spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / scsi / qla2xxx / qla_sup.c
blob16bc72844a97b6afc6286a0618ed9476fd876193
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2011 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
140 return data;
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
155 uint16_t data;
156 uint32_t nv_cmd;
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
162 return (data);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
194 qla2x00_nv_write(ha, NVR_DATA_OUT);
195 qla2x00_nv_write(ha, 0);
196 qla2x00_nv_write(ha, 0);
198 for (word = 0; word < 8; word++)
199 qla2x00_nv_write(ha, NVR_DATA_OUT);
201 qla2x00_nv_deselect(ha);
203 /* Write data */
204 nv_cmd = (addr << 16) | NV_WRITE_OP;
205 nv_cmd |= data;
206 nv_cmd <<= 5;
207 for (count = 0; count < 27; count++) {
208 if (nv_cmd & BIT_31)
209 qla2x00_nv_write(ha, NVR_DATA_OUT);
210 else
211 qla2x00_nv_write(ha, 0);
213 nv_cmd <<= 1;
216 qla2x00_nv_deselect(ha);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
221 wait_cnt = NVR_WAIT_CNT;
222 do {
223 if (!--wait_cnt) {
224 ql_dbg(ql_dbg_user, vha, 0x708d,
225 "NVRAM didn't go ready...\n");
226 break;
228 NVRAM_DELAY();
229 word = RD_REG_WORD(&reg->nvram);
230 } while ((word & NVR_DATA_IN) == 0);
232 qla2x00_nv_deselect(ha);
234 /* Disable writes */
235 qla2x00_nv_write(ha, NVR_DATA_OUT);
236 for (count = 0; count < 10; count++)
237 qla2x00_nv_write(ha, 0);
239 qla2x00_nv_deselect(ha);
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 uint16_t data, uint32_t tmo)
246 int ret, count;
247 uint16_t word;
248 uint32_t nv_cmd;
249 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
251 ret = QLA_SUCCESS;
253 qla2x00_nv_write(ha, NVR_DATA_OUT);
254 qla2x00_nv_write(ha, 0);
255 qla2x00_nv_write(ha, 0);
257 for (word = 0; word < 8; word++)
258 qla2x00_nv_write(ha, NVR_DATA_OUT);
260 qla2x00_nv_deselect(ha);
262 /* Write data */
263 nv_cmd = (addr << 16) | NV_WRITE_OP;
264 nv_cmd |= data;
265 nv_cmd <<= 5;
266 for (count = 0; count < 27; count++) {
267 if (nv_cmd & BIT_31)
268 qla2x00_nv_write(ha, NVR_DATA_OUT);
269 else
270 qla2x00_nv_write(ha, 0);
272 nv_cmd <<= 1;
275 qla2x00_nv_deselect(ha);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
280 do {
281 NVRAM_DELAY();
282 word = RD_REG_WORD(&reg->nvram);
283 if (!--tmo) {
284 ret = QLA_FUNCTION_FAILED;
285 break;
287 } while ((word & NVR_DATA_IN) == 0);
289 qla2x00_nv_deselect(ha);
291 /* Disable writes */
292 qla2x00_nv_write(ha, NVR_DATA_OUT);
293 for (count = 0; count < 10; count++)
294 qla2x00_nv_write(ha, 0);
296 qla2x00_nv_deselect(ha);
298 return ret;
302 * qla2x00_clear_nvram_protection() -
303 * @ha: HA context
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
308 int ret, stat;
309 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 uint32_t word, wait_cnt;
311 uint16_t wprot, wprot_old;
312 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
329 qla2x00_nv_deselect(ha);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
338 qla2x00_nv_deselect(ha);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
347 qla2x00_nv_deselect(ha);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 ql_dbg(ql_dbg_user, vha, 0x708e,
356 "NVRAM didn't go ready...\n");
357 break;
359 NVRAM_DELAY();
360 word = RD_REG_WORD(&reg->nvram);
361 } while ((word & NVR_DATA_IN) == 0);
363 if (wait_cnt)
364 ret = QLA_SUCCESS;
365 } else
366 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 return ret;
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
374 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 uint32_t word, wait_cnt;
376 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
378 if (stat != QLA_SUCCESS)
379 return;
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
389 qla2x00_nv_deselect(ha);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
398 qla2x00_nv_deselect(ha);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
407 qla2x00_nv_deselect(ha);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 ql_dbg(ql_dbg_user, vha, 0x708f,
416 "NVRAM didn't go ready...\n");
417 break;
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
432 return ha->flash_conf_off | faddr;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
438 return ha->flash_data_off | faddr;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
444 return ha->nvram_conf_off | naddr;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
450 return ha->nvram_data_off | naddr;
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
456 int rval;
457 uint32_t cnt, data;
458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
460 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 /* Wait for READ cycle to complete. */
462 rval = QLA_SUCCESS;
463 for (cnt = 3000;
464 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 rval == QLA_SUCCESS; cnt--) {
466 if (cnt)
467 udelay(10);
468 else
469 rval = QLA_FUNCTION_TIMEOUT;
470 cond_resched();
473 /* TODO: What happens if we time out? */
474 data = 0xDEADDEAD;
475 if (rval == QLA_SUCCESS)
476 data = RD_REG_DWORD(&reg->flash_data);
478 return data;
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 uint32_t dwords)
485 uint32_t i;
486 struct qla_hw_data *ha = vha->hw;
488 /* Dword reads to flash. */
489 for (i = 0; i < dwords; i++, faddr++)
490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 flash_data_addr(ha, faddr)));
493 return dwptr;
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
499 int rval;
500 uint32_t cnt;
501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
503 WRT_REG_DWORD(&reg->flash_data, data);
504 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 /* Wait for Write cycle to complete. */
507 rval = QLA_SUCCESS;
508 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 rval == QLA_SUCCESS; cnt--) {
510 if (cnt)
511 udelay(10);
512 else
513 rval = QLA_FUNCTION_TIMEOUT;
514 cond_resched();
516 return rval;
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 uint8_t *flash_id)
523 uint32_t ids;
525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 *man_id = LSB(ids);
527 *flash_id = MSB(ids);
529 /* Check if man_id and flash_id are valid. */
530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 *man_id = LSB(ids);
539 *flash_id = MSB(ids);
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
546 const char *loc, *locations[] = { "DEF", "PCI" };
547 uint32_t pcihdr, pcids;
548 uint32_t *dcode;
549 uint8_t *buf, *bcode, last_image;
550 uint16_t cnt, chksum, *wptr;
551 struct qla_flt_location *fltl;
552 struct qla_hw_data *ha = vha->hw;
553 struct req_que *req = ha->req_q_map[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
560 loc = locations[0];
561 *start = 0;
562 if (IS_QLA24XX_TYPE(ha))
563 *start = FA_FLASH_LAYOUT_ADDR_24;
564 else if (IS_QLA25XX(ha))
565 *start = FA_FLASH_LAYOUT_ADDR;
566 else if (IS_QLA81XX(ha))
567 *start = FA_FLASH_LAYOUT_ADDR_81;
568 else if (IS_QLA82XX(ha)) {
569 *start = FA_FLASH_LAYOUT_ADDR_82;
570 goto end;
572 /* Begin with first PCI expansion ROM header. */
573 buf = (uint8_t *)req->ring;
574 dcode = (uint32_t *)req->ring;
575 pcihdr = 0;
576 last_image = 1;
577 do {
578 /* Verify PCI expansion ROM header. */
579 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
580 bcode = buf + (pcihdr % 4);
581 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
582 goto end;
584 /* Locate PCI data structure. */
585 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
586 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
587 bcode = buf + (pcihdr % 4);
589 /* Validate signature of PCI data structure. */
590 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
591 bcode[0x2] != 'I' || bcode[0x3] != 'R')
592 goto end;
594 last_image = bcode[0x15] & BIT_7;
596 /* Locate next PCI expansion ROM. */
597 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
598 } while (!last_image);
600 /* Now verify FLT-location structure. */
601 fltl = (struct qla_flt_location *)req->ring;
602 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
603 sizeof(struct qla_flt_location) >> 2);
604 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
605 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
606 goto end;
608 wptr = (uint16_t *)req->ring;
609 cnt = sizeof(struct qla_flt_location) >> 1;
610 for (chksum = 0; cnt; cnt--)
611 chksum += le16_to_cpu(*wptr++);
612 if (chksum) {
613 ql_log(ql_log_fatal, vha, 0x0045,
614 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
615 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
616 buf, sizeof(struct qla_flt_location));
617 return QLA_FUNCTION_FAILED;
620 /* Good data. Use specified location. */
621 loc = locations[1];
622 *start = (le16_to_cpu(fltl->start_hi) << 16 |
623 le16_to_cpu(fltl->start_lo)) >> 2;
624 end:
625 ql_dbg(ql_dbg_init, vha, 0x0046,
626 "FLTL[%s] = 0x%x.\n",
627 loc, *start);
628 return QLA_SUCCESS;
631 static void
632 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
634 const char *loc, *locations[] = { "DEF", "FLT" };
635 const uint32_t def_fw[] =
636 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
637 const uint32_t def_boot[] =
638 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
639 const uint32_t def_vpd_nvram[] =
640 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
641 const uint32_t def_vpd0[] =
642 { 0, 0, FA_VPD0_ADDR_81 };
643 const uint32_t def_vpd1[] =
644 { 0, 0, FA_VPD1_ADDR_81 };
645 const uint32_t def_nvram0[] =
646 { 0, 0, FA_NVRAM0_ADDR_81 };
647 const uint32_t def_nvram1[] =
648 { 0, 0, FA_NVRAM1_ADDR_81 };
649 const uint32_t def_fdt[] =
650 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
651 FA_FLASH_DESCR_ADDR_81 };
652 const uint32_t def_npiv_conf0[] =
653 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
654 FA_NPIV_CONF0_ADDR_81 };
655 const uint32_t def_npiv_conf1[] =
656 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
657 FA_NPIV_CONF1_ADDR_81 };
658 const uint32_t fcp_prio_cfg0[] =
659 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
660 0 };
661 const uint32_t fcp_prio_cfg1[] =
662 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
663 0 };
664 uint32_t def;
665 uint16_t *wptr;
666 uint16_t cnt, chksum;
667 uint32_t start;
668 struct qla_flt_header *flt;
669 struct qla_flt_region *region;
670 struct qla_hw_data *ha = vha->hw;
671 struct req_que *req = ha->req_q_map[0];
673 def = 0;
674 if (IS_QLA25XX(ha))
675 def = 1;
676 else if (IS_QLA81XX(ha))
677 def = 2;
679 /* Assign FCP prio region since older adapters may not have FLT, or
680 FCP prio region in it's FLT.
682 ha->flt_region_fcp_prio = ha->flags.port0 ?
683 fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
685 ha->flt_region_flt = flt_addr;
686 wptr = (uint16_t *)req->ring;
687 flt = (struct qla_flt_header *)req->ring;
688 region = (struct qla_flt_region *)&flt[1];
689 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
690 flt_addr << 2, OPTROM_BURST_SIZE);
691 if (*wptr == __constant_cpu_to_le16(0xffff))
692 goto no_flash_data;
693 if (flt->version != __constant_cpu_to_le16(1)) {
694 ql_log(ql_log_warn, vha, 0x0047,
695 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
697 le16_to_cpu(flt->checksum));
698 goto no_flash_data;
701 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
702 for (chksum = 0; cnt; cnt--)
703 chksum += le16_to_cpu(*wptr++);
704 if (chksum) {
705 ql_log(ql_log_fatal, vha, 0x0048,
706 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
708 le16_to_cpu(flt->checksum));
709 goto no_flash_data;
712 loc = locations[1];
713 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
714 for ( ; cnt; cnt--, region++) {
715 /* Store addresses as DWORD offsets. */
716 start = le32_to_cpu(region->start) >> 2;
717 ql_dbg(ql_dbg_init, vha, 0x0049,
718 "FLT[%02x]: start=0x%x "
719 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
720 start, le32_to_cpu(region->end) >> 2,
721 le32_to_cpu(region->size));
723 switch (le32_to_cpu(region->code) & 0xff) {
724 case FLT_REG_FW:
725 ha->flt_region_fw = start;
726 break;
727 case FLT_REG_BOOT_CODE:
728 ha->flt_region_boot = start;
729 break;
730 case FLT_REG_VPD_0:
731 ha->flt_region_vpd_nvram = start;
732 if (IS_QLA82XX(ha))
733 break;
734 if (ha->flags.port0)
735 ha->flt_region_vpd = start;
736 break;
737 case FLT_REG_VPD_1:
738 if (IS_QLA82XX(ha))
739 break;
740 if (!ha->flags.port0)
741 ha->flt_region_vpd = start;
742 break;
743 case FLT_REG_NVRAM_0:
744 if (ha->flags.port0)
745 ha->flt_region_nvram = start;
746 break;
747 case FLT_REG_NVRAM_1:
748 if (!ha->flags.port0)
749 ha->flt_region_nvram = start;
750 break;
751 case FLT_REG_FDT:
752 ha->flt_region_fdt = start;
753 break;
754 case FLT_REG_NPIV_CONF_0:
755 if (ha->flags.port0)
756 ha->flt_region_npiv_conf = start;
757 break;
758 case FLT_REG_NPIV_CONF_1:
759 if (!ha->flags.port0)
760 ha->flt_region_npiv_conf = start;
761 break;
762 case FLT_REG_GOLD_FW:
763 ha->flt_region_gold_fw = start;
764 break;
765 case FLT_REG_FCP_PRIO_0:
766 if (ha->flags.port0)
767 ha->flt_region_fcp_prio = start;
768 break;
769 case FLT_REG_FCP_PRIO_1:
770 if (!ha->flags.port0)
771 ha->flt_region_fcp_prio = start;
772 break;
773 case FLT_REG_BOOT_CODE_82XX:
774 ha->flt_region_boot = start;
775 break;
776 case FLT_REG_FW_82XX:
777 ha->flt_region_fw = start;
778 break;
779 case FLT_REG_GOLD_FW_82XX:
780 ha->flt_region_gold_fw = start;
781 break;
782 case FLT_REG_BOOTLOAD_82XX:
783 ha->flt_region_bootload = start;
784 break;
785 case FLT_REG_VPD_82XX:
786 ha->flt_region_vpd = start;
787 break;
790 goto done;
792 no_flash_data:
793 /* Use hardcoded defaults. */
794 loc = locations[0];
795 ha->flt_region_fw = def_fw[def];
796 ha->flt_region_boot = def_boot[def];
797 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
798 ha->flt_region_vpd = ha->flags.port0 ?
799 def_vpd0[def] : def_vpd1[def];
800 ha->flt_region_nvram = ha->flags.port0 ?
801 def_nvram0[def] : def_nvram1[def];
802 ha->flt_region_fdt = def_fdt[def];
803 ha->flt_region_npiv_conf = ha->flags.port0 ?
804 def_npiv_conf0[def] : def_npiv_conf1[def];
805 done:
806 ql_dbg(ql_dbg_init, vha, 0x004a,
807 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
808 loc, ha->flt_region_boot,
809 ha->flt_region_fw, ha->flt_region_vpd_nvram,
810 ha->flt_region_vpd);
811 ql_dbg(ql_dbg_init, vha, 0x004b,
812 "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
813 ha->flt_region_nvram,
814 ha->flt_region_fdt, ha->flt_region_flt,
815 ha->flt_region_npiv_conf, ha->flt_region_fcp_prio);
818 static void
819 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
821 #define FLASH_BLK_SIZE_4K 0x1000
822 #define FLASH_BLK_SIZE_32K 0x8000
823 #define FLASH_BLK_SIZE_64K 0x10000
824 const char *loc, *locations[] = { "MID", "FDT" };
825 uint16_t cnt, chksum;
826 uint16_t *wptr;
827 struct qla_fdt_layout *fdt;
828 uint8_t man_id, flash_id;
829 uint16_t mid = 0, fid = 0;
830 struct qla_hw_data *ha = vha->hw;
831 struct req_que *req = ha->req_q_map[0];
833 wptr = (uint16_t *)req->ring;
834 fdt = (struct qla_fdt_layout *)req->ring;
835 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
836 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
837 if (*wptr == __constant_cpu_to_le16(0xffff))
838 goto no_flash_data;
839 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
840 fdt->sig[3] != 'D')
841 goto no_flash_data;
843 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
844 cnt++)
845 chksum += le16_to_cpu(*wptr++);
846 if (chksum) {
847 ql_dbg(ql_dbg_init, vha, 0x004c,
848 "Inconsistent FDT detected:"
849 " checksum=0x%x id=%c version0x%x.\n", chksum,
850 fdt->sig[0], le16_to_cpu(fdt->version));
851 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
852 (uint8_t *)fdt, sizeof(*fdt));
853 goto no_flash_data;
856 loc = locations[1];
857 mid = le16_to_cpu(fdt->man_id);
858 fid = le16_to_cpu(fdt->id);
859 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
860 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
861 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
862 if (fdt->unprotect_sec_cmd) {
863 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
864 fdt->unprotect_sec_cmd);
865 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
866 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
867 flash_conf_addr(ha, 0x0336);
869 goto done;
870 no_flash_data:
871 loc = locations[0];
872 if (IS_QLA82XX(ha)) {
873 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
874 goto done;
876 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
877 mid = man_id;
878 fid = flash_id;
879 ha->fdt_wrt_disable = 0x9c;
880 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
881 switch (man_id) {
882 case 0xbf: /* STT flash. */
883 if (flash_id == 0x8e)
884 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
885 else
886 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
888 if (flash_id == 0x80)
889 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
890 break;
891 case 0x13: /* ST M25P80. */
892 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
893 break;
894 case 0x1f: /* Atmel 26DF081A. */
895 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
896 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
897 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
898 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
899 break;
900 default:
901 /* Default to 64 kb sector size. */
902 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
903 break;
905 done:
906 ql_dbg(ql_dbg_init, vha, 0x004d,
907 "FDT[%s]: (0x%x/0x%x) erase=0x%x "
908 "pr=%x wrtd=0x%x blk=0x%x.\n",
909 loc, mid, fid,
910 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
911 ha->fdt_wrt_disable, ha->fdt_block_size);
915 static void
916 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
918 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
919 uint32_t *wptr;
920 struct qla_hw_data *ha = vha->hw;
921 struct req_que *req = ha->req_q_map[0];
923 if (!IS_QLA82XX(ha))
924 return;
926 wptr = (uint32_t *)req->ring;
927 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
928 QLA82XX_IDC_PARAM_ADDR , 8);
930 if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
931 ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
932 ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
933 } else {
934 ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
935 ha->nx_reset_timeout = le32_to_cpu(*wptr);
937 ql_dbg(ql_dbg_init, vha, 0x004e,
938 "nx_dev_init_timeout=%d "
939 "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
940 ha->nx_reset_timeout);
941 return;
945 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
947 int ret;
948 uint32_t flt_addr;
949 struct qla_hw_data *ha = vha->hw;
951 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
952 return QLA_SUCCESS;
954 ret = qla2xxx_find_flt_start(vha, &flt_addr);
955 if (ret != QLA_SUCCESS)
956 return ret;
958 qla2xxx_get_flt_info(vha, flt_addr);
959 qla2xxx_get_fdt_info(vha);
960 qla2xxx_get_idc_param(vha);
962 return QLA_SUCCESS;
965 void
966 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
968 #define NPIV_CONFIG_SIZE (16*1024)
969 void *data;
970 uint16_t *wptr;
971 uint16_t cnt, chksum;
972 int i;
973 struct qla_npiv_header hdr;
974 struct qla_npiv_entry *entry;
975 struct qla_hw_data *ha = vha->hw;
977 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
978 return;
980 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
981 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
982 if (hdr.version == __constant_cpu_to_le16(0xffff))
983 return;
984 if (hdr.version != __constant_cpu_to_le16(1)) {
985 ql_dbg(ql_dbg_user, vha, 0x7090,
986 "Unsupported NPIV-Config "
987 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
988 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
989 le16_to_cpu(hdr.checksum));
990 return;
993 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
994 if (!data) {
995 ql_log(ql_log_warn, vha, 0x7091,
996 "Unable to allocate memory for data.\n");
997 return;
1000 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1001 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1003 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1004 sizeof(struct qla_npiv_entry)) >> 1;
1005 for (wptr = data, chksum = 0; cnt; cnt--)
1006 chksum += le16_to_cpu(*wptr++);
1007 if (chksum) {
1008 ql_dbg(ql_dbg_user, vha, 0x7092,
1009 "Inconsistent NPIV-Config "
1010 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1011 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1012 le16_to_cpu(hdr.checksum));
1013 goto done;
1016 entry = data + sizeof(struct qla_npiv_header);
1017 cnt = le16_to_cpu(hdr.entries);
1018 for (i = 0; cnt; cnt--, entry++, i++) {
1019 uint16_t flags;
1020 struct fc_vport_identifiers vid;
1021 struct fc_vport *vport;
1023 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1025 flags = le16_to_cpu(entry->flags);
1026 if (flags == 0xffff)
1027 continue;
1028 if ((flags & BIT_0) == 0)
1029 continue;
1031 memset(&vid, 0, sizeof(vid));
1032 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1033 vid.vport_type = FC_PORTTYPE_NPIV;
1034 vid.disable = false;
1035 vid.port_name = wwn_to_u64(entry->port_name);
1036 vid.node_name = wwn_to_u64(entry->node_name);
1038 ql_dbg(ql_dbg_user, vha, 0x7093,
1039 "NPIV[%02x]: wwpn=%llx "
1040 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1041 (unsigned long long)vid.port_name,
1042 (unsigned long long)vid.node_name,
1043 le16_to_cpu(entry->vf_id),
1044 entry->q_qos, entry->f_qos);
1046 if (i < QLA_PRECONFIG_VPORTS) {
1047 vport = fc_vport_create(vha->host, 0, &vid);
1048 if (!vport)
1049 ql_log(ql_log_warn, vha, 0x7094,
1050 "NPIV-Config Failed to create vport [%02x]: "
1051 "wwpn=%llx wwnn=%llx.\n", cnt,
1052 (unsigned long long)vid.port_name,
1053 (unsigned long long)vid.node_name);
1056 done:
1057 kfree(data);
1060 static int
1061 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1063 struct qla_hw_data *ha = vha->hw;
1064 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1066 if (ha->flags.fac_supported)
1067 return qla81xx_fac_do_write_enable(vha, 1);
1069 /* Enable flash write. */
1070 WRT_REG_DWORD(&reg->ctrl_status,
1071 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1072 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1074 if (!ha->fdt_wrt_disable)
1075 goto done;
1077 /* Disable flash write-protection, first clear SR protection bit */
1078 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1079 /* Then write zero again to clear remaining SR bits.*/
1080 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1081 done:
1082 return QLA_SUCCESS;
1085 static int
1086 qla24xx_protect_flash(scsi_qla_host_t *vha)
1088 uint32_t cnt;
1089 struct qla_hw_data *ha = vha->hw;
1090 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1092 if (ha->flags.fac_supported)
1093 return qla81xx_fac_do_write_enable(vha, 0);
1095 if (!ha->fdt_wrt_disable)
1096 goto skip_wrt_protect;
1098 /* Enable flash write-protection and wait for completion. */
1099 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1100 ha->fdt_wrt_disable);
1101 for (cnt = 300; cnt &&
1102 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1103 cnt--) {
1104 udelay(10);
1107 skip_wrt_protect:
1108 /* Disable flash write. */
1109 WRT_REG_DWORD(&reg->ctrl_status,
1110 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1111 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1113 return QLA_SUCCESS;
1116 static int
1117 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1119 struct qla_hw_data *ha = vha->hw;
1120 uint32_t start, finish;
1122 if (ha->flags.fac_supported) {
1123 start = fdata >> 2;
1124 finish = start + (ha->fdt_block_size >> 2) - 1;
1125 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1126 start), flash_data_addr(ha, finish));
1129 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1130 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1131 ((fdata >> 16) & 0xff));
1134 static int
1135 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1136 uint32_t dwords)
1138 int ret;
1139 uint32_t liter;
1140 uint32_t sec_mask, rest_addr;
1141 uint32_t fdata;
1142 dma_addr_t optrom_dma;
1143 void *optrom = NULL;
1144 struct qla_hw_data *ha = vha->hw;
1146 /* Prepare burst-capable write on supported ISPs. */
1147 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1148 dwords > OPTROM_BURST_DWORDS) {
1149 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1150 &optrom_dma, GFP_KERNEL);
1151 if (!optrom) {
1152 ql_log(ql_log_warn, vha, 0x7095,
1153 "Unable to allocate "
1154 "memory for optrom burst write (%x KB).\n",
1155 OPTROM_BURST_SIZE / 1024);
1159 rest_addr = (ha->fdt_block_size >> 2) - 1;
1160 sec_mask = ~rest_addr;
1162 ret = qla24xx_unprotect_flash(vha);
1163 if (ret != QLA_SUCCESS) {
1164 ql_log(ql_log_warn, vha, 0x7096,
1165 "Unable to unprotect flash for update.\n");
1166 goto done;
1169 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1170 fdata = (faddr & sec_mask) << 2;
1172 /* Are we at the beginning of a sector? */
1173 if ((faddr & rest_addr) == 0) {
1174 /* Do sector unprotect. */
1175 if (ha->fdt_unprotect_sec_cmd)
1176 qla24xx_write_flash_dword(ha,
1177 ha->fdt_unprotect_sec_cmd,
1178 (fdata & 0xff00) | ((fdata << 16) &
1179 0xff0000) | ((fdata >> 16) & 0xff));
1180 ret = qla24xx_erase_sector(vha, fdata);
1181 if (ret != QLA_SUCCESS) {
1182 ql_dbg(ql_dbg_user, vha, 0x7007,
1183 "Unable to erase erase sector: address=%x.\n",
1184 faddr);
1185 break;
1189 /* Go with burst-write. */
1190 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1191 /* Copy data to DMA'ble buffer. */
1192 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1194 ret = qla2x00_load_ram(vha, optrom_dma,
1195 flash_data_addr(ha, faddr),
1196 OPTROM_BURST_DWORDS);
1197 if (ret != QLA_SUCCESS) {
1198 ql_log(ql_log_warn, vha, 0x7097,
1199 "Unable to burst-write optrom segment "
1200 "(%x/%x/%llx).\n", ret,
1201 flash_data_addr(ha, faddr),
1202 (unsigned long long)optrom_dma);
1203 ql_log(ql_log_warn, vha, 0x7098,
1204 "Reverting to slow-write.\n");
1206 dma_free_coherent(&ha->pdev->dev,
1207 OPTROM_BURST_SIZE, optrom, optrom_dma);
1208 optrom = NULL;
1209 } else {
1210 liter += OPTROM_BURST_DWORDS - 1;
1211 faddr += OPTROM_BURST_DWORDS - 1;
1212 dwptr += OPTROM_BURST_DWORDS - 1;
1213 continue;
1217 ret = qla24xx_write_flash_dword(ha,
1218 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1219 if (ret != QLA_SUCCESS) {
1220 ql_dbg(ql_dbg_user, vha, 0x7006,
1221 "Unable to program flash address=%x data=%x.\n",
1222 faddr, *dwptr);
1223 break;
1226 /* Do sector protect. */
1227 if (ha->fdt_unprotect_sec_cmd &&
1228 ((faddr & rest_addr) == rest_addr))
1229 qla24xx_write_flash_dword(ha,
1230 ha->fdt_protect_sec_cmd,
1231 (fdata & 0xff00) | ((fdata << 16) &
1232 0xff0000) | ((fdata >> 16) & 0xff));
1235 ret = qla24xx_protect_flash(vha);
1236 if (ret != QLA_SUCCESS)
1237 ql_log(ql_log_warn, vha, 0x7099,
1238 "Unable to protect flash after update.\n");
1239 done:
1240 if (optrom)
1241 dma_free_coherent(&ha->pdev->dev,
1242 OPTROM_BURST_SIZE, optrom, optrom_dma);
1244 return ret;
1247 uint8_t *
1248 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1249 uint32_t bytes)
1251 uint32_t i;
1252 uint16_t *wptr;
1253 struct qla_hw_data *ha = vha->hw;
1255 /* Word reads to NVRAM via registers. */
1256 wptr = (uint16_t *)buf;
1257 qla2x00_lock_nvram_access(ha);
1258 for (i = 0; i < bytes >> 1; i++, naddr++)
1259 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1260 naddr));
1261 qla2x00_unlock_nvram_access(ha);
1263 return buf;
1266 uint8_t *
1267 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1268 uint32_t bytes)
1270 uint32_t i;
1271 uint32_t *dwptr;
1272 struct qla_hw_data *ha = vha->hw;
1274 if (IS_QLA82XX(ha))
1275 return buf;
1277 /* Dword reads to flash. */
1278 dwptr = (uint32_t *)buf;
1279 for (i = 0; i < bytes >> 2; i++, naddr++)
1280 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1281 nvram_data_addr(ha, naddr)));
1283 return buf;
1287 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1288 uint32_t bytes)
1290 int ret, stat;
1291 uint32_t i;
1292 uint16_t *wptr;
1293 unsigned long flags;
1294 struct qla_hw_data *ha = vha->hw;
1296 ret = QLA_SUCCESS;
1298 spin_lock_irqsave(&ha->hardware_lock, flags);
1299 qla2x00_lock_nvram_access(ha);
1301 /* Disable NVRAM write-protection. */
1302 stat = qla2x00_clear_nvram_protection(ha);
1304 wptr = (uint16_t *)buf;
1305 for (i = 0; i < bytes >> 1; i++, naddr++) {
1306 qla2x00_write_nvram_word(ha, naddr,
1307 cpu_to_le16(*wptr));
1308 wptr++;
1311 /* Enable NVRAM write-protection. */
1312 qla2x00_set_nvram_protection(ha, stat);
1314 qla2x00_unlock_nvram_access(ha);
1315 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1317 return ret;
1321 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322 uint32_t bytes)
1324 int ret;
1325 uint32_t i;
1326 uint32_t *dwptr;
1327 struct qla_hw_data *ha = vha->hw;
1328 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1330 ret = QLA_SUCCESS;
1332 if (IS_QLA82XX(ha))
1333 return ret;
1335 /* Enable flash write. */
1336 WRT_REG_DWORD(&reg->ctrl_status,
1337 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1338 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1340 /* Disable NVRAM write-protection. */
1341 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1342 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1344 /* Dword writes to flash. */
1345 dwptr = (uint32_t *)buf;
1346 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1347 ret = qla24xx_write_flash_dword(ha,
1348 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1349 if (ret != QLA_SUCCESS) {
1350 ql_dbg(ql_dbg_user, vha, 0x709a,
1351 "Unable to program nvram address=%x data=%x.\n",
1352 naddr, *dwptr);
1353 break;
1357 /* Enable NVRAM write-protection. */
1358 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1360 /* Disable flash write. */
1361 WRT_REG_DWORD(&reg->ctrl_status,
1362 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1363 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1365 return ret;
1368 uint8_t *
1369 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1370 uint32_t bytes)
1372 uint32_t i;
1373 uint32_t *dwptr;
1374 struct qla_hw_data *ha = vha->hw;
1376 /* Dword reads to flash. */
1377 dwptr = (uint32_t *)buf;
1378 for (i = 0; i < bytes >> 2; i++, naddr++)
1379 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1380 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1382 return buf;
1386 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1387 uint32_t bytes)
1389 struct qla_hw_data *ha = vha->hw;
1390 #define RMW_BUFFER_SIZE (64 * 1024)
1391 uint8_t *dbuf;
1393 dbuf = vmalloc(RMW_BUFFER_SIZE);
1394 if (!dbuf)
1395 return QLA_MEMORY_ALLOC_FAILED;
1396 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1397 RMW_BUFFER_SIZE);
1398 memcpy(dbuf + (naddr << 2), buf, bytes);
1399 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1400 RMW_BUFFER_SIZE);
1401 vfree(dbuf);
1403 return QLA_SUCCESS;
1406 static inline void
1407 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1409 if (IS_QLA2322(ha)) {
1410 /* Flip all colors. */
1411 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1412 /* Turn off. */
1413 ha->beacon_color_state = 0;
1414 *pflags = GPIO_LED_ALL_OFF;
1415 } else {
1416 /* Turn on. */
1417 ha->beacon_color_state = QLA_LED_ALL_ON;
1418 *pflags = GPIO_LED_RGA_ON;
1420 } else {
1421 /* Flip green led only. */
1422 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1423 /* Turn off. */
1424 ha->beacon_color_state = 0;
1425 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1426 } else {
1427 /* Turn on. */
1428 ha->beacon_color_state = QLA_LED_GRN_ON;
1429 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1434 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1436 void
1437 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1439 uint16_t gpio_enable;
1440 uint16_t gpio_data;
1441 uint16_t led_color = 0;
1442 unsigned long flags;
1443 struct qla_hw_data *ha = vha->hw;
1444 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1446 if (IS_QLA82XX(ha))
1447 return;
1449 spin_lock_irqsave(&ha->hardware_lock, flags);
1451 /* Save the Original GPIOE. */
1452 if (ha->pio_address) {
1453 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1454 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1455 } else {
1456 gpio_enable = RD_REG_WORD(&reg->gpioe);
1457 gpio_data = RD_REG_WORD(&reg->gpiod);
1460 /* Set the modified gpio_enable values */
1461 gpio_enable |= GPIO_LED_MASK;
1463 if (ha->pio_address) {
1464 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1465 } else {
1466 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1467 RD_REG_WORD(&reg->gpioe);
1470 qla2x00_flip_colors(ha, &led_color);
1472 /* Clear out any previously set LED color. */
1473 gpio_data &= ~GPIO_LED_MASK;
1475 /* Set the new input LED color to GPIOD. */
1476 gpio_data |= led_color;
1478 /* Set the modified gpio_data values */
1479 if (ha->pio_address) {
1480 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1481 } else {
1482 WRT_REG_WORD(&reg->gpiod, gpio_data);
1483 RD_REG_WORD(&reg->gpiod);
1486 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1490 qla2x00_beacon_on(struct scsi_qla_host *vha)
1492 uint16_t gpio_enable;
1493 uint16_t gpio_data;
1494 unsigned long flags;
1495 struct qla_hw_data *ha = vha->hw;
1496 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1498 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1499 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1501 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1502 ql_log(ql_log_warn, vha, 0x709b,
1503 "Unable to update fw options (beacon on).\n");
1504 return QLA_FUNCTION_FAILED;
1507 /* Turn off LEDs. */
1508 spin_lock_irqsave(&ha->hardware_lock, flags);
1509 if (ha->pio_address) {
1510 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1511 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1512 } else {
1513 gpio_enable = RD_REG_WORD(&reg->gpioe);
1514 gpio_data = RD_REG_WORD(&reg->gpiod);
1516 gpio_enable |= GPIO_LED_MASK;
1518 /* Set the modified gpio_enable values. */
1519 if (ha->pio_address) {
1520 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1521 } else {
1522 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1523 RD_REG_WORD(&reg->gpioe);
1526 /* Clear out previously set LED colour. */
1527 gpio_data &= ~GPIO_LED_MASK;
1528 if (ha->pio_address) {
1529 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1530 } else {
1531 WRT_REG_WORD(&reg->gpiod, gpio_data);
1532 RD_REG_WORD(&reg->gpiod);
1534 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1537 * Let the per HBA timer kick off the blinking process based on
1538 * the following flags. No need to do anything else now.
1540 ha->beacon_blink_led = 1;
1541 ha->beacon_color_state = 0;
1543 return QLA_SUCCESS;
1547 qla2x00_beacon_off(struct scsi_qla_host *vha)
1549 int rval = QLA_SUCCESS;
1550 struct qla_hw_data *ha = vha->hw;
1552 ha->beacon_blink_led = 0;
1554 /* Set the on flag so when it gets flipped it will be off. */
1555 if (IS_QLA2322(ha))
1556 ha->beacon_color_state = QLA_LED_ALL_ON;
1557 else
1558 ha->beacon_color_state = QLA_LED_GRN_ON;
1560 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1562 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1563 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1565 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1566 if (rval != QLA_SUCCESS)
1567 ql_log(ql_log_warn, vha, 0x709c,
1568 "Unable to update fw options (beacon off).\n");
1569 return rval;
1573 static inline void
1574 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1576 /* Flip all colors. */
1577 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1578 /* Turn off. */
1579 ha->beacon_color_state = 0;
1580 *pflags = 0;
1581 } else {
1582 /* Turn on. */
1583 ha->beacon_color_state = QLA_LED_ALL_ON;
1584 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1588 void
1589 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1591 uint16_t led_color = 0;
1592 uint32_t gpio_data;
1593 unsigned long flags;
1594 struct qla_hw_data *ha = vha->hw;
1595 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1597 /* Save the Original GPIOD. */
1598 spin_lock_irqsave(&ha->hardware_lock, flags);
1599 gpio_data = RD_REG_DWORD(&reg->gpiod);
1601 /* Enable the gpio_data reg for update. */
1602 gpio_data |= GPDX_LED_UPDATE_MASK;
1604 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1605 gpio_data = RD_REG_DWORD(&reg->gpiod);
1607 /* Set the color bits. */
1608 qla24xx_flip_colors(ha, &led_color);
1610 /* Clear out any previously set LED color. */
1611 gpio_data &= ~GPDX_LED_COLOR_MASK;
1613 /* Set the new input LED color to GPIOD. */
1614 gpio_data |= led_color;
1616 /* Set the modified gpio_data values. */
1617 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1618 gpio_data = RD_REG_DWORD(&reg->gpiod);
1619 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1623 qla24xx_beacon_on(struct scsi_qla_host *vha)
1625 uint32_t gpio_data;
1626 unsigned long flags;
1627 struct qla_hw_data *ha = vha->hw;
1628 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1630 if (IS_QLA82XX(ha))
1631 return QLA_SUCCESS;
1633 if (ha->beacon_blink_led == 0) {
1634 /* Enable firmware for update */
1635 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1637 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1638 return QLA_FUNCTION_FAILED;
1640 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1641 QLA_SUCCESS) {
1642 ql_log(ql_log_warn, vha, 0x7009,
1643 "Unable to update fw options (beacon on).\n");
1644 return QLA_FUNCTION_FAILED;
1647 spin_lock_irqsave(&ha->hardware_lock, flags);
1648 gpio_data = RD_REG_DWORD(&reg->gpiod);
1650 /* Enable the gpio_data reg for update. */
1651 gpio_data |= GPDX_LED_UPDATE_MASK;
1652 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1653 RD_REG_DWORD(&reg->gpiod);
1655 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1658 /* So all colors blink together. */
1659 ha->beacon_color_state = 0;
1661 /* Let the per HBA timer kick off the blinking process. */
1662 ha->beacon_blink_led = 1;
1664 return QLA_SUCCESS;
1668 qla24xx_beacon_off(struct scsi_qla_host *vha)
1670 uint32_t gpio_data;
1671 unsigned long flags;
1672 struct qla_hw_data *ha = vha->hw;
1673 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1675 if (IS_QLA82XX(ha))
1676 return QLA_SUCCESS;
1678 ha->beacon_blink_led = 0;
1679 ha->beacon_color_state = QLA_LED_ALL_ON;
1681 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1683 /* Give control back to firmware. */
1684 spin_lock_irqsave(&ha->hardware_lock, flags);
1685 gpio_data = RD_REG_DWORD(&reg->gpiod);
1687 /* Disable the gpio_data reg for update. */
1688 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1689 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1690 RD_REG_DWORD(&reg->gpiod);
1691 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1693 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1695 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1696 ql_log(ql_log_warn, vha, 0x704d,
1697 "Unable to update fw options (beacon on).\n");
1698 return QLA_FUNCTION_FAILED;
1701 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1702 ql_log(ql_log_warn, vha, 0x704e,
1703 "Unable to update fw options (beacon on).\n");
1704 return QLA_FUNCTION_FAILED;
1707 return QLA_SUCCESS;
1712 * Flash support routines
1716 * qla2x00_flash_enable() - Setup flash for reading and writing.
1717 * @ha: HA context
1719 static void
1720 qla2x00_flash_enable(struct qla_hw_data *ha)
1722 uint16_t data;
1723 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1725 data = RD_REG_WORD(&reg->ctrl_status);
1726 data |= CSR_FLASH_ENABLE;
1727 WRT_REG_WORD(&reg->ctrl_status, data);
1728 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1732 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1733 * @ha: HA context
1735 static void
1736 qla2x00_flash_disable(struct qla_hw_data *ha)
1738 uint16_t data;
1739 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1741 data = RD_REG_WORD(&reg->ctrl_status);
1742 data &= ~(CSR_FLASH_ENABLE);
1743 WRT_REG_WORD(&reg->ctrl_status, data);
1744 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1748 * qla2x00_read_flash_byte() - Reads a byte from flash
1749 * @ha: HA context
1750 * @addr: Address in flash to read
1752 * A word is read from the chip, but, only the lower byte is valid.
1754 * Returns the byte read from flash @addr.
1756 static uint8_t
1757 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1759 uint16_t data;
1760 uint16_t bank_select;
1761 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1763 bank_select = RD_REG_WORD(&reg->ctrl_status);
1765 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1766 /* Specify 64K address range: */
1767 /* clear out Module Select and Flash Address bits [19:16]. */
1768 bank_select &= ~0xf8;
1769 bank_select |= addr >> 12 & 0xf0;
1770 bank_select |= CSR_FLASH_64K_BANK;
1771 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1772 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1774 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1775 data = RD_REG_WORD(&reg->flash_data);
1777 return (uint8_t)data;
1780 /* Setup bit 16 of flash address. */
1781 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1782 bank_select |= CSR_FLASH_64K_BANK;
1783 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1784 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1785 } else if (((addr & BIT_16) == 0) &&
1786 (bank_select & CSR_FLASH_64K_BANK)) {
1787 bank_select &= ~(CSR_FLASH_64K_BANK);
1788 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1789 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1792 /* Always perform IO mapped accesses to the FLASH registers. */
1793 if (ha->pio_address) {
1794 uint16_t data2;
1796 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1797 do {
1798 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1799 barrier();
1800 cpu_relax();
1801 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1802 } while (data != data2);
1803 } else {
1804 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1805 data = qla2x00_debounce_register(&reg->flash_data);
1808 return (uint8_t)data;
1812 * qla2x00_write_flash_byte() - Write a byte to flash
1813 * @ha: HA context
1814 * @addr: Address in flash to write
1815 * @data: Data to write
1817 static void
1818 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1820 uint16_t bank_select;
1821 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1823 bank_select = RD_REG_WORD(&reg->ctrl_status);
1824 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1825 /* Specify 64K address range: */
1826 /* clear out Module Select and Flash Address bits [19:16]. */
1827 bank_select &= ~0xf8;
1828 bank_select |= addr >> 12 & 0xf0;
1829 bank_select |= CSR_FLASH_64K_BANK;
1830 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1831 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1833 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1834 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1835 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1836 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1838 return;
1841 /* Setup bit 16 of flash address. */
1842 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1843 bank_select |= CSR_FLASH_64K_BANK;
1844 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1845 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1846 } else if (((addr & BIT_16) == 0) &&
1847 (bank_select & CSR_FLASH_64K_BANK)) {
1848 bank_select &= ~(CSR_FLASH_64K_BANK);
1849 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1850 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1853 /* Always perform IO mapped accesses to the FLASH registers. */
1854 if (ha->pio_address) {
1855 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1856 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1857 } else {
1858 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1859 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1860 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1861 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1866 * qla2x00_poll_flash() - Polls flash for completion.
1867 * @ha: HA context
1868 * @addr: Address in flash to poll
1869 * @poll_data: Data to be polled
1870 * @man_id: Flash manufacturer ID
1871 * @flash_id: Flash ID
1873 * This function polls the device until bit 7 of what is read matches data
1874 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1875 * out (a fatal error). The flash book recommeds reading bit 7 again after
1876 * reading bit 5 as a 1.
1878 * Returns 0 on success, else non-zero.
1880 static int
1881 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1882 uint8_t man_id, uint8_t flash_id)
1884 int status;
1885 uint8_t flash_data;
1886 uint32_t cnt;
1888 status = 1;
1890 /* Wait for 30 seconds for command to finish. */
1891 poll_data &= BIT_7;
1892 for (cnt = 3000000; cnt; cnt--) {
1893 flash_data = qla2x00_read_flash_byte(ha, addr);
1894 if ((flash_data & BIT_7) == poll_data) {
1895 status = 0;
1896 break;
1899 if (man_id != 0x40 && man_id != 0xda) {
1900 if ((flash_data & BIT_5) && cnt > 2)
1901 cnt = 2;
1903 udelay(10);
1904 barrier();
1905 cond_resched();
1907 return status;
1911 * qla2x00_program_flash_address() - Programs a flash address
1912 * @ha: HA context
1913 * @addr: Address in flash to program
1914 * @data: Data to be written in flash
1915 * @man_id: Flash manufacturer ID
1916 * @flash_id: Flash ID
1918 * Returns 0 on success, else non-zero.
1920 static int
1921 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1922 uint8_t data, uint8_t man_id, uint8_t flash_id)
1924 /* Write Program Command Sequence. */
1925 if (IS_OEM_001(ha)) {
1926 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1927 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1928 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1929 qla2x00_write_flash_byte(ha, addr, data);
1930 } else {
1931 if (man_id == 0xda && flash_id == 0xc1) {
1932 qla2x00_write_flash_byte(ha, addr, data);
1933 if (addr & 0x7e)
1934 return 0;
1935 } else {
1936 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1937 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1938 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1939 qla2x00_write_flash_byte(ha, addr, data);
1943 udelay(150);
1945 /* Wait for write to complete. */
1946 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1950 * qla2x00_erase_flash() - Erase the flash.
1951 * @ha: HA context
1952 * @man_id: Flash manufacturer ID
1953 * @flash_id: Flash ID
1955 * Returns 0 on success, else non-zero.
1957 static int
1958 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1960 /* Individual Sector Erase Command Sequence */
1961 if (IS_OEM_001(ha)) {
1962 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1963 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1964 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1965 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1966 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1967 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1968 } else {
1969 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1970 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1971 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1972 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1973 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1974 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1977 udelay(150);
1979 /* Wait for erase to complete. */
1980 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1984 * qla2x00_erase_flash_sector() - Erase a flash sector.
1985 * @ha: HA context
1986 * @addr: Flash sector to erase
1987 * @sec_mask: Sector address mask
1988 * @man_id: Flash manufacturer ID
1989 * @flash_id: Flash ID
1991 * Returns 0 on success, else non-zero.
1993 static int
1994 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1995 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1997 /* Individual Sector Erase Command Sequence */
1998 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1999 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2000 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2001 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2002 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2003 if (man_id == 0x1f && flash_id == 0x13)
2004 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2005 else
2006 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2008 udelay(150);
2010 /* Wait for erase to complete. */
2011 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2015 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2016 * @man_id: Flash manufacturer ID
2017 * @flash_id: Flash ID
2019 static void
2020 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2021 uint8_t *flash_id)
2023 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2024 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2025 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2026 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2027 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2028 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2029 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2030 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2033 static void
2034 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2035 uint32_t saddr, uint32_t length)
2037 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2038 uint32_t midpoint, ilength;
2039 uint8_t data;
2041 midpoint = length / 2;
2043 WRT_REG_WORD(&reg->nvram, 0);
2044 RD_REG_WORD(&reg->nvram);
2045 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2046 if (ilength == midpoint) {
2047 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2048 RD_REG_WORD(&reg->nvram);
2050 data = qla2x00_read_flash_byte(ha, saddr);
2051 if (saddr % 100)
2052 udelay(10);
2053 *tmp_buf = data;
2054 cond_resched();
2058 static inline void
2059 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2061 int cnt;
2062 unsigned long flags;
2063 struct qla_hw_data *ha = vha->hw;
2064 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2066 /* Suspend HBA. */
2067 scsi_block_requests(vha->host);
2068 ha->isp_ops->disable_intrs(ha);
2069 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2071 /* Pause RISC. */
2072 spin_lock_irqsave(&ha->hardware_lock, flags);
2073 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2074 RD_REG_WORD(&reg->hccr);
2075 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2076 for (cnt = 0; cnt < 30000; cnt++) {
2077 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2078 break;
2079 udelay(100);
2081 } else {
2082 udelay(10);
2084 spin_unlock_irqrestore(&ha->hardware_lock, flags);
2087 static inline void
2088 qla2x00_resume_hba(struct scsi_qla_host *vha)
2090 struct qla_hw_data *ha = vha->hw;
2092 /* Resume HBA. */
2093 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2094 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2095 qla2xxx_wake_dpc(vha);
2096 qla2x00_wait_for_chip_reset(vha);
2097 scsi_unblock_requests(vha->host);
2100 uint8_t *
2101 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2102 uint32_t offset, uint32_t length)
2104 uint32_t addr, midpoint;
2105 uint8_t *data;
2106 struct qla_hw_data *ha = vha->hw;
2107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2109 /* Suspend HBA. */
2110 qla2x00_suspend_hba(vha);
2112 /* Go with read. */
2113 midpoint = ha->optrom_size / 2;
2115 qla2x00_flash_enable(ha);
2116 WRT_REG_WORD(&reg->nvram, 0);
2117 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2118 for (addr = offset, data = buf; addr < length; addr++, data++) {
2119 if (addr == midpoint) {
2120 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2121 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2124 *data = qla2x00_read_flash_byte(ha, addr);
2126 qla2x00_flash_disable(ha);
2128 /* Resume HBA. */
2129 qla2x00_resume_hba(vha);
2131 return buf;
2135 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2136 uint32_t offset, uint32_t length)
2139 int rval;
2140 uint8_t man_id, flash_id, sec_number, data;
2141 uint16_t wd;
2142 uint32_t addr, liter, sec_mask, rest_addr;
2143 struct qla_hw_data *ha = vha->hw;
2144 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2146 /* Suspend HBA. */
2147 qla2x00_suspend_hba(vha);
2149 rval = QLA_SUCCESS;
2150 sec_number = 0;
2152 /* Reset ISP chip. */
2153 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2154 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2156 /* Go with write. */
2157 qla2x00_flash_enable(ha);
2158 do { /* Loop once to provide quick error exit */
2159 /* Structure of flash memory based on manufacturer */
2160 if (IS_OEM_001(ha)) {
2161 /* OEM variant with special flash part. */
2162 man_id = flash_id = 0;
2163 rest_addr = 0xffff;
2164 sec_mask = 0x10000;
2165 goto update_flash;
2167 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2168 switch (man_id) {
2169 case 0x20: /* ST flash. */
2170 if (flash_id == 0xd2 || flash_id == 0xe3) {
2172 * ST m29w008at part - 64kb sector size with
2173 * 32kb,8kb,8kb,16kb sectors at memory address
2174 * 0xf0000.
2176 rest_addr = 0xffff;
2177 sec_mask = 0x10000;
2178 break;
2181 * ST m29w010b part - 16kb sector size
2182 * Default to 16kb sectors
2184 rest_addr = 0x3fff;
2185 sec_mask = 0x1c000;
2186 break;
2187 case 0x40: /* Mostel flash. */
2188 /* Mostel v29c51001 part - 512 byte sector size. */
2189 rest_addr = 0x1ff;
2190 sec_mask = 0x1fe00;
2191 break;
2192 case 0xbf: /* SST flash. */
2193 /* SST39sf10 part - 4kb sector size. */
2194 rest_addr = 0xfff;
2195 sec_mask = 0x1f000;
2196 break;
2197 case 0xda: /* Winbond flash. */
2198 /* Winbond W29EE011 part - 256 byte sector size. */
2199 rest_addr = 0x7f;
2200 sec_mask = 0x1ff80;
2201 break;
2202 case 0xc2: /* Macronix flash. */
2203 /* 64k sector size. */
2204 if (flash_id == 0x38 || flash_id == 0x4f) {
2205 rest_addr = 0xffff;
2206 sec_mask = 0x10000;
2207 break;
2209 /* Fall through... */
2211 case 0x1f: /* Atmel flash. */
2212 /* 512k sector size. */
2213 if (flash_id == 0x13) {
2214 rest_addr = 0x7fffffff;
2215 sec_mask = 0x80000000;
2216 break;
2218 /* Fall through... */
2220 case 0x01: /* AMD flash. */
2221 if (flash_id == 0x38 || flash_id == 0x40 ||
2222 flash_id == 0x4f) {
2223 /* Am29LV081 part - 64kb sector size. */
2224 /* Am29LV002BT part - 64kb sector size. */
2225 rest_addr = 0xffff;
2226 sec_mask = 0x10000;
2227 break;
2228 } else if (flash_id == 0x3e) {
2230 * Am29LV008b part - 64kb sector size with
2231 * 32kb,8kb,8kb,16kb sector at memory address
2232 * h0xf0000.
2234 rest_addr = 0xffff;
2235 sec_mask = 0x10000;
2236 break;
2237 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2239 * Am29LV010 part or AM29f010 - 16kb sector
2240 * size.
2242 rest_addr = 0x3fff;
2243 sec_mask = 0x1c000;
2244 break;
2245 } else if (flash_id == 0x6d) {
2246 /* Am29LV001 part - 8kb sector size. */
2247 rest_addr = 0x1fff;
2248 sec_mask = 0x1e000;
2249 break;
2251 default:
2252 /* Default to 16 kb sector size. */
2253 rest_addr = 0x3fff;
2254 sec_mask = 0x1c000;
2255 break;
2258 update_flash:
2259 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2260 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2261 rval = QLA_FUNCTION_FAILED;
2262 break;
2266 for (addr = offset, liter = 0; liter < length; liter++,
2267 addr++) {
2268 data = buf[liter];
2269 /* Are we at the beginning of a sector? */
2270 if ((addr & rest_addr) == 0) {
2271 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2272 if (addr >= 0x10000UL) {
2273 if (((addr >> 12) & 0xf0) &&
2274 ((man_id == 0x01 &&
2275 flash_id == 0x3e) ||
2276 (man_id == 0x20 &&
2277 flash_id == 0xd2))) {
2278 sec_number++;
2279 if (sec_number == 1) {
2280 rest_addr =
2281 0x7fff;
2282 sec_mask =
2283 0x18000;
2284 } else if (
2285 sec_number == 2 ||
2286 sec_number == 3) {
2287 rest_addr =
2288 0x1fff;
2289 sec_mask =
2290 0x1e000;
2291 } else if (
2292 sec_number == 4) {
2293 rest_addr =
2294 0x3fff;
2295 sec_mask =
2296 0x1c000;
2300 } else if (addr == ha->optrom_size / 2) {
2301 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2302 RD_REG_WORD(&reg->nvram);
2305 if (flash_id == 0xda && man_id == 0xc1) {
2306 qla2x00_write_flash_byte(ha, 0x5555,
2307 0xaa);
2308 qla2x00_write_flash_byte(ha, 0x2aaa,
2309 0x55);
2310 qla2x00_write_flash_byte(ha, 0x5555,
2311 0xa0);
2312 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2313 /* Then erase it */
2314 if (qla2x00_erase_flash_sector(ha,
2315 addr, sec_mask, man_id,
2316 flash_id)) {
2317 rval = QLA_FUNCTION_FAILED;
2318 break;
2320 if (man_id == 0x01 && flash_id == 0x6d)
2321 sec_number++;
2325 if (man_id == 0x01 && flash_id == 0x6d) {
2326 if (sec_number == 1 &&
2327 addr == (rest_addr - 1)) {
2328 rest_addr = 0x0fff;
2329 sec_mask = 0x1f000;
2330 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2331 rest_addr = 0x3fff;
2332 sec_mask = 0x1c000;
2336 if (qla2x00_program_flash_address(ha, addr, data,
2337 man_id, flash_id)) {
2338 rval = QLA_FUNCTION_FAILED;
2339 break;
2341 cond_resched();
2343 } while (0);
2344 qla2x00_flash_disable(ha);
2346 /* Resume HBA. */
2347 qla2x00_resume_hba(vha);
2349 return rval;
2352 uint8_t *
2353 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2354 uint32_t offset, uint32_t length)
2356 struct qla_hw_data *ha = vha->hw;
2358 /* Suspend HBA. */
2359 scsi_block_requests(vha->host);
2360 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2362 /* Go with read. */
2363 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2365 /* Resume HBA. */
2366 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2367 scsi_unblock_requests(vha->host);
2369 return buf;
2373 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2374 uint32_t offset, uint32_t length)
2376 int rval;
2377 struct qla_hw_data *ha = vha->hw;
2379 /* Suspend HBA. */
2380 scsi_block_requests(vha->host);
2381 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2383 /* Go with write. */
2384 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2385 length >> 2);
2387 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2388 scsi_unblock_requests(vha->host);
2390 return rval;
2393 uint8_t *
2394 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2395 uint32_t offset, uint32_t length)
2397 int rval;
2398 dma_addr_t optrom_dma;
2399 void *optrom;
2400 uint8_t *pbuf;
2401 uint32_t faddr, left, burst;
2402 struct qla_hw_data *ha = vha->hw;
2404 if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2405 goto try_fast;
2406 if (offset & 0xfff)
2407 goto slow_read;
2408 if (length < OPTROM_BURST_SIZE)
2409 goto slow_read;
2411 try_fast:
2412 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2413 &optrom_dma, GFP_KERNEL);
2414 if (!optrom) {
2415 ql_log(ql_log_warn, vha, 0x00cc,
2416 "Unable to allocate memory for optrom burst read (%x KB).\n",
2417 OPTROM_BURST_SIZE / 1024);
2418 goto slow_read;
2421 pbuf = buf;
2422 faddr = offset >> 2;
2423 left = length >> 2;
2424 burst = OPTROM_BURST_DWORDS;
2425 while (left != 0) {
2426 if (burst > left)
2427 burst = left;
2429 rval = qla2x00_dump_ram(vha, optrom_dma,
2430 flash_data_addr(ha, faddr), burst);
2431 if (rval) {
2432 ql_log(ql_log_warn, vha, 0x00f5,
2433 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2434 rval, flash_data_addr(ha, faddr),
2435 (unsigned long long)optrom_dma);
2436 ql_log(ql_log_warn, vha, 0x00f6,
2437 "Reverting to slow-read.\n");
2439 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2440 optrom, optrom_dma);
2441 goto slow_read;
2444 memcpy(pbuf, optrom, burst * 4);
2446 left -= burst;
2447 faddr += burst;
2448 pbuf += burst * 4;
2451 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2452 optrom_dma);
2454 return buf;
2456 slow_read:
2457 return qla24xx_read_optrom_data(vha, buf, offset, length);
2461 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2462 * @ha: HA context
2463 * @pcids: Pointer to the FCODE PCI data structure
2465 * The process of retrieving the FCODE version information is at best
2466 * described as interesting.
2468 * Within the first 100h bytes of the image an ASCII string is present
2469 * which contains several pieces of information including the FCODE
2470 * version. Unfortunately it seems the only reliable way to retrieve
2471 * the version is by scanning for another sentinel within the string,
2472 * the FCODE build date:
2474 * ... 2.00.02 10/17/02 ...
2476 * Returns QLA_SUCCESS on successful retrieval of version.
2478 static void
2479 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2481 int ret = QLA_FUNCTION_FAILED;
2482 uint32_t istart, iend, iter, vend;
2483 uint8_t do_next, rbyte, *vbyte;
2485 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2487 /* Skip the PCI data structure. */
2488 istart = pcids +
2489 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2490 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2491 iend = istart + 0x100;
2492 do {
2493 /* Scan for the sentinel date string...eeewww. */
2494 do_next = 0;
2495 iter = istart;
2496 while ((iter < iend) && !do_next) {
2497 iter++;
2498 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2499 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2500 '/')
2501 do_next++;
2502 else if (qla2x00_read_flash_byte(ha,
2503 iter + 3) == '/')
2504 do_next++;
2507 if (!do_next)
2508 break;
2510 /* Backtrack to previous ' ' (space). */
2511 do_next = 0;
2512 while ((iter > istart) && !do_next) {
2513 iter--;
2514 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2515 do_next++;
2517 if (!do_next)
2518 break;
2521 * Mark end of version tag, and find previous ' ' (space) or
2522 * string length (recent FCODE images -- major hack ahead!!!).
2524 vend = iter - 1;
2525 do_next = 0;
2526 while ((iter > istart) && !do_next) {
2527 iter--;
2528 rbyte = qla2x00_read_flash_byte(ha, iter);
2529 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2530 do_next++;
2532 if (!do_next)
2533 break;
2535 /* Mark beginning of version tag, and copy data. */
2536 iter++;
2537 if ((vend - iter) &&
2538 ((vend - iter) < sizeof(ha->fcode_revision))) {
2539 vbyte = ha->fcode_revision;
2540 while (iter <= vend) {
2541 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2542 iter++;
2544 ret = QLA_SUCCESS;
2546 } while (0);
2548 if (ret != QLA_SUCCESS)
2549 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2553 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2555 int ret = QLA_SUCCESS;
2556 uint8_t code_type, last_image;
2557 uint32_t pcihdr, pcids;
2558 uint8_t *dbyte;
2559 uint16_t *dcode;
2560 struct qla_hw_data *ha = vha->hw;
2562 if (!ha->pio_address || !mbuf)
2563 return QLA_FUNCTION_FAILED;
2565 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2566 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2567 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2568 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2570 qla2x00_flash_enable(ha);
2572 /* Begin with first PCI expansion ROM header. */
2573 pcihdr = 0;
2574 last_image = 1;
2575 do {
2576 /* Verify PCI expansion ROM header. */
2577 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2578 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2579 /* No signature */
2580 ql_log(ql_log_fatal, vha, 0x0050,
2581 "No matching ROM signature.\n");
2582 ret = QLA_FUNCTION_FAILED;
2583 break;
2586 /* Locate PCI data structure. */
2587 pcids = pcihdr +
2588 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2589 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2591 /* Validate signature of PCI data structure. */
2592 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2593 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2594 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2595 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2596 /* Incorrect header. */
2597 ql_log(ql_log_fatal, vha, 0x0051,
2598 "PCI data struct not found pcir_adr=%x.\n", pcids);
2599 ret = QLA_FUNCTION_FAILED;
2600 break;
2603 /* Read version */
2604 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2605 switch (code_type) {
2606 case ROM_CODE_TYPE_BIOS:
2607 /* Intel x86, PC-AT compatible. */
2608 ha->bios_revision[0] =
2609 qla2x00_read_flash_byte(ha, pcids + 0x12);
2610 ha->bios_revision[1] =
2611 qla2x00_read_flash_byte(ha, pcids + 0x13);
2612 ql_dbg(ql_dbg_init, vha, 0x0052,
2613 "Read BIOS %d.%d.\n",
2614 ha->bios_revision[1], ha->bios_revision[0]);
2615 break;
2616 case ROM_CODE_TYPE_FCODE:
2617 /* Open Firmware standard for PCI (FCode). */
2618 /* Eeeewww... */
2619 qla2x00_get_fcode_version(ha, pcids);
2620 break;
2621 case ROM_CODE_TYPE_EFI:
2622 /* Extensible Firmware Interface (EFI). */
2623 ha->efi_revision[0] =
2624 qla2x00_read_flash_byte(ha, pcids + 0x12);
2625 ha->efi_revision[1] =
2626 qla2x00_read_flash_byte(ha, pcids + 0x13);
2627 ql_dbg(ql_dbg_init, vha, 0x0053,
2628 "Read EFI %d.%d.\n",
2629 ha->efi_revision[1], ha->efi_revision[0]);
2630 break;
2631 default:
2632 ql_log(ql_log_warn, vha, 0x0054,
2633 "Unrecognized code type %x at pcids %x.\n",
2634 code_type, pcids);
2635 break;
2638 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2640 /* Locate next PCI expansion ROM. */
2641 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2642 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2643 } while (!last_image);
2645 if (IS_QLA2322(ha)) {
2646 /* Read firmware image information. */
2647 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2648 dbyte = mbuf;
2649 memset(dbyte, 0, 8);
2650 dcode = (uint16_t *)dbyte;
2652 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2654 ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2655 "Dumping fw "
2656 "ver from flash:.\n");
2657 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2658 (uint8_t *)dbyte, 8);
2660 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2661 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2662 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2663 dcode[3] == 0)) {
2664 ql_log(ql_log_warn, vha, 0x0057,
2665 "Unrecognized fw revision at %x.\n",
2666 ha->flt_region_fw * 4);
2667 } else {
2668 /* values are in big endian */
2669 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2670 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2671 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2672 ql_dbg(ql_dbg_init, vha, 0x0058,
2673 "FW Version: "
2674 "%d.%d.%d.\n", ha->fw_revision[0],
2675 ha->fw_revision[1], ha->fw_revision[2]);
2679 qla2x00_flash_disable(ha);
2681 return ret;
2685 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2687 int ret = QLA_SUCCESS;
2688 uint32_t pcihdr, pcids;
2689 uint32_t *dcode;
2690 uint8_t *bcode;
2691 uint8_t code_type, last_image;
2692 int i;
2693 struct qla_hw_data *ha = vha->hw;
2695 if (IS_QLA82XX(ha))
2696 return ret;
2698 if (!mbuf)
2699 return QLA_FUNCTION_FAILED;
2701 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2702 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2703 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2704 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2706 dcode = mbuf;
2708 /* Begin with first PCI expansion ROM header. */
2709 pcihdr = ha->flt_region_boot << 2;
2710 last_image = 1;
2711 do {
2712 /* Verify PCI expansion ROM header. */
2713 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2714 bcode = mbuf + (pcihdr % 4);
2715 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2716 /* No signature */
2717 ql_log(ql_log_fatal, vha, 0x0059,
2718 "No matching ROM signature.\n");
2719 ret = QLA_FUNCTION_FAILED;
2720 break;
2723 /* Locate PCI data structure. */
2724 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2726 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2727 bcode = mbuf + (pcihdr % 4);
2729 /* Validate signature of PCI data structure. */
2730 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2731 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2732 /* Incorrect header. */
2733 ql_log(ql_log_fatal, vha, 0x005a,
2734 "PCI data struct not found pcir_adr=%x.\n", pcids);
2735 ret = QLA_FUNCTION_FAILED;
2736 break;
2739 /* Read version */
2740 code_type = bcode[0x14];
2741 switch (code_type) {
2742 case ROM_CODE_TYPE_BIOS:
2743 /* Intel x86, PC-AT compatible. */
2744 ha->bios_revision[0] = bcode[0x12];
2745 ha->bios_revision[1] = bcode[0x13];
2746 ql_dbg(ql_dbg_init, vha, 0x005b,
2747 "Read BIOS %d.%d.\n",
2748 ha->bios_revision[1], ha->bios_revision[0]);
2749 break;
2750 case ROM_CODE_TYPE_FCODE:
2751 /* Open Firmware standard for PCI (FCode). */
2752 ha->fcode_revision[0] = bcode[0x12];
2753 ha->fcode_revision[1] = bcode[0x13];
2754 ql_dbg(ql_dbg_init, vha, 0x005c,
2755 "Read FCODE %d.%d.\n",
2756 ha->fcode_revision[1], ha->fcode_revision[0]);
2757 break;
2758 case ROM_CODE_TYPE_EFI:
2759 /* Extensible Firmware Interface (EFI). */
2760 ha->efi_revision[0] = bcode[0x12];
2761 ha->efi_revision[1] = bcode[0x13];
2762 ql_dbg(ql_dbg_init, vha, 0x005d,
2763 "Read EFI %d.%d.\n",
2764 ha->efi_revision[1], ha->efi_revision[0]);
2765 break;
2766 default:
2767 ql_log(ql_log_warn, vha, 0x005e,
2768 "Unrecognized code type %x at pcids %x.\n",
2769 code_type, pcids);
2770 break;
2773 last_image = bcode[0x15] & BIT_7;
2775 /* Locate next PCI expansion ROM. */
2776 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2777 } while (!last_image);
2779 /* Read firmware image information. */
2780 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2781 dcode = mbuf;
2783 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2784 for (i = 0; i < 4; i++)
2785 dcode[i] = be32_to_cpu(dcode[i]);
2787 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2788 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2789 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2790 dcode[3] == 0)) {
2791 ql_log(ql_log_warn, vha, 0x005f,
2792 "Unrecognized fw revision at %x.\n",
2793 ha->flt_region_fw * 4);
2794 } else {
2795 ha->fw_revision[0] = dcode[0];
2796 ha->fw_revision[1] = dcode[1];
2797 ha->fw_revision[2] = dcode[2];
2798 ha->fw_revision[3] = dcode[3];
2799 ql_dbg(ql_dbg_init, vha, 0x0060,
2800 "Firmware revision %d.%d.%d.%d.\n",
2801 ha->fw_revision[0], ha->fw_revision[1],
2802 ha->fw_revision[2], ha->fw_revision[3]);
2805 /* Check for golden firmware and get version if available */
2806 if (!IS_QLA81XX(ha)) {
2807 /* Golden firmware is not present in non 81XX adapters */
2808 return ret;
2811 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2812 dcode = mbuf;
2813 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2814 ha->flt_region_gold_fw << 2, 32);
2816 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2817 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2818 ql_log(ql_log_warn, vha, 0x0056,
2819 "Unrecognized golden fw at 0x%x.\n",
2820 ha->flt_region_gold_fw * 4);
2821 return ret;
2824 for (i = 4; i < 8; i++)
2825 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2827 return ret;
2830 static int
2831 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2833 if (pos >= end || *pos != 0x82)
2834 return 0;
2836 pos += 3 + pos[1];
2837 if (pos >= end || *pos != 0x90)
2838 return 0;
2840 pos += 3 + pos[1];
2841 if (pos >= end || *pos != 0x78)
2842 return 0;
2844 return 1;
2848 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2850 struct qla_hw_data *ha = vha->hw;
2851 uint8_t *pos = ha->vpd;
2852 uint8_t *end = pos + ha->vpd_size;
2853 int len = 0;
2855 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2856 return 0;
2858 while (pos < end && *pos != 0x78) {
2859 len = (*pos == 0x82) ? pos[1] : pos[2];
2861 if (!strncmp(pos, key, strlen(key)))
2862 break;
2864 if (*pos != 0x90 && *pos != 0x91)
2865 pos += len;
2867 pos += 3;
2870 if (pos < end - len && *pos != 0x78)
2871 return snprintf(str, size, "%.*s", len, pos + 3);
2873 return 0;
2877 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2879 int len, max_len;
2880 uint32_t fcp_prio_addr;
2881 struct qla_hw_data *ha = vha->hw;
2883 if (!ha->fcp_prio_cfg) {
2884 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2885 if (!ha->fcp_prio_cfg) {
2886 ql_log(ql_log_warn, vha, 0x00d5,
2887 "Unable to allocate memory for fcp priorty data (%x).\n",
2888 FCP_PRIO_CFG_SIZE);
2889 return QLA_FUNCTION_FAILED;
2892 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2894 fcp_prio_addr = ha->flt_region_fcp_prio;
2896 /* first read the fcp priority data header from flash */
2897 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2898 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2900 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
2901 goto fail;
2903 /* read remaining FCP CMD config data from flash */
2904 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2905 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2906 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2908 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2909 fcp_prio_addr << 2, (len < max_len ? len : max_len));
2911 /* revalidate the entire FCP priority config data, including entries */
2912 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
2913 goto fail;
2915 ha->flags.fcp_prio_enabled = 1;
2916 return QLA_SUCCESS;
2917 fail:
2918 vfree(ha->fcp_prio_cfg);
2919 ha->fcp_prio_cfg = NULL;
2920 return QLA_FUNCTION_FAILED;