spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / x86 / kernel / cpu / perf_event_intel.c
blob61d4f79a550e39ed298e571236ab778c4067ee0b
1 /*
2 * Per core/cpu state
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
14 #include <asm/hardirq.h>
15 #include <asm/apic.h>
17 #include "perf_event.h"
20 * Intel PerfMon, used on Core and later.
22 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
24 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
25 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
26 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
27 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
28 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
29 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
30 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
31 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
34 static struct event_constraint intel_core_event_constraints[] __read_mostly =
36 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
37 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
38 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
39 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
40 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
41 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
42 EVENT_CONSTRAINT_END
45 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
47 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
48 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
49 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
50 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
51 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
52 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
53 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
54 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
55 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
56 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
57 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
58 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
59 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
60 EVENT_CONSTRAINT_END
63 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
65 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
66 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
67 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
68 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
69 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
70 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
71 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
72 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
73 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
74 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
75 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
76 EVENT_CONSTRAINT_END
79 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
81 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
82 EVENT_EXTRA_END
85 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
87 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
88 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
89 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
90 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
91 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
92 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
93 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
94 EVENT_CONSTRAINT_END
97 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
99 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
103 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
104 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
105 EVENT_CONSTRAINT_END
108 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
110 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
111 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
112 EVENT_EXTRA_END
115 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
117 EVENT_CONSTRAINT_END
120 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
122 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
123 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
124 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
125 EVENT_CONSTRAINT_END
128 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
129 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
130 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
131 EVENT_EXTRA_END
134 static u64 intel_pmu_event_map(int hw_event)
136 return intel_perfmon_event_map[hw_event];
139 static __initconst const u64 snb_hw_cache_event_ids
140 [PERF_COUNT_HW_CACHE_MAX]
141 [PERF_COUNT_HW_CACHE_OP_MAX]
142 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
144 [ C(L1D) ] = {
145 [ C(OP_READ) ] = {
146 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
147 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
149 [ C(OP_WRITE) ] = {
150 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
151 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
153 [ C(OP_PREFETCH) ] = {
154 [ C(RESULT_ACCESS) ] = 0x0,
155 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
158 [ C(L1I ) ] = {
159 [ C(OP_READ) ] = {
160 [ C(RESULT_ACCESS) ] = 0x0,
161 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
163 [ C(OP_WRITE) ] = {
164 [ C(RESULT_ACCESS) ] = -1,
165 [ C(RESULT_MISS) ] = -1,
167 [ C(OP_PREFETCH) ] = {
168 [ C(RESULT_ACCESS) ] = 0x0,
169 [ C(RESULT_MISS) ] = 0x0,
172 [ C(LL ) ] = {
173 [ C(OP_READ) ] = {
174 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
175 [ C(RESULT_ACCESS) ] = 0x01b7,
176 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
177 [ C(RESULT_MISS) ] = 0x01b7,
179 [ C(OP_WRITE) ] = {
180 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
181 [ C(RESULT_ACCESS) ] = 0x01b7,
182 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
183 [ C(RESULT_MISS) ] = 0x01b7,
185 [ C(OP_PREFETCH) ] = {
186 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
187 [ C(RESULT_ACCESS) ] = 0x01b7,
188 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
189 [ C(RESULT_MISS) ] = 0x01b7,
192 [ C(DTLB) ] = {
193 [ C(OP_READ) ] = {
194 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
195 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
197 [ C(OP_WRITE) ] = {
198 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
199 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
201 [ C(OP_PREFETCH) ] = {
202 [ C(RESULT_ACCESS) ] = 0x0,
203 [ C(RESULT_MISS) ] = 0x0,
206 [ C(ITLB) ] = {
207 [ C(OP_READ) ] = {
208 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
209 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
211 [ C(OP_WRITE) ] = {
212 [ C(RESULT_ACCESS) ] = -1,
213 [ C(RESULT_MISS) ] = -1,
215 [ C(OP_PREFETCH) ] = {
216 [ C(RESULT_ACCESS) ] = -1,
217 [ C(RESULT_MISS) ] = -1,
220 [ C(BPU ) ] = {
221 [ C(OP_READ) ] = {
222 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
223 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
225 [ C(OP_WRITE) ] = {
226 [ C(RESULT_ACCESS) ] = -1,
227 [ C(RESULT_MISS) ] = -1,
229 [ C(OP_PREFETCH) ] = {
230 [ C(RESULT_ACCESS) ] = -1,
231 [ C(RESULT_MISS) ] = -1,
234 [ C(NODE) ] = {
235 [ C(OP_READ) ] = {
236 [ C(RESULT_ACCESS) ] = -1,
237 [ C(RESULT_MISS) ] = -1,
239 [ C(OP_WRITE) ] = {
240 [ C(RESULT_ACCESS) ] = -1,
241 [ C(RESULT_MISS) ] = -1,
243 [ C(OP_PREFETCH) ] = {
244 [ C(RESULT_ACCESS) ] = -1,
245 [ C(RESULT_MISS) ] = -1,
251 static __initconst const u64 westmere_hw_cache_event_ids
252 [PERF_COUNT_HW_CACHE_MAX]
253 [PERF_COUNT_HW_CACHE_OP_MAX]
254 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
256 [ C(L1D) ] = {
257 [ C(OP_READ) ] = {
258 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
259 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
261 [ C(OP_WRITE) ] = {
262 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
263 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
265 [ C(OP_PREFETCH) ] = {
266 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
267 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
270 [ C(L1I ) ] = {
271 [ C(OP_READ) ] = {
272 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
273 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
275 [ C(OP_WRITE) ] = {
276 [ C(RESULT_ACCESS) ] = -1,
277 [ C(RESULT_MISS) ] = -1,
279 [ C(OP_PREFETCH) ] = {
280 [ C(RESULT_ACCESS) ] = 0x0,
281 [ C(RESULT_MISS) ] = 0x0,
284 [ C(LL ) ] = {
285 [ C(OP_READ) ] = {
286 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
287 [ C(RESULT_ACCESS) ] = 0x01b7,
288 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
289 [ C(RESULT_MISS) ] = 0x01b7,
292 * Use RFO, not WRITEBACK, because a write miss would typically occur
293 * on RFO.
295 [ C(OP_WRITE) ] = {
296 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
297 [ C(RESULT_ACCESS) ] = 0x01b7,
298 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
299 [ C(RESULT_MISS) ] = 0x01b7,
301 [ C(OP_PREFETCH) ] = {
302 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
303 [ C(RESULT_ACCESS) ] = 0x01b7,
304 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
305 [ C(RESULT_MISS) ] = 0x01b7,
308 [ C(DTLB) ] = {
309 [ C(OP_READ) ] = {
310 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
311 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
313 [ C(OP_WRITE) ] = {
314 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
315 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
317 [ C(OP_PREFETCH) ] = {
318 [ C(RESULT_ACCESS) ] = 0x0,
319 [ C(RESULT_MISS) ] = 0x0,
322 [ C(ITLB) ] = {
323 [ C(OP_READ) ] = {
324 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
325 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
327 [ C(OP_WRITE) ] = {
328 [ C(RESULT_ACCESS) ] = -1,
329 [ C(RESULT_MISS) ] = -1,
331 [ C(OP_PREFETCH) ] = {
332 [ C(RESULT_ACCESS) ] = -1,
333 [ C(RESULT_MISS) ] = -1,
336 [ C(BPU ) ] = {
337 [ C(OP_READ) ] = {
338 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
339 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
341 [ C(OP_WRITE) ] = {
342 [ C(RESULT_ACCESS) ] = -1,
343 [ C(RESULT_MISS) ] = -1,
345 [ C(OP_PREFETCH) ] = {
346 [ C(RESULT_ACCESS) ] = -1,
347 [ C(RESULT_MISS) ] = -1,
350 [ C(NODE) ] = {
351 [ C(OP_READ) ] = {
352 [ C(RESULT_ACCESS) ] = 0x01b7,
353 [ C(RESULT_MISS) ] = 0x01b7,
355 [ C(OP_WRITE) ] = {
356 [ C(RESULT_ACCESS) ] = 0x01b7,
357 [ C(RESULT_MISS) ] = 0x01b7,
359 [ C(OP_PREFETCH) ] = {
360 [ C(RESULT_ACCESS) ] = 0x01b7,
361 [ C(RESULT_MISS) ] = 0x01b7,
367 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
368 * See IA32 SDM Vol 3B 30.6.1.3
371 #define NHM_DMND_DATA_RD (1 << 0)
372 #define NHM_DMND_RFO (1 << 1)
373 #define NHM_DMND_IFETCH (1 << 2)
374 #define NHM_DMND_WB (1 << 3)
375 #define NHM_PF_DATA_RD (1 << 4)
376 #define NHM_PF_DATA_RFO (1 << 5)
377 #define NHM_PF_IFETCH (1 << 6)
378 #define NHM_OFFCORE_OTHER (1 << 7)
379 #define NHM_UNCORE_HIT (1 << 8)
380 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
381 #define NHM_OTHER_CORE_HITM (1 << 10)
382 /* reserved */
383 #define NHM_REMOTE_CACHE_FWD (1 << 12)
384 #define NHM_REMOTE_DRAM (1 << 13)
385 #define NHM_LOCAL_DRAM (1 << 14)
386 #define NHM_NON_DRAM (1 << 15)
388 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
389 #define NHM_REMOTE (NHM_REMOTE_DRAM)
391 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
392 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
393 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
395 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
396 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
397 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
399 static __initconst const u64 nehalem_hw_cache_extra_regs
400 [PERF_COUNT_HW_CACHE_MAX]
401 [PERF_COUNT_HW_CACHE_OP_MAX]
402 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
404 [ C(LL ) ] = {
405 [ C(OP_READ) ] = {
406 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
407 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
409 [ C(OP_WRITE) ] = {
410 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
411 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
413 [ C(OP_PREFETCH) ] = {
414 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
415 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
418 [ C(NODE) ] = {
419 [ C(OP_READ) ] = {
420 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
421 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
423 [ C(OP_WRITE) ] = {
424 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
425 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
427 [ C(OP_PREFETCH) ] = {
428 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
429 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
434 static __initconst const u64 nehalem_hw_cache_event_ids
435 [PERF_COUNT_HW_CACHE_MAX]
436 [PERF_COUNT_HW_CACHE_OP_MAX]
437 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
439 [ C(L1D) ] = {
440 [ C(OP_READ) ] = {
441 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
442 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
444 [ C(OP_WRITE) ] = {
445 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
446 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
448 [ C(OP_PREFETCH) ] = {
449 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
450 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
453 [ C(L1I ) ] = {
454 [ C(OP_READ) ] = {
455 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
456 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
458 [ C(OP_WRITE) ] = {
459 [ C(RESULT_ACCESS) ] = -1,
460 [ C(RESULT_MISS) ] = -1,
462 [ C(OP_PREFETCH) ] = {
463 [ C(RESULT_ACCESS) ] = 0x0,
464 [ C(RESULT_MISS) ] = 0x0,
467 [ C(LL ) ] = {
468 [ C(OP_READ) ] = {
469 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
470 [ C(RESULT_ACCESS) ] = 0x01b7,
471 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
472 [ C(RESULT_MISS) ] = 0x01b7,
475 * Use RFO, not WRITEBACK, because a write miss would typically occur
476 * on RFO.
478 [ C(OP_WRITE) ] = {
479 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
480 [ C(RESULT_ACCESS) ] = 0x01b7,
481 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
482 [ C(RESULT_MISS) ] = 0x01b7,
484 [ C(OP_PREFETCH) ] = {
485 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
486 [ C(RESULT_ACCESS) ] = 0x01b7,
487 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
488 [ C(RESULT_MISS) ] = 0x01b7,
491 [ C(DTLB) ] = {
492 [ C(OP_READ) ] = {
493 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
494 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
496 [ C(OP_WRITE) ] = {
497 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
498 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
500 [ C(OP_PREFETCH) ] = {
501 [ C(RESULT_ACCESS) ] = 0x0,
502 [ C(RESULT_MISS) ] = 0x0,
505 [ C(ITLB) ] = {
506 [ C(OP_READ) ] = {
507 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
508 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
510 [ C(OP_WRITE) ] = {
511 [ C(RESULT_ACCESS) ] = -1,
512 [ C(RESULT_MISS) ] = -1,
514 [ C(OP_PREFETCH) ] = {
515 [ C(RESULT_ACCESS) ] = -1,
516 [ C(RESULT_MISS) ] = -1,
519 [ C(BPU ) ] = {
520 [ C(OP_READ) ] = {
521 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
522 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
524 [ C(OP_WRITE) ] = {
525 [ C(RESULT_ACCESS) ] = -1,
526 [ C(RESULT_MISS) ] = -1,
528 [ C(OP_PREFETCH) ] = {
529 [ C(RESULT_ACCESS) ] = -1,
530 [ C(RESULT_MISS) ] = -1,
533 [ C(NODE) ] = {
534 [ C(OP_READ) ] = {
535 [ C(RESULT_ACCESS) ] = 0x01b7,
536 [ C(RESULT_MISS) ] = 0x01b7,
538 [ C(OP_WRITE) ] = {
539 [ C(RESULT_ACCESS) ] = 0x01b7,
540 [ C(RESULT_MISS) ] = 0x01b7,
542 [ C(OP_PREFETCH) ] = {
543 [ C(RESULT_ACCESS) ] = 0x01b7,
544 [ C(RESULT_MISS) ] = 0x01b7,
549 static __initconst const u64 core2_hw_cache_event_ids
550 [PERF_COUNT_HW_CACHE_MAX]
551 [PERF_COUNT_HW_CACHE_OP_MAX]
552 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
554 [ C(L1D) ] = {
555 [ C(OP_READ) ] = {
556 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
557 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
559 [ C(OP_WRITE) ] = {
560 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
561 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
563 [ C(OP_PREFETCH) ] = {
564 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
565 [ C(RESULT_MISS) ] = 0,
568 [ C(L1I ) ] = {
569 [ C(OP_READ) ] = {
570 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
571 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
573 [ C(OP_WRITE) ] = {
574 [ C(RESULT_ACCESS) ] = -1,
575 [ C(RESULT_MISS) ] = -1,
577 [ C(OP_PREFETCH) ] = {
578 [ C(RESULT_ACCESS) ] = 0,
579 [ C(RESULT_MISS) ] = 0,
582 [ C(LL ) ] = {
583 [ C(OP_READ) ] = {
584 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
585 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
587 [ C(OP_WRITE) ] = {
588 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
589 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
591 [ C(OP_PREFETCH) ] = {
592 [ C(RESULT_ACCESS) ] = 0,
593 [ C(RESULT_MISS) ] = 0,
596 [ C(DTLB) ] = {
597 [ C(OP_READ) ] = {
598 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
599 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
601 [ C(OP_WRITE) ] = {
602 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
603 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
605 [ C(OP_PREFETCH) ] = {
606 [ C(RESULT_ACCESS) ] = 0,
607 [ C(RESULT_MISS) ] = 0,
610 [ C(ITLB) ] = {
611 [ C(OP_READ) ] = {
612 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
613 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
615 [ C(OP_WRITE) ] = {
616 [ C(RESULT_ACCESS) ] = -1,
617 [ C(RESULT_MISS) ] = -1,
619 [ C(OP_PREFETCH) ] = {
620 [ C(RESULT_ACCESS) ] = -1,
621 [ C(RESULT_MISS) ] = -1,
624 [ C(BPU ) ] = {
625 [ C(OP_READ) ] = {
626 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
627 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
629 [ C(OP_WRITE) ] = {
630 [ C(RESULT_ACCESS) ] = -1,
631 [ C(RESULT_MISS) ] = -1,
633 [ C(OP_PREFETCH) ] = {
634 [ C(RESULT_ACCESS) ] = -1,
635 [ C(RESULT_MISS) ] = -1,
640 static __initconst const u64 atom_hw_cache_event_ids
641 [PERF_COUNT_HW_CACHE_MAX]
642 [PERF_COUNT_HW_CACHE_OP_MAX]
643 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
645 [ C(L1D) ] = {
646 [ C(OP_READ) ] = {
647 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
648 [ C(RESULT_MISS) ] = 0,
650 [ C(OP_WRITE) ] = {
651 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
652 [ C(RESULT_MISS) ] = 0,
654 [ C(OP_PREFETCH) ] = {
655 [ C(RESULT_ACCESS) ] = 0x0,
656 [ C(RESULT_MISS) ] = 0,
659 [ C(L1I ) ] = {
660 [ C(OP_READ) ] = {
661 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
662 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
664 [ C(OP_WRITE) ] = {
665 [ C(RESULT_ACCESS) ] = -1,
666 [ C(RESULT_MISS) ] = -1,
668 [ C(OP_PREFETCH) ] = {
669 [ C(RESULT_ACCESS) ] = 0,
670 [ C(RESULT_MISS) ] = 0,
673 [ C(LL ) ] = {
674 [ C(OP_READ) ] = {
675 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
676 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
678 [ C(OP_WRITE) ] = {
679 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
680 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
682 [ C(OP_PREFETCH) ] = {
683 [ C(RESULT_ACCESS) ] = 0,
684 [ C(RESULT_MISS) ] = 0,
687 [ C(DTLB) ] = {
688 [ C(OP_READ) ] = {
689 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
690 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
692 [ C(OP_WRITE) ] = {
693 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
694 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
696 [ C(OP_PREFETCH) ] = {
697 [ C(RESULT_ACCESS) ] = 0,
698 [ C(RESULT_MISS) ] = 0,
701 [ C(ITLB) ] = {
702 [ C(OP_READ) ] = {
703 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
704 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
706 [ C(OP_WRITE) ] = {
707 [ C(RESULT_ACCESS) ] = -1,
708 [ C(RESULT_MISS) ] = -1,
710 [ C(OP_PREFETCH) ] = {
711 [ C(RESULT_ACCESS) ] = -1,
712 [ C(RESULT_MISS) ] = -1,
715 [ C(BPU ) ] = {
716 [ C(OP_READ) ] = {
717 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
718 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
720 [ C(OP_WRITE) ] = {
721 [ C(RESULT_ACCESS) ] = -1,
722 [ C(RESULT_MISS) ] = -1,
724 [ C(OP_PREFETCH) ] = {
725 [ C(RESULT_ACCESS) ] = -1,
726 [ C(RESULT_MISS) ] = -1,
731 static void intel_pmu_disable_all(void)
733 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
735 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
737 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
738 intel_pmu_disable_bts();
740 intel_pmu_pebs_disable_all();
741 intel_pmu_lbr_disable_all();
744 static void intel_pmu_enable_all(int added)
746 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
748 intel_pmu_pebs_enable_all();
749 intel_pmu_lbr_enable_all();
750 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
751 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
753 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
754 struct perf_event *event =
755 cpuc->events[X86_PMC_IDX_FIXED_BTS];
757 if (WARN_ON_ONCE(!event))
758 return;
760 intel_pmu_enable_bts(event->hw.config);
765 * Workaround for:
766 * Intel Errata AAK100 (model 26)
767 * Intel Errata AAP53 (model 30)
768 * Intel Errata BD53 (model 44)
770 * The official story:
771 * These chips need to be 'reset' when adding counters by programming the
772 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
773 * in sequence on the same PMC or on different PMCs.
775 * In practise it appears some of these events do in fact count, and
776 * we need to programm all 4 events.
778 static void intel_pmu_nhm_workaround(void)
780 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
781 static const unsigned long nhm_magic[4] = {
782 0x4300B5,
783 0x4300D2,
784 0x4300B1,
785 0x4300B1
787 struct perf_event *event;
788 int i;
791 * The Errata requires below steps:
792 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
793 * 2) Configure 4 PERFEVTSELx with the magic events and clear
794 * the corresponding PMCx;
795 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
796 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
797 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
801 * The real steps we choose are a little different from above.
802 * A) To reduce MSR operations, we don't run step 1) as they
803 * are already cleared before this function is called;
804 * B) Call x86_perf_event_update to save PMCx before configuring
805 * PERFEVTSELx with magic number;
806 * C) With step 5), we do clear only when the PERFEVTSELx is
807 * not used currently.
808 * D) Call x86_perf_event_set_period to restore PMCx;
811 /* We always operate 4 pairs of PERF Counters */
812 for (i = 0; i < 4; i++) {
813 event = cpuc->events[i];
814 if (event)
815 x86_perf_event_update(event);
818 for (i = 0; i < 4; i++) {
819 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
820 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
823 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
824 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
826 for (i = 0; i < 4; i++) {
827 event = cpuc->events[i];
829 if (event) {
830 x86_perf_event_set_period(event);
831 __x86_pmu_enable_event(&event->hw,
832 ARCH_PERFMON_EVENTSEL_ENABLE);
833 } else
834 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
838 static void intel_pmu_nhm_enable_all(int added)
840 if (added)
841 intel_pmu_nhm_workaround();
842 intel_pmu_enable_all(added);
845 static inline u64 intel_pmu_get_status(void)
847 u64 status;
849 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
851 return status;
854 static inline void intel_pmu_ack_status(u64 ack)
856 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
859 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
861 int idx = hwc->idx - X86_PMC_IDX_FIXED;
862 u64 ctrl_val, mask;
864 mask = 0xfULL << (idx * 4);
866 rdmsrl(hwc->config_base, ctrl_val);
867 ctrl_val &= ~mask;
868 wrmsrl(hwc->config_base, ctrl_val);
871 static void intel_pmu_disable_event(struct perf_event *event)
873 struct hw_perf_event *hwc = &event->hw;
874 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
876 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
877 intel_pmu_disable_bts();
878 intel_pmu_drain_bts_buffer();
879 return;
882 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
883 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
885 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
886 intel_pmu_disable_fixed(hwc);
887 return;
890 x86_pmu_disable_event(event);
892 if (unlikely(event->attr.precise_ip))
893 intel_pmu_pebs_disable(event);
896 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
898 int idx = hwc->idx - X86_PMC_IDX_FIXED;
899 u64 ctrl_val, bits, mask;
902 * Enable IRQ generation (0x8),
903 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
904 * if requested:
906 bits = 0x8ULL;
907 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
908 bits |= 0x2;
909 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
910 bits |= 0x1;
913 * ANY bit is supported in v3 and up
915 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
916 bits |= 0x4;
918 bits <<= (idx * 4);
919 mask = 0xfULL << (idx * 4);
921 rdmsrl(hwc->config_base, ctrl_val);
922 ctrl_val &= ~mask;
923 ctrl_val |= bits;
924 wrmsrl(hwc->config_base, ctrl_val);
927 static void intel_pmu_enable_event(struct perf_event *event)
929 struct hw_perf_event *hwc = &event->hw;
930 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
932 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
933 if (!__this_cpu_read(cpu_hw_events.enabled))
934 return;
936 intel_pmu_enable_bts(hwc->config);
937 return;
940 if (event->attr.exclude_host)
941 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
942 if (event->attr.exclude_guest)
943 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
945 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
946 intel_pmu_enable_fixed(hwc);
947 return;
950 if (unlikely(event->attr.precise_ip))
951 intel_pmu_pebs_enable(event);
953 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
957 * Save and restart an expired event. Called by NMI contexts,
958 * so it has to be careful about preempting normal event ops:
960 int intel_pmu_save_and_restart(struct perf_event *event)
962 x86_perf_event_update(event);
963 return x86_perf_event_set_period(event);
966 static void intel_pmu_reset(void)
968 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
969 unsigned long flags;
970 int idx;
972 if (!x86_pmu.num_counters)
973 return;
975 local_irq_save(flags);
977 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
979 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
980 checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
981 checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
983 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
984 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
986 if (ds)
987 ds->bts_index = ds->bts_buffer_base;
989 local_irq_restore(flags);
993 * This handler is triggered by the local APIC, so the APIC IRQ handling
994 * rules apply:
996 static int intel_pmu_handle_irq(struct pt_regs *regs)
998 struct perf_sample_data data;
999 struct cpu_hw_events *cpuc;
1000 int bit, loops;
1001 u64 status;
1002 int handled;
1004 perf_sample_data_init(&data, 0);
1006 cpuc = &__get_cpu_var(cpu_hw_events);
1009 * Some chipsets need to unmask the LVTPC in a particular spot
1010 * inside the nmi handler. As a result, the unmasking was pushed
1011 * into all the nmi handlers.
1013 * This handler doesn't seem to have any issues with the unmasking
1014 * so it was left at the top.
1016 apic_write(APIC_LVTPC, APIC_DM_NMI);
1018 intel_pmu_disable_all();
1019 handled = intel_pmu_drain_bts_buffer();
1020 status = intel_pmu_get_status();
1021 if (!status) {
1022 intel_pmu_enable_all(0);
1023 return handled;
1026 loops = 0;
1027 again:
1028 intel_pmu_ack_status(status);
1029 if (++loops > 100) {
1030 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1031 perf_event_print_debug();
1032 intel_pmu_reset();
1033 goto done;
1036 inc_irq_stat(apic_perf_irqs);
1038 intel_pmu_lbr_read();
1041 * PEBS overflow sets bit 62 in the global status register
1043 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1044 handled++;
1045 x86_pmu.drain_pebs(regs);
1048 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1049 struct perf_event *event = cpuc->events[bit];
1051 handled++;
1053 if (!test_bit(bit, cpuc->active_mask))
1054 continue;
1056 if (!intel_pmu_save_and_restart(event))
1057 continue;
1059 data.period = event->hw.last_period;
1061 if (perf_event_overflow(event, &data, regs))
1062 x86_pmu_stop(event, 0);
1066 * Repeat if there is more work to be done:
1068 status = intel_pmu_get_status();
1069 if (status)
1070 goto again;
1072 done:
1073 intel_pmu_enable_all(0);
1074 return handled;
1077 static struct event_constraint *
1078 intel_bts_constraints(struct perf_event *event)
1080 struct hw_perf_event *hwc = &event->hw;
1081 unsigned int hw_event, bts_event;
1083 if (event->attr.freq)
1084 return NULL;
1086 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1087 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1089 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1090 return &bts_constraint;
1092 return NULL;
1095 static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
1097 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1098 return false;
1100 if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
1101 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1102 event->hw.config |= 0x01bb;
1103 event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
1104 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1105 } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
1106 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1107 event->hw.config |= 0x01b7;
1108 event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
1109 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1112 if (event->hw.extra_reg.idx == orig_idx)
1113 return false;
1115 return true;
1119 * manage allocation of shared extra msr for certain events
1121 * sharing can be:
1122 * per-cpu: to be shared between the various events on a single PMU
1123 * per-core: per-cpu + shared by HT threads
1125 static struct event_constraint *
1126 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1127 struct perf_event *event)
1129 struct event_constraint *c = &emptyconstraint;
1130 struct hw_perf_event_extra *reg = &event->hw.extra_reg;
1131 struct er_account *era;
1132 unsigned long flags;
1133 int orig_idx = reg->idx;
1135 /* already allocated shared msr */
1136 if (reg->alloc)
1137 return &unconstrained;
1139 again:
1140 era = &cpuc->shared_regs->regs[reg->idx];
1142 * we use spin_lock_irqsave() to avoid lockdep issues when
1143 * passing a fake cpuc
1145 raw_spin_lock_irqsave(&era->lock, flags);
1147 if (!atomic_read(&era->ref) || era->config == reg->config) {
1149 /* lock in msr value */
1150 era->config = reg->config;
1151 era->reg = reg->reg;
1153 /* one more user */
1154 atomic_inc(&era->ref);
1156 /* no need to reallocate during incremental event scheduling */
1157 reg->alloc = 1;
1160 * All events using extra_reg are unconstrained.
1161 * Avoids calling x86_get_event_constraints()
1163 * Must revisit if extra_reg controlling events
1164 * ever have constraints. Worst case we go through
1165 * the regular event constraint table.
1167 c = &unconstrained;
1168 } else if (intel_try_alt_er(event, orig_idx)) {
1169 raw_spin_unlock_irqrestore(&era->lock, flags);
1170 goto again;
1172 raw_spin_unlock_irqrestore(&era->lock, flags);
1174 return c;
1177 static void
1178 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1179 struct hw_perf_event_extra *reg)
1181 struct er_account *era;
1184 * only put constraint if extra reg was actually
1185 * allocated. Also takes care of event which do
1186 * not use an extra shared reg
1188 if (!reg->alloc)
1189 return;
1191 era = &cpuc->shared_regs->regs[reg->idx];
1193 /* one fewer user */
1194 atomic_dec(&era->ref);
1196 /* allocate again next time */
1197 reg->alloc = 0;
1200 static struct event_constraint *
1201 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1202 struct perf_event *event)
1204 struct event_constraint *c = NULL;
1206 if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
1207 c = __intel_shared_reg_get_constraints(cpuc, event);
1209 return c;
1212 struct event_constraint *
1213 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1215 struct event_constraint *c;
1217 if (x86_pmu.event_constraints) {
1218 for_each_event_constraint(c, x86_pmu.event_constraints) {
1219 if ((event->hw.config & c->cmask) == c->code)
1220 return c;
1224 return &unconstrained;
1227 static struct event_constraint *
1228 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1230 struct event_constraint *c;
1232 c = intel_bts_constraints(event);
1233 if (c)
1234 return c;
1236 c = intel_pebs_constraints(event);
1237 if (c)
1238 return c;
1240 c = intel_shared_regs_constraints(cpuc, event);
1241 if (c)
1242 return c;
1244 return x86_get_event_constraints(cpuc, event);
1247 static void
1248 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1249 struct perf_event *event)
1251 struct hw_perf_event_extra *reg;
1253 reg = &event->hw.extra_reg;
1254 if (reg->idx != EXTRA_REG_NONE)
1255 __intel_shared_reg_put_constraints(cpuc, reg);
1258 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1259 struct perf_event *event)
1261 intel_put_shared_regs_event_constraints(cpuc, event);
1264 static int intel_pmu_hw_config(struct perf_event *event)
1266 int ret = x86_pmu_hw_config(event);
1268 if (ret)
1269 return ret;
1271 if (event->attr.precise_ip &&
1272 (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1274 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1275 * (0x003c) so that we can use it with PEBS.
1277 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1278 * PEBS capable. However we can use INST_RETIRED.ANY_P
1279 * (0x00c0), which is a PEBS capable event, to get the same
1280 * count.
1282 * INST_RETIRED.ANY_P counts the number of cycles that retires
1283 * CNTMASK instructions. By setting CNTMASK to a value (16)
1284 * larger than the maximum number of instructions that can be
1285 * retired per cycle (4) and then inverting the condition, we
1286 * count all cycles that retire 16 or less instructions, which
1287 * is every cycle.
1289 * Thereby we gain a PEBS capable cycle counter.
1291 u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1293 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1294 event->hw.config = alt_config;
1297 if (event->attr.type != PERF_TYPE_RAW)
1298 return 0;
1300 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1301 return 0;
1303 if (x86_pmu.version < 3)
1304 return -EINVAL;
1306 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1307 return -EACCES;
1309 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1311 return 0;
1314 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1316 if (x86_pmu.guest_get_msrs)
1317 return x86_pmu.guest_get_msrs(nr);
1318 *nr = 0;
1319 return NULL;
1321 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1323 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1325 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1326 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1328 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1329 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1330 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1332 *nr = 1;
1333 return arr;
1336 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1338 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1339 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1340 int idx;
1342 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1343 struct perf_event *event = cpuc->events[idx];
1345 arr[idx].msr = x86_pmu_config_addr(idx);
1346 arr[idx].host = arr[idx].guest = 0;
1348 if (!test_bit(idx, cpuc->active_mask))
1349 continue;
1351 arr[idx].host = arr[idx].guest =
1352 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1354 if (event->attr.exclude_host)
1355 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1356 else if (event->attr.exclude_guest)
1357 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1360 *nr = x86_pmu.num_counters;
1361 return arr;
1364 static void core_pmu_enable_event(struct perf_event *event)
1366 if (!event->attr.exclude_host)
1367 x86_pmu_enable_event(event);
1370 static void core_pmu_enable_all(int added)
1372 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1373 int idx;
1375 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1376 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1378 if (!test_bit(idx, cpuc->active_mask) ||
1379 cpuc->events[idx]->attr.exclude_host)
1380 continue;
1382 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1386 static __initconst const struct x86_pmu core_pmu = {
1387 .name = "core",
1388 .handle_irq = x86_pmu_handle_irq,
1389 .disable_all = x86_pmu_disable_all,
1390 .enable_all = core_pmu_enable_all,
1391 .enable = core_pmu_enable_event,
1392 .disable = x86_pmu_disable_event,
1393 .hw_config = x86_pmu_hw_config,
1394 .schedule_events = x86_schedule_events,
1395 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1396 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1397 .event_map = intel_pmu_event_map,
1398 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1399 .apic = 1,
1401 * Intel PMCs cannot be accessed sanely above 32 bit width,
1402 * so we install an artificial 1<<31 period regardless of
1403 * the generic event period:
1405 .max_period = (1ULL << 31) - 1,
1406 .get_event_constraints = intel_get_event_constraints,
1407 .put_event_constraints = intel_put_event_constraints,
1408 .event_constraints = intel_core_event_constraints,
1409 .guest_get_msrs = core_guest_get_msrs,
1412 struct intel_shared_regs *allocate_shared_regs(int cpu)
1414 struct intel_shared_regs *regs;
1415 int i;
1417 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1418 GFP_KERNEL, cpu_to_node(cpu));
1419 if (regs) {
1421 * initialize the locks to keep lockdep happy
1423 for (i = 0; i < EXTRA_REG_MAX; i++)
1424 raw_spin_lock_init(&regs->regs[i].lock);
1426 regs->core_id = -1;
1428 return regs;
1431 static int intel_pmu_cpu_prepare(int cpu)
1433 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1435 if (!x86_pmu.extra_regs)
1436 return NOTIFY_OK;
1438 cpuc->shared_regs = allocate_shared_regs(cpu);
1439 if (!cpuc->shared_regs)
1440 return NOTIFY_BAD;
1442 return NOTIFY_OK;
1445 static void intel_pmu_cpu_starting(int cpu)
1447 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1448 int core_id = topology_core_id(cpu);
1449 int i;
1451 init_debug_store_on_cpu(cpu);
1453 * Deal with CPUs that don't clear their LBRs on power-up.
1455 intel_pmu_lbr_reset();
1457 if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
1458 return;
1460 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1461 struct intel_shared_regs *pc;
1463 pc = per_cpu(cpu_hw_events, i).shared_regs;
1464 if (pc && pc->core_id == core_id) {
1465 cpuc->kfree_on_online = cpuc->shared_regs;
1466 cpuc->shared_regs = pc;
1467 break;
1471 cpuc->shared_regs->core_id = core_id;
1472 cpuc->shared_regs->refcnt++;
1475 static void intel_pmu_cpu_dying(int cpu)
1477 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1478 struct intel_shared_regs *pc;
1480 pc = cpuc->shared_regs;
1481 if (pc) {
1482 if (pc->core_id == -1 || --pc->refcnt == 0)
1483 kfree(pc);
1484 cpuc->shared_regs = NULL;
1487 fini_debug_store_on_cpu(cpu);
1490 static __initconst const struct x86_pmu intel_pmu = {
1491 .name = "Intel",
1492 .handle_irq = intel_pmu_handle_irq,
1493 .disable_all = intel_pmu_disable_all,
1494 .enable_all = intel_pmu_enable_all,
1495 .enable = intel_pmu_enable_event,
1496 .disable = intel_pmu_disable_event,
1497 .hw_config = intel_pmu_hw_config,
1498 .schedule_events = x86_schedule_events,
1499 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1500 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1501 .event_map = intel_pmu_event_map,
1502 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1503 .apic = 1,
1505 * Intel PMCs cannot be accessed sanely above 32 bit width,
1506 * so we install an artificial 1<<31 period regardless of
1507 * the generic event period:
1509 .max_period = (1ULL << 31) - 1,
1510 .get_event_constraints = intel_get_event_constraints,
1511 .put_event_constraints = intel_put_event_constraints,
1513 .cpu_prepare = intel_pmu_cpu_prepare,
1514 .cpu_starting = intel_pmu_cpu_starting,
1515 .cpu_dying = intel_pmu_cpu_dying,
1516 .guest_get_msrs = intel_guest_get_msrs,
1519 static __init void intel_clovertown_quirk(void)
1522 * PEBS is unreliable due to:
1524 * AJ67 - PEBS may experience CPL leaks
1525 * AJ68 - PEBS PMI may be delayed by one event
1526 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1527 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1529 * AJ67 could be worked around by restricting the OS/USR flags.
1530 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1532 * AJ106 could possibly be worked around by not allowing LBR
1533 * usage from PEBS, including the fixup.
1534 * AJ68 could possibly be worked around by always programming
1535 * a pebs_event_reset[0] value and coping with the lost events.
1537 * But taken together it might just make sense to not enable PEBS on
1538 * these chips.
1540 printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1541 x86_pmu.pebs = 0;
1542 x86_pmu.pebs_constraints = NULL;
1545 static __init void intel_sandybridge_quirk(void)
1547 printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1548 x86_pmu.pebs = 0;
1549 x86_pmu.pebs_constraints = NULL;
1552 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1553 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1554 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1555 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1556 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1557 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1558 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1559 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1562 static __init void intel_arch_events_quirk(void)
1564 int bit;
1566 /* disable event that reported as not presend by cpuid */
1567 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1568 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1569 printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
1570 intel_arch_events_map[bit].name);
1574 static __init void intel_nehalem_quirk(void)
1576 union cpuid10_ebx ebx;
1578 ebx.full = x86_pmu.events_maskl;
1579 if (ebx.split.no_branch_misses_retired) {
1581 * Erratum AAJ80 detected, we work it around by using
1582 * the BR_MISP_EXEC.ANY event. This will over-count
1583 * branch-misses, but it's still much better than the
1584 * architectural event which is often completely bogus:
1586 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1587 ebx.split.no_branch_misses_retired = 0;
1588 x86_pmu.events_maskl = ebx.full;
1589 printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
1593 __init int intel_pmu_init(void)
1595 union cpuid10_edx edx;
1596 union cpuid10_eax eax;
1597 union cpuid10_ebx ebx;
1598 unsigned int unused;
1599 int version;
1601 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1602 switch (boot_cpu_data.x86) {
1603 case 0x6:
1604 return p6_pmu_init();
1605 case 0xf:
1606 return p4_pmu_init();
1608 return -ENODEV;
1612 * Check whether the Architectural PerfMon supports
1613 * Branch Misses Retired hw_event or not.
1615 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1616 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1617 return -ENODEV;
1619 version = eax.split.version_id;
1620 if (version < 2)
1621 x86_pmu = core_pmu;
1622 else
1623 x86_pmu = intel_pmu;
1625 x86_pmu.version = version;
1626 x86_pmu.num_counters = eax.split.num_counters;
1627 x86_pmu.cntval_bits = eax.split.bit_width;
1628 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
1630 x86_pmu.events_maskl = ebx.full;
1631 x86_pmu.events_mask_len = eax.split.mask_length;
1634 * Quirk: v2 perfmon does not report fixed-purpose events, so
1635 * assume at least 3 events:
1637 if (version > 1)
1638 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1641 * v2 and above have a perf capabilities MSR
1643 if (version > 1) {
1644 u64 capabilities;
1646 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1647 x86_pmu.intel_cap.capabilities = capabilities;
1650 intel_ds_init();
1652 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1655 * Install the hw-cache-events table:
1657 switch (boot_cpu_data.x86_model) {
1658 case 14: /* 65 nm core solo/duo, "Yonah" */
1659 pr_cont("Core events, ");
1660 break;
1662 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1663 x86_add_quirk(intel_clovertown_quirk);
1664 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1665 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1666 case 29: /* six-core 45 nm xeon "Dunnington" */
1667 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1668 sizeof(hw_cache_event_ids));
1670 intel_pmu_lbr_init_core();
1672 x86_pmu.event_constraints = intel_core2_event_constraints;
1673 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1674 pr_cont("Core2 events, ");
1675 break;
1677 case 26: /* 45 nm nehalem, "Bloomfield" */
1678 case 30: /* 45 nm nehalem, "Lynnfield" */
1679 case 46: /* 45 nm nehalem-ex, "Beckton" */
1680 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1681 sizeof(hw_cache_event_ids));
1682 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1683 sizeof(hw_cache_extra_regs));
1685 intel_pmu_lbr_init_nhm();
1687 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1688 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1689 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1690 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1692 /* UOPS_ISSUED.STALLED_CYCLES */
1693 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1694 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1695 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1697 x86_add_quirk(intel_nehalem_quirk);
1699 pr_cont("Nehalem events, ");
1700 break;
1702 case 28: /* Atom */
1703 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1704 sizeof(hw_cache_event_ids));
1706 intel_pmu_lbr_init_atom();
1708 x86_pmu.event_constraints = intel_gen_event_constraints;
1709 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1710 pr_cont("Atom events, ");
1711 break;
1713 case 37: /* 32 nm nehalem, "Clarkdale" */
1714 case 44: /* 32 nm nehalem, "Gulftown" */
1715 case 47: /* 32 nm Xeon E7 */
1716 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1717 sizeof(hw_cache_event_ids));
1718 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1719 sizeof(hw_cache_extra_regs));
1721 intel_pmu_lbr_init_nhm();
1723 x86_pmu.event_constraints = intel_westmere_event_constraints;
1724 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1725 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1726 x86_pmu.extra_regs = intel_westmere_extra_regs;
1727 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1729 /* UOPS_ISSUED.STALLED_CYCLES */
1730 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1731 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1732 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1734 pr_cont("Westmere events, ");
1735 break;
1737 case 42: /* SandyBridge */
1738 x86_add_quirk(intel_sandybridge_quirk);
1739 case 45: /* SandyBridge, "Romely-EP" */
1740 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1741 sizeof(hw_cache_event_ids));
1743 intel_pmu_lbr_init_nhm();
1745 x86_pmu.event_constraints = intel_snb_event_constraints;
1746 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1747 x86_pmu.extra_regs = intel_snb_extra_regs;
1748 /* all extra regs are per-cpu when HT is on */
1749 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1750 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1752 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1753 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1754 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1755 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
1757 pr_cont("SandyBridge events, ");
1758 break;
1760 default:
1761 switch (x86_pmu.version) {
1762 case 1:
1763 x86_pmu.event_constraints = intel_v1_event_constraints;
1764 pr_cont("generic architected perfmon v1, ");
1765 break;
1766 default:
1768 * default constraints for v2 and up
1770 x86_pmu.event_constraints = intel_gen_event_constraints;
1771 pr_cont("generic architected perfmon, ");
1772 break;
1776 return 0;