nilfs2: unbreak compat ioctl
[zen-stable.git] / drivers / scsi / isci / host.c
blobe7fe9c4c85b84d7098850eb16288caaae8b20578
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73 #define smu_max_ports(dcc_value) \
75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
79 #define smu_max_task_contexts(dcc_value) \
81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
85 #define smu_max_rncs(dcc_value) \
87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
93 /**
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
103 * NORMALIZE_PUT_POINTER() -
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
108 #define NORMALIZE_PUT_POINTER(x) \
109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
113 * NORMALIZE_EVENT_POINTER() -
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
118 #define NORMALIZE_EVENT_POINTER(x) \
120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
125 * NORMALIZE_GET_POINTER() -
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
130 #define NORMALIZE_GET_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
143 * COMPLETION_QUEUE_CYCLE_BIT() -
145 * This macro will return the cycle bit of the completion queue entry
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151 const struct sci_base_state *state_table, u32 initial_state)
153 sci_state_transition_t handler;
155 sm->initial_state_id = initial_state;
156 sm->previous_state_id = initial_state;
157 sm->current_state_id = initial_state;
158 sm->state_table = state_table;
160 handler = sm->state_table[initial_state].enter_state;
161 if (handler)
162 handler(sm);
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
168 sci_state_transition_t handler;
170 handler = sm->state_table[sm->current_state_id].exit_state;
171 if (handler)
172 handler(sm);
174 sm->previous_state_id = sm->current_state_id;
175 sm->current_state_id = next_state;
177 handler = sm->state_table[sm->current_state_id].enter_state;
178 if (handler)
179 handler(sm);
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
184 u32 get_value = ihost->completion_queue_get;
185 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 return true;
191 return false;
194 static bool sci_controller_isr(struct isci_host *ihost)
196 if (sci_controller_completion_queue_has_entries(ihost)) {
197 return true;
198 } else {
200 * we have a spurious interrupt it could be that we have already
201 * emptied the completion queue from a previous interrupt */
202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
205 * There is a race in the hardware that could cause us not to be notified
206 * of an interrupt completion if we do not take this step. We will mask
207 * then unmask the interrupts so if there is another interrupt pending
208 * the clearing of the interrupt source we get the next interrupt message. */
209 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 writel(0, &ihost->smu_registers->interrupt_mask);
213 return false;
216 irqreturn_t isci_msix_isr(int vec, void *data)
218 struct isci_host *ihost = data;
220 if (sci_controller_isr(ihost))
221 tasklet_schedule(&ihost->completion_tasklet);
223 return IRQ_HANDLED;
226 static bool sci_controller_error_isr(struct isci_host *ihost)
228 u32 interrupt_status;
230 interrupt_status =
231 readl(&ihost->smu_registers->interrupt_status);
232 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
234 if (interrupt_status != 0) {
236 * There is an error interrupt pending so let it through and handle
237 * in the callback */
238 return true;
242 * There is a race in the hardware that could cause us not to be notified
243 * of an interrupt completion if we do not take this step. We will mask
244 * then unmask the error interrupts so if there was another interrupt
245 * pending we will be notified.
246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 writel(0xff, &ihost->smu_registers->interrupt_mask);
248 writel(0, &ihost->smu_registers->interrupt_mask);
250 return false;
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
255 u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 struct isci_request *ireq = ihost->reqs[index];
258 /* Make sure that we really want to process this IO request */
259 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 /* Yep this is a valid io request pass it along to the
263 * io request handler
265 sci_io_request_tc_completion(ireq, ent);
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
270 u32 index;
271 struct isci_request *ireq;
272 struct isci_remote_device *idev;
274 index = SCU_GET_COMPLETION_INDEX(ent);
276 switch (scu_get_command_request_type(ent)) {
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 ireq = ihost->reqs[index];
280 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 __func__, ent, ireq);
282 /* @todo For a post TC operation we need to fail the IO
283 * request
285 break;
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 idev = ihost->device_table[index];
290 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 __func__, ent, idev);
292 /* @todo For a port RNC operation we need to fail the
293 * device
295 break;
296 default:
297 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 __func__, ent);
299 break;
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
305 u32 index;
306 u32 frame_index;
308 struct scu_unsolicited_frame_header *frame_header;
309 struct isci_phy *iphy;
310 struct isci_remote_device *idev;
312 enum sci_status result = SCI_FAILURE;
314 frame_index = SCU_GET_FRAME_INDEX(ent);
316 frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
319 if (SCU_GET_FRAME_ERROR(ent)) {
321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 * / this cause a problem? We expect the phy initialization will
323 * / fail if there is an error in the frame. */
324 sci_controller_release_frame(ihost, frame_index);
325 return;
328 if (frame_header->is_address_frame) {
329 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 iphy = &ihost->phys[index];
331 result = sci_phy_frame_handler(iphy, frame_index);
332 } else {
334 index = SCU_GET_COMPLETION_INDEX(ent);
336 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
338 * This is a signature fis or a frame from a direct attached SATA
339 * device that has not yet been created. In either case forwared
340 * the frame to the PE and let it take care of the frame data. */
341 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 iphy = &ihost->phys[index];
343 result = sci_phy_frame_handler(iphy, frame_index);
344 } else {
345 if (index < ihost->remote_node_entries)
346 idev = ihost->device_table[index];
347 else
348 idev = NULL;
350 if (idev != NULL)
351 result = sci_remote_device_frame_handler(idev, frame_index);
352 else
353 sci_controller_release_frame(ihost, frame_index);
357 if (result != SCI_SUCCESS) {
359 * / @todo Is there any reason to report some additional error message
360 * / when we get this failure notifiction? */
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
366 struct isci_remote_device *idev;
367 struct isci_request *ireq;
368 struct isci_phy *iphy;
369 u32 index;
371 index = SCU_GET_COMPLETION_INDEX(ent);
373 switch (scu_get_event_type(ent)) {
374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 /* / @todo The driver did something wrong and we need to fix the condtion. */
376 dev_err(&ihost->pdev->dev,
377 "%s: SCIC Controller 0x%p received SMU command error "
378 "0x%x\n",
379 __func__,
380 ihost,
381 ent);
382 break;
384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 case SCU_EVENT_TYPE_SMU_ERROR:
386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
388 * / @todo This is a hardware failure and its likely that we want to
389 * / reset the controller. */
390 dev_err(&ihost->pdev->dev,
391 "%s: SCIC Controller 0x%p received fatal controller "
392 "event 0x%x\n",
393 __func__,
394 ihost,
395 ent);
396 break;
398 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 ireq = ihost->reqs[index];
400 sci_io_request_event_handler(ireq, ent);
401 break;
403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 switch (scu_get_event_specifier(ent)) {
405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 ireq = ihost->reqs[index];
408 if (ireq != NULL)
409 sci_io_request_event_handler(ireq, ent);
410 else
411 dev_warn(&ihost->pdev->dev,
412 "%s: SCIC Controller 0x%p received "
413 "event 0x%x for io request object "
414 "that doesnt exist.\n",
415 __func__,
416 ihost,
417 ent);
419 break;
421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 idev = ihost->device_table[index];
423 if (idev != NULL)
424 sci_remote_device_event_handler(idev, ent);
425 else
426 dev_warn(&ihost->pdev->dev,
427 "%s: SCIC Controller 0x%p received "
428 "event 0x%x for remote device object "
429 "that doesnt exist.\n",
430 __func__,
431 ihost,
432 ent);
434 break;
436 break;
438 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
440 * direct the broadcast change event to the phy first and then let
441 * the phy redirect the broadcast change to the port object */
442 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
444 * direct error counter event to the phy object since that is where
445 * we get the event notification. This is a type 4 event. */
446 case SCU_EVENT_TYPE_OSSP_EVENT:
447 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 iphy = &ihost->phys[index];
449 sci_phy_event_handler(iphy, ent);
450 break;
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 if (index < ihost->remote_node_entries) {
456 idev = ihost->device_table[index];
458 if (idev != NULL)
459 sci_remote_device_event_handler(idev, ent);
460 } else
461 dev_err(&ihost->pdev->dev,
462 "%s: SCIC Controller 0x%p received event 0x%x "
463 "for remote device object 0x%0x that doesnt "
464 "exist.\n",
465 __func__,
466 ihost,
467 ent,
468 index);
470 break;
472 default:
473 dev_warn(&ihost->pdev->dev,
474 "%s: SCIC Controller received unknown event code %x\n",
475 __func__,
476 ent);
477 break;
481 static void sci_controller_process_completions(struct isci_host *ihost)
483 u32 completion_count = 0;
484 u32 ent;
485 u32 get_index;
486 u32 get_cycle;
487 u32 event_get;
488 u32 event_cycle;
490 dev_dbg(&ihost->pdev->dev,
491 "%s: completion queue begining get:0x%08x\n",
492 __func__,
493 ihost->completion_queue_get);
495 /* Get the component parts of the completion queue */
496 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
499 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
502 while (
503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
506 completion_count++;
508 ent = ihost->completion_queue[get_index];
510 /* increment the get pointer and check for rollover to toggle the cycle bit */
511 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
515 dev_dbg(&ihost->pdev->dev,
516 "%s: completion queue entry:0x%08x\n",
517 __func__,
518 ent);
520 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 case SCU_COMPLETION_TYPE_TASK:
522 sci_controller_task_completion(ihost, ent);
523 break;
525 case SCU_COMPLETION_TYPE_SDMA:
526 sci_controller_sdma_completion(ihost, ent);
527 break;
529 case SCU_COMPLETION_TYPE_UFI:
530 sci_controller_unsolicited_frame(ihost, ent);
531 break;
533 case SCU_COMPLETION_TYPE_EVENT:
534 sci_controller_event_completion(ihost, ent);
535 break;
537 case SCU_COMPLETION_TYPE_NOTIFY: {
538 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
542 sci_controller_event_completion(ihost, ent);
543 break;
545 default:
546 dev_warn(&ihost->pdev->dev,
547 "%s: SCIC Controller received unknown "
548 "completion type %x\n",
549 __func__,
550 ent);
551 break;
555 /* Update the get register if we completed one or more entries */
556 if (completion_count > 0) {
557 ihost->completion_queue_get =
558 SMU_CQGR_GEN_BIT(ENABLE) |
559 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560 event_cycle |
561 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562 get_cycle |
563 SMU_CQGR_GEN_VAL(POINTER, get_index);
565 writel(ihost->completion_queue_get,
566 &ihost->smu_registers->completion_queue_get);
570 dev_dbg(&ihost->pdev->dev,
571 "%s: completion queue ending get:0x%08x\n",
572 __func__,
573 ihost->completion_queue_get);
577 static void sci_controller_error_handler(struct isci_host *ihost)
579 u32 interrupt_status;
581 interrupt_status =
582 readl(&ihost->smu_registers->interrupt_status);
584 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585 sci_controller_completion_queue_has_entries(ihost)) {
587 sci_controller_process_completions(ihost);
588 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589 } else {
590 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591 interrupt_status);
593 sci_change_state(&ihost->sm, SCIC_FAILED);
595 return;
598 /* If we dont process any completions I am not sure that we want to do this.
599 * We are in the middle of a hardware fault and should probably be reset.
601 writel(0, &ihost->smu_registers->interrupt_mask);
604 irqreturn_t isci_intx_isr(int vec, void *data)
606 irqreturn_t ret = IRQ_NONE;
607 struct isci_host *ihost = data;
609 if (sci_controller_isr(ihost)) {
610 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611 tasklet_schedule(&ihost->completion_tasklet);
612 ret = IRQ_HANDLED;
613 } else if (sci_controller_error_isr(ihost)) {
614 spin_lock(&ihost->scic_lock);
615 sci_controller_error_handler(ihost);
616 spin_unlock(&ihost->scic_lock);
617 ret = IRQ_HANDLED;
620 return ret;
623 irqreturn_t isci_error_isr(int vec, void *data)
625 struct isci_host *ihost = data;
627 if (sci_controller_error_isr(ihost))
628 sci_controller_error_handler(ihost);
630 return IRQ_HANDLED;
634 * isci_host_start_complete() - This function is called by the core library,
635 * through the ISCI Module, to indicate controller start status.
636 * @isci_host: This parameter specifies the ISCI host object
637 * @completion_status: This parameter specifies the completion status from the
638 * core library.
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
643 if (completion_status != SCI_SUCCESS)
644 dev_info(&ihost->pdev->dev,
645 "controller start timed out, continuing...\n");
646 isci_host_change_state(ihost, isci_ready);
647 clear_bit(IHOST_START_PENDING, &ihost->flags);
648 wake_up(&ihost->eventq);
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
653 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
655 if (test_bit(IHOST_START_PENDING, &ihost->flags))
656 return 0;
658 /* todo: use sas_flush_discovery once it is upstream */
659 scsi_flush_work(shost);
661 scsi_flush_work(shost);
663 dev_dbg(&ihost->pdev->dev,
664 "%s: ihost->status = %d, time = %ld\n",
665 __func__, isci_host_get_state(ihost), time);
667 return 1;
672 * sci_controller_get_suggested_start_timeout() - This method returns the
673 * suggested sci_controller_start() timeout amount. The user is free to
674 * use any timeout value, but this method provides the suggested minimum
675 * start timeout value. The returned value is based upon empirical
676 * information determined as a result of interoperability testing.
677 * @controller: the handle to the controller object for which to return the
678 * suggested start timeout.
680 * This method returns the number of milliseconds for the suggested start
681 * operation timeout.
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
685 /* Validate the user supplied parameters. */
686 if (!ihost)
687 return 0;
690 * The suggested minimum timeout value for a controller start operation:
692 * Signature FIS Timeout
693 * + Phy Start Timeout
694 * + Number of Phy Spin Up Intervals
695 * ---------------------------------
696 * Number of milliseconds for the controller start operation.
698 * NOTE: The number of phy spin up intervals will be equivalent
699 * to the number of phys divided by the number phys allowed
700 * per interval - 1 (once OEM parameters are supported).
701 * Currently we assume only 1 phy per interval. */
703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
710 BUG_ON(ihost->smu_registers == NULL);
711 writel(0, &ihost->smu_registers->interrupt_mask);
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
716 BUG_ON(ihost->smu_registers == NULL);
717 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
722 u32 port_task_scheduler_value;
724 port_task_scheduler_value =
725 readl(&ihost->scu_registers->peg0.ptsg.control);
726 port_task_scheduler_value |=
727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729 writel(port_task_scheduler_value,
730 &ihost->scu_registers->peg0.ptsg.control);
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
735 u32 task_assignment;
738 * Assign all the TCs to function 0
739 * TODO: Do we actually need to read this register to write it back?
742 task_assignment =
743 readl(&ihost->smu_registers->task_context_assignment[0]);
745 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
749 writel(task_assignment,
750 &ihost->smu_registers->task_context_assignment[0]);
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
756 u32 index;
757 u32 completion_queue_control_value;
758 u32 completion_queue_get_value;
759 u32 completion_queue_put_value;
761 ihost->completion_queue_get = 0;
763 completion_queue_control_value =
764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
767 writel(completion_queue_control_value,
768 &ihost->smu_registers->completion_queue_control);
771 /* Set the completion queue get pointer and enable the queue */
772 completion_queue_get_value = (
773 (SMU_CQGR_GEN_VAL(POINTER, 0))
774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775 | (SMU_CQGR_GEN_BIT(ENABLE))
776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
779 writel(completion_queue_get_value,
780 &ihost->smu_registers->completion_queue_get);
782 /* Set the completion queue put pointer */
783 completion_queue_put_value = (
784 (SMU_CQPR_GEN_VAL(POINTER, 0))
785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
788 writel(completion_queue_put_value,
789 &ihost->smu_registers->completion_queue_put);
791 /* Initialize the cycle bit of the completion queue entries */
792 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
794 * If get.cycle_bit != completion_queue.cycle_bit
795 * its not a valid completion queue entry
796 * so at system start all entries are invalid */
797 ihost->completion_queue[index] = 0x80000000;
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
803 u32 frame_queue_control_value;
804 u32 frame_queue_get_value;
805 u32 frame_queue_put_value;
807 /* Write the queue size */
808 frame_queue_control_value =
809 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
811 writel(frame_queue_control_value,
812 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
814 /* Setup the get pointer for the unsolicited frame queue */
815 frame_queue_get_value = (
816 SCU_UFQGP_GEN_VAL(POINTER, 0)
817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
820 writel(frame_queue_get_value,
821 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822 /* Setup the put pointer for the unsolicited frame queue */
823 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824 writel(frame_queue_put_value,
825 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
830 if (ihost->sm.current_state_id == SCIC_STARTING) {
832 * We move into the ready state, because some of the phys/ports
833 * may be up and operational.
835 sci_change_state(&ihost->sm, SCIC_READY);
837 isci_host_start_complete(ihost, status);
841 static bool is_phy_starting(struct isci_phy *iphy)
843 enum sci_phy_states state;
845 state = iphy->sm.current_state_id;
846 switch (state) {
847 case SCI_PHY_STARTING:
848 case SCI_PHY_SUB_INITIAL:
849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850 case SCI_PHY_SUB_AWAIT_IAF_UF:
851 case SCI_PHY_SUB_AWAIT_SAS_POWER:
852 case SCI_PHY_SUB_AWAIT_SATA_POWER:
853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856 case SCI_PHY_SUB_FINAL:
857 return true;
858 default:
859 return false;
864 * sci_controller_start_next_phy - start phy
865 * @scic: controller
867 * If all the phys have been started, then attempt to transition the
868 * controller to the READY state and inform the user
869 * (sci_cb_controller_start_complete()).
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
873 struct sci_oem_params *oem = &ihost->oem_parameters;
874 struct isci_phy *iphy;
875 enum sci_status status;
877 status = SCI_SUCCESS;
879 if (ihost->phy_startup_timer_pending)
880 return status;
882 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883 bool is_controller_start_complete = true;
884 u32 state;
885 u8 index;
887 for (index = 0; index < SCI_MAX_PHYS; index++) {
888 iphy = &ihost->phys[index];
889 state = iphy->sm.current_state_id;
891 if (!phy_get_non_dummy_port(iphy))
892 continue;
894 /* The controller start operation is complete iff:
895 * - all links have been given an opportunity to start
896 * - have no indication of a connected device
897 * - have an indication of a connected device and it has
898 * finished the link training process.
900 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902 (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
903 is_controller_start_complete = false;
904 break;
909 * The controller has successfully finished the start process.
910 * Inform the SCI Core user and transition to the READY state. */
911 if (is_controller_start_complete == true) {
912 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
913 sci_del_timer(&ihost->phy_timer);
914 ihost->phy_startup_timer_pending = false;
916 } else {
917 iphy = &ihost->phys[ihost->next_phy_to_start];
919 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
920 if (phy_get_non_dummy_port(iphy) == NULL) {
921 ihost->next_phy_to_start++;
923 /* Caution recursion ahead be forwarned
925 * The PHY was never added to a PORT in MPC mode
926 * so start the next phy in sequence This phy
927 * will never go link up and will not draw power
928 * the OEM parameters either configured the phy
929 * incorrectly for the PORT or it was never
930 * assigned to a PORT
932 return sci_controller_start_next_phy(ihost);
936 status = sci_phy_start(iphy);
938 if (status == SCI_SUCCESS) {
939 sci_mod_timer(&ihost->phy_timer,
940 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
941 ihost->phy_startup_timer_pending = true;
942 } else {
943 dev_warn(&ihost->pdev->dev,
944 "%s: Controller stop operation failed "
945 "to stop phy %d because of status "
946 "%d.\n",
947 __func__,
948 ihost->phys[ihost->next_phy_to_start].phy_index,
949 status);
952 ihost->next_phy_to_start++;
955 return status;
958 static void phy_startup_timeout(unsigned long data)
960 struct sci_timer *tmr = (struct sci_timer *)data;
961 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
962 unsigned long flags;
963 enum sci_status status;
965 spin_lock_irqsave(&ihost->scic_lock, flags);
967 if (tmr->cancel)
968 goto done;
970 ihost->phy_startup_timer_pending = false;
972 do {
973 status = sci_controller_start_next_phy(ihost);
974 } while (status != SCI_SUCCESS);
976 done:
977 spin_unlock_irqrestore(&ihost->scic_lock, flags);
980 static u16 isci_tci_active(struct isci_host *ihost)
982 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
985 static enum sci_status sci_controller_start(struct isci_host *ihost,
986 u32 timeout)
988 enum sci_status result;
989 u16 index;
991 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
992 dev_warn(&ihost->pdev->dev,
993 "SCIC Controller start operation requested in "
994 "invalid state\n");
995 return SCI_FAILURE_INVALID_STATE;
998 /* Build the TCi free pool */
999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000 ihost->tci_head = 0;
1001 ihost->tci_tail = 0;
1002 for (index = 0; index < ihost->task_context_entries; index++)
1003 isci_tci_free(ihost, index);
1005 /* Build the RNi free pool */
1006 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007 ihost->remote_node_entries);
1010 * Before anything else lets make sure we will not be
1011 * interrupted by the hardware.
1013 sci_controller_disable_interrupts(ihost);
1015 /* Enable the port task scheduler */
1016 sci_controller_enable_port_task_scheduler(ihost);
1018 /* Assign all the task entries to ihost physical function */
1019 sci_controller_assign_task_entries(ihost);
1021 /* Now initialize the completion queue */
1022 sci_controller_initialize_completion_queue(ihost);
1024 /* Initialize the unsolicited frame queue for use */
1025 sci_controller_initialize_unsolicited_frame_queue(ihost);
1027 /* Start all of the ports on this controller */
1028 for (index = 0; index < ihost->logical_port_entries; index++) {
1029 struct isci_port *iport = &ihost->ports[index];
1031 result = sci_port_start(iport);
1032 if (result)
1033 return result;
1036 sci_controller_start_next_phy(ihost);
1038 sci_mod_timer(&ihost->timer, timeout);
1040 sci_change_state(&ihost->sm, SCIC_STARTING);
1042 return SCI_SUCCESS;
1045 void isci_host_scan_start(struct Scsi_Host *shost)
1047 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1050 set_bit(IHOST_START_PENDING, &ihost->flags);
1052 spin_lock_irq(&ihost->scic_lock);
1053 sci_controller_start(ihost, tmo);
1054 sci_controller_enable_interrupts(ihost);
1055 spin_unlock_irq(&ihost->scic_lock);
1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1060 isci_host_change_state(ihost, isci_stopped);
1061 sci_controller_disable_interrupts(ihost);
1062 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1063 wake_up(&ihost->eventq);
1066 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 /* Empty out the completion queue */
1069 if (sci_controller_completion_queue_has_entries(ihost))
1070 sci_controller_process_completions(ihost);
1072 /* Clear the interrupt and enable all interrupts again */
1073 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1074 /* Could we write the value of SMU_ISR_COMPLETION? */
1075 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1076 writel(0, &ihost->smu_registers->interrupt_mask);
1080 * isci_host_completion_routine() - This function is the delayed service
1081 * routine that calls the sci core library's completion handler. It's
1082 * scheduled as a tasklet from the interrupt service routine when interrupts
1083 * in use, or set as the timeout function in polled mode.
1084 * @data: This parameter specifies the ISCI host object
1087 static void isci_host_completion_routine(unsigned long data)
1089 struct isci_host *ihost = (struct isci_host *)data;
1090 struct list_head completed_request_list;
1091 struct list_head errored_request_list;
1092 struct list_head *current_position;
1093 struct list_head *next_position;
1094 struct isci_request *request;
1095 struct isci_request *next_request;
1096 struct sas_task *task;
1097 u16 active;
1099 INIT_LIST_HEAD(&completed_request_list);
1100 INIT_LIST_HEAD(&errored_request_list);
1102 spin_lock_irq(&ihost->scic_lock);
1104 sci_controller_completion_handler(ihost);
1106 /* Take the lists of completed I/Os from the host. */
1108 list_splice_init(&ihost->requests_to_complete,
1109 &completed_request_list);
1111 /* Take the list of errored I/Os from the host. */
1112 list_splice_init(&ihost->requests_to_errorback,
1113 &errored_request_list);
1115 spin_unlock_irq(&ihost->scic_lock);
1117 /* Process any completions in the lists. */
1118 list_for_each_safe(current_position, next_position,
1119 &completed_request_list) {
1121 request = list_entry(current_position, struct isci_request,
1122 completed_node);
1123 task = isci_request_access_task(request);
1125 /* Normal notification (task_done) */
1126 dev_dbg(&ihost->pdev->dev,
1127 "%s: Normal - request/task = %p/%p\n",
1128 __func__,
1129 request,
1130 task);
1132 /* Return the task to libsas */
1133 if (task != NULL) {
1135 task->lldd_task = NULL;
1136 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1138 /* If the task is already in the abort path,
1139 * the task_done callback cannot be called.
1141 task->task_done(task);
1145 spin_lock_irq(&ihost->scic_lock);
1146 isci_free_tag(ihost, request->io_tag);
1147 spin_unlock_irq(&ihost->scic_lock);
1149 list_for_each_entry_safe(request, next_request, &errored_request_list,
1150 completed_node) {
1152 task = isci_request_access_task(request);
1154 /* Use sas_task_abort */
1155 dev_warn(&ihost->pdev->dev,
1156 "%s: Error - request/task = %p/%p\n",
1157 __func__,
1158 request,
1159 task);
1161 if (task != NULL) {
1163 /* Put the task into the abort path if it's not there
1164 * already.
1166 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1167 sas_task_abort(task);
1169 } else {
1170 /* This is a case where the request has completed with a
1171 * status such that it needed further target servicing,
1172 * but the sas_task reference has already been removed
1173 * from the request. Since it was errored, it was not
1174 * being aborted, so there is nothing to do except free
1175 * it.
1178 spin_lock_irq(&ihost->scic_lock);
1179 /* Remove the request from the remote device's list
1180 * of pending requests.
1182 list_del_init(&request->dev_node);
1183 isci_free_tag(ihost, request->io_tag);
1184 spin_unlock_irq(&ihost->scic_lock);
1188 /* the coalesence timeout doubles at each encoding step, so
1189 * update it based on the ilog2 value of the outstanding requests
1191 active = isci_tci_active(ihost);
1192 writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1193 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1194 &ihost->smu_registers->interrupt_coalesce_control);
1198 * sci_controller_stop() - This method will stop an individual controller
1199 * object.This method will invoke the associated user callback upon
1200 * completion. The completion callback is called when the following
1201 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1202 * controller has been quiesced. This method will ensure that all IO
1203 * requests are quiesced, phys are stopped, and all additional operation by
1204 * the hardware is halted.
1205 * @controller: the handle to the controller object to stop.
1206 * @timeout: This parameter specifies the number of milliseconds in which the
1207 * stop operation should complete.
1209 * The controller must be in the STARTED or STOPPED state. Indicate if the
1210 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1211 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1212 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1213 * controller is not either in the STARTED or STOPPED states.
1215 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1217 if (ihost->sm.current_state_id != SCIC_READY) {
1218 dev_warn(&ihost->pdev->dev,
1219 "SCIC Controller stop operation requested in "
1220 "invalid state\n");
1221 return SCI_FAILURE_INVALID_STATE;
1224 sci_mod_timer(&ihost->timer, timeout);
1225 sci_change_state(&ihost->sm, SCIC_STOPPING);
1226 return SCI_SUCCESS;
1230 * sci_controller_reset() - This method will reset the supplied core
1231 * controller regardless of the state of said controller. This operation is
1232 * considered destructive. In other words, all current operations are wiped
1233 * out. No IO completions for outstanding devices occur. Outstanding IO
1234 * requests are not aborted or completed at the actual remote device.
1235 * @controller: the handle to the controller object to reset.
1237 * Indicate if the controller reset method succeeded or failed in some way.
1238 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1239 * the controller reset operation is unable to complete.
1241 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1243 switch (ihost->sm.current_state_id) {
1244 case SCIC_RESET:
1245 case SCIC_READY:
1246 case SCIC_STOPPED:
1247 case SCIC_FAILED:
1249 * The reset operation is not a graceful cleanup, just
1250 * perform the state transition.
1252 sci_change_state(&ihost->sm, SCIC_RESETTING);
1253 return SCI_SUCCESS;
1254 default:
1255 dev_warn(&ihost->pdev->dev,
1256 "SCIC Controller reset operation requested in "
1257 "invalid state\n");
1258 return SCI_FAILURE_INVALID_STATE;
1262 void isci_host_deinit(struct isci_host *ihost)
1264 int i;
1266 /* disable output data selects */
1267 for (i = 0; i < isci_gpio_count(ihost); i++)
1268 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1270 isci_host_change_state(ihost, isci_stopping);
1271 for (i = 0; i < SCI_MAX_PORTS; i++) {
1272 struct isci_port *iport = &ihost->ports[i];
1273 struct isci_remote_device *idev, *d;
1275 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1276 if (test_bit(IDEV_ALLOCATED, &idev->flags))
1277 isci_remote_device_stop(ihost, idev);
1281 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1283 spin_lock_irq(&ihost->scic_lock);
1284 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1285 spin_unlock_irq(&ihost->scic_lock);
1287 wait_for_stop(ihost);
1289 /* disable sgpio: where the above wait should give time for the
1290 * enclosure to sample the gpios going inactive
1292 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1294 sci_controller_reset(ihost);
1296 /* Cancel any/all outstanding port timers */
1297 for (i = 0; i < ihost->logical_port_entries; i++) {
1298 struct isci_port *iport = &ihost->ports[i];
1299 del_timer_sync(&iport->timer.timer);
1302 /* Cancel any/all outstanding phy timers */
1303 for (i = 0; i < SCI_MAX_PHYS; i++) {
1304 struct isci_phy *iphy = &ihost->phys[i];
1305 del_timer_sync(&iphy->sata_timer.timer);
1308 del_timer_sync(&ihost->port_agent.timer.timer);
1310 del_timer_sync(&ihost->power_control.timer.timer);
1312 del_timer_sync(&ihost->timer.timer);
1314 del_timer_sync(&ihost->phy_timer.timer);
1317 static void __iomem *scu_base(struct isci_host *isci_host)
1319 struct pci_dev *pdev = isci_host->pdev;
1320 int id = isci_host->id;
1322 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1325 static void __iomem *smu_base(struct isci_host *isci_host)
1327 struct pci_dev *pdev = isci_host->pdev;
1328 int id = isci_host->id;
1330 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1333 static void isci_user_parameters_get(struct sci_user_parameters *u)
1335 int i;
1337 for (i = 0; i < SCI_MAX_PHYS; i++) {
1338 struct sci_phy_user_params *u_phy = &u->phys[i];
1340 u_phy->max_speed_generation = phy_gen;
1342 /* we are not exporting these for now */
1343 u_phy->align_insertion_frequency = 0x7f;
1344 u_phy->in_connection_align_insertion_frequency = 0xff;
1345 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1348 u->stp_inactivity_timeout = stp_inactive_to;
1349 u->ssp_inactivity_timeout = ssp_inactive_to;
1350 u->stp_max_occupancy_timeout = stp_max_occ_to;
1351 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1352 u->no_outbound_task_timeout = no_outbound_task_to;
1353 u->max_concurr_spinup = max_concurr_spinup;
1356 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1358 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1360 sci_change_state(&ihost->sm, SCIC_RESET);
1363 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1365 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1367 sci_del_timer(&ihost->timer);
1370 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1372 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1373 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1374 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1378 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1379 * configure the interrupt coalescence.
1380 * @controller: This parameter represents the handle to the controller object
1381 * for which its interrupt coalesce register is overridden.
1382 * @coalesce_number: Used to control the number of entries in the Completion
1383 * Queue before an interrupt is generated. If the number of entries exceed
1384 * this number, an interrupt will be generated. The valid range of the input
1385 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1386 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1387 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1388 * interrupt coalescing timeout.
1390 * Indicate if the user successfully set the interrupt coalesce parameters.
1391 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1392 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1394 static enum sci_status
1395 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1396 u32 coalesce_number,
1397 u32 coalesce_timeout)
1399 u8 timeout_encode = 0;
1400 u32 min = 0;
1401 u32 max = 0;
1403 /* Check if the input parameters fall in the range. */
1404 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1405 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1408 * Defined encoding for interrupt coalescing timeout:
1409 * Value Min Max Units
1410 * ----- --- --- -----
1411 * 0 - - Disabled
1412 * 1 13.3 20.0 ns
1413 * 2 26.7 40.0
1414 * 3 53.3 80.0
1415 * 4 106.7 160.0
1416 * 5 213.3 320.0
1417 * 6 426.7 640.0
1418 * 7 853.3 1280.0
1419 * 8 1.7 2.6 us
1420 * 9 3.4 5.1
1421 * 10 6.8 10.2
1422 * 11 13.7 20.5
1423 * 12 27.3 41.0
1424 * 13 54.6 81.9
1425 * 14 109.2 163.8
1426 * 15 218.5 327.7
1427 * 16 436.9 655.4
1428 * 17 873.8 1310.7
1429 * 18 1.7 2.6 ms
1430 * 19 3.5 5.2
1431 * 20 7.0 10.5
1432 * 21 14.0 21.0
1433 * 22 28.0 41.9
1434 * 23 55.9 83.9
1435 * 24 111.8 167.8
1436 * 25 223.7 335.5
1437 * 26 447.4 671.1
1438 * 27 894.8 1342.2
1439 * 28 1.8 2.7 s
1440 * Others Undefined */
1443 * Use the table above to decide the encode of interrupt coalescing timeout
1444 * value for register writing. */
1445 if (coalesce_timeout == 0)
1446 timeout_encode = 0;
1447 else{
1448 /* make the timeout value in unit of (10 ns). */
1449 coalesce_timeout = coalesce_timeout * 100;
1450 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1451 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1453 /* get the encode of timeout for register writing. */
1454 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1455 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1456 timeout_encode++) {
1457 if (min <= coalesce_timeout && max > coalesce_timeout)
1458 break;
1459 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1460 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1461 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1462 break;
1463 else{
1464 timeout_encode++;
1465 break;
1467 } else {
1468 max = max * 2;
1469 min = min * 2;
1473 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1474 /* the value is out of range. */
1475 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1478 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1479 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1480 &ihost->smu_registers->interrupt_coalesce_control);
1483 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1484 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1486 return SCI_SUCCESS;
1490 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1492 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1494 /* set the default interrupt coalescence number and timeout value. */
1495 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1498 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1500 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1502 /* disable interrupt coalescence. */
1503 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1506 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1508 u32 index;
1509 enum sci_status status;
1510 enum sci_status phy_status;
1512 status = SCI_SUCCESS;
1514 for (index = 0; index < SCI_MAX_PHYS; index++) {
1515 phy_status = sci_phy_stop(&ihost->phys[index]);
1517 if (phy_status != SCI_SUCCESS &&
1518 phy_status != SCI_FAILURE_INVALID_STATE) {
1519 status = SCI_FAILURE;
1521 dev_warn(&ihost->pdev->dev,
1522 "%s: Controller stop operation failed to stop "
1523 "phy %d because of status %d.\n",
1524 __func__,
1525 ihost->phys[index].phy_index, phy_status);
1529 return status;
1532 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1534 u32 index;
1535 enum sci_status port_status;
1536 enum sci_status status = SCI_SUCCESS;
1538 for (index = 0; index < ihost->logical_port_entries; index++) {
1539 struct isci_port *iport = &ihost->ports[index];
1541 port_status = sci_port_stop(iport);
1543 if ((port_status != SCI_SUCCESS) &&
1544 (port_status != SCI_FAILURE_INVALID_STATE)) {
1545 status = SCI_FAILURE;
1547 dev_warn(&ihost->pdev->dev,
1548 "%s: Controller stop operation failed to "
1549 "stop port %d because of status %d.\n",
1550 __func__,
1551 iport->logical_port_index,
1552 port_status);
1556 return status;
1559 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1561 u32 index;
1562 enum sci_status status;
1563 enum sci_status device_status;
1565 status = SCI_SUCCESS;
1567 for (index = 0; index < ihost->remote_node_entries; index++) {
1568 if (ihost->device_table[index] != NULL) {
1569 /* / @todo What timeout value do we want to provide to this request? */
1570 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1572 if ((device_status != SCI_SUCCESS) &&
1573 (device_status != SCI_FAILURE_INVALID_STATE)) {
1574 dev_warn(&ihost->pdev->dev,
1575 "%s: Controller stop operation failed "
1576 "to stop device 0x%p because of "
1577 "status %d.\n",
1578 __func__,
1579 ihost->device_table[index], device_status);
1584 return status;
1587 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1589 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1591 /* Stop all of the components for this controller */
1592 sci_controller_stop_phys(ihost);
1593 sci_controller_stop_ports(ihost);
1594 sci_controller_stop_devices(ihost);
1597 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1599 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1601 sci_del_timer(&ihost->timer);
1604 static void sci_controller_reset_hardware(struct isci_host *ihost)
1606 /* Disable interrupts so we dont take any spurious interrupts */
1607 sci_controller_disable_interrupts(ihost);
1609 /* Reset the SCU */
1610 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1612 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1613 udelay(1000);
1615 /* The write to the CQGR clears the CQP */
1616 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1618 /* The write to the UFQGP clears the UFQPR */
1619 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1622 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1624 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1626 sci_controller_reset_hardware(ihost);
1627 sci_change_state(&ihost->sm, SCIC_RESET);
1630 static const struct sci_base_state sci_controller_state_table[] = {
1631 [SCIC_INITIAL] = {
1632 .enter_state = sci_controller_initial_state_enter,
1634 [SCIC_RESET] = {},
1635 [SCIC_INITIALIZING] = {},
1636 [SCIC_INITIALIZED] = {},
1637 [SCIC_STARTING] = {
1638 .exit_state = sci_controller_starting_state_exit,
1640 [SCIC_READY] = {
1641 .enter_state = sci_controller_ready_state_enter,
1642 .exit_state = sci_controller_ready_state_exit,
1644 [SCIC_RESETTING] = {
1645 .enter_state = sci_controller_resetting_state_enter,
1647 [SCIC_STOPPING] = {
1648 .enter_state = sci_controller_stopping_state_enter,
1649 .exit_state = sci_controller_stopping_state_exit,
1651 [SCIC_STOPPED] = {},
1652 [SCIC_FAILED] = {}
1655 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1657 /* these defaults are overridden by the platform / firmware */
1658 u16 index;
1660 /* Default to APC mode. */
1661 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1663 /* Default to APC mode. */
1664 ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1666 /* Default to no SSC operation. */
1667 ihost->oem_parameters.controller.do_enable_ssc = false;
1669 /* Initialize all of the port parameter information to narrow ports. */
1670 for (index = 0; index < SCI_MAX_PORTS; index++) {
1671 ihost->oem_parameters.ports[index].phy_mask = 0;
1674 /* Initialize all of the phy parameter information. */
1675 for (index = 0; index < SCI_MAX_PHYS; index++) {
1676 /* Default to 6G (i.e. Gen 3) for now. */
1677 ihost->user_parameters.phys[index].max_speed_generation = 3;
1679 /* the frequencies cannot be 0 */
1680 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1681 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1682 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1685 * Previous Vitesse based expanders had a arbitration issue that
1686 * is worked around by having the upper 32-bits of SAS address
1687 * with a value greater then the Vitesse company identifier.
1688 * Hence, usage of 0x5FCFFFFF. */
1689 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1690 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1693 ihost->user_parameters.stp_inactivity_timeout = 5;
1694 ihost->user_parameters.ssp_inactivity_timeout = 5;
1695 ihost->user_parameters.stp_max_occupancy_timeout = 5;
1696 ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1697 ihost->user_parameters.no_outbound_task_timeout = 20;
1700 static void controller_timeout(unsigned long data)
1702 struct sci_timer *tmr = (struct sci_timer *)data;
1703 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1704 struct sci_base_state_machine *sm = &ihost->sm;
1705 unsigned long flags;
1707 spin_lock_irqsave(&ihost->scic_lock, flags);
1709 if (tmr->cancel)
1710 goto done;
1712 if (sm->current_state_id == SCIC_STARTING)
1713 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1714 else if (sm->current_state_id == SCIC_STOPPING) {
1715 sci_change_state(sm, SCIC_FAILED);
1716 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1717 } else /* / @todo Now what do we want to do in this case? */
1718 dev_err(&ihost->pdev->dev,
1719 "%s: Controller timer fired when controller was not "
1720 "in a state being timed.\n",
1721 __func__);
1723 done:
1724 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1727 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1728 void __iomem *scu_base,
1729 void __iomem *smu_base)
1731 u8 i;
1733 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1735 ihost->scu_registers = scu_base;
1736 ihost->smu_registers = smu_base;
1738 sci_port_configuration_agent_construct(&ihost->port_agent);
1740 /* Construct the ports for this controller */
1741 for (i = 0; i < SCI_MAX_PORTS; i++)
1742 sci_port_construct(&ihost->ports[i], i, ihost);
1743 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1745 /* Construct the phys for this controller */
1746 for (i = 0; i < SCI_MAX_PHYS; i++) {
1747 /* Add all the PHYs to the dummy port */
1748 sci_phy_construct(&ihost->phys[i],
1749 &ihost->ports[SCI_MAX_PORTS], i);
1752 ihost->invalid_phy_mask = 0;
1754 sci_init_timer(&ihost->timer, controller_timeout);
1756 /* Initialize the User and OEM parameters to default values. */
1757 sci_controller_set_default_config_parameters(ihost);
1759 return sci_controller_reset(ihost);
1762 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1764 int i;
1766 for (i = 0; i < SCI_MAX_PORTS; i++)
1767 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1768 return -EINVAL;
1770 for (i = 0; i < SCI_MAX_PHYS; i++)
1771 if (oem->phys[i].sas_address.high == 0 &&
1772 oem->phys[i].sas_address.low == 0)
1773 return -EINVAL;
1775 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1776 for (i = 0; i < SCI_MAX_PHYS; i++)
1777 if (oem->ports[i].phy_mask != 0)
1778 return -EINVAL;
1779 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1780 u8 phy_mask = 0;
1782 for (i = 0; i < SCI_MAX_PHYS; i++)
1783 phy_mask |= oem->ports[i].phy_mask;
1785 if (phy_mask == 0)
1786 return -EINVAL;
1787 } else
1788 return -EINVAL;
1790 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1791 oem->controller.max_concurr_spin_up < 1)
1792 return -EINVAL;
1794 return 0;
1797 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1799 u32 state = ihost->sm.current_state_id;
1801 if (state == SCIC_RESET ||
1802 state == SCIC_INITIALIZING ||
1803 state == SCIC_INITIALIZED) {
1805 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1806 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1808 return SCI_SUCCESS;
1811 return SCI_FAILURE_INVALID_STATE;
1814 static u8 max_spin_up(struct isci_host *ihost)
1816 if (ihost->user_parameters.max_concurr_spinup)
1817 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1818 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1819 else
1820 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1821 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1824 static void power_control_timeout(unsigned long data)
1826 struct sci_timer *tmr = (struct sci_timer *)data;
1827 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1828 struct isci_phy *iphy;
1829 unsigned long flags;
1830 u8 i;
1832 spin_lock_irqsave(&ihost->scic_lock, flags);
1834 if (tmr->cancel)
1835 goto done;
1837 ihost->power_control.phys_granted_power = 0;
1839 if (ihost->power_control.phys_waiting == 0) {
1840 ihost->power_control.timer_started = false;
1841 goto done;
1844 for (i = 0; i < SCI_MAX_PHYS; i++) {
1846 if (ihost->power_control.phys_waiting == 0)
1847 break;
1849 iphy = ihost->power_control.requesters[i];
1850 if (iphy == NULL)
1851 continue;
1853 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1854 break;
1856 ihost->power_control.requesters[i] = NULL;
1857 ihost->power_control.phys_waiting--;
1858 ihost->power_control.phys_granted_power++;
1859 sci_phy_consume_power_handler(iphy);
1863 * It doesn't matter if the power list is empty, we need to start the
1864 * timer in case another phy becomes ready.
1866 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1867 ihost->power_control.timer_started = true;
1869 done:
1870 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1873 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1874 struct isci_phy *iphy)
1876 BUG_ON(iphy == NULL);
1878 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1879 ihost->power_control.phys_granted_power++;
1880 sci_phy_consume_power_handler(iphy);
1883 * stop and start the power_control timer. When the timer fires, the
1884 * no_of_phys_granted_power will be set to 0
1886 if (ihost->power_control.timer_started)
1887 sci_del_timer(&ihost->power_control.timer);
1889 sci_mod_timer(&ihost->power_control.timer,
1890 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1891 ihost->power_control.timer_started = true;
1893 } else {
1894 /* Add the phy in the waiting list */
1895 ihost->power_control.requesters[iphy->phy_index] = iphy;
1896 ihost->power_control.phys_waiting++;
1900 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1901 struct isci_phy *iphy)
1903 BUG_ON(iphy == NULL);
1905 if (ihost->power_control.requesters[iphy->phy_index])
1906 ihost->power_control.phys_waiting--;
1908 ihost->power_control.requesters[iphy->phy_index] = NULL;
1911 #define AFE_REGISTER_WRITE_DELAY 10
1913 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1914 * the OEM parameters
1916 static void sci_controller_afe_initialization(struct isci_host *ihost)
1918 const struct sci_oem_params *oem = &ihost->oem_parameters;
1919 struct pci_dev *pdev = ihost->pdev;
1920 u32 afe_status;
1921 u32 phy_id;
1923 /* Clear DFX Status registers */
1924 writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1925 udelay(AFE_REGISTER_WRITE_DELAY);
1927 if (is_b0(pdev)) {
1928 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1929 * Timer, PM Stagger Timer */
1930 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1931 udelay(AFE_REGISTER_WRITE_DELAY);
1934 /* Configure bias currents to normal */
1935 if (is_a2(pdev))
1936 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1937 else if (is_b0(pdev) || is_c0(pdev))
1938 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1940 udelay(AFE_REGISTER_WRITE_DELAY);
1942 /* Enable PLL */
1943 if (is_b0(pdev) || is_c0(pdev))
1944 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1945 else
1946 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1948 udelay(AFE_REGISTER_WRITE_DELAY);
1950 /* Wait for the PLL to lock */
1951 do {
1952 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1953 udelay(AFE_REGISTER_WRITE_DELAY);
1954 } while ((afe_status & 0x00001000) == 0);
1956 if (is_a2(pdev)) {
1957 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1958 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1959 udelay(AFE_REGISTER_WRITE_DELAY);
1962 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1963 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1965 if (is_b0(pdev)) {
1966 /* Configure transmitter SSC parameters */
1967 writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1968 udelay(AFE_REGISTER_WRITE_DELAY);
1969 } else if (is_c0(pdev)) {
1970 /* Configure transmitter SSC parameters */
1971 writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1972 udelay(AFE_REGISTER_WRITE_DELAY);
1975 * All defaults, except the Receive Word Alignament/Comma Detect
1976 * Enable....(0xe800) */
1977 writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1978 udelay(AFE_REGISTER_WRITE_DELAY);
1979 } else {
1981 * All defaults, except the Receive Word Alignament/Comma Detect
1982 * Enable....(0xe800) */
1983 writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1984 udelay(AFE_REGISTER_WRITE_DELAY);
1986 writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1987 udelay(AFE_REGISTER_WRITE_DELAY);
1991 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1992 * & increase TX int & ext bias 20%....(0xe85c) */
1993 if (is_a2(pdev))
1994 writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1995 else if (is_b0(pdev)) {
1996 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1997 writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1998 udelay(AFE_REGISTER_WRITE_DELAY);
2001 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2002 * & increase TX int & ext bias 20%....(0xe85c) */
2003 writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2004 } else {
2005 writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2006 udelay(AFE_REGISTER_WRITE_DELAY);
2009 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2010 * & increase TX int & ext bias 20%....(0xe85c) */
2011 writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2013 udelay(AFE_REGISTER_WRITE_DELAY);
2015 if (is_a2(pdev)) {
2016 /* Enable TX equalization (0xe824) */
2017 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2018 udelay(AFE_REGISTER_WRITE_DELAY);
2022 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2023 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2024 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2025 udelay(AFE_REGISTER_WRITE_DELAY);
2027 /* Leave DFE/FFE on */
2028 if (is_a2(pdev))
2029 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2030 else if (is_b0(pdev)) {
2031 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2032 udelay(AFE_REGISTER_WRITE_DELAY);
2033 /* Enable TX equalization (0xe824) */
2034 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2035 } else {
2036 writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2037 udelay(AFE_REGISTER_WRITE_DELAY);
2039 writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2040 udelay(AFE_REGISTER_WRITE_DELAY);
2042 /* Enable TX equalization (0xe824) */
2043 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2046 udelay(AFE_REGISTER_WRITE_DELAY);
2048 writel(oem_phy->afe_tx_amp_control0,
2049 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2050 udelay(AFE_REGISTER_WRITE_DELAY);
2052 writel(oem_phy->afe_tx_amp_control1,
2053 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2054 udelay(AFE_REGISTER_WRITE_DELAY);
2056 writel(oem_phy->afe_tx_amp_control2,
2057 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2058 udelay(AFE_REGISTER_WRITE_DELAY);
2060 writel(oem_phy->afe_tx_amp_control3,
2061 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2062 udelay(AFE_REGISTER_WRITE_DELAY);
2065 /* Transfer control to the PEs */
2066 writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2067 udelay(AFE_REGISTER_WRITE_DELAY);
2070 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2072 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2074 memset(ihost->power_control.requesters, 0,
2075 sizeof(ihost->power_control.requesters));
2077 ihost->power_control.phys_waiting = 0;
2078 ihost->power_control.phys_granted_power = 0;
2081 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2083 struct sci_base_state_machine *sm = &ihost->sm;
2084 enum sci_status result = SCI_FAILURE;
2085 unsigned long i, state, val;
2087 if (ihost->sm.current_state_id != SCIC_RESET) {
2088 dev_warn(&ihost->pdev->dev,
2089 "SCIC Controller initialize operation requested "
2090 "in invalid state\n");
2091 return SCI_FAILURE_INVALID_STATE;
2094 sci_change_state(sm, SCIC_INITIALIZING);
2096 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2098 ihost->next_phy_to_start = 0;
2099 ihost->phy_startup_timer_pending = false;
2101 sci_controller_initialize_power_control(ihost);
2104 * There is nothing to do here for B0 since we do not have to
2105 * program the AFE registers.
2106 * / @todo The AFE settings are supposed to be correct for the B0 but
2107 * / presently they seem to be wrong. */
2108 sci_controller_afe_initialization(ihost);
2111 /* Take the hardware out of reset */
2112 writel(0, &ihost->smu_registers->soft_reset_control);
2115 * / @todo Provide meaningfull error code for hardware failure
2116 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2117 for (i = 100; i >= 1; i--) {
2118 u32 status;
2120 /* Loop until the hardware reports success */
2121 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2122 status = readl(&ihost->smu_registers->control_status);
2124 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2125 break;
2127 if (i == 0)
2128 goto out;
2131 * Determine what are the actaul device capacities that the
2132 * hardware will support */
2133 val = readl(&ihost->smu_registers->device_context_capacity);
2135 /* Record the smaller of the two capacity values */
2136 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2137 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2138 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2141 * Make all PEs that are unassigned match up with the
2142 * logical ports
2144 for (i = 0; i < ihost->logical_port_entries; i++) {
2145 struct scu_port_task_scheduler_group_registers __iomem
2146 *ptsg = &ihost->scu_registers->peg0.ptsg;
2148 writel(i, &ptsg->protocol_engine[i]);
2151 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2152 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2153 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2154 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2156 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2157 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2158 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2161 * Initialize the PHYs before the PORTs because the PHY registers
2162 * are accessed during the port initialization.
2164 for (i = 0; i < SCI_MAX_PHYS; i++) {
2165 result = sci_phy_initialize(&ihost->phys[i],
2166 &ihost->scu_registers->peg0.pe[i].tl,
2167 &ihost->scu_registers->peg0.pe[i].ll);
2168 if (result != SCI_SUCCESS)
2169 goto out;
2172 for (i = 0; i < ihost->logical_port_entries; i++) {
2173 struct isci_port *iport = &ihost->ports[i];
2175 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2176 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2177 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2180 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2182 out:
2183 /* Advance the controller state machine */
2184 if (result == SCI_SUCCESS)
2185 state = SCIC_INITIALIZED;
2186 else
2187 state = SCIC_FAILED;
2188 sci_change_state(sm, state);
2190 return result;
2193 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2194 struct sci_user_parameters *sci_parms)
2196 u32 state = ihost->sm.current_state_id;
2198 if (state == SCIC_RESET ||
2199 state == SCIC_INITIALIZING ||
2200 state == SCIC_INITIALIZED) {
2201 u16 index;
2204 * Validate the user parameters. If they are not legal, then
2205 * return a failure.
2207 for (index = 0; index < SCI_MAX_PHYS; index++) {
2208 struct sci_phy_user_params *user_phy;
2210 user_phy = &sci_parms->phys[index];
2212 if (!((user_phy->max_speed_generation <=
2213 SCIC_SDS_PARM_MAX_SPEED) &&
2214 (user_phy->max_speed_generation >
2215 SCIC_SDS_PARM_NO_SPEED)))
2216 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2218 if (user_phy->in_connection_align_insertion_frequency <
2220 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2222 if ((user_phy->in_connection_align_insertion_frequency <
2223 3) ||
2224 (user_phy->align_insertion_frequency == 0) ||
2225 (user_phy->
2226 notify_enable_spin_up_insertion_frequency ==
2228 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2231 if ((sci_parms->stp_inactivity_timeout == 0) ||
2232 (sci_parms->ssp_inactivity_timeout == 0) ||
2233 (sci_parms->stp_max_occupancy_timeout == 0) ||
2234 (sci_parms->ssp_max_occupancy_timeout == 0) ||
2235 (sci_parms->no_outbound_task_timeout == 0))
2236 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2238 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2240 return SCI_SUCCESS;
2243 return SCI_FAILURE_INVALID_STATE;
2246 static int sci_controller_mem_init(struct isci_host *ihost)
2248 struct device *dev = &ihost->pdev->dev;
2249 dma_addr_t dma;
2250 size_t size;
2251 int err;
2253 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2254 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2255 if (!ihost->completion_queue)
2256 return -ENOMEM;
2258 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2259 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2261 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2262 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2263 GFP_KERNEL);
2264 if (!ihost->remote_node_context_table)
2265 return -ENOMEM;
2267 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2268 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2270 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2271 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2272 if (!ihost->task_context_table)
2273 return -ENOMEM;
2275 ihost->task_context_dma = dma;
2276 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2277 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2279 err = sci_unsolicited_frame_control_construct(ihost);
2280 if (err)
2281 return err;
2284 * Inform the silicon as to the location of the UF headers and
2285 * address table.
2287 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2288 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2289 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2290 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2292 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2293 &ihost->scu_registers->sdma.uf_address_table_lower);
2294 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2295 &ihost->scu_registers->sdma.uf_address_table_upper);
2297 return 0;
2300 int isci_host_init(struct isci_host *ihost)
2302 int err = 0, i;
2303 enum sci_status status;
2304 struct sci_user_parameters sci_user_params;
2305 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2307 spin_lock_init(&ihost->state_lock);
2308 spin_lock_init(&ihost->scic_lock);
2309 init_waitqueue_head(&ihost->eventq);
2311 isci_host_change_state(ihost, isci_starting);
2313 status = sci_controller_construct(ihost, scu_base(ihost),
2314 smu_base(ihost));
2316 if (status != SCI_SUCCESS) {
2317 dev_err(&ihost->pdev->dev,
2318 "%s: sci_controller_construct failed - status = %x\n",
2319 __func__,
2320 status);
2321 return -ENODEV;
2324 ihost->sas_ha.dev = &ihost->pdev->dev;
2325 ihost->sas_ha.lldd_ha = ihost;
2328 * grab initial values stored in the controller object for OEM and USER
2329 * parameters
2331 isci_user_parameters_get(&sci_user_params);
2332 status = sci_user_parameters_set(ihost, &sci_user_params);
2333 if (status != SCI_SUCCESS) {
2334 dev_warn(&ihost->pdev->dev,
2335 "%s: sci_user_parameters_set failed\n",
2336 __func__);
2337 return -ENODEV;
2340 /* grab any OEM parameters specified in orom */
2341 if (pci_info->orom) {
2342 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2343 pci_info->orom,
2344 ihost->id);
2345 if (status != SCI_SUCCESS) {
2346 dev_warn(&ihost->pdev->dev,
2347 "parsing firmware oem parameters failed\n");
2348 return -EINVAL;
2352 status = sci_oem_parameters_set(ihost);
2353 if (status != SCI_SUCCESS) {
2354 dev_warn(&ihost->pdev->dev,
2355 "%s: sci_oem_parameters_set failed\n",
2356 __func__);
2357 return -ENODEV;
2360 tasklet_init(&ihost->completion_tasklet,
2361 isci_host_completion_routine, (unsigned long)ihost);
2363 INIT_LIST_HEAD(&ihost->requests_to_complete);
2364 INIT_LIST_HEAD(&ihost->requests_to_errorback);
2366 spin_lock_irq(&ihost->scic_lock);
2367 status = sci_controller_initialize(ihost);
2368 spin_unlock_irq(&ihost->scic_lock);
2369 if (status != SCI_SUCCESS) {
2370 dev_warn(&ihost->pdev->dev,
2371 "%s: sci_controller_initialize failed -"
2372 " status = 0x%x\n",
2373 __func__, status);
2374 return -ENODEV;
2377 err = sci_controller_mem_init(ihost);
2378 if (err)
2379 return err;
2381 for (i = 0; i < SCI_MAX_PORTS; i++)
2382 isci_port_init(&ihost->ports[i], ihost, i);
2384 for (i = 0; i < SCI_MAX_PHYS; i++)
2385 isci_phy_init(&ihost->phys[i], ihost, i);
2387 /* enable sgpio */
2388 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2389 for (i = 0; i < isci_gpio_count(ihost); i++)
2390 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2391 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2393 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2394 struct isci_remote_device *idev = &ihost->devices[i];
2396 INIT_LIST_HEAD(&idev->reqs_in_process);
2397 INIT_LIST_HEAD(&idev->node);
2400 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2401 struct isci_request *ireq;
2402 dma_addr_t dma;
2404 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2405 sizeof(struct isci_request), &dma,
2406 GFP_KERNEL);
2407 if (!ireq)
2408 return -ENOMEM;
2410 ireq->tc = &ihost->task_context_table[i];
2411 ireq->owning_controller = ihost;
2412 spin_lock_init(&ireq->state_lock);
2413 ireq->request_daddr = dma;
2414 ireq->isci_host = ihost;
2415 ihost->reqs[i] = ireq;
2418 return 0;
2421 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2422 struct isci_phy *iphy)
2424 switch (ihost->sm.current_state_id) {
2425 case SCIC_STARTING:
2426 sci_del_timer(&ihost->phy_timer);
2427 ihost->phy_startup_timer_pending = false;
2428 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2429 iport, iphy);
2430 sci_controller_start_next_phy(ihost);
2431 break;
2432 case SCIC_READY:
2433 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2434 iport, iphy);
2435 break;
2436 default:
2437 dev_dbg(&ihost->pdev->dev,
2438 "%s: SCIC Controller linkup event from phy %d in "
2439 "unexpected state %d\n", __func__, iphy->phy_index,
2440 ihost->sm.current_state_id);
2444 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2445 struct isci_phy *iphy)
2447 switch (ihost->sm.current_state_id) {
2448 case SCIC_STARTING:
2449 case SCIC_READY:
2450 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2451 iport, iphy);
2452 break;
2453 default:
2454 dev_dbg(&ihost->pdev->dev,
2455 "%s: SCIC Controller linkdown event from phy %d in "
2456 "unexpected state %d\n",
2457 __func__,
2458 iphy->phy_index,
2459 ihost->sm.current_state_id);
2463 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2465 u32 index;
2467 for (index = 0; index < ihost->remote_node_entries; index++) {
2468 if ((ihost->device_table[index] != NULL) &&
2469 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2470 return true;
2473 return false;
2476 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2477 struct isci_remote_device *idev)
2479 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2480 dev_dbg(&ihost->pdev->dev,
2481 "SCIC Controller 0x%p remote device stopped event "
2482 "from device 0x%p in unexpected state %d\n",
2483 ihost, idev,
2484 ihost->sm.current_state_id);
2485 return;
2488 if (!sci_controller_has_remote_devices_stopping(ihost))
2489 sci_change_state(&ihost->sm, SCIC_STOPPED);
2492 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2494 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2495 __func__, ihost->id, request);
2497 writel(request, &ihost->smu_registers->post_context_port);
2500 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2502 u16 task_index;
2503 u16 task_sequence;
2505 task_index = ISCI_TAG_TCI(io_tag);
2507 if (task_index < ihost->task_context_entries) {
2508 struct isci_request *ireq = ihost->reqs[task_index];
2510 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2511 task_sequence = ISCI_TAG_SEQ(io_tag);
2513 if (task_sequence == ihost->io_request_sequence[task_index])
2514 return ireq;
2518 return NULL;
2522 * This method allocates remote node index and the reserves the remote node
2523 * context space for use. This method can fail if there are no more remote
2524 * node index available.
2525 * @scic: This is the controller object which contains the set of
2526 * free remote node ids
2527 * @sci_dev: This is the device object which is requesting the a remote node
2528 * id
2529 * @node_id: This is the remote node id that is assinged to the device if one
2530 * is available
2532 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2533 * node index available.
2535 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2536 struct isci_remote_device *idev,
2537 u16 *node_id)
2539 u16 node_index;
2540 u32 remote_node_count = sci_remote_device_node_count(idev);
2542 node_index = sci_remote_node_table_allocate_remote_node(
2543 &ihost->available_remote_nodes, remote_node_count
2546 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2547 ihost->device_table[node_index] = idev;
2549 *node_id = node_index;
2551 return SCI_SUCCESS;
2554 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2557 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2558 struct isci_remote_device *idev,
2559 u16 node_id)
2561 u32 remote_node_count = sci_remote_device_node_count(idev);
2563 if (ihost->device_table[node_id] == idev) {
2564 ihost->device_table[node_id] = NULL;
2566 sci_remote_node_table_release_remote_node_index(
2567 &ihost->available_remote_nodes, remote_node_count, node_id
2572 void sci_controller_copy_sata_response(void *response_buffer,
2573 void *frame_header,
2574 void *frame_buffer)
2576 /* XXX type safety? */
2577 memcpy(response_buffer, frame_header, sizeof(u32));
2579 memcpy(response_buffer + sizeof(u32),
2580 frame_buffer,
2581 sizeof(struct dev_to_host_fis) - sizeof(u32));
2584 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2586 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2587 writel(ihost->uf_control.get,
2588 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2591 void isci_tci_free(struct isci_host *ihost, u16 tci)
2593 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2595 ihost->tci_pool[tail] = tci;
2596 ihost->tci_tail = tail + 1;
2599 static u16 isci_tci_alloc(struct isci_host *ihost)
2601 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2602 u16 tci = ihost->tci_pool[head];
2604 ihost->tci_head = head + 1;
2605 return tci;
2608 static u16 isci_tci_space(struct isci_host *ihost)
2610 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2613 u16 isci_alloc_tag(struct isci_host *ihost)
2615 if (isci_tci_space(ihost)) {
2616 u16 tci = isci_tci_alloc(ihost);
2617 u8 seq = ihost->io_request_sequence[tci];
2619 return ISCI_TAG(seq, tci);
2622 return SCI_CONTROLLER_INVALID_IO_TAG;
2625 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2627 u16 tci = ISCI_TAG_TCI(io_tag);
2628 u16 seq = ISCI_TAG_SEQ(io_tag);
2630 /* prevent tail from passing head */
2631 if (isci_tci_active(ihost) == 0)
2632 return SCI_FAILURE_INVALID_IO_TAG;
2634 if (seq == ihost->io_request_sequence[tci]) {
2635 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2637 isci_tci_free(ihost, tci);
2639 return SCI_SUCCESS;
2641 return SCI_FAILURE_INVALID_IO_TAG;
2644 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2645 struct isci_remote_device *idev,
2646 struct isci_request *ireq)
2648 enum sci_status status;
2650 if (ihost->sm.current_state_id != SCIC_READY) {
2651 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2652 return SCI_FAILURE_INVALID_STATE;
2655 status = sci_remote_device_start_io(ihost, idev, ireq);
2656 if (status != SCI_SUCCESS)
2657 return status;
2659 set_bit(IREQ_ACTIVE, &ireq->flags);
2660 sci_controller_post_request(ihost, ireq->post_context);
2661 return SCI_SUCCESS;
2664 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2665 struct isci_remote_device *idev,
2666 struct isci_request *ireq)
2668 /* terminate an ongoing (i.e. started) core IO request. This does not
2669 * abort the IO request at the target, but rather removes the IO
2670 * request from the host controller.
2672 enum sci_status status;
2674 if (ihost->sm.current_state_id != SCIC_READY) {
2675 dev_warn(&ihost->pdev->dev,
2676 "invalid state to terminate request\n");
2677 return SCI_FAILURE_INVALID_STATE;
2680 status = sci_io_request_terminate(ireq);
2681 if (status != SCI_SUCCESS)
2682 return status;
2685 * Utilize the original post context command and or in the POST_TC_ABORT
2686 * request sub-type.
2688 sci_controller_post_request(ihost,
2689 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2690 return SCI_SUCCESS;
2694 * sci_controller_complete_io() - This method will perform core specific
2695 * completion operations for an IO request. After this method is invoked,
2696 * the user should consider the IO request as invalid until it is properly
2697 * reused (i.e. re-constructed).
2698 * @ihost: The handle to the controller object for which to complete the
2699 * IO request.
2700 * @idev: The handle to the remote device object for which to complete
2701 * the IO request.
2702 * @ireq: the handle to the io request object to complete.
2704 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2705 struct isci_remote_device *idev,
2706 struct isci_request *ireq)
2708 enum sci_status status;
2709 u16 index;
2711 switch (ihost->sm.current_state_id) {
2712 case SCIC_STOPPING:
2713 /* XXX: Implement this function */
2714 return SCI_FAILURE;
2715 case SCIC_READY:
2716 status = sci_remote_device_complete_io(ihost, idev, ireq);
2717 if (status != SCI_SUCCESS)
2718 return status;
2720 index = ISCI_TAG_TCI(ireq->io_tag);
2721 clear_bit(IREQ_ACTIVE, &ireq->flags);
2722 return SCI_SUCCESS;
2723 default:
2724 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2725 return SCI_FAILURE_INVALID_STATE;
2730 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2732 struct isci_host *ihost = ireq->owning_controller;
2734 if (ihost->sm.current_state_id != SCIC_READY) {
2735 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2736 return SCI_FAILURE_INVALID_STATE;
2739 set_bit(IREQ_ACTIVE, &ireq->flags);
2740 sci_controller_post_request(ihost, ireq->post_context);
2741 return SCI_SUCCESS;
2745 * sci_controller_start_task() - This method is called by the SCIC user to
2746 * send/start a framework task management request.
2747 * @controller: the handle to the controller object for which to start the task
2748 * management request.
2749 * @remote_device: the handle to the remote device object for which to start
2750 * the task management request.
2751 * @task_request: the handle to the task request object to start.
2753 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2754 struct isci_remote_device *idev,
2755 struct isci_request *ireq)
2757 enum sci_status status;
2759 if (ihost->sm.current_state_id != SCIC_READY) {
2760 dev_warn(&ihost->pdev->dev,
2761 "%s: SCIC Controller starting task from invalid "
2762 "state\n",
2763 __func__);
2764 return SCI_TASK_FAILURE_INVALID_STATE;
2767 status = sci_remote_device_start_task(ihost, idev, ireq);
2768 switch (status) {
2769 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2770 set_bit(IREQ_ACTIVE, &ireq->flags);
2773 * We will let framework know this task request started successfully,
2774 * although core is still woring on starting the request (to post tc when
2775 * RNC is resumed.)
2777 return SCI_SUCCESS;
2778 case SCI_SUCCESS:
2779 set_bit(IREQ_ACTIVE, &ireq->flags);
2780 sci_controller_post_request(ihost, ireq->post_context);
2781 break;
2782 default:
2783 break;
2786 return status;
2789 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2791 int d;
2793 /* no support for TX_GP_CFG */
2794 if (reg_index == 0)
2795 return -EINVAL;
2797 for (d = 0; d < isci_gpio_count(ihost); d++) {
2798 u32 val = 0x444; /* all ODx.n clear */
2799 int i;
2801 for (i = 0; i < 3; i++) {
2802 int bit = (i << 2) + 2;
2804 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2805 write_data, reg_index,
2806 reg_count);
2807 if (bit < 0)
2808 break;
2810 /* if od is set, clear the 'invert' bit */
2811 val &= ~(bit << ((i << 2) + 2));
2814 if (i < 3)
2815 break;
2816 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2819 /* unless reg_index is > 1, we should always be able to write at
2820 * least one register
2822 return d > 0;
2825 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2826 u8 reg_count, u8 *write_data)
2828 struct isci_host *ihost = sas_ha->lldd_ha;
2829 int written;
2831 switch (reg_type) {
2832 case SAS_GPIO_REG_TX_GP:
2833 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2834 break;
2835 default:
2836 written = -EINVAL;
2839 return written;