spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / x86 / kernel / cpu / perf_event_amd.c
blob67250a52430bfd9a3d0cf89fa38408d0e8cd793a
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
8 #include "perf_event.h"
10 static __initconst const u64 amd_hw_cache_event_ids
11 [PERF_COUNT_HW_CACHE_MAX]
12 [PERF_COUNT_HW_CACHE_OP_MAX]
13 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
15 [ C(L1D) ] = {
16 [ C(OP_READ) ] = {
17 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
18 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
20 [ C(OP_WRITE) ] = {
21 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
22 [ C(RESULT_MISS) ] = 0,
24 [ C(OP_PREFETCH) ] = {
25 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
26 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
29 [ C(L1I ) ] = {
30 [ C(OP_READ) ] = {
31 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
32 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
34 [ C(OP_WRITE) ] = {
35 [ C(RESULT_ACCESS) ] = -1,
36 [ C(RESULT_MISS) ] = -1,
38 [ C(OP_PREFETCH) ] = {
39 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40 [ C(RESULT_MISS) ] = 0,
43 [ C(LL ) ] = {
44 [ C(OP_READ) ] = {
45 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
48 [ C(OP_WRITE) ] = {
49 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
50 [ C(RESULT_MISS) ] = 0,
52 [ C(OP_PREFETCH) ] = {
53 [ C(RESULT_ACCESS) ] = 0,
54 [ C(RESULT_MISS) ] = 0,
57 [ C(DTLB) ] = {
58 [ C(OP_READ) ] = {
59 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
60 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
62 [ C(OP_WRITE) ] = {
63 [ C(RESULT_ACCESS) ] = 0,
64 [ C(RESULT_MISS) ] = 0,
66 [ C(OP_PREFETCH) ] = {
67 [ C(RESULT_ACCESS) ] = 0,
68 [ C(RESULT_MISS) ] = 0,
71 [ C(ITLB) ] = {
72 [ C(OP_READ) ] = {
73 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
74 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
76 [ C(OP_WRITE) ] = {
77 [ C(RESULT_ACCESS) ] = -1,
78 [ C(RESULT_MISS) ] = -1,
80 [ C(OP_PREFETCH) ] = {
81 [ C(RESULT_ACCESS) ] = -1,
82 [ C(RESULT_MISS) ] = -1,
85 [ C(BPU ) ] = {
86 [ C(OP_READ) ] = {
87 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
88 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
90 [ C(OP_WRITE) ] = {
91 [ C(RESULT_ACCESS) ] = -1,
92 [ C(RESULT_MISS) ] = -1,
94 [ C(OP_PREFETCH) ] = {
95 [ C(RESULT_ACCESS) ] = -1,
96 [ C(RESULT_MISS) ] = -1,
99 [ C(NODE) ] = {
100 [ C(OP_READ) ] = {
101 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
104 [ C(OP_WRITE) ] = {
105 [ C(RESULT_ACCESS) ] = -1,
106 [ C(RESULT_MISS) ] = -1,
108 [ C(OP_PREFETCH) ] = {
109 [ C(RESULT_ACCESS) ] = -1,
110 [ C(RESULT_MISS) ] = -1,
116 * AMD Performance Monitor K7 and later.
118 static const u64 amd_perfmon_event_map[] =
120 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
121 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
122 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
123 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
124 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
125 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
126 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
127 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
130 static u64 amd_pmu_event_map(int hw_event)
132 return amd_perfmon_event_map[hw_event];
135 static int amd_pmu_hw_config(struct perf_event *event)
137 int ret = x86_pmu_hw_config(event);
139 if (ret)
140 return ret;
142 if (event->attr.exclude_host && event->attr.exclude_guest)
144 * When HO == GO == 1 the hardware treats that as GO == HO == 0
145 * and will count in both modes. We don't want to count in that
146 * case so we emulate no-counting by setting US = OS = 0.
148 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
149 ARCH_PERFMON_EVENTSEL_OS);
150 else if (event->attr.exclude_host)
151 event->hw.config |= AMD_PERFMON_EVENTSEL_GUESTONLY;
152 else if (event->attr.exclude_guest)
153 event->hw.config |= AMD_PERFMON_EVENTSEL_HOSTONLY;
155 if (event->attr.type != PERF_TYPE_RAW)
156 return 0;
158 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
160 return 0;
164 * AMD64 events are detected based on their event codes.
166 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
168 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
171 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
173 return (hwc->config & 0xe0) == 0xe0;
176 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
178 struct amd_nb *nb = cpuc->amd_nb;
180 return nb && nb->nb_id != -1;
183 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
184 struct perf_event *event)
186 struct hw_perf_event *hwc = &event->hw;
187 struct amd_nb *nb = cpuc->amd_nb;
188 int i;
191 * only care about NB events
193 if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
194 return;
197 * need to scan whole list because event may not have
198 * been assigned during scheduling
200 * no race condition possible because event can only
201 * be removed on one CPU at a time AND PMU is disabled
202 * when we come here
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 if (nb->owners[i] == event) {
206 cmpxchg(nb->owners+i, event, NULL);
207 break;
213 * AMD64 NorthBridge events need special treatment because
214 * counter access needs to be synchronized across all cores
215 * of a package. Refer to BKDG section 3.12
217 * NB events are events measuring L3 cache, Hypertransport
218 * traffic. They are identified by an event code >= 0xe00.
219 * They measure events on the NorthBride which is shared
220 * by all cores on a package. NB events are counted on a
221 * shared set of counters. When a NB event is programmed
222 * in a counter, the data actually comes from a shared
223 * counter. Thus, access to those counters needs to be
224 * synchronized.
226 * We implement the synchronization such that no two cores
227 * can be measuring NB events using the same counters. Thus,
228 * we maintain a per-NB allocation table. The available slot
229 * is propagated using the event_constraint structure.
231 * We provide only one choice for each NB event based on
232 * the fact that only NB events have restrictions. Consequently,
233 * if a counter is available, there is a guarantee the NB event
234 * will be assigned to it. If no slot is available, an empty
235 * constraint is returned and scheduling will eventually fail
236 * for this event.
238 * Note that all cores attached the same NB compete for the same
239 * counters to host NB events, this is why we use atomic ops. Some
240 * multi-chip CPUs may have more than one NB.
242 * Given that resources are allocated (cmpxchg), they must be
243 * eventually freed for others to use. This is accomplished by
244 * calling amd_put_event_constraints().
246 * Non NB events are not impacted by this restriction.
248 static struct event_constraint *
249 amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
251 struct hw_perf_event *hwc = &event->hw;
252 struct amd_nb *nb = cpuc->amd_nb;
253 struct perf_event *old = NULL;
254 int max = x86_pmu.num_counters;
255 int i, j, k = -1;
258 * if not NB event or no NB, then no constraints
260 if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
261 return &unconstrained;
264 * detect if already present, if so reuse
266 * cannot merge with actual allocation
267 * because of possible holes
269 * event can already be present yet not assigned (in hwc->idx)
270 * because of successive calls to x86_schedule_events() from
271 * hw_perf_group_sched_in() without hw_perf_enable()
273 for (i = 0; i < max; i++) {
275 * keep track of first free slot
277 if (k == -1 && !nb->owners[i])
278 k = i;
280 /* already present, reuse */
281 if (nb->owners[i] == event)
282 goto done;
285 * not present, so grab a new slot
286 * starting either at:
288 if (hwc->idx != -1) {
289 /* previous assignment */
290 i = hwc->idx;
291 } else if (k != -1) {
292 /* start from free slot found */
293 i = k;
294 } else {
296 * event not found, no slot found in
297 * first pass, try again from the
298 * beginning
300 i = 0;
302 j = i;
303 do {
304 old = cmpxchg(nb->owners+i, NULL, event);
305 if (!old)
306 break;
307 if (++i == max)
308 i = 0;
309 } while (i != j);
310 done:
311 if (!old)
312 return &nb->event_constraints[i];
314 return &emptyconstraint;
317 static struct amd_nb *amd_alloc_nb(int cpu)
319 struct amd_nb *nb;
320 int i;
322 nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
323 cpu_to_node(cpu));
324 if (!nb)
325 return NULL;
327 nb->nb_id = -1;
330 * initialize all possible NB constraints
332 for (i = 0; i < x86_pmu.num_counters; i++) {
333 __set_bit(i, nb->event_constraints[i].idxmsk);
334 nb->event_constraints[i].weight = 1;
336 return nb;
339 static int amd_pmu_cpu_prepare(int cpu)
341 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
343 WARN_ON_ONCE(cpuc->amd_nb);
345 if (boot_cpu_data.x86_max_cores < 2)
346 return NOTIFY_OK;
348 cpuc->amd_nb = amd_alloc_nb(cpu);
349 if (!cpuc->amd_nb)
350 return NOTIFY_BAD;
352 return NOTIFY_OK;
355 static void amd_pmu_cpu_starting(int cpu)
357 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
358 struct amd_nb *nb;
359 int i, nb_id;
361 cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
363 if (boot_cpu_data.x86_max_cores < 2 || boot_cpu_data.x86 == 0x15)
364 return;
366 nb_id = amd_get_nb_id(cpu);
367 WARN_ON_ONCE(nb_id == BAD_APICID);
369 for_each_online_cpu(i) {
370 nb = per_cpu(cpu_hw_events, i).amd_nb;
371 if (WARN_ON_ONCE(!nb))
372 continue;
374 if (nb->nb_id == nb_id) {
375 cpuc->kfree_on_online = cpuc->amd_nb;
376 cpuc->amd_nb = nb;
377 break;
381 cpuc->amd_nb->nb_id = nb_id;
382 cpuc->amd_nb->refcnt++;
385 static void amd_pmu_cpu_dead(int cpu)
387 struct cpu_hw_events *cpuhw;
389 if (boot_cpu_data.x86_max_cores < 2)
390 return;
392 cpuhw = &per_cpu(cpu_hw_events, cpu);
394 if (cpuhw->amd_nb) {
395 struct amd_nb *nb = cpuhw->amd_nb;
397 if (nb->nb_id == -1 || --nb->refcnt == 0)
398 kfree(nb);
400 cpuhw->amd_nb = NULL;
404 static __initconst const struct x86_pmu amd_pmu = {
405 .name = "AMD",
406 .handle_irq = x86_pmu_handle_irq,
407 .disable_all = x86_pmu_disable_all,
408 .enable_all = x86_pmu_enable_all,
409 .enable = x86_pmu_enable_event,
410 .disable = x86_pmu_disable_event,
411 .hw_config = amd_pmu_hw_config,
412 .schedule_events = x86_schedule_events,
413 .eventsel = MSR_K7_EVNTSEL0,
414 .perfctr = MSR_K7_PERFCTR0,
415 .event_map = amd_pmu_event_map,
416 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
417 .num_counters = AMD64_NUM_COUNTERS,
418 .cntval_bits = 48,
419 .cntval_mask = (1ULL << 48) - 1,
420 .apic = 1,
421 /* use highest bit to detect overflow */
422 .max_period = (1ULL << 47) - 1,
423 .get_event_constraints = amd_get_event_constraints,
424 .put_event_constraints = amd_put_event_constraints,
426 .cpu_prepare = amd_pmu_cpu_prepare,
427 .cpu_starting = amd_pmu_cpu_starting,
428 .cpu_dead = amd_pmu_cpu_dead,
431 /* AMD Family 15h */
433 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
435 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
436 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
437 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
438 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
439 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
440 #define AMD_EVENT_EX_LS 0x000000C0ULL
441 #define AMD_EVENT_DE 0x000000D0ULL
442 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
445 * AMD family 15h event code/PMC mappings:
447 * type = event_code & 0x0F0:
449 * 0x000 FP PERF_CTL[5:3]
450 * 0x010 FP PERF_CTL[5:3]
451 * 0x020 LS PERF_CTL[5:0]
452 * 0x030 LS PERF_CTL[5:0]
453 * 0x040 DC PERF_CTL[5:0]
454 * 0x050 DC PERF_CTL[5:0]
455 * 0x060 CU PERF_CTL[2:0]
456 * 0x070 CU PERF_CTL[2:0]
457 * 0x080 IC/DE PERF_CTL[2:0]
458 * 0x090 IC/DE PERF_CTL[2:0]
459 * 0x0A0 ---
460 * 0x0B0 ---
461 * 0x0C0 EX/LS PERF_CTL[5:0]
462 * 0x0D0 DE PERF_CTL[2:0]
463 * 0x0E0 NB NB_PERF_CTL[3:0]
464 * 0x0F0 NB NB_PERF_CTL[3:0]
466 * Exceptions:
468 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
469 * 0x003 FP PERF_CTL[3]
470 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
471 * 0x00B FP PERF_CTL[3]
472 * 0x00D FP PERF_CTL[3]
473 * 0x023 DE PERF_CTL[2:0]
474 * 0x02D LS PERF_CTL[3]
475 * 0x02E LS PERF_CTL[3,0]
476 * 0x043 CU PERF_CTL[2:0]
477 * 0x045 CU PERF_CTL[2:0]
478 * 0x046 CU PERF_CTL[2:0]
479 * 0x054 CU PERF_CTL[2:0]
480 * 0x055 CU PERF_CTL[2:0]
481 * 0x08F IC PERF_CTL[0]
482 * 0x187 DE PERF_CTL[0]
483 * 0x188 DE PERF_CTL[0]
484 * 0x0DB EX PERF_CTL[5:0]
485 * 0x0DC LS PERF_CTL[5:0]
486 * 0x0DD LS PERF_CTL[5:0]
487 * 0x0DE LS PERF_CTL[5:0]
488 * 0x0DF LS PERF_CTL[5:0]
489 * 0x1D6 EX PERF_CTL[5:0]
490 * 0x1D8 EX PERF_CTL[5:0]
492 * (*) depending on the umask all FPU counters may be used
495 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
496 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
497 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
498 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
499 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
500 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
502 static struct event_constraint *
503 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
505 struct hw_perf_event *hwc = &event->hw;
506 unsigned int event_code = amd_get_event_code(hwc);
508 switch (event_code & AMD_EVENT_TYPE_MASK) {
509 case AMD_EVENT_FP:
510 switch (event_code) {
511 case 0x000:
512 if (!(hwc->config & 0x0000F000ULL))
513 break;
514 if (!(hwc->config & 0x00000F00ULL))
515 break;
516 return &amd_f15_PMC3;
517 case 0x004:
518 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
519 break;
520 return &amd_f15_PMC3;
521 case 0x003:
522 case 0x00B:
523 case 0x00D:
524 return &amd_f15_PMC3;
526 return &amd_f15_PMC53;
527 case AMD_EVENT_LS:
528 case AMD_EVENT_DC:
529 case AMD_EVENT_EX_LS:
530 switch (event_code) {
531 case 0x023:
532 case 0x043:
533 case 0x045:
534 case 0x046:
535 case 0x054:
536 case 0x055:
537 return &amd_f15_PMC20;
538 case 0x02D:
539 return &amd_f15_PMC3;
540 case 0x02E:
541 return &amd_f15_PMC30;
542 default:
543 return &amd_f15_PMC50;
545 case AMD_EVENT_CU:
546 case AMD_EVENT_IC_DE:
547 case AMD_EVENT_DE:
548 switch (event_code) {
549 case 0x08F:
550 case 0x187:
551 case 0x188:
552 return &amd_f15_PMC0;
553 case 0x0DB ... 0x0DF:
554 case 0x1D6:
555 case 0x1D8:
556 return &amd_f15_PMC50;
557 default:
558 return &amd_f15_PMC20;
560 case AMD_EVENT_NB:
561 /* not yet implemented */
562 return &emptyconstraint;
563 default:
564 return &emptyconstraint;
568 static __initconst const struct x86_pmu amd_pmu_f15h = {
569 .name = "AMD Family 15h",
570 .handle_irq = x86_pmu_handle_irq,
571 .disable_all = x86_pmu_disable_all,
572 .enable_all = x86_pmu_enable_all,
573 .enable = x86_pmu_enable_event,
574 .disable = x86_pmu_disable_event,
575 .hw_config = amd_pmu_hw_config,
576 .schedule_events = x86_schedule_events,
577 .eventsel = MSR_F15H_PERF_CTL,
578 .perfctr = MSR_F15H_PERF_CTR,
579 .event_map = amd_pmu_event_map,
580 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
581 .num_counters = AMD64_NUM_COUNTERS_F15H,
582 .cntval_bits = 48,
583 .cntval_mask = (1ULL << 48) - 1,
584 .apic = 1,
585 /* use highest bit to detect overflow */
586 .max_period = (1ULL << 47) - 1,
587 .get_event_constraints = amd_get_event_constraints_f15h,
588 /* nortbridge counters not yet implemented: */
589 #if 0
590 .put_event_constraints = amd_put_event_constraints,
592 .cpu_prepare = amd_pmu_cpu_prepare,
593 .cpu_dead = amd_pmu_cpu_dead,
594 #endif
595 .cpu_starting = amd_pmu_cpu_starting,
598 __init int amd_pmu_init(void)
600 /* Performance-monitoring supported from K7 and later: */
601 if (boot_cpu_data.x86 < 6)
602 return -ENODEV;
605 * If core performance counter extensions exists, it must be
606 * family 15h, otherwise fail. See x86_pmu_addr_offset().
608 switch (boot_cpu_data.x86) {
609 case 0x15:
610 if (!cpu_has_perfctr_core)
611 return -ENODEV;
612 x86_pmu = amd_pmu_f15h;
613 break;
614 default:
615 if (cpu_has_perfctr_core)
616 return -ENODEV;
617 x86_pmu = amd_pmu;
618 break;
621 /* Events are common for all AMDs */
622 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
623 sizeof(hw_cache_event_ids));
625 return 0;
628 void amd_pmu_enable_virt(void)
630 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
632 cpuc->perf_ctr_virt_mask = 0;
634 /* Reload all events */
635 x86_pmu_disable_all();
636 x86_pmu_enable_all(0);
638 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
640 void amd_pmu_disable_virt(void)
642 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
645 * We only mask out the Host-only bit so that host-only counting works
646 * when SVM is disabled. If someone sets up a guest-only counter when
647 * SVM is disabled the Guest-only bits still gets set and the counter
648 * will not count anything.
650 cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
652 /* Reload all events */
653 x86_pmu_disable_all();
654 x86_pmu_enable_all(0);
656 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);