2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
57 #define REG_DBG_PRINT(args...)
60 static struct regulatory_request core_request_world
= {
61 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
66 .country_ie_env
= ENVIRON_ANY
,
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request
*last_request
= &core_request_world
;
72 /* To trigger userspace events */
73 static struct platform_device
*reg_pdev
;
75 static struct device_type reg_device_type
= {
76 .uevent
= reg_device_uevent
,
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
84 const struct ieee80211_regdomain
*cfg80211_regdomain
;
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
92 static DEFINE_MUTEX(reg_mutex
);
94 static inline void assert_reg_lock(void)
96 lockdep_assert_held(®_mutex
);
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list
);
101 static spinlock_t reg_requests_lock
;
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons
);
105 static spinlock_t reg_pending_beacons_lock
;
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list
);
111 struct list_head list
;
112 struct ieee80211_channel chan
;
115 static void reg_todo(struct work_struct
*work
);
116 static DECLARE_WORK(reg_work
, reg_todo
);
118 static void reg_timeout_work(struct work_struct
*work
);
119 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom
= {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. No HT40
129 * channel fits here. */
130 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 NL80211_RRF_PASSIVE_SCAN
|
132 NL80211_RRF_NO_IBSS
),
133 /* IEEE 802.11 channel 14 - Only JP enables
134 * this and for 802.11b only */
135 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN
|
137 NL80211_RRF_NO_IBSS
|
138 NL80211_RRF_NO_OFDM
),
139 /* IEEE 802.11a, channel 36..48 */
140 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 NL80211_RRF_PASSIVE_SCAN
|
142 NL80211_RRF_NO_IBSS
),
144 /* NB: 5260 MHz - 5700 MHz requies DFS */
146 /* IEEE 802.11a, channel 149..165 */
147 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 NL80211_RRF_PASSIVE_SCAN
|
149 NL80211_RRF_NO_IBSS
),
153 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
156 static char *ieee80211_regdom
= "00";
157 static char user_alpha2
[2];
159 module_param(ieee80211_regdom
, charp
, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
162 static void reset_regdomains(bool full_reset
)
164 /* avoid freeing static information or freeing something twice */
165 if (cfg80211_regdomain
== cfg80211_world_regdom
)
166 cfg80211_regdomain
= NULL
;
167 if (cfg80211_world_regdom
== &world_regdom
)
168 cfg80211_world_regdom
= NULL
;
169 if (cfg80211_regdomain
== &world_regdom
)
170 cfg80211_regdomain
= NULL
;
172 kfree(cfg80211_regdomain
);
173 kfree(cfg80211_world_regdom
);
175 cfg80211_world_regdom
= &world_regdom
;
176 cfg80211_regdomain
= NULL
;
181 if (last_request
!= &core_request_world
)
183 last_request
= &core_request_world
;
187 * Dynamic world regulatory domain requested by the wireless
188 * core upon initialization
190 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
192 BUG_ON(!last_request
);
194 reset_regdomains(false);
196 cfg80211_world_regdom
= rd
;
197 cfg80211_regdomain
= rd
;
200 bool is_world_regdom(const char *alpha2
)
204 if (alpha2
[0] == '0' && alpha2
[1] == '0')
209 static bool is_alpha2_set(const char *alpha2
)
213 if (alpha2
[0] != 0 && alpha2
[1] != 0)
218 static bool is_unknown_alpha2(const char *alpha2
)
223 * Special case where regulatory domain was built by driver
224 * but a specific alpha2 cannot be determined
226 if (alpha2
[0] == '9' && alpha2
[1] == '9')
231 static bool is_intersected_alpha2(const char *alpha2
)
236 * Special case where regulatory domain is the
237 * result of an intersection between two regulatory domain
240 if (alpha2
[0] == '9' && alpha2
[1] == '8')
245 static bool is_an_alpha2(const char *alpha2
)
249 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
254 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
256 if (!alpha2_x
|| !alpha2_y
)
258 if (alpha2_x
[0] == alpha2_y
[0] &&
259 alpha2_x
[1] == alpha2_y
[1])
264 static bool regdom_changes(const char *alpha2
)
266 assert_cfg80211_lock();
268 if (!cfg80211_regdomain
)
270 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
276 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278 * has ever been issued.
280 static bool is_user_regdom_saved(void)
282 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
285 /* This would indicate a mistake on the design */
286 if (WARN((!is_world_regdom(user_alpha2
) &&
287 !is_an_alpha2(user_alpha2
)),
288 "Unexpected user alpha2: %c%c\n",
296 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
297 const struct ieee80211_regdomain
*src_regd
)
299 struct ieee80211_regdomain
*regd
;
300 int size_of_regd
= 0;
303 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
304 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
306 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
310 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
312 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
313 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
314 sizeof(struct ieee80211_reg_rule
));
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request
{
323 struct list_head list
;
326 static LIST_HEAD(reg_regdb_search_list
);
327 static DEFINE_MUTEX(reg_regdb_search_mutex
);
329 static void reg_regdb_search(struct work_struct
*work
)
331 struct reg_regdb_search_request
*request
;
332 const struct ieee80211_regdomain
*curdom
, *regdom
;
335 mutex_lock(®_regdb_search_mutex
);
336 while (!list_empty(®_regdb_search_list
)) {
337 request
= list_first_entry(®_regdb_search_list
,
338 struct reg_regdb_search_request
,
340 list_del(&request
->list
);
342 for (i
=0; i
<reg_regdb_size
; i
++) {
343 curdom
= reg_regdb
[i
];
345 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
346 r
= reg_copy_regd(®dom
, curdom
);
349 mutex_lock(&cfg80211_mutex
);
351 mutex_unlock(&cfg80211_mutex
);
358 mutex_unlock(®_regdb_search_mutex
);
361 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
363 static void reg_regdb_query(const char *alpha2
)
365 struct reg_regdb_search_request
*request
;
370 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
374 memcpy(request
->alpha2
, alpha2
, 2);
376 mutex_lock(®_regdb_search_mutex
);
377 list_add_tail(&request
->list
, ®_regdb_search_list
);
378 mutex_unlock(®_regdb_search_mutex
);
380 schedule_work(®_regdb_work
);
383 static inline void reg_regdb_query(const char *alpha2
) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
387 * This lets us keep regulatory code which is updated on a regulatory
388 * basis in userspace. Country information is filled in by
391 static int call_crda(const char *alpha2
)
393 if (!is_world_regdom((char *) alpha2
))
394 pr_info("Calling CRDA for country: %c%c\n",
395 alpha2
[0], alpha2
[1]);
397 pr_info("Calling CRDA to update world regulatory domain\n");
399 /* query internal regulatory database (if it exists) */
400 reg_regdb_query(alpha2
);
402 return kobject_uevent(®_pdev
->dev
.kobj
, KOBJ_CHANGE
);
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2
)
408 assert_cfg80211_lock();
413 return alpha2_equal(last_request
->alpha2
, alpha2
);
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
419 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
422 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
425 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
428 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
430 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
431 freq_range
->max_bandwidth_khz
> freq_diff
)
437 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
439 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
442 if (!rd
->n_reg_rules
)
445 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
448 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
449 reg_rule
= &rd
->reg_rules
[i
];
450 if (!is_valid_reg_rule(reg_rule
))
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
461 u32 start_freq_khz
, end_freq_khz
;
463 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
464 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
466 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
467 end_freq_khz
<= freq_range
->end_freq_khz
)
474 * freq_in_rule_band - tells us if a frequency is in a frequency band
475 * @freq_range: frequency rule we want to query
476 * @freq_khz: frequency we are inquiring about
478 * This lets us know if a specific frequency rule is or is not relevant to
479 * a specific frequency's band. Bands are device specific and artificial
480 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481 * safe for now to assume that a frequency rule should not be part of a
482 * frequency's band if the start freq or end freq are off by more than 2 GHz.
483 * This resolution can be lowered and should be considered as we add
484 * regulatory rule support for other "bands".
486 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
489 #define ONE_GHZ_IN_KHZ 1000000
490 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
492 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
495 #undef ONE_GHZ_IN_KHZ
499 * Helper for regdom_intersect(), this does the real
500 * mathematical intersection fun
502 static int reg_rules_intersect(
503 const struct ieee80211_reg_rule
*rule1
,
504 const struct ieee80211_reg_rule
*rule2
,
505 struct ieee80211_reg_rule
*intersected_rule
)
507 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
508 struct ieee80211_freq_range
*freq_range
;
509 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
510 struct ieee80211_power_rule
*power_rule
;
513 freq_range1
= &rule1
->freq_range
;
514 freq_range2
= &rule2
->freq_range
;
515 freq_range
= &intersected_rule
->freq_range
;
517 power_rule1
= &rule1
->power_rule
;
518 power_rule2
= &rule2
->power_rule
;
519 power_rule
= &intersected_rule
->power_rule
;
521 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
522 freq_range2
->start_freq_khz
);
523 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
524 freq_range2
->end_freq_khz
);
525 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
526 freq_range2
->max_bandwidth_khz
);
528 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
529 if (freq_range
->max_bandwidth_khz
> freq_diff
)
530 freq_range
->max_bandwidth_khz
= freq_diff
;
532 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
533 power_rule2
->max_eirp
);
534 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
535 power_rule2
->max_antenna_gain
);
537 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
539 if (!is_valid_reg_rule(intersected_rule
))
546 * regdom_intersect - do the intersection between two regulatory domains
547 * @rd1: first regulatory domain
548 * @rd2: second regulatory domain
550 * Use this function to get the intersection between two regulatory domains.
551 * Once completed we will mark the alpha2 for the rd as intersected, "98",
552 * as no one single alpha2 can represent this regulatory domain.
554 * Returns a pointer to the regulatory domain structure which will hold the
555 * resulting intersection of rules between rd1 and rd2. We will
556 * kzalloc() this structure for you.
558 static struct ieee80211_regdomain
*regdom_intersect(
559 const struct ieee80211_regdomain
*rd1
,
560 const struct ieee80211_regdomain
*rd2
)
564 unsigned int num_rules
= 0, rule_idx
= 0;
565 const struct ieee80211_reg_rule
*rule1
, *rule2
;
566 struct ieee80211_reg_rule
*intersected_rule
;
567 struct ieee80211_regdomain
*rd
;
568 /* This is just a dummy holder to help us count */
569 struct ieee80211_reg_rule irule
;
571 /* Uses the stack temporarily for counter arithmetic */
572 intersected_rule
= &irule
;
574 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
580 * First we get a count of the rules we'll need, then we actually
581 * build them. This is to so we can malloc() and free() a
582 * regdomain once. The reason we use reg_rules_intersect() here
583 * is it will return -EINVAL if the rule computed makes no sense.
584 * All rules that do check out OK are valid.
587 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
588 rule1
= &rd1
->reg_rules
[x
];
589 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
590 rule2
= &rd2
->reg_rules
[y
];
591 if (!reg_rules_intersect(rule1
, rule2
,
594 memset(intersected_rule
, 0,
595 sizeof(struct ieee80211_reg_rule
));
602 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
603 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
605 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
609 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
610 rule1
= &rd1
->reg_rules
[x
];
611 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
612 rule2
= &rd2
->reg_rules
[y
];
614 * This time around instead of using the stack lets
615 * write to the target rule directly saving ourselves
618 intersected_rule
= &rd
->reg_rules
[rule_idx
];
619 r
= reg_rules_intersect(rule1
, rule2
,
622 * No need to memset here the intersected rule here as
623 * we're not using the stack anymore
631 if (rule_idx
!= num_rules
) {
636 rd
->n_reg_rules
= num_rules
;
644 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645 * want to just have the channel structure use these
647 static u32
map_regdom_flags(u32 rd_flags
)
649 u32 channel_flags
= 0;
650 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
651 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
652 if (rd_flags
& NL80211_RRF_NO_IBSS
)
653 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
654 if (rd_flags
& NL80211_RRF_DFS
)
655 channel_flags
|= IEEE80211_CHAN_RADAR
;
656 return channel_flags
;
659 static int freq_reg_info_regd(struct wiphy
*wiphy
,
662 const struct ieee80211_reg_rule
**reg_rule
,
663 const struct ieee80211_regdomain
*custom_regd
)
666 bool band_rule_found
= false;
667 const struct ieee80211_regdomain
*regd
;
668 bool bw_fits
= false;
671 desired_bw_khz
= MHZ_TO_KHZ(20);
673 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
676 * Follow the driver's regulatory domain, if present, unless a country
677 * IE has been processed or a user wants to help complaince further
680 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
681 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
688 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
689 const struct ieee80211_reg_rule
*rr
;
690 const struct ieee80211_freq_range
*fr
= NULL
;
692 rr
= ®d
->reg_rules
[i
];
693 fr
= &rr
->freq_range
;
696 * We only need to know if one frequency rule was
697 * was in center_freq's band, that's enough, so lets
698 * not overwrite it once found
700 if (!band_rule_found
)
701 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
703 bw_fits
= reg_does_bw_fit(fr
,
707 if (band_rule_found
&& bw_fits
) {
713 if (!band_rule_found
)
719 int freq_reg_info(struct wiphy
*wiphy
,
722 const struct ieee80211_reg_rule
**reg_rule
)
724 assert_cfg80211_lock();
725 return freq_reg_info_regd(wiphy
,
731 EXPORT_SYMBOL(freq_reg_info
);
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
737 case NL80211_REGDOM_SET_BY_CORE
:
738 return "Set by core";
739 case NL80211_REGDOM_SET_BY_USER
:
740 return "Set by user";
741 case NL80211_REGDOM_SET_BY_DRIVER
:
742 return "Set by driver";
743 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
744 return "Set by country IE";
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
753 const struct ieee80211_reg_rule
*reg_rule
)
755 const struct ieee80211_power_rule
*power_rule
;
756 const struct ieee80211_freq_range
*freq_range
;
757 char max_antenna_gain
[32];
759 power_rule
= ®_rule
->power_rule
;
760 freq_range
= ®_rule
->freq_range
;
762 if (!power_rule
->max_antenna_gain
)
763 snprintf(max_antenna_gain
, 32, "N/A");
765 snprintf(max_antenna_gain
, 32, "%d", power_rule
->max_antenna_gain
);
767 REG_DBG_PRINT("Updating information on frequency %d MHz "
768 "for a %d MHz width channel with regulatory rule:\n",
770 KHZ_TO_MHZ(desired_bw_khz
));
772 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773 freq_range
->start_freq_khz
,
774 freq_range
->end_freq_khz
,
775 freq_range
->max_bandwidth_khz
,
777 power_rule
->max_eirp
);
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
782 const struct ieee80211_reg_rule
*reg_rule
)
789 * Note that right now we assume the desired channel bandwidth
790 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791 * per channel, the primary and the extension channel). To support
792 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793 * new ieee80211_channel.target_bw and re run the regulatory check
794 * on the wiphy with the target_bw specified. Then we can simply use
795 * that below for the desired_bw_khz below.
797 static void handle_channel(struct wiphy
*wiphy
,
798 enum nl80211_reg_initiator initiator
,
799 enum ieee80211_band band
,
800 unsigned int chan_idx
)
803 u32 flags
, bw_flags
= 0;
804 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
805 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
806 const struct ieee80211_power_rule
*power_rule
= NULL
;
807 const struct ieee80211_freq_range
*freq_range
= NULL
;
808 struct ieee80211_supported_band
*sband
;
809 struct ieee80211_channel
*chan
;
810 struct wiphy
*request_wiphy
= NULL
;
812 assert_cfg80211_lock();
814 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
816 sband
= wiphy
->bands
[band
];
817 BUG_ON(chan_idx
>= sband
->n_channels
);
818 chan
= &sband
->channels
[chan_idx
];
820 flags
= chan
->orig_flags
;
822 r
= freq_reg_info(wiphy
,
823 MHZ_TO_KHZ(chan
->center_freq
),
829 * We will disable all channels that do not match our
830 * received regulatory rule unless the hint is coming
831 * from a Country IE and the Country IE had no information
832 * about a band. The IEEE 802.11 spec allows for an AP
833 * to send only a subset of the regulatory rules allowed,
834 * so an AP in the US that only supports 2.4 GHz may only send
835 * a country IE with information for the 2.4 GHz band
836 * while 5 GHz is still supported.
838 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
842 REG_DBG_PRINT("Disabling freq %d MHz\n", chan
->center_freq
);
843 chan
->flags
= IEEE80211_CHAN_DISABLED
;
847 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
849 power_rule
= ®_rule
->power_rule
;
850 freq_range
= ®_rule
->freq_range
;
852 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
853 bw_flags
= IEEE80211_CHAN_NO_HT40
;
855 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
856 request_wiphy
&& request_wiphy
== wiphy
&&
857 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
859 * This guarantees the driver's requested regulatory domain
860 * will always be used as a base for further regulatory
863 chan
->flags
= chan
->orig_flags
=
864 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
865 chan
->max_antenna_gain
= chan
->orig_mag
=
866 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
867 chan
->max_power
= chan
->orig_mpwr
=
868 (int) MBM_TO_DBM(power_rule
->max_eirp
);
872 chan
->beacon_found
= false;
873 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
874 chan
->max_antenna_gain
= min(chan
->orig_mag
,
875 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
877 chan
->max_power
= min(chan
->orig_mpwr
,
878 (int) MBM_TO_DBM(power_rule
->max_eirp
));
880 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
883 static void handle_band(struct wiphy
*wiphy
,
884 enum ieee80211_band band
,
885 enum nl80211_reg_initiator initiator
)
888 struct ieee80211_supported_band
*sband
;
890 BUG_ON(!wiphy
->bands
[band
]);
891 sband
= wiphy
->bands
[band
];
893 for (i
= 0; i
< sband
->n_channels
; i
++)
894 handle_channel(wiphy
, initiator
, band
, i
);
897 static bool ignore_reg_update(struct wiphy
*wiphy
,
898 enum nl80211_reg_initiator initiator
)
901 REG_DBG_PRINT("Ignoring regulatory request %s since "
902 "last_request is not set\n",
903 reg_initiator_name(initiator
));
907 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
908 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
) {
909 REG_DBG_PRINT("Ignoring regulatory request %s "
910 "since the driver uses its own custom "
911 "regulatory domain\n",
912 reg_initiator_name(initiator
));
917 * wiphy->regd will be set once the device has its own
918 * desired regulatory domain set
920 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
921 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
922 !is_world_regdom(last_request
->alpha2
)) {
923 REG_DBG_PRINT("Ignoring regulatory request %s "
924 "since the driver requires its own regulatory "
925 "domain to be set first\n",
926 reg_initiator_name(initiator
));
933 static void handle_reg_beacon(struct wiphy
*wiphy
,
934 unsigned int chan_idx
,
935 struct reg_beacon
*reg_beacon
)
937 struct ieee80211_supported_band
*sband
;
938 struct ieee80211_channel
*chan
;
939 bool channel_changed
= false;
940 struct ieee80211_channel chan_before
;
942 assert_cfg80211_lock();
944 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
945 chan
= &sband
->channels
[chan_idx
];
947 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
950 if (chan
->beacon_found
)
953 chan
->beacon_found
= true;
955 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
958 chan_before
.center_freq
= chan
->center_freq
;
959 chan_before
.flags
= chan
->flags
;
961 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
962 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
963 channel_changed
= true;
966 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
967 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
968 channel_changed
= true;
972 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
976 * Called when a scan on a wiphy finds a beacon on
979 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
980 struct reg_beacon
*reg_beacon
)
983 struct ieee80211_supported_band
*sband
;
985 assert_cfg80211_lock();
987 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
990 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
992 for (i
= 0; i
< sband
->n_channels
; i
++)
993 handle_reg_beacon(wiphy
, i
, reg_beacon
);
997 * Called upon reg changes or a new wiphy is added
999 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1002 struct ieee80211_supported_band
*sband
;
1003 struct reg_beacon
*reg_beacon
;
1005 assert_cfg80211_lock();
1007 if (list_empty(®_beacon_list
))
1010 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1011 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1013 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1014 for (i
= 0; i
< sband
->n_channels
; i
++)
1015 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1019 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1021 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1022 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1025 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1026 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1031 /* Reap the advantages of previously found beacons */
1032 static void reg_process_beacons(struct wiphy
*wiphy
)
1035 * Means we are just firing up cfg80211, so no beacons would
1036 * have been processed yet.
1040 if (!reg_is_world_roaming(wiphy
))
1042 wiphy_update_beacon_reg(wiphy
);
1045 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1049 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1051 /* This would happen when regulatory rules disallow HT40 completely */
1052 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1057 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1058 enum ieee80211_band band
,
1059 unsigned int chan_idx
)
1061 struct ieee80211_supported_band
*sband
;
1062 struct ieee80211_channel
*channel
;
1063 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1066 assert_cfg80211_lock();
1068 sband
= wiphy
->bands
[band
];
1069 BUG_ON(chan_idx
>= sband
->n_channels
);
1070 channel
= &sband
->channels
[chan_idx
];
1072 if (is_ht40_not_allowed(channel
)) {
1073 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1078 * We need to ensure the extension channels exist to
1079 * be able to use HT40- or HT40+, this finds them (or not)
1081 for (i
= 0; i
< sband
->n_channels
; i
++) {
1082 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1083 if (c
->center_freq
== (channel
->center_freq
- 20))
1085 if (c
->center_freq
== (channel
->center_freq
+ 20))
1090 * Please note that this assumes target bandwidth is 20 MHz,
1091 * if that ever changes we also need to change the below logic
1092 * to include that as well.
1094 if (is_ht40_not_allowed(channel_before
))
1095 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1097 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1099 if (is_ht40_not_allowed(channel_after
))
1100 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1102 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1105 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1106 enum ieee80211_band band
)
1109 struct ieee80211_supported_band
*sband
;
1111 BUG_ON(!wiphy
->bands
[band
]);
1112 sband
= wiphy
->bands
[band
];
1114 for (i
= 0; i
< sband
->n_channels
; i
++)
1115 reg_process_ht_flags_channel(wiphy
, band
, i
);
1118 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1120 enum ieee80211_band band
;
1125 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1126 if (wiphy
->bands
[band
])
1127 reg_process_ht_flags_band(wiphy
, band
);
1132 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1133 enum nl80211_reg_initiator initiator
)
1135 enum ieee80211_band band
;
1139 if (ignore_reg_update(wiphy
, initiator
))
1142 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1143 if (wiphy
->bands
[band
])
1144 handle_band(wiphy
, band
, initiator
);
1147 reg_process_beacons(wiphy
);
1148 reg_process_ht_flags(wiphy
);
1149 if (wiphy
->reg_notifier
)
1150 wiphy
->reg_notifier(wiphy
, last_request
);
1153 void regulatory_update(struct wiphy
*wiphy
,
1154 enum nl80211_reg_initiator setby
)
1156 mutex_lock(®_mutex
);
1157 wiphy_update_regulatory(wiphy
, setby
);
1158 mutex_unlock(®_mutex
);
1161 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1163 struct cfg80211_registered_device
*rdev
;
1165 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1166 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
1169 static void handle_channel_custom(struct wiphy
*wiphy
,
1170 enum ieee80211_band band
,
1171 unsigned int chan_idx
,
1172 const struct ieee80211_regdomain
*regd
)
1175 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1177 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1178 const struct ieee80211_power_rule
*power_rule
= NULL
;
1179 const struct ieee80211_freq_range
*freq_range
= NULL
;
1180 struct ieee80211_supported_band
*sband
;
1181 struct ieee80211_channel
*chan
;
1185 sband
= wiphy
->bands
[band
];
1186 BUG_ON(chan_idx
>= sband
->n_channels
);
1187 chan
= &sband
->channels
[chan_idx
];
1189 r
= freq_reg_info_regd(wiphy
,
1190 MHZ_TO_KHZ(chan
->center_freq
),
1196 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1197 "regd has no rule that fits a %d MHz "
1200 KHZ_TO_MHZ(desired_bw_khz
));
1201 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1205 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
1207 power_rule
= ®_rule
->power_rule
;
1208 freq_range
= ®_rule
->freq_range
;
1210 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1211 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1213 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1214 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1215 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1218 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1219 const struct ieee80211_regdomain
*regd
)
1222 struct ieee80211_supported_band
*sband
;
1224 BUG_ON(!wiphy
->bands
[band
]);
1225 sband
= wiphy
->bands
[band
];
1227 for (i
= 0; i
< sband
->n_channels
; i
++)
1228 handle_channel_custom(wiphy
, band
, i
, regd
);
1231 /* Used by drivers prior to wiphy registration */
1232 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1233 const struct ieee80211_regdomain
*regd
)
1235 enum ieee80211_band band
;
1236 unsigned int bands_set
= 0;
1238 mutex_lock(®_mutex
);
1239 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1240 if (!wiphy
->bands
[band
])
1242 handle_band_custom(wiphy
, band
, regd
);
1245 mutex_unlock(®_mutex
);
1248 * no point in calling this if it won't have any effect
1249 * on your device's supportd bands.
1251 WARN_ON(!bands_set
);
1253 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1256 * Return value which can be used by ignore_request() to indicate
1257 * it has been determined we should intersect two regulatory domains
1259 #define REG_INTERSECT 1
1261 /* This has the logic which determines when a new request
1262 * should be ignored. */
1263 static int ignore_request(struct wiphy
*wiphy
,
1264 struct regulatory_request
*pending_request
)
1266 struct wiphy
*last_wiphy
= NULL
;
1268 assert_cfg80211_lock();
1270 /* All initial requests are respected */
1274 switch (pending_request
->initiator
) {
1275 case NL80211_REGDOM_SET_BY_CORE
:
1277 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1279 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1281 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1283 if (last_request
->initiator
==
1284 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1285 if (last_wiphy
!= wiphy
) {
1287 * Two cards with two APs claiming different
1288 * Country IE alpha2s. We could
1289 * intersect them, but that seems unlikely
1290 * to be correct. Reject second one for now.
1292 if (regdom_changes(pending_request
->alpha2
))
1297 * Two consecutive Country IE hints on the same wiphy.
1298 * This should be picked up early by the driver/stack
1300 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1305 case NL80211_REGDOM_SET_BY_DRIVER
:
1306 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1307 if (regdom_changes(pending_request
->alpha2
))
1313 * This would happen if you unplug and plug your card
1314 * back in or if you add a new device for which the previously
1315 * loaded card also agrees on the regulatory domain.
1317 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1318 !regdom_changes(pending_request
->alpha2
))
1321 return REG_INTERSECT
;
1322 case NL80211_REGDOM_SET_BY_USER
:
1323 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1324 return REG_INTERSECT
;
1326 * If the user knows better the user should set the regdom
1327 * to their country before the IE is picked up
1329 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1330 last_request
->intersect
)
1333 * Process user requests only after previous user/driver/core
1334 * requests have been processed
1336 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1337 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1338 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1339 if (regdom_changes(last_request
->alpha2
))
1343 if (!regdom_changes(pending_request
->alpha2
))
1352 static void reg_set_request_processed(void)
1354 bool need_more_processing
= false;
1356 last_request
->processed
= true;
1358 spin_lock(®_requests_lock
);
1359 if (!list_empty(®_requests_list
))
1360 need_more_processing
= true;
1361 spin_unlock(®_requests_lock
);
1363 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1364 cancel_delayed_work_sync(®_timeout
);
1366 if (need_more_processing
)
1367 schedule_work(®_work
);
1371 * __regulatory_hint - hint to the wireless core a regulatory domain
1372 * @wiphy: if the hint comes from country information from an AP, this
1373 * is required to be set to the wiphy that received the information
1374 * @pending_request: the regulatory request currently being processed
1376 * The Wireless subsystem can use this function to hint to the wireless core
1377 * what it believes should be the current regulatory domain.
1379 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1380 * already been set or other standard error codes.
1382 * Caller must hold &cfg80211_mutex and ®_mutex
1384 static int __regulatory_hint(struct wiphy
*wiphy
,
1385 struct regulatory_request
*pending_request
)
1387 bool intersect
= false;
1390 assert_cfg80211_lock();
1392 r
= ignore_request(wiphy
, pending_request
);
1394 if (r
== REG_INTERSECT
) {
1395 if (pending_request
->initiator
==
1396 NL80211_REGDOM_SET_BY_DRIVER
) {
1397 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1399 kfree(pending_request
);
1406 * If the regulatory domain being requested by the
1407 * driver has already been set just copy it to the
1410 if (r
== -EALREADY
&&
1411 pending_request
->initiator
==
1412 NL80211_REGDOM_SET_BY_DRIVER
) {
1413 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1415 kfree(pending_request
);
1421 kfree(pending_request
);
1426 if (last_request
!= &core_request_world
)
1427 kfree(last_request
);
1429 last_request
= pending_request
;
1430 last_request
->intersect
= intersect
;
1432 pending_request
= NULL
;
1434 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1435 user_alpha2
[0] = last_request
->alpha2
[0];
1436 user_alpha2
[1] = last_request
->alpha2
[1];
1439 /* When r == REG_INTERSECT we do need to call CRDA */
1442 * Since CRDA will not be called in this case as we already
1443 * have applied the requested regulatory domain before we just
1444 * inform userspace we have processed the request
1446 if (r
== -EALREADY
) {
1447 nl80211_send_reg_change_event(last_request
);
1448 reg_set_request_processed();
1453 return call_crda(last_request
->alpha2
);
1456 /* This processes *all* regulatory hints */
1457 static void reg_process_hint(struct regulatory_request
*reg_request
)
1460 struct wiphy
*wiphy
= NULL
;
1461 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
1463 BUG_ON(!reg_request
->alpha2
);
1465 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1466 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1468 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1474 r
= __regulatory_hint(wiphy
, reg_request
);
1475 /* This is required so that the orig_* parameters are saved */
1476 if (r
== -EALREADY
&& wiphy
&&
1477 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1478 wiphy_update_regulatory(wiphy
, initiator
);
1483 * We only time out user hints, given that they should be the only
1484 * source of bogus requests.
1486 if (r
!= -EALREADY
&&
1487 reg_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1488 schedule_delayed_work(®_timeout
, msecs_to_jiffies(3142));
1492 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1493 * Regulatory hints come on a first come first serve basis and we
1494 * must process each one atomically.
1496 static void reg_process_pending_hints(void)
1498 struct regulatory_request
*reg_request
;
1500 mutex_lock(&cfg80211_mutex
);
1501 mutex_lock(®_mutex
);
1503 /* When last_request->processed becomes true this will be rescheduled */
1504 if (last_request
&& !last_request
->processed
) {
1505 REG_DBG_PRINT("Pending regulatory request, waiting "
1506 "for it to be processed...\n");
1510 spin_lock(®_requests_lock
);
1512 if (list_empty(®_requests_list
)) {
1513 spin_unlock(®_requests_lock
);
1517 reg_request
= list_first_entry(®_requests_list
,
1518 struct regulatory_request
,
1520 list_del_init(®_request
->list
);
1522 spin_unlock(®_requests_lock
);
1524 reg_process_hint(reg_request
);
1527 mutex_unlock(®_mutex
);
1528 mutex_unlock(&cfg80211_mutex
);
1531 /* Processes beacon hints -- this has nothing to do with country IEs */
1532 static void reg_process_pending_beacon_hints(void)
1534 struct cfg80211_registered_device
*rdev
;
1535 struct reg_beacon
*pending_beacon
, *tmp
;
1538 * No need to hold the reg_mutex here as we just touch wiphys
1539 * and do not read or access regulatory variables.
1541 mutex_lock(&cfg80211_mutex
);
1543 /* This goes through the _pending_ beacon list */
1544 spin_lock_bh(®_pending_beacons_lock
);
1546 if (list_empty(®_pending_beacons
)) {
1547 spin_unlock_bh(®_pending_beacons_lock
);
1551 list_for_each_entry_safe(pending_beacon
, tmp
,
1552 ®_pending_beacons
, list
) {
1554 list_del_init(&pending_beacon
->list
);
1556 /* Applies the beacon hint to current wiphys */
1557 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1558 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1560 /* Remembers the beacon hint for new wiphys or reg changes */
1561 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1564 spin_unlock_bh(®_pending_beacons_lock
);
1566 mutex_unlock(&cfg80211_mutex
);
1569 static void reg_todo(struct work_struct
*work
)
1571 reg_process_pending_hints();
1572 reg_process_pending_beacon_hints();
1575 static void queue_regulatory_request(struct regulatory_request
*request
)
1577 if (isalpha(request
->alpha2
[0]))
1578 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1579 if (isalpha(request
->alpha2
[1]))
1580 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1582 spin_lock(®_requests_lock
);
1583 list_add_tail(&request
->list
, ®_requests_list
);
1584 spin_unlock(®_requests_lock
);
1586 schedule_work(®_work
);
1590 * Core regulatory hint -- happens during cfg80211_init()
1591 * and when we restore regulatory settings.
1593 static int regulatory_hint_core(const char *alpha2
)
1595 struct regulatory_request
*request
;
1597 request
= kzalloc(sizeof(struct regulatory_request
),
1602 request
->alpha2
[0] = alpha2
[0];
1603 request
->alpha2
[1] = alpha2
[1];
1604 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1606 queue_regulatory_request(request
);
1612 int regulatory_hint_user(const char *alpha2
)
1614 struct regulatory_request
*request
;
1618 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1622 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1623 request
->alpha2
[0] = alpha2
[0];
1624 request
->alpha2
[1] = alpha2
[1];
1625 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1627 queue_regulatory_request(request
);
1633 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1635 struct regulatory_request
*request
;
1640 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1644 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1646 /* Must have registered wiphy first */
1647 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1649 request
->alpha2
[0] = alpha2
[0];
1650 request
->alpha2
[1] = alpha2
[1];
1651 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1653 queue_regulatory_request(request
);
1657 EXPORT_SYMBOL(regulatory_hint
);
1660 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1661 * therefore cannot iterate over the rdev list here.
1663 void regulatory_hint_11d(struct wiphy
*wiphy
,
1664 enum ieee80211_band band
,
1669 enum environment_cap env
= ENVIRON_ANY
;
1670 struct regulatory_request
*request
;
1672 mutex_lock(®_mutex
);
1674 if (unlikely(!last_request
))
1677 /* IE len must be evenly divisible by 2 */
1678 if (country_ie_len
& 0x01)
1681 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1684 alpha2
[0] = country_ie
[0];
1685 alpha2
[1] = country_ie
[1];
1687 if (country_ie
[2] == 'I')
1688 env
= ENVIRON_INDOOR
;
1689 else if (country_ie
[2] == 'O')
1690 env
= ENVIRON_OUTDOOR
;
1693 * We will run this only upon a successful connection on cfg80211.
1694 * We leave conflict resolution to the workqueue, where can hold
1697 if (likely(last_request
->initiator
==
1698 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1699 wiphy_idx_valid(last_request
->wiphy_idx
)))
1702 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1706 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1707 request
->alpha2
[0] = alpha2
[0];
1708 request
->alpha2
[1] = alpha2
[1];
1709 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1710 request
->country_ie_env
= env
;
1712 mutex_unlock(®_mutex
);
1714 queue_regulatory_request(request
);
1719 mutex_unlock(®_mutex
);
1722 static void restore_alpha2(char *alpha2
, bool reset_user
)
1724 /* indicates there is no alpha2 to consider for restoration */
1728 /* The user setting has precedence over the module parameter */
1729 if (is_user_regdom_saved()) {
1730 /* Unless we're asked to ignore it and reset it */
1732 REG_DBG_PRINT("Restoring regulatory settings "
1733 "including user preference\n");
1734 user_alpha2
[0] = '9';
1735 user_alpha2
[1] = '7';
1738 * If we're ignoring user settings, we still need to
1739 * check the module parameter to ensure we put things
1740 * back as they were for a full restore.
1742 if (!is_world_regdom(ieee80211_regdom
)) {
1743 REG_DBG_PRINT("Keeping preference on "
1744 "module parameter ieee80211_regdom: %c%c\n",
1745 ieee80211_regdom
[0],
1746 ieee80211_regdom
[1]);
1747 alpha2
[0] = ieee80211_regdom
[0];
1748 alpha2
[1] = ieee80211_regdom
[1];
1751 REG_DBG_PRINT("Restoring regulatory settings "
1752 "while preserving user preference for: %c%c\n",
1755 alpha2
[0] = user_alpha2
[0];
1756 alpha2
[1] = user_alpha2
[1];
1758 } else if (!is_world_regdom(ieee80211_regdom
)) {
1759 REG_DBG_PRINT("Keeping preference on "
1760 "module parameter ieee80211_regdom: %c%c\n",
1761 ieee80211_regdom
[0],
1762 ieee80211_regdom
[1]);
1763 alpha2
[0] = ieee80211_regdom
[0];
1764 alpha2
[1] = ieee80211_regdom
[1];
1766 REG_DBG_PRINT("Restoring regulatory settings\n");
1770 * Restoring regulatory settings involves ingoring any
1771 * possibly stale country IE information and user regulatory
1772 * settings if so desired, this includes any beacon hints
1773 * learned as we could have traveled outside to another country
1774 * after disconnection. To restore regulatory settings we do
1775 * exactly what we did at bootup:
1777 * - send a core regulatory hint
1778 * - send a user regulatory hint if applicable
1780 * Device drivers that send a regulatory hint for a specific country
1781 * keep their own regulatory domain on wiphy->regd so that does does
1782 * not need to be remembered.
1784 static void restore_regulatory_settings(bool reset_user
)
1787 struct reg_beacon
*reg_beacon
, *btmp
;
1788 struct regulatory_request
*reg_request
, *tmp
;
1789 LIST_HEAD(tmp_reg_req_list
);
1791 mutex_lock(&cfg80211_mutex
);
1792 mutex_lock(®_mutex
);
1794 reset_regdomains(true);
1795 restore_alpha2(alpha2
, reset_user
);
1798 * If there's any pending requests we simply
1799 * stash them to a temporary pending queue and
1800 * add then after we've restored regulatory
1803 spin_lock(®_requests_lock
);
1804 if (!list_empty(®_requests_list
)) {
1805 list_for_each_entry_safe(reg_request
, tmp
,
1806 ®_requests_list
, list
) {
1807 if (reg_request
->initiator
!=
1808 NL80211_REGDOM_SET_BY_USER
)
1810 list_del(®_request
->list
);
1811 list_add_tail(®_request
->list
, &tmp_reg_req_list
);
1814 spin_unlock(®_requests_lock
);
1816 /* Clear beacon hints */
1817 spin_lock_bh(®_pending_beacons_lock
);
1818 if (!list_empty(®_pending_beacons
)) {
1819 list_for_each_entry_safe(reg_beacon
, btmp
,
1820 ®_pending_beacons
, list
) {
1821 list_del(®_beacon
->list
);
1825 spin_unlock_bh(®_pending_beacons_lock
);
1827 if (!list_empty(®_beacon_list
)) {
1828 list_for_each_entry_safe(reg_beacon
, btmp
,
1829 ®_beacon_list
, list
) {
1830 list_del(®_beacon
->list
);
1835 /* First restore to the basic regulatory settings */
1836 cfg80211_regdomain
= cfg80211_world_regdom
;
1838 mutex_unlock(®_mutex
);
1839 mutex_unlock(&cfg80211_mutex
);
1841 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
1844 * This restores the ieee80211_regdom module parameter
1845 * preference or the last user requested regulatory
1846 * settings, user regulatory settings takes precedence.
1848 if (is_an_alpha2(alpha2
))
1849 regulatory_hint_user(user_alpha2
);
1851 if (list_empty(&tmp_reg_req_list
))
1854 mutex_lock(&cfg80211_mutex
);
1855 mutex_lock(®_mutex
);
1857 spin_lock(®_requests_lock
);
1858 list_for_each_entry_safe(reg_request
, tmp
, &tmp_reg_req_list
, list
) {
1859 REG_DBG_PRINT("Adding request for country %c%c back "
1861 reg_request
->alpha2
[0],
1862 reg_request
->alpha2
[1]);
1863 list_del(®_request
->list
);
1864 list_add_tail(®_request
->list
, ®_requests_list
);
1866 spin_unlock(®_requests_lock
);
1868 mutex_unlock(®_mutex
);
1869 mutex_unlock(&cfg80211_mutex
);
1871 REG_DBG_PRINT("Kicking the queue\n");
1873 schedule_work(®_work
);
1876 void regulatory_hint_disconnect(void)
1878 REG_DBG_PRINT("All devices are disconnected, going to "
1879 "restore regulatory settings\n");
1880 restore_regulatory_settings(false);
1883 static bool freq_is_chan_12_13_14(u16 freq
)
1885 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
1886 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
1887 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
1892 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1893 struct ieee80211_channel
*beacon_chan
,
1896 struct reg_beacon
*reg_beacon
;
1898 if (likely((beacon_chan
->beacon_found
||
1899 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1900 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1901 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1904 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1908 REG_DBG_PRINT("Found new beacon on "
1909 "frequency: %d MHz (Ch %d) on %s\n",
1910 beacon_chan
->center_freq
,
1911 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1914 memcpy(®_beacon
->chan
, beacon_chan
,
1915 sizeof(struct ieee80211_channel
));
1919 * Since we can be called from BH or and non-BH context
1920 * we must use spin_lock_bh()
1922 spin_lock_bh(®_pending_beacons_lock
);
1923 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1924 spin_unlock_bh(®_pending_beacons_lock
);
1926 schedule_work(®_work
);
1931 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1934 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1935 const struct ieee80211_freq_range
*freq_range
= NULL
;
1936 const struct ieee80211_power_rule
*power_rule
= NULL
;
1938 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1940 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1941 reg_rule
= &rd
->reg_rules
[i
];
1942 freq_range
= ®_rule
->freq_range
;
1943 power_rule
= ®_rule
->power_rule
;
1946 * There may not be documentation for max antenna gain
1947 * in certain regions
1949 if (power_rule
->max_antenna_gain
)
1950 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1951 freq_range
->start_freq_khz
,
1952 freq_range
->end_freq_khz
,
1953 freq_range
->max_bandwidth_khz
,
1954 power_rule
->max_antenna_gain
,
1955 power_rule
->max_eirp
);
1957 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1958 freq_range
->start_freq_khz
,
1959 freq_range
->end_freq_khz
,
1960 freq_range
->max_bandwidth_khz
,
1961 power_rule
->max_eirp
);
1965 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1968 if (is_intersected_alpha2(rd
->alpha2
)) {
1970 if (last_request
->initiator
==
1971 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1972 struct cfg80211_registered_device
*rdev
;
1973 rdev
= cfg80211_rdev_by_wiphy_idx(
1974 last_request
->wiphy_idx
);
1976 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1977 rdev
->country_ie_alpha2
[0],
1978 rdev
->country_ie_alpha2
[1]);
1980 pr_info("Current regulatory domain intersected:\n");
1982 pr_info("Current regulatory domain intersected:\n");
1983 } else if (is_world_regdom(rd
->alpha2
))
1984 pr_info("World regulatory domain updated:\n");
1986 if (is_unknown_alpha2(rd
->alpha2
))
1987 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1989 pr_info("Regulatory domain changed to country: %c%c\n",
1990 rd
->alpha2
[0], rd
->alpha2
[1]);
1995 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1997 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2001 /* Takes ownership of rd only if it doesn't fail */
2002 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
2004 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2005 struct cfg80211_registered_device
*rdev
= NULL
;
2006 struct wiphy
*request_wiphy
;
2007 /* Some basic sanity checks first */
2009 if (is_world_regdom(rd
->alpha2
)) {
2010 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2012 update_world_regdomain(rd
);
2016 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2017 !is_unknown_alpha2(rd
->alpha2
))
2024 * Lets only bother proceeding on the same alpha2 if the current
2025 * rd is non static (it means CRDA was present and was used last)
2026 * and the pending request came in from a country IE
2028 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2030 * If someone else asked us to change the rd lets only bother
2031 * checking if the alpha2 changes if CRDA was already called
2033 if (!regdom_changes(rd
->alpha2
))
2038 * Now lets set the regulatory domain, update all driver channels
2039 * and finally inform them of what we have done, in case they want
2040 * to review or adjust their own settings based on their own
2041 * internal EEPROM data
2044 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2047 if (!is_valid_rd(rd
)) {
2048 pr_err("Invalid regulatory domain detected:\n");
2049 print_regdomain_info(rd
);
2053 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2054 if (!request_wiphy
&&
2055 (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2056 last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)) {
2057 schedule_delayed_work(®_timeout
, 0);
2061 if (!last_request
->intersect
) {
2064 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2065 reset_regdomains(false);
2066 cfg80211_regdomain
= rd
;
2071 * For a driver hint, lets copy the regulatory domain the
2072 * driver wanted to the wiphy to deal with conflicts
2076 * Userspace could have sent two replies with only
2077 * one kernel request.
2079 if (request_wiphy
->regd
)
2082 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2086 reset_regdomains(false);
2087 cfg80211_regdomain
= rd
;
2091 /* Intersection requires a bit more work */
2093 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2095 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2096 if (!intersected_rd
)
2100 * We can trash what CRDA provided now.
2101 * However if a driver requested this specific regulatory
2102 * domain we keep it for its private use
2104 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2105 request_wiphy
->regd
= rd
;
2111 reset_regdomains(false);
2112 cfg80211_regdomain
= intersected_rd
;
2117 if (!intersected_rd
)
2120 rdev
= wiphy_to_dev(request_wiphy
);
2122 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2123 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2124 rdev
->env
= last_request
->country_ie_env
;
2126 BUG_ON(intersected_rd
== rd
);
2131 reset_regdomains(false);
2132 cfg80211_regdomain
= intersected_rd
;
2139 * Use this call to set the current regulatory domain. Conflicts with
2140 * multiple drivers can be ironed out later. Caller must've already
2141 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2143 int set_regdom(const struct ieee80211_regdomain
*rd
)
2147 assert_cfg80211_lock();
2149 mutex_lock(®_mutex
);
2151 /* Note that this doesn't update the wiphys, this is done below */
2152 r
= __set_regdom(rd
);
2155 mutex_unlock(®_mutex
);
2159 /* This would make this whole thing pointless */
2160 if (!last_request
->intersect
)
2161 BUG_ON(rd
!= cfg80211_regdomain
);
2163 /* update all wiphys now with the new established regulatory domain */
2164 update_all_wiphy_regulatory(last_request
->initiator
);
2166 print_regdomain(cfg80211_regdomain
);
2168 nl80211_send_reg_change_event(last_request
);
2170 reg_set_request_processed();
2172 mutex_unlock(®_mutex
);
2177 #ifdef CONFIG_HOTPLUG
2178 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2180 if (last_request
&& !last_request
->processed
) {
2181 if (add_uevent_var(env
, "COUNTRY=%c%c",
2182 last_request
->alpha2
[0],
2183 last_request
->alpha2
[1]))
2190 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2194 #endif /* CONFIG_HOTPLUG */
2196 /* Caller must hold cfg80211_mutex */
2197 void reg_device_remove(struct wiphy
*wiphy
)
2199 struct wiphy
*request_wiphy
= NULL
;
2201 assert_cfg80211_lock();
2203 mutex_lock(®_mutex
);
2208 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2210 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2213 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2214 last_request
->country_ie_env
= ENVIRON_ANY
;
2216 mutex_unlock(®_mutex
);
2219 static void reg_timeout_work(struct work_struct
*work
)
2221 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2222 "restoring regulatory settings\n");
2223 restore_regulatory_settings(true);
2226 int __init
regulatory_init(void)
2230 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2231 if (IS_ERR(reg_pdev
))
2232 return PTR_ERR(reg_pdev
);
2234 reg_pdev
->dev
.type
= ®_device_type
;
2236 spin_lock_init(®_requests_lock
);
2237 spin_lock_init(®_pending_beacons_lock
);
2239 cfg80211_regdomain
= cfg80211_world_regdom
;
2241 user_alpha2
[0] = '9';
2242 user_alpha2
[1] = '7';
2244 /* We always try to get an update for the static regdomain */
2245 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2250 * N.B. kobject_uevent_env() can fail mainly for when we're out
2251 * memory which is handled and propagated appropriately above
2252 * but it can also fail during a netlink_broadcast() or during
2253 * early boot for call_usermodehelper(). For now treat these
2254 * errors as non-fatal.
2256 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2257 #ifdef CONFIG_CFG80211_REG_DEBUG
2258 /* We want to find out exactly why when debugging */
2264 * Finally, if the user set the module parameter treat it
2267 if (!is_world_regdom(ieee80211_regdom
))
2268 regulatory_hint_user(ieee80211_regdom
);
2273 void /* __init_or_exit */ regulatory_exit(void)
2275 struct regulatory_request
*reg_request
, *tmp
;
2276 struct reg_beacon
*reg_beacon
, *btmp
;
2278 cancel_work_sync(®_work
);
2279 cancel_delayed_work_sync(®_timeout
);
2281 mutex_lock(&cfg80211_mutex
);
2282 mutex_lock(®_mutex
);
2284 reset_regdomains(true);
2286 dev_set_uevent_suppress(®_pdev
->dev
, true);
2288 platform_device_unregister(reg_pdev
);
2290 spin_lock_bh(®_pending_beacons_lock
);
2291 if (!list_empty(®_pending_beacons
)) {
2292 list_for_each_entry_safe(reg_beacon
, btmp
,
2293 ®_pending_beacons
, list
) {
2294 list_del(®_beacon
->list
);
2298 spin_unlock_bh(®_pending_beacons_lock
);
2300 if (!list_empty(®_beacon_list
)) {
2301 list_for_each_entry_safe(reg_beacon
, btmp
,
2302 ®_beacon_list
, list
) {
2303 list_del(®_beacon
->list
);
2308 spin_lock(®_requests_lock
);
2309 if (!list_empty(®_requests_list
)) {
2310 list_for_each_entry_safe(reg_request
, tmp
,
2311 ®_requests_list
, list
) {
2312 list_del(®_request
->list
);
2316 spin_unlock(®_requests_lock
);
2318 mutex_unlock(®_mutex
);
2319 mutex_unlock(&cfg80211_mutex
);