spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / cris / arch-v32 / kernel / time.c
blob6773fc83a670f08568a059bfa81c2c2e7a3bfa7f
1 /*
2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2010 Axis Communications AB
6 */
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
19 #include <asm/io.h>
20 #include <asm/delay.h>
21 #include <asm/rtc.h>
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
31 #endif
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
39 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
40 static cycle_t read_cont_rotime(struct clocksource *cs)
42 return (u32)REG_RD(timer, regi_timer0, r_time);
45 static struct clocksource cont_rotime = {
46 .name = "crisv32_rotime",
47 .rating = 300,
48 .read = read_cont_rotime,
49 .mask = CLOCKSOURCE_MASK(32),
50 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
53 static int __init etrax_init_cont_rotime(void)
55 clocksource_register_khz(&cont_rotime, 100000);
56 return 0;
58 arch_initcall(etrax_init_cont_rotime);
61 unsigned long timer_regs[NR_CPUS] =
63 regi_timer0,
64 #ifdef CONFIG_SMP
65 regi_timer2
66 #endif
69 extern int set_rtc_mmss(unsigned long nowtime);
70 extern int have_rtc;
72 #ifdef CONFIG_CPU_FREQ
73 static int
74 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
75 void *data);
77 static struct notifier_block cris_time_freq_notifier_block = {
78 .notifier_call = cris_time_freq_notifier,
80 #endif
82 unsigned long get_ns_in_jiffie(void)
84 reg_timer_r_tmr0_data data;
85 unsigned long ns;
87 data = REG_RD(timer, regi_timer0, r_tmr0_data);
88 ns = (TIMER0_DIV - data) * 10;
89 return ns;
93 /* From timer MDS describing the hardware watchdog:
94 * 4.3.1 Watchdog Operation
95 * The watchdog timer is an 8-bit timer with a configurable start value.
96 * Once started the watchdog counts downwards with a frequency of 763 Hz
97 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
98 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
99 * chip.
101 /* This gives us 1.3 ms to do something useful when the NMI comes */
103 /* Right now, starting the watchdog is the same as resetting it */
104 #define start_watchdog reset_watchdog
106 #if defined(CONFIG_ETRAX_WATCHDOG)
107 static short int watchdog_key = 42; /* arbitrary 7 bit number */
108 #endif
110 /* Number of pages to consider "out of memory". It is normal that the memory
111 * is used though, so set this really low. */
112 #define WATCHDOG_MIN_FREE_PAGES 8
114 void reset_watchdog(void)
116 #if defined(CONFIG_ETRAX_WATCHDOG)
117 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
119 /* Only keep watchdog happy as long as we have memory left! */
120 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
121 /* Reset the watchdog with the inverse of the old key */
122 /* Invert key, which is 7 bits */
123 watchdog_key ^= ETRAX_WD_KEY_MASK;
124 wd_ctrl.cnt = ETRAX_WD_CNT;
125 wd_ctrl.cmd = regk_timer_start;
126 wd_ctrl.key = watchdog_key;
127 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
129 #endif
132 /* stop the watchdog - we still need the correct key */
134 void stop_watchdog(void)
136 #if defined(CONFIG_ETRAX_WATCHDOG)
137 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
138 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
139 wd_ctrl.cnt = ETRAX_WD_CNT;
140 wd_ctrl.cmd = regk_timer_stop;
141 wd_ctrl.key = watchdog_key;
142 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
143 #endif
146 extern void show_registers(struct pt_regs *regs);
148 void handle_watchdog_bite(struct pt_regs *regs)
150 #if defined(CONFIG_ETRAX_WATCHDOG)
151 extern int cause_of_death;
153 oops_in_progress = 1;
154 printk(KERN_WARNING "Watchdog bite\n");
156 /* Check if forced restart or unexpected watchdog */
157 if (cause_of_death == 0xbedead) {
158 #ifdef CONFIG_CRIS_MACH_ARTPEC3
159 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
160 * us to go to lower frequency for the reset to be reliable
162 reg_clkgen_rw_clk_ctrl ctrl =
163 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
164 ctrl.pll = 0;
165 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
166 #endif
167 while(1);
170 /* Unexpected watchdog, stop the watchdog and dump registers. */
171 stop_watchdog();
172 printk(KERN_WARNING "Oops: bitten by watchdog\n");
173 show_registers(regs);
174 oops_in_progress = 0;
175 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
176 reset_watchdog();
177 #endif
178 while(1) /* nothing */;
179 #endif
183 * timer_interrupt() needs to keep up the real-time clock,
184 * as well as call the "xtime_update()" routine every clocktick.
186 extern void cris_do_profile(struct pt_regs *regs);
188 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
190 struct pt_regs *regs = get_irq_regs();
191 int cpu = smp_processor_id();
192 reg_timer_r_masked_intr masked_intr;
193 reg_timer_rw_ack_intr ack_intr = { 0 };
195 /* Check if the timer interrupt is for us (a tmr0 int) */
196 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
197 if (!masked_intr.tmr0)
198 return IRQ_NONE;
200 /* Acknowledge the timer irq. */
201 ack_intr.tmr0 = 1;
202 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
204 /* Reset watchdog otherwise it resets us! */
205 reset_watchdog();
207 /* Update statistics. */
208 update_process_times(user_mode(regs));
210 cris_do_profile(regs); /* Save profiling information */
212 /* The master CPU is responsible for the time keeping. */
213 if (cpu != 0)
214 return IRQ_HANDLED;
216 /* Call the real timer interrupt handler */
217 xtime_update(1);
218 return IRQ_HANDLED;
221 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
222 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
224 static struct irqaction irq_timer = {
225 .handler = timer_interrupt,
226 .flags = IRQF_SHARED | IRQF_DISABLED,
227 .name = "timer"
230 void __init cris_timer_init(void)
232 int cpu = smp_processor_id();
233 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
234 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
235 reg_timer_rw_intr_mask timer_intr_mask;
237 /* Setup the etrax timers.
238 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
239 * We use timer0, so timer1 is free.
240 * The trig timer is used by the fasttimer API if enabled.
243 tmr0_ctrl.op = regk_timer_ld;
244 tmr0_ctrl.freq = regk_timer_f100;
245 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
246 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
247 tmr0_ctrl.op = regk_timer_run;
248 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
250 /* Enable the timer irq. */
251 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
252 timer_intr_mask.tmr0 = 1;
253 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
256 void __init time_init(void)
258 reg_intr_vect_rw_mask intr_mask;
260 /* Probe for the RTC and read it if it exists.
261 * Before the RTC can be probed the loops_per_usec variable needs
262 * to be initialized to make usleep work. A better value for
263 * loops_per_usec is calculated by the kernel later once the
264 * clock has started.
266 loops_per_usec = 50;
268 if(RTC_INIT() < 0)
269 have_rtc = 0;
270 else
271 have_rtc = 1;
273 /* Start CPU local timer. */
274 cris_timer_init();
276 /* Enable the timer irq in global config. */
277 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
278 intr_mask.timer0 = 1;
279 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
281 /* Now actually register the timer irq handler that calls
282 * timer_interrupt(). */
283 setup_irq(TIMER0_INTR_VECT, &irq_timer);
285 /* Enable watchdog if we should use one. */
287 #if defined(CONFIG_ETRAX_WATCHDOG)
288 printk(KERN_INFO "Enabling watchdog...\n");
289 start_watchdog();
291 /* If we use the hardware watchdog, we want to trap it as an NMI
292 * and dump registers before it resets us. For this to happen, we
293 * must set the "m" NMI enable flag (which once set, is unset only
294 * when an NMI is taken). */
296 unsigned long flags;
297 local_save_flags(flags);
298 flags |= (1<<30); /* NMI M flag is at bit 30 */
299 local_irq_restore(flags);
301 #endif
303 #ifdef CONFIG_CPU_FREQ
304 cpufreq_register_notifier(&cris_time_freq_notifier_block,
305 CPUFREQ_TRANSITION_NOTIFIER);
306 #endif
309 #ifdef CONFIG_CPU_FREQ
310 static int
311 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
312 void *data)
314 struct cpufreq_freqs *freqs = data;
315 if (val == CPUFREQ_POSTCHANGE) {
316 reg_timer_r_tmr0_data data;
317 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
318 do {
319 data = REG_RD(timer, timer_regs[freqs->cpu],
320 r_tmr0_data);
321 } while (data > 20);
322 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
324 return 0;
326 #endif