, &bar0->gpio_control);
8072 val64 = 0x0411040400000000ULL;
8073 writeq(val64, (void __iomem *)bar0 + 0x2700);
8074 val64 = readq(&bar0->gpio_control);
8077 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8079 if (register_netdev(dev)) {
8080 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8081 ret = -ENODEV;
8082 goto register_failed;
8084 s2io_vpd_read(sp);
8085 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8086 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8087 sp->product_name, pdev->revision);
8088 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8089 s2io_driver_version);
8090 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8091 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8092 if (sp->device_type & XFRAME_II_DEVICE) {
8093 mode = s2io_print_pci_mode(sp);
8094 if (mode < 0) {
8095 ret = -EBADSLT;
8096 unregister_netdev(dev);
8097 goto set_swap_failed;
8100 switch (sp->rxd_mode) {
8101 case RXD_MODE_1:
8102 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8103 dev->name);
8104 break;
8105 case RXD_MODE_3B:
8106 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8107 dev->name);
8108 break;
8111 switch (sp->config.napi) {
8112 case 0:
8113 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8114 break;
8115 case 1:
8116 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8117 break;
8120 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8121 sp->config.tx_fifo_num);
8123 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8124 sp->config.rx_ring_num);
8126 switch (sp->config.intr_type) {
8127 case INTA:
8128 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8129 break;
8130 case MSI_X:
8131 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8132 break;
8134 if (sp->config.multiq) {
8135 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8136 struct fifo_info *fifo = &mac_control->fifos[i];
8138 fifo->multiq = config->multiq;
8140 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8141 dev->name);
8142 } else
8143 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8144 dev->name);
8146 switch (sp->config.tx_steering_type) {
8147 case NO_STEERING:
8148 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8149 dev->name);
8150 break;
8151 case TX_PRIORITY_STEERING:
8152 DBG_PRINT(ERR_DBG,
8153 "%s: Priority steering enabled for transmit\n",
8154 dev->name);
8155 break;
8156 case TX_DEFAULT_STEERING:
8157 DBG_PRINT(ERR_DBG,
8158 "%s: Default steering enabled for transmit\n",
8159 dev->name);
8162 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8163 dev->name);
8164 if (ufo)
8165 DBG_PRINT(ERR_DBG,
8166 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8167 dev->name);
8168 /* Initialize device name */
8169 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8171 if (vlan_tag_strip)
8172 sp->vlan_strip_flag = 1;
8173 else
8174 sp->vlan_strip_flag = 0;
8177 * Make Link state as off at this point, when the Link change
8178 * interrupt comes the state will be automatically changed to
8179 * the right state.
8181 netif_carrier_off(dev);
8183 return 0;
8185 register_failed:
8186 set_swap_failed:
8187 iounmap(sp->bar1);
8188 bar1_remap_failed:
8189 iounmap(sp->bar0);
8190 bar0_remap_failed:
8191 mem_alloc_failed:
8192 free_shared_mem(sp);
8193 pci_disable_device(pdev);
8194 pci_release_regions(pdev);
8195 pci_set_drvdata(pdev, NULL);
8196 free_netdev(dev);
8198 return ret;
8202 * s2io_rem_nic - Free the PCI device
8203 * @pdev: structure containing the PCI related information of the device.
8204 * Description: This function is called by the Pci subsystem to release a
8205 * PCI device and free up all resource held up by the device. This could
8206 * be in response to a Hot plug event or when the driver is to be removed
8207 * from memory.
8210 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8212 struct net_device *dev = pci_get_drvdata(pdev);
8213 struct s2io_nic *sp;
8215 if (dev == NULL) {
8216 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8217 return;
8220 sp = netdev_priv(dev);
8222 cancel_work_sync(&sp->rst_timer_task);
8223 cancel_work_sync(&sp->set_link_task);
8225 unregister_netdev(dev);
8227 free_shared_mem(sp);
8228 iounmap(sp->bar0);
8229 iounmap(sp->bar1);
8230 pci_release_regions(pdev);
8231 pci_set_drvdata(pdev, NULL);
8232 free_netdev(dev);
8233 pci_disable_device(pdev);
8237 * s2io_starter - Entry point for the driver
8238 * Description: This function is the entry point for the driver. It verifies
8239 * the module loadable parameters and initializes PCI configuration space.
8242 static int __init s2io_starter(void)
8244 return pci_register_driver(&s2io_driver);
8248 * s2io_closer - Cleanup routine for the driver
8249 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8252 static __exit void s2io_closer(void)
8254 pci_unregister_driver(&s2io_driver);
8255 DBG_PRINT(INIT_DBG, "cleanup done\n");
8258 module_init(s2io_starter);
8259 module_exit(s2io_closer);
8261 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8262 struct tcphdr **tcp, struct RxD_t *rxdp,
8263 struct s2io_nic *sp)
8265 int ip_off;
8266 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8268 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8269 DBG_PRINT(INIT_DBG,
8270 "%s: Non-TCP frames not supported for LRO\n",
8271 __func__);
8272 return -1;
8275 /* Checking for DIX type or DIX type with VLAN */
8276 if ((l2_type == 0) || (l2_type == 4)) {
8277 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8279 * If vlan stripping is disabled and the frame is VLAN tagged,
8280 * shift the offset by the VLAN header size bytes.
8282 if ((!sp->vlan_strip_flag) &&
8283 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8284 ip_off += HEADER_VLAN_SIZE;
8285 } else {
8286 /* LLC, SNAP etc are considered non-mergeable */
8287 return -1;
8290 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8291 ip_len = (u8)((*ip)->ihl);
8292 ip_len <<= 2;
8293 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8295 return 0;
8298 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8299 struct tcphdr *tcp)
8301 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8302 if ((lro->iph->saddr != ip->saddr) ||
8303 (lro->iph->daddr != ip->daddr) ||
8304 (lro->tcph->source != tcp->source) ||
8305 (lro->tcph->dest != tcp->dest))
8306 return -1;
8307 return 0;
8310 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8312 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8315 static void initiate_new_session(struct lro *lro, u8 *l2h,
8316 struct iphdr *ip, struct tcphdr *tcp,
8317 u32 tcp_pyld_len, u16 vlan_tag)
8319 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8320 lro->l2h = l2h;
8321 lro->iph = ip;
8322 lro->tcph = tcp;
8323 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8324 lro->tcp_ack = tcp->ack_seq;
8325 lro->sg_num = 1;
8326 lro->total_len = ntohs(ip->tot_len);
8327 lro->frags_len = 0;
8328 lro->vlan_tag = vlan_tag;
8330 * Check if we saw TCP timestamp.
8331 * Other consistency checks have already been done.
8333 if (tcp->doff == 8) {
8334 __be32 *ptr;
8335 ptr = (__be32 *)(tcp+1);
8336 lro->saw_ts = 1;
8337 lro->cur_tsval = ntohl(*(ptr+1));
8338 lro->cur_tsecr = *(ptr+2);
8340 lro->in_use = 1;
8343 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8345 struct iphdr *ip = lro->iph;
8346 struct tcphdr *tcp = lro->tcph;
8347 __sum16 nchk;
8348 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8350 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8352 /* Update L3 header */
8353 ip->tot_len = htons(lro->total_len);
8354 ip->check = 0;
8355 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8356 ip->check = nchk;
8358 /* Update L4 header */
8359 tcp->ack_seq = lro->tcp_ack;
8360 tcp->window = lro->window;
8362 /* Update tsecr field if this session has timestamps enabled */
8363 if (lro->saw_ts) {
8364 __be32 *ptr = (__be32 *)(tcp + 1);
8365 *(ptr+2) = lro->cur_tsecr;
8368 /* Update counters required for calculation of
8369 * average no. of packets aggregated.
8371 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8372 swstats->num_aggregations++;
8375 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8376 struct tcphdr *tcp, u32 l4_pyld)
8378 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8379 lro->total_len += l4_pyld;
8380 lro->frags_len += l4_pyld;
8381 lro->tcp_next_seq += l4_pyld;
8382 lro->sg_num++;
8384 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8385 lro->tcp_ack = tcp->ack_seq;
8386 lro->window = tcp->window;
8388 if (lro->saw_ts) {
8389 __be32 *ptr;
8390 /* Update tsecr and tsval from this packet */
8391 ptr = (__be32 *)(tcp+1);
8392 lro->cur_tsval = ntohl(*(ptr+1));
8393 lro->cur_tsecr = *(ptr + 2);
8397 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8398 struct tcphdr *tcp, u32 tcp_pyld_len)
8400 u8 *ptr;
8402 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8404 if (!tcp_pyld_len) {
8405 /* Runt frame or a pure ack */
8406 return -1;
8409 if (ip->ihl != 5) /* IP has options */
8410 return -1;
8412 /* If we see CE codepoint in IP header, packet is not mergeable */
8413 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8414 return -1;
8416 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8417 if (tcp->urg || tcp->psh || tcp->rst ||
8418 tcp->syn || tcp->fin ||
8419 tcp->ece || tcp->cwr || !tcp->ack) {
8421 * Currently recognize only the ack control word and
8422 * any other control field being set would result in
8423 * flushing the LRO session
8425 return -1;
8429 * Allow only one TCP timestamp option. Don't aggregate if
8430 * any other options are detected.
8432 if (tcp->doff != 5 && tcp->doff != 8)
8433 return -1;
8435 if (tcp->doff == 8) {
8436 ptr = (u8 *)(tcp + 1);
8437 while (*ptr == TCPOPT_NOP)
8438 ptr++;
8439 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8440 return -1;
8442 /* Ensure timestamp value increases monotonically */
8443 if (l_lro)
8444 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8445 return -1;
8447 /* timestamp echo reply should be non-zero */
8448 if (*((__be32 *)(ptr+6)) == 0)
8449 return -1;
8452 return 0;
8455 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8456 u8 **tcp, u32 *tcp_len, struct lro **lro,
8457 struct RxD_t *rxdp, struct s2io_nic *sp)
8459 struct iphdr *ip;
8460 struct tcphdr *tcph;
8461 int ret = 0, i;
8462 u16 vlan_tag = 0;
8463 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8465 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8466 rxdp, sp);
8467 if (ret)
8468 return ret;
8470 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8472 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8473 tcph = (struct tcphdr *)*tcp;
8474 *tcp_len = get_l4_pyld_length(ip, tcph);
8475 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8476 struct lro *l_lro = &ring_data->lro0_n[i];
8477 if (l_lro->in_use) {
8478 if (check_for_socket_match(l_lro, ip, tcph))
8479 continue;
8480 /* Sock pair matched */
8481 *lro = l_lro;
8483 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8484 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8485 "expected 0x%x, actual 0x%x\n",
8486 __func__,
8487 (*lro)->tcp_next_seq,
8488 ntohl(tcph->seq));
8490 swstats->outof_sequence_pkts++;
8491 ret = 2;
8492 break;
8495 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8496 *tcp_len))
8497 ret = 1; /* Aggregate */
8498 else
8499 ret = 2; /* Flush both */
8500 break;
8504 if (ret == 0) {
8505 /* Before searching for available LRO objects,
8506 * check if the pkt is L3/L4 aggregatable. If not
8507 * don't create new LRO session. Just send this
8508 * packet up.
8510 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8511 return 5;
8513 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8514 struct lro *l_lro = &ring_data->lro0_n[i];
8515 if (!(l_lro->in_use)) {
8516 *lro = l_lro;
8517 ret = 3; /* Begin anew */
8518 break;
8523 if (ret == 0) { /* sessions exceeded */
8524 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8525 __func__);
8526 *lro = NULL;
8527 return ret;
8530 switch (ret) {
8531 case 3:
8532 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8533 vlan_tag);
8534 break;
8535 case 2:
8536 update_L3L4_header(sp, *lro);
8537 break;
8538 case 1:
8539 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8540 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8541 update_L3L4_header(sp, *lro);
8542 ret = 4; /* Flush the LRO */
8544 break;
8545 default:
8546 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8547 break;
8550 return ret;
8553 static void clear_lro_session(struct lro *lro)
8555 static u16 lro_struct_size = sizeof(struct lro);
8557 memset(lro, 0, lro_struct_size);
8560 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8562 struct net_device *dev = skb->dev;
8563 struct s2io_nic *sp = netdev_priv(dev);
8565 skb->protocol = eth_type_trans(skb, dev);
8566 if (vlan_tag && sp->vlan_strip_flag)
8567 __vlan_hwaccel_put_tag(skb, vlan_tag);
8568 if (sp->config.napi)
8569 netif_receive_skb(skb);
8570 else
8571 netif_rx(skb);
8574 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8575 struct sk_buff *skb, u32 tcp_len)
8577 struct sk_buff *first = lro->parent;
8578 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8580 first->len += tcp_len;
8581 first->data_len = lro->frags_len;
8582 skb_pull(skb, (skb->len - tcp_len));
8583 if (skb_shinfo(first)->frag_list)
8584 lro->last_frag->next = skb;
8585 else
8586 skb_shinfo(first)->frag_list = skb;
8587 first->truesize += skb->truesize;
8588 lro->last_frag = skb;
8589 swstats->clubbed_frms_cnt++;
8593 * s2io_io_error_detected - called when PCI error is detected
8594 * @pdev: Pointer to PCI device
8595 * @state: The current pci connection state
8597 * This function is called after a PCI bus error affecting
8598 * this device has been detected.
8600 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8601 pci_channel_state_t state)
8603 struct net_device *netdev = pci_get_drvdata(pdev);
8604 struct s2io_nic *sp = netdev_priv(netdev);
8606 netif_device_detach(netdev);
8608 if (state == pci_channel_io_perm_failure)
8609 return PCI_ERS_RESULT_DISCONNECT;
8611 if (netif_running(netdev)) {
8612 /* Bring down the card, while avoiding PCI I/O */
8613 do_s2io_card_down(sp, 0);
8615 pci_disable_device(pdev);
8617 return PCI_ERS_RESULT_NEED_RESET;
8621 * s2io_io_slot_reset - called after the pci bus has been reset.
8622 * @pdev: Pointer to PCI device
8624 * Restart the card from scratch, as if from a cold-boot.
8625 * At this point, the card has exprienced a hard reset,
8626 * followed by fixups by BIOS, and has its config space
8627 * set up identically to what it was at cold boot.
8629 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8631 struct net_device *netdev = pci_get_drvdata(pdev);
8632 struct s2io_nic *sp = netdev_priv(netdev);
8634 if (pci_enable_device(pdev)) {
8635 pr_err("Cannot re-enable PCI device after reset.\n");
8636 return PCI_ERS_RESULT_DISCONNECT;
8639 pci_set_master(pdev);
8640 s2io_reset(sp);
8642 return PCI_ERS_RESULT_RECOVERED;
8646 * s2io_io_resume - called when traffic can start flowing again.
8647 * @pdev: Pointer to PCI device
8649 * This callback is called when the error recovery driver tells
8650 * us that its OK to resume normal operation.
8652 static void s2io_io_resume(struct pci_dev *pdev)
8654 struct net_device *netdev = pci_get_drvdata(pdev);
8655 struct s2io_nic *sp = netdev_priv(netdev);
8657 if (netif_running(netdev)) {
8658 if (s2io_card_up(sp)) {
8659 pr_err("Can't bring device back up after reset.\n");
8660 return;
8663 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8664 s2io_card_down(sp);
8665 pr_err("Can't restore mac addr after reset.\n");
8666 return;
8670 netif_device_attach(netdev);
8671 netif_tx_wake_all_queues(netdev);