spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / mac.c
blobe196aba77acf568387d7a4b2b5852e316d801e4f
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 struct ath9k_tx_queue_info *qi)
24 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 ah->txurn_interrupt_mask);
30 ENABLE_REGWRITE_BUFFER(ah);
32 REG_WRITE(ah, AR_IMR_S0,
33 SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 REG_WRITE(ah, AR_IMR_S1,
36 SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
39 ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
43 REGWRITE_BUFFER_FLUSH(ah);
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
48 return REG_READ(ah, AR_QTXDP(q));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
54 REG_WRITE(ah, AR_QTXDP(q), txdp);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
60 ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 REG_WRITE(ah, AR_Q_TXE, 1 << q);
63 EXPORT_SYMBOL(ath9k_hw_txstart);
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
67 u32 npend;
69 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 if (npend == 0) {
72 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 npend = 1;
76 return npend;
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
80 /**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
107 u32 txcfg, curLevel, newLevel;
109 if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 return false;
112 ath9k_hw_disable_interrupts(ah);
114 txcfg = REG_READ(ah, AR_TXCFG);
115 curLevel = MS(txcfg, AR_FTRIG);
116 newLevel = curLevel;
117 if (bIncTrigLevel) {
118 if (curLevel < ah->config.max_txtrig_level)
119 newLevel++;
120 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 newLevel--;
122 if (newLevel != curLevel)
123 REG_WRITE(ah, AR_TXCFG,
124 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
126 ath9k_hw_enable_interrupts(ah);
128 ah->tx_trig_level = newLevel;
130 return newLevel != curLevel;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
136 int i, q;
138 REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
140 REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
141 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
142 REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
144 for (q = 0; q < AR_NUM_QCU; q++) {
145 for (i = 0; i < 1000; i++) {
146 if (i)
147 udelay(5);
149 if (!ath9k_hw_numtxpending(ah, q))
150 break;
154 REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
155 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
156 REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
158 REG_WRITE(ah, AR_Q_TXD, 0);
160 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
162 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
164 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
165 #define ATH9K_TIME_QUANTUM 100 /* usec */
166 int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
167 int wait;
169 REG_WRITE(ah, AR_Q_TXD, 1 << q);
171 for (wait = wait_time; wait != 0; wait--) {
172 if (wait != wait_time)
173 udelay(ATH9K_TIME_QUANTUM);
175 if (ath9k_hw_numtxpending(ah, q) == 0)
176 break;
179 REG_WRITE(ah, AR_Q_TXD, 0);
181 return wait != 0;
183 #undef ATH9K_TX_STOP_DMA_TIMEOUT
184 #undef ATH9K_TIME_QUANTUM
186 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
188 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
190 *txqs &= ah->intr_txqs;
191 ah->intr_txqs &= ~(*txqs);
193 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
195 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
196 const struct ath9k_tx_queue_info *qinfo)
198 u32 cw;
199 struct ath_common *common = ath9k_hw_common(ah);
200 struct ath9k_tx_queue_info *qi;
202 qi = &ah->txq[q];
203 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
204 ath_dbg(common, QUEUE,
205 "Set TXQ properties, inactive queue: %u\n", q);
206 return false;
209 ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211 qi->tqi_ver = qinfo->tqi_ver;
212 qi->tqi_subtype = qinfo->tqi_subtype;
213 qi->tqi_qflags = qinfo->tqi_qflags;
214 qi->tqi_priority = qinfo->tqi_priority;
215 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
216 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
217 else
218 qi->tqi_aifs = INIT_AIFS;
219 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
220 cw = min(qinfo->tqi_cwmin, 1024U);
221 qi->tqi_cwmin = 1;
222 while (qi->tqi_cwmin < cw)
223 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
224 } else
225 qi->tqi_cwmin = qinfo->tqi_cwmin;
226 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
227 cw = min(qinfo->tqi_cwmax, 1024U);
228 qi->tqi_cwmax = 1;
229 while (qi->tqi_cwmax < cw)
230 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
231 } else
232 qi->tqi_cwmax = INIT_CWMAX;
234 if (qinfo->tqi_shretry != 0)
235 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
236 else
237 qi->tqi_shretry = INIT_SH_RETRY;
238 if (qinfo->tqi_lgretry != 0)
239 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
240 else
241 qi->tqi_lgretry = INIT_LG_RETRY;
242 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
243 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
244 qi->tqi_burstTime = qinfo->tqi_burstTime;
245 qi->tqi_readyTime = qinfo->tqi_readyTime;
247 switch (qinfo->tqi_subtype) {
248 case ATH9K_WME_UPSD:
249 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
250 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
251 break;
252 default:
253 break;
256 return true;
258 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
261 struct ath9k_tx_queue_info *qinfo)
263 struct ath_common *common = ath9k_hw_common(ah);
264 struct ath9k_tx_queue_info *qi;
266 qi = &ah->txq[q];
267 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
268 ath_dbg(common, QUEUE,
269 "Get TXQ properties, inactive queue: %u\n", q);
270 return false;
273 qinfo->tqi_qflags = qi->tqi_qflags;
274 qinfo->tqi_ver = qi->tqi_ver;
275 qinfo->tqi_subtype = qi->tqi_subtype;
276 qinfo->tqi_qflags = qi->tqi_qflags;
277 qinfo->tqi_priority = qi->tqi_priority;
278 qinfo->tqi_aifs = qi->tqi_aifs;
279 qinfo->tqi_cwmin = qi->tqi_cwmin;
280 qinfo->tqi_cwmax = qi->tqi_cwmax;
281 qinfo->tqi_shretry = qi->tqi_shretry;
282 qinfo->tqi_lgretry = qi->tqi_lgretry;
283 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
284 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
285 qinfo->tqi_burstTime = qi->tqi_burstTime;
286 qinfo->tqi_readyTime = qi->tqi_readyTime;
288 return true;
290 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
293 const struct ath9k_tx_queue_info *qinfo)
295 struct ath_common *common = ath9k_hw_common(ah);
296 struct ath9k_tx_queue_info *qi;
297 int q;
299 switch (type) {
300 case ATH9K_TX_QUEUE_BEACON:
301 q = ATH9K_NUM_TX_QUEUES - 1;
302 break;
303 case ATH9K_TX_QUEUE_CAB:
304 q = ATH9K_NUM_TX_QUEUES - 2;
305 break;
306 case ATH9K_TX_QUEUE_PSPOLL:
307 q = 1;
308 break;
309 case ATH9K_TX_QUEUE_UAPSD:
310 q = ATH9K_NUM_TX_QUEUES - 3;
311 break;
312 case ATH9K_TX_QUEUE_DATA:
313 for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
314 if (ah->txq[q].tqi_type ==
315 ATH9K_TX_QUEUE_INACTIVE)
316 break;
317 if (q == ATH9K_NUM_TX_QUEUES) {
318 ath_err(common, "No available TX queue\n");
319 return -1;
321 break;
322 default:
323 ath_err(common, "Invalid TX queue type: %u\n", type);
324 return -1;
327 ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
329 qi = &ah->txq[q];
330 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
331 ath_err(common, "TX queue: %u already active\n", q);
332 return -1;
334 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
335 qi->tqi_type = type;
336 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
337 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
339 return q;
341 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
345 struct ath_common *common = ath9k_hw_common(ah);
346 struct ath9k_tx_queue_info *qi;
348 qi = &ah->txq[q];
349 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
350 ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
351 return false;
354 ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
356 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
357 ah->txok_interrupt_mask &= ~(1 << q);
358 ah->txerr_interrupt_mask &= ~(1 << q);
359 ah->txdesc_interrupt_mask &= ~(1 << q);
360 ah->txeol_interrupt_mask &= ~(1 << q);
361 ah->txurn_interrupt_mask &= ~(1 << q);
362 ath9k_hw_set_txq_interrupts(ah, qi);
364 return true;
366 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
368 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
370 struct ath_common *common = ath9k_hw_common(ah);
371 struct ath9k_channel *chan = ah->curchan;
372 struct ath9k_tx_queue_info *qi;
373 u32 cwMin, chanCwMin, value;
375 qi = &ah->txq[q];
376 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
377 ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
378 return true;
381 ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
383 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
384 if (chan && IS_CHAN_B(chan))
385 chanCwMin = INIT_CWMIN_11B;
386 else
387 chanCwMin = INIT_CWMIN;
389 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
390 } else
391 cwMin = qi->tqi_cwmin;
393 ENABLE_REGWRITE_BUFFER(ah);
395 REG_WRITE(ah, AR_DLCL_IFS(q),
396 SM(cwMin, AR_D_LCL_IFS_CWMIN) |
397 SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
398 SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
400 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
401 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
402 SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
403 SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
405 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
407 if (AR_SREV_9340(ah))
408 REG_WRITE(ah, AR_DMISC(q),
409 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
410 else
411 REG_WRITE(ah, AR_DMISC(q),
412 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
414 if (qi->tqi_cbrPeriod) {
415 REG_WRITE(ah, AR_QCBRCFG(q),
416 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
417 SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
418 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
419 (qi->tqi_cbrOverflowLimit ?
420 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
422 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
423 REG_WRITE(ah, AR_QRDYTIMECFG(q),
424 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
425 AR_Q_RDYTIMECFG_EN);
428 REG_WRITE(ah, AR_DCHNTIME(q),
429 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
430 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
432 if (qi->tqi_burstTime
433 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
434 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
436 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
437 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
439 REGWRITE_BUFFER_FLUSH(ah);
441 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
442 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
444 switch (qi->tqi_type) {
445 case ATH9K_TX_QUEUE_BEACON:
446 ENABLE_REGWRITE_BUFFER(ah);
448 REG_SET_BIT(ah, AR_QMISC(q),
449 AR_Q_MISC_FSP_DBA_GATED
450 | AR_Q_MISC_BEACON_USE
451 | AR_Q_MISC_CBR_INCR_DIS1);
453 REG_SET_BIT(ah, AR_DMISC(q),
454 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
455 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
456 | AR_D_MISC_BEACON_USE
457 | AR_D_MISC_POST_FR_BKOFF_DIS);
459 REGWRITE_BUFFER_FLUSH(ah);
462 * cwmin and cwmax should be 0 for beacon queue
463 * but not for IBSS as we would create an imbalance
464 * on beaconing fairness for participating nodes.
466 if (AR_SREV_9300_20_OR_LATER(ah) &&
467 ah->opmode != NL80211_IFTYPE_ADHOC) {
468 REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
469 | SM(0, AR_D_LCL_IFS_CWMAX)
470 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
472 break;
473 case ATH9K_TX_QUEUE_CAB:
474 ENABLE_REGWRITE_BUFFER(ah);
476 REG_SET_BIT(ah, AR_QMISC(q),
477 AR_Q_MISC_FSP_DBA_GATED
478 | AR_Q_MISC_CBR_INCR_DIS1
479 | AR_Q_MISC_CBR_INCR_DIS0);
480 value = (qi->tqi_readyTime -
481 (ah->config.sw_beacon_response_time -
482 ah->config.dma_beacon_response_time) -
483 ah->config.additional_swba_backoff) * 1024;
484 REG_WRITE(ah, AR_QRDYTIMECFG(q),
485 value | AR_Q_RDYTIMECFG_EN);
486 REG_SET_BIT(ah, AR_DMISC(q),
487 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
488 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
490 REGWRITE_BUFFER_FLUSH(ah);
492 break;
493 case ATH9K_TX_QUEUE_PSPOLL:
494 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
495 break;
496 case ATH9K_TX_QUEUE_UAPSD:
497 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
498 break;
499 default:
500 break;
503 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
504 REG_SET_BIT(ah, AR_DMISC(q),
505 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
506 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
507 AR_D_MISC_POST_FR_BKOFF_DIS);
510 if (AR_SREV_9300_20_OR_LATER(ah))
511 REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
513 if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
514 ah->txok_interrupt_mask |= 1 << q;
515 else
516 ah->txok_interrupt_mask &= ~(1 << q);
517 if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
518 ah->txerr_interrupt_mask |= 1 << q;
519 else
520 ah->txerr_interrupt_mask &= ~(1 << q);
521 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
522 ah->txdesc_interrupt_mask |= 1 << q;
523 else
524 ah->txdesc_interrupt_mask &= ~(1 << q);
525 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
526 ah->txeol_interrupt_mask |= 1 << q;
527 else
528 ah->txeol_interrupt_mask &= ~(1 << q);
529 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
530 ah->txurn_interrupt_mask |= 1 << q;
531 else
532 ah->txurn_interrupt_mask &= ~(1 << q);
533 ath9k_hw_set_txq_interrupts(ah, qi);
535 return true;
537 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
539 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
540 struct ath_rx_status *rs)
542 struct ar5416_desc ads;
543 struct ar5416_desc *adsp = AR5416DESC(ds);
544 u32 phyerr;
546 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
547 return -EINPROGRESS;
549 ads.u.rx = adsp->u.rx;
551 rs->rs_status = 0;
552 rs->rs_flags = 0;
554 rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
555 rs->rs_tstamp = ads.AR_RcvTimestamp;
557 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
558 rs->rs_rssi = ATH9K_RSSI_BAD;
559 rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
560 rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
561 rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
562 rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
563 rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
564 rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
565 } else {
566 rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
567 rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
568 AR_RxRSSIAnt00);
569 rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
570 AR_RxRSSIAnt01);
571 rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
572 AR_RxRSSIAnt02);
573 rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
574 AR_RxRSSIAnt10);
575 rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
576 AR_RxRSSIAnt11);
577 rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
578 AR_RxRSSIAnt12);
580 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
581 rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
582 else
583 rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
585 rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
586 rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
588 rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
589 rs->rs_moreaggr =
590 (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
591 rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
592 rs->rs_flags =
593 (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
594 rs->rs_flags |=
595 (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
597 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
598 rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
599 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
600 rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
601 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
602 rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
604 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
606 * Treat these errors as mutually exclusive to avoid spurious
607 * extra error reports from the hardware. If a CRC error is
608 * reported, then decryption and MIC errors are irrelevant,
609 * the frame is going to be dropped either way
611 if (ads.ds_rxstatus8 & AR_CRCErr)
612 rs->rs_status |= ATH9K_RXERR_CRC;
613 else if (ads.ds_rxstatus8 & AR_PHYErr) {
614 rs->rs_status |= ATH9K_RXERR_PHY;
615 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
616 rs->rs_phyerr = phyerr;
617 } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
618 rs->rs_status |= ATH9K_RXERR_DECRYPT;
619 else if (ads.ds_rxstatus8 & AR_MichaelErr)
620 rs->rs_status |= ATH9K_RXERR_MIC;
623 if (ads.ds_rxstatus8 & AR_KeyMiss)
624 rs->rs_status |= ATH9K_RXERR_KEYMISS;
626 return 0;
628 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
631 * This can stop or re-enables RX.
633 * If bool is set this will kill any frame which is currently being
634 * transferred between the MAC and baseband and also prevent any new
635 * frames from getting started.
637 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
639 u32 reg;
641 if (set) {
642 REG_SET_BIT(ah, AR_DIAG_SW,
643 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
645 if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
646 0, AH_WAIT_TIMEOUT)) {
647 REG_CLR_BIT(ah, AR_DIAG_SW,
648 (AR_DIAG_RX_DIS |
649 AR_DIAG_RX_ABORT));
651 reg = REG_READ(ah, AR_OBS_BUS_1);
652 ath_err(ath9k_hw_common(ah),
653 "RX failed to go idle in 10 ms RXSM=0x%x\n",
654 reg);
656 return false;
658 } else {
659 REG_CLR_BIT(ah, AR_DIAG_SW,
660 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
663 return true;
665 EXPORT_SYMBOL(ath9k_hw_setrxabort);
667 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
669 REG_WRITE(ah, AR_RXDP, rxdp);
671 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
673 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
675 ath9k_enable_mib_counters(ah);
677 ath9k_ani_reset(ah, is_scanning);
679 REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
681 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
683 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
685 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
687 ath9k_hw_disable_mib_counters(ah);
689 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
691 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
693 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
694 struct ath_common *common = ath9k_hw_common(ah);
695 u32 mac_status, last_mac_status = 0;
696 int i;
698 /* Enable access to the DMA observation bus */
699 REG_WRITE(ah, AR_MACMISC,
700 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
701 (AR_MACMISC_MISC_OBS_BUS_1 <<
702 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
704 REG_WRITE(ah, AR_CR, AR_CR_RXD);
706 /* Wait for rx enable bit to go low */
707 for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
708 if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
709 break;
711 if (!AR_SREV_9300_20_OR_LATER(ah)) {
712 mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
713 if (mac_status == 0x1c0 && mac_status == last_mac_status) {
714 *reset = true;
715 break;
718 last_mac_status = mac_status;
721 udelay(AH_TIME_QUANTUM);
724 if (i == 0) {
725 ath_err(common,
726 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
727 AH_RX_STOP_DMA_TIMEOUT / 1000,
728 REG_READ(ah, AR_CR),
729 REG_READ(ah, AR_DIAG_SW),
730 REG_READ(ah, AR_DMADBG_7));
731 return false;
732 } else {
733 return true;
736 #undef AH_RX_STOP_DMA_TIMEOUT
738 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
740 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
742 struct ath9k_tx_queue_info qi;
744 memset(&qi, 0, sizeof(qi));
745 qi.tqi_aifs = 1;
746 qi.tqi_cwmin = 0;
747 qi.tqi_cwmax = 0;
748 /* NB: don't enable any interrupts */
749 return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
751 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
753 bool ath9k_hw_intrpend(struct ath_hw *ah)
755 u32 host_isr;
757 if (AR_SREV_9100(ah))
758 return true;
760 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
762 if (((host_isr & AR_INTR_MAC_IRQ) ||
763 (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
764 (host_isr != AR_INTR_SPURIOUS))
765 return true;
767 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
768 if ((host_isr & AR_INTR_SYNC_DEFAULT)
769 && (host_isr != AR_INTR_SPURIOUS))
770 return true;
772 return false;
774 EXPORT_SYMBOL(ath9k_hw_intrpend);
776 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
778 struct ath_common *common = ath9k_hw_common(ah);
780 if (!(ah->imask & ATH9K_INT_GLOBAL))
781 atomic_set(&ah->intr_ref_cnt, -1);
782 else
783 atomic_dec(&ah->intr_ref_cnt);
785 ath_dbg(common, INTERRUPT, "disable IER\n");
786 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
787 (void) REG_READ(ah, AR_IER);
788 if (!AR_SREV_9100(ah)) {
789 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
790 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
792 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
793 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
796 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
798 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
800 struct ath_common *common = ath9k_hw_common(ah);
801 u32 sync_default = AR_INTR_SYNC_DEFAULT;
802 u32 async_mask;
804 if (!(ah->imask & ATH9K_INT_GLOBAL))
805 return;
807 if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
808 ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
809 atomic_read(&ah->intr_ref_cnt));
810 return;
813 if (AR_SREV_9340(ah))
814 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
816 async_mask = AR_INTR_MAC_IRQ;
818 if (ah->imask & ATH9K_INT_MCI)
819 async_mask |= AR_INTR_ASYNC_MASK_MCI;
821 ath_dbg(common, INTERRUPT, "enable IER\n");
822 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
823 if (!AR_SREV_9100(ah)) {
824 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
825 REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
827 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
828 REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
830 ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
831 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
833 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
835 void ath9k_hw_set_interrupts(struct ath_hw *ah)
837 enum ath9k_int ints = ah->imask;
838 u32 mask, mask2;
839 struct ath9k_hw_capabilities *pCap = &ah->caps;
840 struct ath_common *common = ath9k_hw_common(ah);
842 if (!(ints & ATH9K_INT_GLOBAL))
843 ath9k_hw_disable_interrupts(ah);
845 ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
847 mask = ints & ATH9K_INT_COMMON;
848 mask2 = 0;
850 if (ints & ATH9K_INT_TX) {
851 if (ah->config.tx_intr_mitigation)
852 mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
853 else {
854 if (ah->txok_interrupt_mask)
855 mask |= AR_IMR_TXOK;
856 if (ah->txdesc_interrupt_mask)
857 mask |= AR_IMR_TXDESC;
859 if (ah->txerr_interrupt_mask)
860 mask |= AR_IMR_TXERR;
861 if (ah->txeol_interrupt_mask)
862 mask |= AR_IMR_TXEOL;
864 if (ints & ATH9K_INT_RX) {
865 if (AR_SREV_9300_20_OR_LATER(ah)) {
866 mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
867 if (ah->config.rx_intr_mitigation) {
868 mask &= ~AR_IMR_RXOK_LP;
869 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
870 } else {
871 mask |= AR_IMR_RXOK_LP;
873 } else {
874 if (ah->config.rx_intr_mitigation)
875 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
876 else
877 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
879 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
880 mask |= AR_IMR_GENTMR;
883 if (ints & ATH9K_INT_GENTIMER)
884 mask |= AR_IMR_GENTMR;
886 if (ints & (ATH9K_INT_BMISC)) {
887 mask |= AR_IMR_BCNMISC;
888 if (ints & ATH9K_INT_TIM)
889 mask2 |= AR_IMR_S2_TIM;
890 if (ints & ATH9K_INT_DTIM)
891 mask2 |= AR_IMR_S2_DTIM;
892 if (ints & ATH9K_INT_DTIMSYNC)
893 mask2 |= AR_IMR_S2_DTIMSYNC;
894 if (ints & ATH9K_INT_CABEND)
895 mask2 |= AR_IMR_S2_CABEND;
896 if (ints & ATH9K_INT_TSFOOR)
897 mask2 |= AR_IMR_S2_TSFOOR;
900 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
901 mask |= AR_IMR_BCNMISC;
902 if (ints & ATH9K_INT_GTT)
903 mask2 |= AR_IMR_S2_GTT;
904 if (ints & ATH9K_INT_CST)
905 mask2 |= AR_IMR_S2_CST;
908 ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
909 REG_WRITE(ah, AR_IMR, mask);
910 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
911 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
912 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
913 ah->imrs2_reg |= mask2;
914 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
916 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
917 if (ints & ATH9K_INT_TIM_TIMER)
918 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
919 else
920 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
923 return;
925 EXPORT_SYMBOL(ath9k_hw_set_interrupts);