Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / mtd / nand / fsl_elbc_nand.c
blob33d8aad8bba5a47b2c0135acf4132454bab12eea
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
50 struct fsl_elbc_mtd {
51 struct mtd_info mtd;
52 struct nand_chip chip;
53 struct fsl_lbc_ctrl *ctrl;
55 struct device *dev;
56 int bank; /* Chip select bank number */
57 u8 __iomem *vbase; /* Chip select base virtual address */
58 int page_size; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller information */
64 struct fsl_elbc_fcm_ctrl {
65 struct nand_hw_control controller;
66 struct fsl_elbc_mtd *chips[MAX_BANKS];
68 u8 __iomem *addr; /* Address of assigned FCM buffer */
69 unsigned int page; /* Last page written to / read from */
70 unsigned int read_bytes; /* Number of bytes read during command */
71 unsigned int column; /* Saved column from SEQIN */
72 unsigned int index; /* Pointer to next byte to 'read' */
73 unsigned int status; /* status read from LTESR after last op */
74 unsigned int mdr; /* UPM/FCM Data Register value */
75 unsigned int use_mdr; /* Non zero if the MDR is to be set */
76 unsigned int oob; /* Non zero if operating on OOB data */
77 unsigned int counter; /* counter for the initializations */
78 char *oob_poi; /* Place to write ECC after read back */
81 /* These map to the positions used by the FCM hardware ECC generator */
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85 .eccbytes = 3,
86 .eccpos = {6, 7, 8},
87 .oobfree = { {0, 5}, {9, 7} },
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92 .eccbytes = 3,
93 .eccpos = {8, 9, 10},
94 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99 .eccbytes = 12,
100 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106 .eccbytes = 12,
107 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113 * 1, so we have to adjust bad block pattern. This pattern should be used for
114 * x8 chips only. So far hardware does not support x16 chips anyway.
116 static u8 scan_ff_pattern[] = { 0xff, };
118 static struct nand_bbt_descr largepage_memorybased = {
119 .options = 0,
120 .offs = 0,
121 .len = 1,
122 .pattern = scan_ff_pattern,
126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127 * interfere with ECC positions, that's why we implement our own descriptors.
128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
133 static struct nand_bbt_descr bbt_main_descr = {
134 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135 NAND_BBT_2BIT | NAND_BBT_VERSION,
136 .offs = 11,
137 .len = 4,
138 .veroffs = 15,
139 .maxblocks = 4,
140 .pattern = bbt_pattern,
143 static struct nand_bbt_descr bbt_mirror_descr = {
144 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145 NAND_BBT_2BIT | NAND_BBT_VERSION,
146 .offs = 11,
147 .len = 4,
148 .veroffs = 15,
149 .maxblocks = 4,
150 .pattern = mirror_pattern,
153 /*=================================*/
156 * Set up the FCM hardware block and page address fields, and the fcm
157 * structure addr field to point to the correct FCM buffer in memory
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
161 struct nand_chip *chip = mtd->priv;
162 struct fsl_elbc_mtd *priv = chip->priv;
163 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166 int buf_num;
168 elbc_fcm_ctrl->page = page_addr;
170 out_be32(&lbc->fbar,
171 page_addr >> (chip->phys_erase_shift - chip->page_shift));
173 if (priv->page_size) {
174 out_be32(&lbc->fpar,
175 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
176 (oob ? FPAR_LP_MS : 0) | column);
177 buf_num = (page_addr & 1) << 2;
178 } else {
179 out_be32(&lbc->fpar,
180 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
181 (oob ? FPAR_SP_MS : 0) | column);
182 buf_num = page_addr & 7;
185 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
186 elbc_fcm_ctrl->index = column;
188 /* for OOB data point to the second half of the buffer */
189 if (oob)
190 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
192 dev_vdbg(priv->dev, "set_addr: bank=%d, "
193 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194 "index %x, pes %d ps %d\n",
195 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
196 elbc_fcm_ctrl->index,
197 chip->phys_erase_shift, chip->page_shift);
201 * execute FCM command and wait for it to complete
203 static int fsl_elbc_run_command(struct mtd_info *mtd)
205 struct nand_chip *chip = mtd->priv;
206 struct fsl_elbc_mtd *priv = chip->priv;
207 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
208 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc->fmr, priv->fmr | 3);
213 if (elbc_fcm_ctrl->use_mdr)
214 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
216 dev_vdbg(priv->dev,
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 dev_vdbg(priv->dev,
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 in_be32(&lbc->fbcr), priv->bank);
225 ctrl->irq_status = 0;
226 /* execute special operation */
227 out_be32(&lbc->lsor, priv->bank);
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 FCM_TIMEOUT_MSECS * HZ/1000);
232 elbc_fcm_ctrl->status = ctrl->irq_status;
233 /* store mdr value in case it was needed */
234 if (elbc_fcm_ctrl->use_mdr)
235 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
237 elbc_fcm_ctrl->use_mdr = 0;
239 if (elbc_fcm_ctrl->status != LTESR_CC) {
240 dev_info(priv->dev,
241 "command failed: fir %x fcr %x status %x mdr %x\n",
242 in_be32(&lbc->fir), in_be32(&lbc->fcr),
243 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244 return -EIO;
247 return 0;
250 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
252 struct fsl_elbc_mtd *priv = chip->priv;
253 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
254 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
256 if (priv->page_size) {
257 out_be32(&lbc->fir,
258 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
259 (FIR_OP_CA << FIR_OP1_SHIFT) |
260 (FIR_OP_PA << FIR_OP2_SHIFT) |
261 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
262 (FIR_OP_RBW << FIR_OP4_SHIFT));
264 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
265 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
266 } else {
267 out_be32(&lbc->fir,
268 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
269 (FIR_OP_CA << FIR_OP1_SHIFT) |
270 (FIR_OP_PA << FIR_OP2_SHIFT) |
271 (FIR_OP_RBW << FIR_OP3_SHIFT));
273 if (oob)
274 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
275 else
276 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
280 /* cmdfunc send commands to the FCM */
281 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
282 int column, int page_addr)
284 struct nand_chip *chip = mtd->priv;
285 struct fsl_elbc_mtd *priv = chip->priv;
286 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
288 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
290 elbc_fcm_ctrl->use_mdr = 0;
292 /* clear the read buffer */
293 elbc_fcm_ctrl->read_bytes = 0;
294 if (command != NAND_CMD_PAGEPROG)
295 elbc_fcm_ctrl->index = 0;
297 switch (command) {
298 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
299 case NAND_CMD_READ1:
300 column += 256;
302 /* fall-through */
303 case NAND_CMD_READ0:
304 dev_dbg(priv->dev,
305 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306 " 0x%x, column: 0x%x.\n", page_addr, column);
309 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
310 set_addr(mtd, 0, page_addr, 0);
312 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
313 elbc_fcm_ctrl->index += column;
315 fsl_elbc_do_read(chip, 0);
316 fsl_elbc_run_command(mtd);
317 return;
319 /* READOOB reads only the OOB because no ECC is performed. */
320 case NAND_CMD_READOOB:
321 dev_vdbg(priv->dev,
322 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323 " 0x%x, column: 0x%x.\n", page_addr, column);
325 out_be32(&lbc->fbcr, mtd->oobsize - column);
326 set_addr(mtd, column, page_addr, 1);
328 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
330 fsl_elbc_do_read(chip, 1);
331 fsl_elbc_run_command(mtd);
332 return;
334 /* READID must read all 5 possible bytes while CEB is active */
335 case NAND_CMD_READID:
336 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
338 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339 (FIR_OP_UA << FIR_OP1_SHIFT) |
340 (FIR_OP_RBW << FIR_OP2_SHIFT));
341 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342 /* nand_get_flash_type() reads 8 bytes of entire ID string */
343 out_be32(&lbc->fbcr, 8);
344 elbc_fcm_ctrl->read_bytes = 8;
345 elbc_fcm_ctrl->use_mdr = 1;
346 elbc_fcm_ctrl->mdr = 0;
348 set_addr(mtd, 0, 0, 0);
349 fsl_elbc_run_command(mtd);
350 return;
352 /* ERASE1 stores the block and page address */
353 case NAND_CMD_ERASE1:
354 dev_vdbg(priv->dev,
355 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356 "page_addr: 0x%x.\n", page_addr);
357 set_addr(mtd, 0, page_addr, 0);
358 return;
360 /* ERASE2 uses the block and page address from ERASE1 */
361 case NAND_CMD_ERASE2:
362 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
364 out_be32(&lbc->fir,
365 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366 (FIR_OP_PA << FIR_OP1_SHIFT) |
367 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
368 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
369 (FIR_OP_RS << FIR_OP4_SHIFT));
371 out_be32(&lbc->fcr,
372 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
374 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
376 out_be32(&lbc->fbcr, 0);
377 elbc_fcm_ctrl->read_bytes = 0;
378 elbc_fcm_ctrl->use_mdr = 1;
380 fsl_elbc_run_command(mtd);
381 return;
383 /* SEQIN sets up the addr buffer and all registers except the length */
384 case NAND_CMD_SEQIN: {
385 __be32 fcr;
386 dev_vdbg(priv->dev,
387 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388 "page_addr: 0x%x, column: 0x%x.\n",
389 page_addr, column);
391 elbc_fcm_ctrl->column = column;
392 elbc_fcm_ctrl->oob = 0;
393 elbc_fcm_ctrl->use_mdr = 1;
395 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
396 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
397 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
399 if (priv->page_size) {
400 out_be32(&lbc->fir,
401 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
402 (FIR_OP_CA << FIR_OP1_SHIFT) |
403 (FIR_OP_PA << FIR_OP2_SHIFT) |
404 (FIR_OP_WB << FIR_OP3_SHIFT) |
405 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
406 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
407 (FIR_OP_RS << FIR_OP6_SHIFT));
408 } else {
409 out_be32(&lbc->fir,
410 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
411 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
412 (FIR_OP_CA << FIR_OP2_SHIFT) |
413 (FIR_OP_PA << FIR_OP3_SHIFT) |
414 (FIR_OP_WB << FIR_OP4_SHIFT) |
415 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
416 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
417 (FIR_OP_RS << FIR_OP7_SHIFT));
419 if (column >= mtd->writesize) {
420 /* OOB area --> READOOB */
421 column -= mtd->writesize;
422 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
423 elbc_fcm_ctrl->oob = 1;
424 } else {
425 WARN_ON(column != 0);
426 /* First 256 bytes --> READ0 */
427 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
431 out_be32(&lbc->fcr, fcr);
432 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
433 return;
436 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
437 case NAND_CMD_PAGEPROG: {
438 int full_page;
439 dev_vdbg(priv->dev,
440 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441 "writing %d bytes.\n", elbc_fcm_ctrl->index);
443 /* if the write did not start at 0 or is not a full page
444 * then set the exact length, otherwise use a full page
445 * write so the HW generates the ECC.
447 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
448 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
449 out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
450 full_page = 0;
451 } else {
452 out_be32(&lbc->fbcr, 0);
453 full_page = 1;
456 fsl_elbc_run_command(mtd);
458 /* Read back the page in order to fill in the ECC for the
459 * caller. Is this really needed?
461 if (full_page && elbc_fcm_ctrl->oob_poi) {
462 out_be32(&lbc->fbcr, 3);
463 set_addr(mtd, 6, page_addr, 1);
465 elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
467 fsl_elbc_do_read(chip, 1);
468 fsl_elbc_run_command(mtd);
470 memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
471 &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
472 elbc_fcm_ctrl->index += 3;
475 elbc_fcm_ctrl->oob_poi = NULL;
476 return;
479 /* CMD_STATUS must read the status byte while CEB is active */
480 /* Note - it does not wait for the ready line */
481 case NAND_CMD_STATUS:
482 out_be32(&lbc->fir,
483 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
484 (FIR_OP_RBW << FIR_OP1_SHIFT));
485 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
486 out_be32(&lbc->fbcr, 1);
487 set_addr(mtd, 0, 0, 0);
488 elbc_fcm_ctrl->read_bytes = 1;
490 fsl_elbc_run_command(mtd);
492 /* The chip always seems to report that it is
493 * write-protected, even when it is not.
495 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
496 return;
498 /* RESET without waiting for the ready line */
499 case NAND_CMD_RESET:
500 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
502 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
503 fsl_elbc_run_command(mtd);
504 return;
506 default:
507 dev_err(priv->dev,
508 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
509 command);
513 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
515 /* The hardware does not seem to support multiple
516 * chips per bank.
521 * Write buf to the FCM Controller Data Buffer
523 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
525 struct nand_chip *chip = mtd->priv;
526 struct fsl_elbc_mtd *priv = chip->priv;
527 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
528 unsigned int bufsize = mtd->writesize + mtd->oobsize;
530 if (len <= 0) {
531 dev_err(priv->dev, "write_buf of %d bytes", len);
532 elbc_fcm_ctrl->status = 0;
533 return;
536 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
537 dev_err(priv->dev,
538 "write_buf beyond end of buffer "
539 "(%d requested, %u available)\n",
540 len, bufsize - elbc_fcm_ctrl->index);
541 len = bufsize - elbc_fcm_ctrl->index;
544 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
546 * This is workaround for the weird elbc hangs during nand write,
547 * Scott Wood says: "...perhaps difference in how long it takes a
548 * write to make it through the localbus compared to a write to IMMR
549 * is causing problems, and sync isn't helping for some reason."
550 * Reading back the last byte helps though.
552 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
554 elbc_fcm_ctrl->index += len;
558 * read a byte from either the FCM hardware buffer if it has any data left
559 * otherwise issue a command to read a single byte.
561 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
563 struct nand_chip *chip = mtd->priv;
564 struct fsl_elbc_mtd *priv = chip->priv;
565 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
567 /* If there are still bytes in the FCM, then use the next byte. */
568 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
569 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
571 dev_err(priv->dev, "read_byte beyond end of buffer\n");
572 return ERR_BYTE;
576 * Read from the FCM Controller Data Buffer
578 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
580 struct nand_chip *chip = mtd->priv;
581 struct fsl_elbc_mtd *priv = chip->priv;
582 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583 int avail;
585 if (len < 0)
586 return;
588 avail = min((unsigned int)len,
589 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
590 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
591 elbc_fcm_ctrl->index += avail;
593 if (len > avail)
594 dev_err(priv->dev,
595 "read_buf beyond end of buffer "
596 "(%d requested, %d available)\n",
597 len, avail);
601 * Verify buffer against the FCM Controller Data Buffer
603 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
605 struct nand_chip *chip = mtd->priv;
606 struct fsl_elbc_mtd *priv = chip->priv;
607 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
608 int i;
610 if (len < 0) {
611 dev_err(priv->dev, "write_buf of %d bytes", len);
612 return -EINVAL;
615 if ((unsigned int)len >
616 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
617 dev_err(priv->dev,
618 "verify_buf beyond end of buffer "
619 "(%d requested, %u available)\n",
620 len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
622 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
623 return -EINVAL;
626 for (i = 0; i < len; i++)
627 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
628 != buf[i])
629 break;
631 elbc_fcm_ctrl->index += len;
632 return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
635 /* This function is called after Program and Erase Operations to
636 * check for success or failure.
638 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
640 struct fsl_elbc_mtd *priv = chip->priv;
641 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
643 if (elbc_fcm_ctrl->status != LTESR_CC)
644 return NAND_STATUS_FAIL;
646 /* The chip always seems to report that it is
647 * write-protected, even when it is not.
649 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
652 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
654 struct nand_chip *chip = mtd->priv;
655 struct fsl_elbc_mtd *priv = chip->priv;
656 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
657 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
658 unsigned int al;
660 /* calculate FMR Address Length field */
661 al = 0;
662 if (chip->pagemask & 0xffff0000)
663 al++;
664 if (chip->pagemask & 0xff000000)
665 al++;
667 /* add to ECCM mode set in fsl_elbc_init */
668 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
669 (al << FMR_AL_SHIFT);
671 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
672 chip->numchips);
673 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
674 chip->chipsize);
675 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
676 chip->pagemask);
677 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
678 chip->chip_delay);
679 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
680 chip->badblockpos);
681 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
682 chip->chip_shift);
683 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
684 chip->page_shift);
685 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
686 chip->phys_erase_shift);
687 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
688 chip->ecclayout);
689 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
690 chip->ecc.mode);
691 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
692 chip->ecc.steps);
693 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
694 chip->ecc.bytes);
695 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
696 chip->ecc.total);
697 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
698 chip->ecc.layout);
699 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
700 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
701 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
702 mtd->erasesize);
703 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
704 mtd->writesize);
705 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
706 mtd->oobsize);
708 /* adjust Option Register and ECC to match Flash page size */
709 if (mtd->writesize == 512) {
710 priv->page_size = 0;
711 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
712 } else if (mtd->writesize == 2048) {
713 priv->page_size = 1;
714 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
715 /* adjust ecc setup if needed */
716 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
717 BR_DECC_CHK_GEN) {
718 chip->ecc.size = 512;
719 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
720 &fsl_elbc_oob_lp_eccm1 :
721 &fsl_elbc_oob_lp_eccm0;
722 chip->badblock_pattern = &largepage_memorybased;
724 } else {
725 dev_err(priv->dev,
726 "fsl_elbc_init: page size %d is not supported\n",
727 mtd->writesize);
728 return -1;
731 return 0;
734 static int fsl_elbc_read_page(struct mtd_info *mtd,
735 struct nand_chip *chip,
736 uint8_t *buf,
737 int page)
739 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
740 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
742 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
743 mtd->ecc_stats.failed++;
745 return 0;
748 /* ECC will be calculated automatically, and errors will be detected in
749 * waitfunc.
751 static void fsl_elbc_write_page(struct mtd_info *mtd,
752 struct nand_chip *chip,
753 const uint8_t *buf)
755 struct fsl_elbc_mtd *priv = chip->priv;
756 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
758 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
759 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
761 elbc_fcm_ctrl->oob_poi = chip->oob_poi;
764 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
766 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
767 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
768 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
769 struct nand_chip *chip = &priv->chip;
771 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
773 /* Fill in fsl_elbc_mtd structure */
774 priv->mtd.priv = chip;
775 priv->mtd.owner = THIS_MODULE;
777 /* Set the ECCM according to the settings in bootloader.*/
778 priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
780 /* fill in nand_chip structure */
781 /* set up function call table */
782 chip->read_byte = fsl_elbc_read_byte;
783 chip->write_buf = fsl_elbc_write_buf;
784 chip->read_buf = fsl_elbc_read_buf;
785 chip->verify_buf = fsl_elbc_verify_buf;
786 chip->select_chip = fsl_elbc_select_chip;
787 chip->cmdfunc = fsl_elbc_cmdfunc;
788 chip->waitfunc = fsl_elbc_wait;
790 chip->bbt_td = &bbt_main_descr;
791 chip->bbt_md = &bbt_mirror_descr;
793 /* set up nand options */
794 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
795 NAND_USE_FLASH_BBT;
797 chip->controller = &elbc_fcm_ctrl->controller;
798 chip->priv = priv;
800 chip->ecc.read_page = fsl_elbc_read_page;
801 chip->ecc.write_page = fsl_elbc_write_page;
803 /* If CS Base Register selects full hardware ECC then use it */
804 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
805 BR_DECC_CHK_GEN) {
806 chip->ecc.mode = NAND_ECC_HW;
807 /* put in small page settings and adjust later if needed */
808 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
809 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
810 chip->ecc.size = 512;
811 chip->ecc.bytes = 3;
812 } else {
813 /* otherwise fall back to default software ECC */
814 chip->ecc.mode = NAND_ECC_SOFT;
817 return 0;
820 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
822 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
823 nand_release(&priv->mtd);
825 kfree(priv->mtd.name);
827 if (priv->vbase)
828 iounmap(priv->vbase);
830 elbc_fcm_ctrl->chips[priv->bank] = NULL;
831 kfree(priv);
832 kfree(elbc_fcm_ctrl);
833 return 0;
836 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
838 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
840 struct fsl_lbc_regs __iomem *lbc;
841 struct fsl_elbc_mtd *priv;
842 struct resource res;
843 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
844 static const char *part_probe_types[]
845 = { "cmdlinepart", "RedBoot", NULL };
846 struct mtd_partition *parts;
847 int ret;
848 int bank;
849 struct device *dev;
850 struct device_node *node = pdev->dev.of_node;
852 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
853 return -ENODEV;
854 lbc = fsl_lbc_ctrl_dev->regs;
855 dev = fsl_lbc_ctrl_dev->dev;
857 /* get, allocate and map the memory resource */
858 ret = of_address_to_resource(node, 0, &res);
859 if (ret) {
860 dev_err(dev, "failed to get resource\n");
861 return ret;
864 /* find which chip select it is connected to */
865 for (bank = 0; bank < MAX_BANKS; bank++)
866 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
867 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
868 (in_be32(&lbc->bank[bank].br) &
869 in_be32(&lbc->bank[bank].or) & BR_BA)
870 == fsl_lbc_addr(res.start))
871 break;
873 if (bank >= MAX_BANKS) {
874 dev_err(dev, "address did not match any chip selects\n");
875 return -ENODEV;
878 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
879 if (!priv)
880 return -ENOMEM;
882 mutex_lock(&fsl_elbc_nand_mutex);
883 if (!fsl_lbc_ctrl_dev->nand) {
884 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
885 if (!elbc_fcm_ctrl) {
886 dev_err(dev, "failed to allocate memory\n");
887 mutex_unlock(&fsl_elbc_nand_mutex);
888 ret = -ENOMEM;
889 goto err;
891 elbc_fcm_ctrl->counter++;
893 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
894 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
895 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
896 } else {
897 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
899 mutex_unlock(&fsl_elbc_nand_mutex);
901 elbc_fcm_ctrl->chips[bank] = priv;
902 priv->bank = bank;
903 priv->ctrl = fsl_lbc_ctrl_dev;
904 priv->dev = dev;
906 priv->vbase = ioremap(res.start, resource_size(&res));
907 if (!priv->vbase) {
908 dev_err(dev, "failed to map chip region\n");
909 ret = -ENOMEM;
910 goto err;
913 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
914 if (!priv->mtd.name) {
915 ret = -ENOMEM;
916 goto err;
919 ret = fsl_elbc_chip_init(priv);
920 if (ret)
921 goto err;
923 ret = nand_scan_ident(&priv->mtd, 1, NULL);
924 if (ret)
925 goto err;
927 ret = fsl_elbc_chip_init_tail(&priv->mtd);
928 if (ret)
929 goto err;
931 ret = nand_scan_tail(&priv->mtd);
932 if (ret)
933 goto err;
935 /* First look for RedBoot table or partitions on the command
936 * line, these take precedence over device tree information */
937 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
938 if (ret < 0)
939 goto err;
941 if (ret == 0) {
942 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
943 if (ret < 0)
944 goto err;
947 mtd_device_register(&priv->mtd, parts, ret);
949 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
950 (unsigned long long)res.start, priv->bank);
951 return 0;
953 err:
954 fsl_elbc_chip_remove(priv);
955 return ret;
958 static int fsl_elbc_nand_remove(struct platform_device *pdev)
960 int i;
961 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
962 for (i = 0; i < MAX_BANKS; i++)
963 if (elbc_fcm_ctrl->chips[i])
964 fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
966 mutex_lock(&fsl_elbc_nand_mutex);
967 elbc_fcm_ctrl->counter--;
968 if (!elbc_fcm_ctrl->counter) {
969 fsl_lbc_ctrl_dev->nand = NULL;
970 kfree(elbc_fcm_ctrl);
972 mutex_unlock(&fsl_elbc_nand_mutex);
974 return 0;
978 static const struct of_device_id fsl_elbc_nand_match[] = {
979 { .compatible = "fsl,elbc-fcm-nand", },
983 static struct platform_driver fsl_elbc_nand_driver = {
984 .driver = {
985 .name = "fsl,elbc-fcm-nand",
986 .owner = THIS_MODULE,
987 .of_match_table = fsl_elbc_nand_match,
989 .probe = fsl_elbc_nand_probe,
990 .remove = fsl_elbc_nand_remove,
993 static int __init fsl_elbc_nand_init(void)
995 return platform_driver_register(&fsl_elbc_nand_driver);
998 static void __exit fsl_elbc_nand_exit(void)
1000 platform_driver_unregister(&fsl_elbc_nand_driver);
1003 module_init(fsl_elbc_nand_init);
1004 module_exit(fsl_elbc_nand_exit);
1006 MODULE_LICENSE("GPL");
1007 MODULE_AUTHOR("Freescale");
1008 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");