2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2010 Axis Communications AB
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
20 #include <asm/delay.h>
23 #include <asm/irq_regs.h>
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
39 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
40 static cycle_t
read_cont_rotime(struct clocksource
*cs
)
42 return (u32
)REG_RD(timer
, regi_timer0
, r_time
);
45 static struct clocksource cont_rotime
= {
46 .name
= "crisv32_rotime",
48 .read
= read_cont_rotime
,
49 .mask
= CLOCKSOURCE_MASK(32),
50 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
53 static int __init
etrax_init_cont_rotime(void)
55 clocksource_register_khz(&cont_rotime
, 100000);
58 arch_initcall(etrax_init_cont_rotime
);
61 unsigned long timer_regs
[NR_CPUS
] =
69 extern int set_rtc_mmss(unsigned long nowtime
);
72 #ifdef CONFIG_CPU_FREQ
74 cris_time_freq_notifier(struct notifier_block
*nb
, unsigned long val
,
77 static struct notifier_block cris_time_freq_notifier_block
= {
78 .notifier_call
= cris_time_freq_notifier
,
82 unsigned long get_ns_in_jiffie(void)
84 reg_timer_r_tmr0_data data
;
87 data
= REG_RD(timer
, regi_timer0
, r_tmr0_data
);
88 ns
= (TIMER0_DIV
- data
) * 10;
93 /* From timer MDS describing the hardware watchdog:
94 * 4.3.1 Watchdog Operation
95 * The watchdog timer is an 8-bit timer with a configurable start value.
96 * Once started the watchdog counts downwards with a frequency of 763 Hz
97 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
98 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
101 /* This gives us 1.3 ms to do something useful when the NMI comes */
103 /* Right now, starting the watchdog is the same as resetting it */
104 #define start_watchdog reset_watchdog
106 #if defined(CONFIG_ETRAX_WATCHDOG)
107 static short int watchdog_key
= 42; /* arbitrary 7 bit number */
110 /* Number of pages to consider "out of memory". It is normal that the memory
111 * is used though, so set this really low. */
112 #define WATCHDOG_MIN_FREE_PAGES 8
114 void reset_watchdog(void)
116 #if defined(CONFIG_ETRAX_WATCHDOG)
117 reg_timer_rw_wd_ctrl wd_ctrl
= { 0 };
119 /* Only keep watchdog happy as long as we have memory left! */
120 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES
) {
121 /* Reset the watchdog with the inverse of the old key */
122 /* Invert key, which is 7 bits */
123 watchdog_key
^= ETRAX_WD_KEY_MASK
;
124 wd_ctrl
.cnt
= ETRAX_WD_CNT
;
125 wd_ctrl
.cmd
= regk_timer_start
;
126 wd_ctrl
.key
= watchdog_key
;
127 REG_WR(timer
, regi_timer0
, rw_wd_ctrl
, wd_ctrl
);
132 /* stop the watchdog - we still need the correct key */
134 void stop_watchdog(void)
136 #if defined(CONFIG_ETRAX_WATCHDOG)
137 reg_timer_rw_wd_ctrl wd_ctrl
= { 0 };
138 watchdog_key
^= ETRAX_WD_KEY_MASK
; /* invert key, which is 7 bits */
139 wd_ctrl
.cnt
= ETRAX_WD_CNT
;
140 wd_ctrl
.cmd
= regk_timer_stop
;
141 wd_ctrl
.key
= watchdog_key
;
142 REG_WR(timer
, regi_timer0
, rw_wd_ctrl
, wd_ctrl
);
146 extern void show_registers(struct pt_regs
*regs
);
148 void handle_watchdog_bite(struct pt_regs
*regs
)
150 #if defined(CONFIG_ETRAX_WATCHDOG)
151 extern int cause_of_death
;
153 oops_in_progress
= 1;
154 printk(KERN_WARNING
"Watchdog bite\n");
156 /* Check if forced restart or unexpected watchdog */
157 if (cause_of_death
== 0xbedead) {
158 #ifdef CONFIG_CRIS_MACH_ARTPEC3
159 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
160 * us to go to lower frequency for the reset to be reliable
162 reg_clkgen_rw_clk_ctrl ctrl
=
163 REG_RD(clkgen
, regi_clkgen
, rw_clk_ctrl
);
165 REG_WR(clkgen
, regi_clkgen
, rw_clk_ctrl
, ctrl
);
170 /* Unexpected watchdog, stop the watchdog and dump registers. */
172 printk(KERN_WARNING
"Oops: bitten by watchdog\n");
173 show_registers(regs
);
174 oops_in_progress
= 0;
175 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
178 while(1) /* nothing */;
183 * timer_interrupt() needs to keep up the real-time clock,
184 * as well as call the "xtime_update()" routine every clocktick.
186 extern void cris_do_profile(struct pt_regs
*regs
);
188 static inline irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
190 struct pt_regs
*regs
= get_irq_regs();
191 int cpu
= smp_processor_id();
192 reg_timer_r_masked_intr masked_intr
;
193 reg_timer_rw_ack_intr ack_intr
= { 0 };
195 /* Check if the timer interrupt is for us (a tmr0 int) */
196 masked_intr
= REG_RD(timer
, timer_regs
[cpu
], r_masked_intr
);
197 if (!masked_intr
.tmr0
)
200 /* Acknowledge the timer irq. */
202 REG_WR(timer
, timer_regs
[cpu
], rw_ack_intr
, ack_intr
);
204 /* Reset watchdog otherwise it resets us! */
207 /* Update statistics. */
208 update_process_times(user_mode(regs
));
210 cris_do_profile(regs
); /* Save profiling information */
212 /* The master CPU is responsible for the time keeping. */
216 /* Call the real timer interrupt handler */
221 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
222 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
224 static struct irqaction irq_timer
= {
225 .handler
= timer_interrupt
,
226 .flags
= IRQF_SHARED
| IRQF_DISABLED
,
230 void __init
cris_timer_init(void)
232 int cpu
= smp_processor_id();
233 reg_timer_rw_tmr0_ctrl tmr0_ctrl
= { 0 };
234 reg_timer_rw_tmr0_div tmr0_div
= TIMER0_DIV
;
235 reg_timer_rw_intr_mask timer_intr_mask
;
237 /* Setup the etrax timers.
238 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
239 * We use timer0, so timer1 is free.
240 * The trig timer is used by the fasttimer API if enabled.
243 tmr0_ctrl
.op
= regk_timer_ld
;
244 tmr0_ctrl
.freq
= regk_timer_f100
;
245 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_div
, tmr0_div
);
246 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_ctrl
, tmr0_ctrl
); /* Load */
247 tmr0_ctrl
.op
= regk_timer_run
;
248 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_ctrl
, tmr0_ctrl
); /* Start */
250 /* Enable the timer irq. */
251 timer_intr_mask
= REG_RD(timer
, timer_regs
[cpu
], rw_intr_mask
);
252 timer_intr_mask
.tmr0
= 1;
253 REG_WR(timer
, timer_regs
[cpu
], rw_intr_mask
, timer_intr_mask
);
256 void __init
time_init(void)
258 reg_intr_vect_rw_mask intr_mask
;
260 /* Probe for the RTC and read it if it exists.
261 * Before the RTC can be probed the loops_per_usec variable needs
262 * to be initialized to make usleep work. A better value for
263 * loops_per_usec is calculated by the kernel later once the
273 /* Start CPU local timer. */
276 /* Enable the timer irq in global config. */
277 intr_mask
= REG_RD_VECT(intr_vect
, regi_irq
, rw_mask
, 1);
278 intr_mask
.timer0
= 1;
279 REG_WR_VECT(intr_vect
, regi_irq
, rw_mask
, 1, intr_mask
);
281 /* Now actually register the timer irq handler that calls
282 * timer_interrupt(). */
283 setup_irq(TIMER0_INTR_VECT
, &irq_timer
);
285 /* Enable watchdog if we should use one. */
287 #if defined(CONFIG_ETRAX_WATCHDOG)
288 printk(KERN_INFO
"Enabling watchdog...\n");
291 /* If we use the hardware watchdog, we want to trap it as an NMI
292 * and dump registers before it resets us. For this to happen, we
293 * must set the "m" NMI enable flag (which once set, is unset only
294 * when an NMI is taken). */
297 local_save_flags(flags
);
298 flags
|= (1<<30); /* NMI M flag is at bit 30 */
299 local_irq_restore(flags
);
303 #ifdef CONFIG_CPU_FREQ
304 cpufreq_register_notifier(&cris_time_freq_notifier_block
,
305 CPUFREQ_TRANSITION_NOTIFIER
);
309 #ifdef CONFIG_CPU_FREQ
311 cris_time_freq_notifier(struct notifier_block
*nb
, unsigned long val
,
314 struct cpufreq_freqs
*freqs
= data
;
315 if (val
== CPUFREQ_POSTCHANGE
) {
316 reg_timer_r_tmr0_data data
;
317 reg_timer_rw_tmr0_div div
= (freqs
->new * 500) / HZ
;
319 data
= REG_RD(timer
, timer_regs
[freqs
->cpu
],
322 REG_WR(timer
, timer_regs
[freqs
->cpu
], rw_tmr0_div
, div
);