2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/module.h>
31 MODULE_LICENSE("GPL");
33 /* We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
36 #define NAND_DEFAULT_TIMINGS -1
38 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
39 module_param(onfi_timing_mode
, int, S_IRUGO
);
40 MODULE_PARM_DESC(onfi_timing_mode
, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
43 #define DENALI_NAND_NAME "denali-nand"
45 /* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47 #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
58 /* indicates whether or not the internal value for the flash bank is
60 #define CHIP_SELECT_INVALID -1
62 #define SUPPORT_8BITECC 1
64 /* This macro divides two integers and rounds fractional values up
65 * to the nearest integer value. */
66 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
68 /* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
71 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
73 /* These constants are defined by the driver to enable common driver
74 * configuration options. */
75 #define SPARE_ACCESS 0x41
76 #define MAIN_ACCESS 0x42
77 #define MAIN_SPARE_ACCESS 0x43
80 #define DENALI_WRITE 0x100
82 /* types of device accesses. We can issue commands and get status */
83 #define COMMAND_CYCLE 0
85 #define STATUS_CYCLE 2
87 /* this is a helper macro that allows us to
88 * format the bank into the proper bits for the controller */
89 #define BANK(x) ((x) << 24)
91 /* List of platforms this NAND controller has be integrated into */
92 static const struct pci_device_id denali_pci_ids
[] = {
93 { PCI_VDEVICE(INTEL
, 0x0701), INTEL_CE4100
},
94 { PCI_VDEVICE(INTEL
, 0x0809), INTEL_MRST
},
95 { /* end: all zeroes */ }
99 /* these are static lookup tables that give us easy access to
100 * registers in the NAND controller.
102 static const uint32_t intr_status_addresses
[4] = {INTR_STATUS0
,
107 static const uint32_t device_reset_banks
[4] = {DEVICE_RESET__BANK0
,
110 DEVICE_RESET__BANK3
};
112 static const uint32_t operation_timeout
[4] = {INTR_STATUS0__TIME_OUT
,
113 INTR_STATUS1__TIME_OUT
,
114 INTR_STATUS2__TIME_OUT
,
115 INTR_STATUS3__TIME_OUT
};
117 static const uint32_t reset_complete
[4] = {INTR_STATUS0__RST_COMP
,
118 INTR_STATUS1__RST_COMP
,
119 INTR_STATUS2__RST_COMP
,
120 INTR_STATUS3__RST_COMP
};
122 /* forward declarations */
123 static void clear_interrupts(struct denali_nand_info
*denali
);
124 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
126 static void denali_irq_enable(struct denali_nand_info
*denali
,
128 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
130 /* Certain operations for the denali NAND controller use
131 * an indexed mode to read/write data. The operation is
132 * performed by writing the address value of the command
133 * to the device memory followed by the data. This function
134 * abstracts this common operation.
136 static void index_addr(struct denali_nand_info
*denali
,
137 uint32_t address
, uint32_t data
)
139 iowrite32(address
, denali
->flash_mem
);
140 iowrite32(data
, denali
->flash_mem
+ 0x10);
143 /* Perform an indexed read of the device */
144 static void index_addr_read_data(struct denali_nand_info
*denali
,
145 uint32_t address
, uint32_t *pdata
)
147 iowrite32(address
, denali
->flash_mem
);
148 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
151 /* We need to buffer some data for some of the NAND core routines.
152 * The operations manage buffering that data. */
153 static void reset_buf(struct denali_nand_info
*denali
)
155 denali
->buf
.head
= denali
->buf
.tail
= 0;
158 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
160 BUG_ON(denali
->buf
.tail
>= sizeof(denali
->buf
.buf
));
161 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
164 /* reads the status of the device */
165 static void read_status(struct denali_nand_info
*denali
)
169 /* initialize the data buffer to store status */
172 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
174 write_byte_to_buf(denali
, NAND_STATUS_WP
);
176 write_byte_to_buf(denali
, 0);
179 /* resets a specific device connected to the core */
180 static void reset_bank(struct denali_nand_info
*denali
)
182 uint32_t irq_status
= 0;
183 uint32_t irq_mask
= reset_complete
[denali
->flash_bank
] |
184 operation_timeout
[denali
->flash_bank
];
187 clear_interrupts(denali
);
189 bank
= device_reset_banks
[denali
->flash_bank
];
190 iowrite32(bank
, denali
->flash_reg
+ DEVICE_RESET
);
192 irq_status
= wait_for_irq(denali
, irq_mask
);
194 if (irq_status
& operation_timeout
[denali
->flash_bank
])
195 dev_err(&denali
->dev
->dev
, "reset bank failed.\n");
198 /* Reset the flash controller */
199 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
203 dev_dbg(&denali
->dev
->dev
, "%s, Line %d, Function: %s\n",
204 __FILE__
, __LINE__
, __func__
);
206 for (i
= 0 ; i
< LLD_MAX_FLASH_BANKS
; i
++)
207 iowrite32(reset_complete
[i
] | operation_timeout
[i
],
208 denali
->flash_reg
+ intr_status_addresses
[i
]);
210 for (i
= 0 ; i
< LLD_MAX_FLASH_BANKS
; i
++) {
211 iowrite32(device_reset_banks
[i
],
212 denali
->flash_reg
+ DEVICE_RESET
);
213 while (!(ioread32(denali
->flash_reg
+
214 intr_status_addresses
[i
]) &
215 (reset_complete
[i
] | operation_timeout
[i
])))
217 if (ioread32(denali
->flash_reg
+ intr_status_addresses
[i
]) &
218 operation_timeout
[i
])
219 dev_dbg(&denali
->dev
->dev
,
220 "NAND Reset operation timed out on bank %d\n", i
);
223 for (i
= 0; i
< LLD_MAX_FLASH_BANKS
; i
++)
224 iowrite32(reset_complete
[i
] | operation_timeout
[i
],
225 denali
->flash_reg
+ intr_status_addresses
[i
]);
230 /* this routine calculates the ONFI timing values for a given mode and
231 * programs the clocking register accordingly. The mode is determined by
232 * the get_onfi_nand_para routine.
234 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
237 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
238 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
239 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
240 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
241 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
242 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
243 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
244 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
245 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
246 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
247 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
248 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
250 uint16_t TclsRising
= 1;
251 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
252 uint16_t dv_window
= 0;
253 uint16_t en_lo
, en_hi
;
255 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
257 dev_dbg(&denali
->dev
->dev
, "%s, Line %d, Function: %s\n",
258 __FILE__
, __LINE__
, __func__
);
260 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
261 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
263 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
267 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
268 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
270 if ((en_lo
+ en_hi
) < CLK_MULTI
)
271 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
273 while (dv_window
< 8) {
274 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
276 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
280 data_invalid_rloh
? data_invalid_rhoh
: data_invalid_rloh
;
282 dv_window
= data_invalid
- Trea
[mode
];
288 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
290 while (((acc_clks
* CLK_X
) - Trea
[mode
]) < 3)
293 if ((data_invalid
- acc_clks
* CLK_X
) < 2)
294 dev_warn(&denali
->dev
->dev
, "%s, Line %d: Warning!\n",
297 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
298 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
299 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
300 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
301 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
303 cs_cnt
= CEIL_DIV(Tcs
[mode
], CLK_X
);
308 while (((cs_cnt
* CLK_X
) + Trea
[mode
]) < Tcea
[mode
])
317 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
318 if ((ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0) &&
319 (ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88))
322 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
323 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
324 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
325 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
326 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
327 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
328 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
329 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
332 /* queries the NAND device to see what ONFI modes it supports. */
333 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
336 /* we needn't to do a reset here because driver has already
337 * reset all the banks before
339 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
340 ONFI_TIMING_MODE__VALUE
))
343 for (i
= 5; i
> 0; i
--) {
344 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
349 nand_onfi_timing_set(denali
, i
);
351 /* By now, all the ONFI devices we know support the page cache */
352 /* rw feature. So here we enable the pipeline_rw_ahead feature */
353 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
354 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
359 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
362 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
363 /* Set timing register values according to datasheet */
364 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
365 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
366 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
367 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
368 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
369 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
370 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
374 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
378 /* Workaround to fix a controller bug which reports a wrong */
379 /* spare area size for some kind of Toshiba NAND device */
380 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
381 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
382 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
383 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
384 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
386 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
388 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
389 #elif SUPPORT_8BITECC
390 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
395 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
398 uint32_t main_size
, spare_size
;
401 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
402 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
403 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
404 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
405 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
407 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
409 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
411 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
412 iowrite32(spare_size
,
413 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
414 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
416 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
417 #elif SUPPORT_8BITECC
418 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
422 dev_warn(&denali
->dev
->dev
,
423 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
424 "Will use default parameter values instead.\n",
429 /* determines how many NAND chips are connected to the controller. Note for
430 * Intel CE4100 devices we don't support more than one device.
432 static void find_valid_banks(struct denali_nand_info
*denali
)
434 uint32_t id
[LLD_MAX_FLASH_BANKS
];
437 denali
->total_used_banks
= 1;
438 for (i
= 0; i
< LLD_MAX_FLASH_BANKS
; i
++) {
439 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 0), 0x90);
440 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 1), 0);
441 index_addr_read_data(denali
,
442 (uint32_t)(MODE_11
| (i
<< 24) | 2), &id
[i
]);
444 dev_dbg(&denali
->dev
->dev
,
445 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
448 if (!(id
[i
] & 0x0ff))
451 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
452 denali
->total_used_banks
++;
458 if (denali
->platform
== INTEL_CE4100
) {
459 /* Platform limitations of the CE4100 device limit
460 * users to a single chip solution for NAND.
461 * Multichip support is not enabled.
463 if (denali
->total_used_banks
!= 1) {
464 dev_err(&denali
->dev
->dev
,
465 "Sorry, Intel CE4100 only supports "
466 "a single NAND device.\n");
470 dev_dbg(&denali
->dev
->dev
,
471 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
474 static void detect_partition_feature(struct denali_nand_info
*denali
)
476 /* For MRST platform, denali->fwblks represent the
477 * number of blocks firmware is taken,
478 * FW is in protect partition and MTD driver has no
479 * permission to access it. So let driver know how many
480 * blocks it can't touch.
482 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
483 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID_1
) &
484 PERM_SRC_ID_1__SRCID
) == SPECTRA_PARTITION_ID
) {
486 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK_1
) &
487 MIN_MAX_BANK_1__MIN_VALUE
) *
490 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR_1
) &
491 MIN_BLK_ADDR_1__VALUE
);
493 denali
->fwblks
= SPECTRA_START_BLOCK
;
495 denali
->fwblks
= SPECTRA_START_BLOCK
;
498 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
500 uint16_t status
= PASS
;
501 uint32_t id_bytes
[5], addr
;
502 uint8_t i
, maf_id
, device_id
;
504 dev_dbg(&denali
->dev
->dev
,
505 "%s, Line %d, Function: %s\n",
506 __FILE__
, __LINE__
, __func__
);
508 /* Use read id method to get device ID and other
509 * params. For some NAND chips, controller can't
510 * report the correct device ID by reading from
513 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
514 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
515 index_addr(denali
, (uint32_t)addr
| 1, 0);
516 for (i
= 0; i
< 5; i
++)
517 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
518 maf_id
= id_bytes
[0];
519 device_id
= id_bytes
[1];
521 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
522 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
523 if (FAIL
== get_onfi_nand_para(denali
))
525 } else if (maf_id
== 0xEC) { /* Samsung NAND */
526 get_samsung_nand_para(denali
, device_id
);
527 } else if (maf_id
== 0x98) { /* Toshiba NAND */
528 get_toshiba_nand_para(denali
);
529 } else if (maf_id
== 0xAD) { /* Hynix NAND */
530 get_hynix_nand_para(denali
, device_id
);
533 dev_info(&denali
->dev
->dev
,
534 "Dump timing register values:"
535 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
536 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
537 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
538 ioread32(denali
->flash_reg
+ ACC_CLKS
),
539 ioread32(denali
->flash_reg
+ RE_2_WE
),
540 ioread32(denali
->flash_reg
+ RE_2_RE
),
541 ioread32(denali
->flash_reg
+ WE_2_RE
),
542 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
543 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
544 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
545 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
547 find_valid_banks(denali
);
549 detect_partition_feature(denali
);
551 /* If the user specified to override the default timings
552 * with a specific ONFI mode, we apply those changes here.
554 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
555 nand_onfi_timing_set(denali
, onfi_timing_mode
);
560 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
563 dev_dbg(&denali
->dev
->dev
, "%s, Line %d, Function: %s\n",
564 __FILE__
, __LINE__
, __func__
);
567 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
569 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
572 /* validation function to verify that the controlling software is making
575 static inline bool is_flash_bank_valid(int flash_bank
)
577 return (flash_bank
>= 0 && flash_bank
< 4);
580 static void denali_irq_init(struct denali_nand_info
*denali
)
582 uint32_t int_mask
= 0;
584 /* Disable global interrupts */
585 denali_set_intr_modes(denali
, false);
587 int_mask
= DENALI_IRQ_ALL
;
589 /* Clear all status bits */
590 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS0
);
591 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS1
);
592 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS2
);
593 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS3
);
595 denali_irq_enable(denali
, int_mask
);
598 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
600 denali_set_intr_modes(denali
, false);
601 free_irq(irqnum
, denali
);
604 static void denali_irq_enable(struct denali_nand_info
*denali
,
607 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN0
);
608 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN1
);
609 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN2
);
610 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN3
);
613 /* This function only returns when an interrupt that this driver cares about
614 * occurs. This is to reduce the overhead of servicing interrupts
616 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
618 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
621 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
622 static inline void clear_interrupt(struct denali_nand_info
*denali
,
625 uint32_t intr_status_reg
= 0;
627 intr_status_reg
= intr_status_addresses
[denali
->flash_bank
];
629 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
632 static void clear_interrupts(struct denali_nand_info
*denali
)
634 uint32_t status
= 0x0;
635 spin_lock_irq(&denali
->irq_lock
);
637 status
= read_interrupt_status(denali
);
638 clear_interrupt(denali
, status
);
640 denali
->irq_status
= 0x0;
641 spin_unlock_irq(&denali
->irq_lock
);
644 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
646 uint32_t intr_status_reg
= 0;
648 intr_status_reg
= intr_status_addresses
[denali
->flash_bank
];
650 return ioread32(denali
->flash_reg
+ intr_status_reg
);
653 /* This is the interrupt service routine. It handles all interrupts
654 * sent to this device. Note that on CE4100, this is a shared
657 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
659 struct denali_nand_info
*denali
= dev_id
;
660 uint32_t irq_status
= 0x0;
661 irqreturn_t result
= IRQ_NONE
;
663 spin_lock(&denali
->irq_lock
);
665 /* check to see if a valid NAND chip has
668 if (is_flash_bank_valid(denali
->flash_bank
)) {
669 /* check to see if controller generated
670 * the interrupt, since this is a shared interrupt */
671 irq_status
= denali_irq_detected(denali
);
672 if (irq_status
!= 0) {
673 /* handle interrupt */
674 /* first acknowledge it */
675 clear_interrupt(denali
, irq_status
);
676 /* store the status in the device context for someone
678 denali
->irq_status
|= irq_status
;
679 /* notify anyone who cares that it happened */
680 complete(&denali
->complete
);
681 /* tell the OS that we've handled this */
682 result
= IRQ_HANDLED
;
685 spin_unlock(&denali
->irq_lock
);
688 #define BANK(x) ((x) << 24)
690 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
692 unsigned long comp_res
= 0;
693 uint32_t intr_status
= 0;
695 unsigned long timeout
= msecs_to_jiffies(1000);
699 wait_for_completion_timeout(&denali
->complete
, timeout
);
700 spin_lock_irq(&denali
->irq_lock
);
701 intr_status
= denali
->irq_status
;
703 if (intr_status
& irq_mask
) {
704 denali
->irq_status
&= ~irq_mask
;
705 spin_unlock_irq(&denali
->irq_lock
);
706 /* our interrupt was detected */
709 /* these are not the interrupts you are looking for -
710 * need to wait again */
711 spin_unlock_irq(&denali
->irq_lock
);
714 } while (comp_res
!= 0);
718 printk(KERN_ERR
"timeout occurred, status = 0x%x, mask = 0x%x\n",
719 intr_status
, irq_mask
);
726 /* This helper function setups the registers for ECC and whether or not
727 * the spare area will be transferred. */
728 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
731 int ecc_en_flag
= 0, transfer_spare_flag
= 0;
733 /* set ECC, transfer spare bits if needed */
734 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
735 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
737 /* Enable spare area/ECC per user's request. */
738 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
739 iowrite32(transfer_spare_flag
,
740 denali
->flash_reg
+ TRANSFER_SPARE_REG
);
743 /* sends a pipeline command operation to the controller. See the Denali NAND
744 * controller's user guide for more information (section 4.2.3.6).
746 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
753 uint32_t addr
= 0x0, cmd
= 0x0, page_count
= 1, irq_status
= 0,
756 if (op
== DENALI_READ
)
757 irq_mask
= INTR_STATUS0__LOAD_COMP
;
758 else if (op
== DENALI_WRITE
)
763 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
765 /* clear interrupts */
766 clear_interrupts(denali
);
768 addr
= BANK(denali
->flash_bank
) | denali
->page
;
770 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
771 cmd
= MODE_01
| addr
;
772 iowrite32(cmd
, denali
->flash_mem
);
773 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
774 /* read spare area */
775 cmd
= MODE_10
| addr
;
776 index_addr(denali
, (uint32_t)cmd
, access_type
);
778 cmd
= MODE_01
| addr
;
779 iowrite32(cmd
, denali
->flash_mem
);
780 } else if (op
== DENALI_READ
) {
781 /* setup page read request for access type */
782 cmd
= MODE_10
| addr
;
783 index_addr(denali
, (uint32_t)cmd
, access_type
);
785 /* page 33 of the NAND controller spec indicates we should not
786 use the pipeline commands in Spare area only mode. So we
789 if (access_type
== SPARE_ACCESS
) {
790 cmd
= MODE_01
| addr
;
791 iowrite32(cmd
, denali
->flash_mem
);
793 index_addr(denali
, (uint32_t)cmd
,
794 0x2000 | op
| page_count
);
796 /* wait for command to be accepted
797 * can always use status0 bit as the
798 * mask is identical for each
800 irq_status
= wait_for_irq(denali
, irq_mask
);
802 if (irq_status
== 0) {
803 dev_err(&denali
->dev
->dev
,
804 "cmd, page, addr on timeout "
805 "(0x%x, 0x%x, 0x%x)\n",
806 cmd
, denali
->page
, addr
);
809 cmd
= MODE_01
| addr
;
810 iowrite32(cmd
, denali
->flash_mem
);
817 /* helper function that simply writes a buffer to the flash */
818 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
822 uint32_t i
= 0, *buf32
;
824 /* verify that the len is a multiple of 4. see comment in
825 * read_data_from_flash_mem() */
826 BUG_ON((len
% 4) != 0);
828 /* write the data to the flash memory */
829 buf32
= (uint32_t *)buf
;
830 for (i
= 0; i
< len
/ 4; i
++)
831 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
832 return i
*4; /* intent is to return the number of bytes read */
835 /* helper function that simply reads a buffer from the flash */
836 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
840 uint32_t i
= 0, *buf32
;
842 /* we assume that len will be a multiple of 4, if not
843 * it would be nice to know about it ASAP rather than
844 * have random failures...
845 * This assumption is based on the fact that this
846 * function is designed to be used to read flash pages,
847 * which are typically multiples of 4...
850 BUG_ON((len
% 4) != 0);
852 /* transfer the data from the flash */
853 buf32
= (uint32_t *)buf
;
854 for (i
= 0; i
< len
/ 4; i
++)
855 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
856 return i
*4; /* intent is to return the number of bytes read */
859 /* writes OOB data to the device */
860 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
862 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
863 uint32_t irq_status
= 0;
864 uint32_t irq_mask
= INTR_STATUS0__PROGRAM_COMP
|
865 INTR_STATUS0__PROGRAM_FAIL
;
870 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
871 DENALI_WRITE
) == PASS
) {
872 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
874 /* wait for operation to complete */
875 irq_status
= wait_for_irq(denali
, irq_mask
);
877 if (irq_status
== 0) {
878 dev_err(&denali
->dev
->dev
, "OOB write failed\n");
882 dev_err(&denali
->dev
->dev
, "unable to send pipeline command\n");
888 /* reads OOB data from the device */
889 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
891 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
892 uint32_t irq_mask
= INTR_STATUS0__LOAD_COMP
,
893 irq_status
= 0, addr
= 0x0, cmd
= 0x0;
897 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
898 DENALI_READ
) == PASS
) {
899 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
901 /* wait for command to be accepted
902 * can always use status0 bit as the mask is identical for each
904 irq_status
= wait_for_irq(denali
, irq_mask
);
907 dev_err(&denali
->dev
->dev
, "page on OOB timeout %d\n",
910 /* We set the device back to MAIN_ACCESS here as I observed
911 * instability with the controller if you do a block erase
912 * and the last transaction was a SPARE_ACCESS. Block erase
913 * is reliable (according to the MTD test infrastructure)
914 * if you are in MAIN_ACCESS.
916 addr
= BANK(denali
->flash_bank
) | denali
->page
;
917 cmd
= MODE_10
| addr
;
918 index_addr(denali
, (uint32_t)cmd
, MAIN_ACCESS
);
922 /* this function examines buffers to see if they contain data that
923 * indicate that the buffer is part of an erased region of flash.
925 bool is_erased(uint8_t *buf
, int len
)
928 for (i
= 0; i
< len
; i
++)
933 #define ECC_SECTOR_SIZE 512
935 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
936 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
937 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
938 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
939 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
940 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
942 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
945 bool check_erased_page
= false;
947 if (irq_status
& INTR_STATUS0__ECC_ERR
) {
948 /* read the ECC errors. we'll ignore them for now */
949 uint32_t err_address
= 0, err_correction_info
= 0;
950 uint32_t err_byte
= 0, err_sector
= 0, err_device
= 0;
951 uint32_t err_correction_value
= 0;
952 denali_set_intr_modes(denali
, false);
955 err_address
= ioread32(denali
->flash_reg
+
957 err_sector
= ECC_SECTOR(err_address
);
958 err_byte
= ECC_BYTE(err_address
);
960 err_correction_info
= ioread32(denali
->flash_reg
+
961 ERR_CORRECTION_INFO
);
962 err_correction_value
=
963 ECC_CORRECTION_VALUE(err_correction_info
);
964 err_device
= ECC_ERR_DEVICE(err_correction_info
);
966 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
967 /* If err_byte is larger than ECC_SECTOR_SIZE,
968 * means error happened in OOB, so we ignore
969 * it. It's no need for us to correct it
970 * err_device is represented the NAND error
971 * bits are happened in if there are more
972 * than one NAND connected.
974 if (err_byte
< ECC_SECTOR_SIZE
) {
976 offset
= (err_sector
*
981 /* correct the ECC error */
982 buf
[offset
] ^= err_correction_value
;
983 denali
->mtd
.ecc_stats
.corrected
++;
986 /* if the error is not correctable, need to
987 * look at the page to see if it is an erased
988 * page. if so, then it's not a real ECC error
990 check_erased_page
= true;
992 } while (!ECC_LAST_ERR(err_correction_info
));
993 /* Once handle all ecc errors, controller will triger
994 * a ECC_TRANSACTION_DONE interrupt, so here just wait
995 * for a while for this interrupt
997 while (!(read_interrupt_status(denali
) &
998 INTR_STATUS0__ECC_TRANSACTION_DONE
))
1000 clear_interrupts(denali
);
1001 denali_set_intr_modes(denali
, true);
1003 return check_erased_page
;
1006 /* programs the controller to either enable/disable DMA transfers */
1007 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
1009 uint32_t reg_val
= 0x0;
1012 reg_val
= DMA_ENABLE__FLAG
;
1014 iowrite32(reg_val
, denali
->flash_reg
+ DMA_ENABLE
);
1015 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
1018 /* setups the HW to perform the data DMA */
1019 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
1021 uint32_t mode
= 0x0;
1022 const int page_count
= 1;
1023 dma_addr_t addr
= denali
->buf
.dma_buf
;
1025 mode
= MODE_10
| BANK(denali
->flash_bank
);
1027 /* DMA is a four step process */
1029 /* 1. setup transfer type and # of pages */
1030 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1032 /* 2. set memory high address bits 23:8 */
1033 index_addr(denali
, mode
| ((uint16_t)(addr
>> 16) << 8), 0x2200);
1035 /* 3. set memory low address bits 23:8 */
1036 index_addr(denali
, mode
| ((uint16_t)addr
<< 8), 0x2300);
1038 /* 4. interrupt when complete, burst len = 64 bytes*/
1039 index_addr(denali
, mode
| 0x14000, 0x2400);
1042 /* writes a page. user specifies type, and this function handles the
1043 * configuration details. */
1044 static void write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1045 const uint8_t *buf
, bool raw_xfer
)
1047 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1048 struct pci_dev
*pci_dev
= denali
->dev
;
1050 dma_addr_t addr
= denali
->buf
.dma_buf
;
1051 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1053 uint32_t irq_status
= 0;
1054 uint32_t irq_mask
= INTR_STATUS0__DMA_CMD_COMP
|
1055 INTR_STATUS0__PROGRAM_FAIL
;
1057 /* if it is a raw xfer, we want to disable ecc, and send
1059 * !raw_xfer - enable ecc
1060 * raw_xfer - transfer spare
1062 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1064 /* copy buffer into DMA buffer */
1065 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1068 /* transfer the data to the spare area */
1069 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1074 pci_dma_sync_single_for_device(pci_dev
, addr
, size
, PCI_DMA_TODEVICE
);
1076 clear_interrupts(denali
);
1077 denali_enable_dma(denali
, true);
1079 denali_setup_dma(denali
, DENALI_WRITE
);
1081 /* wait for operation to complete */
1082 irq_status
= wait_for_irq(denali
, irq_mask
);
1084 if (irq_status
== 0) {
1085 dev_err(&denali
->dev
->dev
,
1086 "timeout on write_page (type = %d)\n",
1089 (irq_status
& INTR_STATUS0__PROGRAM_FAIL
) ?
1090 NAND_STATUS_FAIL
: PASS
;
1093 denali_enable_dma(denali
, false);
1094 pci_dma_sync_single_for_cpu(pci_dev
, addr
, size
, PCI_DMA_TODEVICE
);
1097 /* NAND core entry points */
1099 /* this is the callback that the NAND core calls to write a page. Since
1100 * writing a page with ECC or without is similar, all the work is done
1101 * by write_page above.
1103 static void denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1106 /* for regular page writes, we let HW handle all the ECC
1107 * data written to the device. */
1108 write_page(mtd
, chip
, buf
, false);
1111 /* This is the callback that the NAND core calls to write a page without ECC.
1112 * raw access is similar to ECC page writes, so all the work is done in the
1113 * write_page() function above.
1115 static void denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1118 /* for raw page writes, we want to disable ECC and simply write
1119 whatever data is in the buffer. */
1120 write_page(mtd
, chip
, buf
, true);
1123 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1126 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1129 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1130 int page
, int sndcmd
)
1132 read_oob_data(mtd
, chip
->oob_poi
, page
);
1134 return 0; /* notify NAND core to send command to
1138 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1139 uint8_t *buf
, int page
)
1141 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1142 struct pci_dev
*pci_dev
= denali
->dev
;
1144 dma_addr_t addr
= denali
->buf
.dma_buf
;
1145 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1147 uint32_t irq_status
= 0;
1148 uint32_t irq_mask
= INTR_STATUS0__ECC_TRANSACTION_DONE
|
1149 INTR_STATUS0__ECC_ERR
;
1150 bool check_erased_page
= false;
1152 if (page
!= denali
->page
) {
1153 dev_err(&denali
->dev
->dev
, "IN %s: page %d is not"
1154 " equal to denali->page %d, investigate!!",
1155 __func__
, page
, denali
->page
);
1159 setup_ecc_for_xfer(denali
, true, false);
1161 denali_enable_dma(denali
, true);
1162 pci_dma_sync_single_for_device(pci_dev
, addr
, size
, PCI_DMA_FROMDEVICE
);
1164 clear_interrupts(denali
);
1165 denali_setup_dma(denali
, DENALI_READ
);
1167 /* wait for operation to complete */
1168 irq_status
= wait_for_irq(denali
, irq_mask
);
1170 pci_dma_sync_single_for_cpu(pci_dev
, addr
, size
, PCI_DMA_FROMDEVICE
);
1172 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1174 check_erased_page
= handle_ecc(denali
, buf
, irq_status
);
1175 denali_enable_dma(denali
, false);
1177 if (check_erased_page
) {
1178 read_oob_data(&denali
->mtd
, chip
->oob_poi
, denali
->page
);
1180 /* check ECC failures that may have occurred on erased pages */
1181 if (check_erased_page
) {
1182 if (!is_erased(buf
, denali
->mtd
.writesize
))
1183 denali
->mtd
.ecc_stats
.failed
++;
1184 if (!is_erased(buf
, denali
->mtd
.oobsize
))
1185 denali
->mtd
.ecc_stats
.failed
++;
1191 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1192 uint8_t *buf
, int page
)
1194 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1195 struct pci_dev
*pci_dev
= denali
->dev
;
1197 dma_addr_t addr
= denali
->buf
.dma_buf
;
1198 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1200 uint32_t irq_status
= 0;
1201 uint32_t irq_mask
= INTR_STATUS0__DMA_CMD_COMP
;
1203 if (page
!= denali
->page
) {
1204 dev_err(&denali
->dev
->dev
, "IN %s: page %d is not"
1205 " equal to denali->page %d, investigate!!",
1206 __func__
, page
, denali
->page
);
1210 setup_ecc_for_xfer(denali
, false, true);
1211 denali_enable_dma(denali
, true);
1213 pci_dma_sync_single_for_device(pci_dev
, addr
, size
, PCI_DMA_FROMDEVICE
);
1215 clear_interrupts(denali
);
1216 denali_setup_dma(denali
, DENALI_READ
);
1218 /* wait for operation to complete */
1219 irq_status
= wait_for_irq(denali
, irq_mask
);
1221 pci_dma_sync_single_for_cpu(pci_dev
, addr
, size
, PCI_DMA_FROMDEVICE
);
1223 denali_enable_dma(denali
, false);
1225 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1226 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1231 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1233 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1234 uint8_t result
= 0xff;
1236 if (denali
->buf
.head
< denali
->buf
.tail
)
1237 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1242 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1244 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1246 spin_lock_irq(&denali
->irq_lock
);
1247 denali
->flash_bank
= chip
;
1248 spin_unlock_irq(&denali
->irq_lock
);
1251 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1253 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1254 int status
= denali
->status
;
1260 static void denali_erase(struct mtd_info
*mtd
, int page
)
1262 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1264 uint32_t cmd
= 0x0, irq_status
= 0;
1266 /* clear interrupts */
1267 clear_interrupts(denali
);
1269 /* setup page read request for access type */
1270 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1271 index_addr(denali
, (uint32_t)cmd
, 0x1);
1273 /* wait for erase to complete or failure to occur */
1274 irq_status
= wait_for_irq(denali
, INTR_STATUS0__ERASE_COMP
|
1275 INTR_STATUS0__ERASE_FAIL
);
1277 denali
->status
= (irq_status
& INTR_STATUS0__ERASE_FAIL
) ?
1278 NAND_STATUS_FAIL
: PASS
;
1281 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1284 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1289 case NAND_CMD_PAGEPROG
:
1291 case NAND_CMD_STATUS
:
1292 read_status(denali
);
1294 case NAND_CMD_READID
:
1295 case NAND_CMD_PARAM
:
1297 /*sometimes ManufactureId read from register is not right
1298 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1299 * So here we send READID cmd to NAND insteand
1301 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
1302 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
1303 index_addr(denali
, (uint32_t)addr
| 1, 0);
1304 for (i
= 0; i
< 5; i
++) {
1305 index_addr_read_data(denali
,
1308 write_byte_to_buf(denali
, id
);
1311 case NAND_CMD_READ0
:
1312 case NAND_CMD_SEQIN
:
1313 denali
->page
= page
;
1315 case NAND_CMD_RESET
:
1318 case NAND_CMD_READOOB
:
1319 /* TODO: Read OOB data */
1322 printk(KERN_ERR
": unsupported command"
1323 " received 0x%x\n", cmd
);
1328 /* stubs for ECC functions not used by the NAND core */
1329 static int denali_ecc_calculate(struct mtd_info
*mtd
, const uint8_t *data
,
1332 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1333 dev_err(&denali
->dev
->dev
,
1334 "denali_ecc_calculate called unexpectedly\n");
1339 static int denali_ecc_correct(struct mtd_info
*mtd
, uint8_t *data
,
1340 uint8_t *read_ecc
, uint8_t *calc_ecc
)
1342 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1343 dev_err(&denali
->dev
->dev
,
1344 "denali_ecc_correct called unexpectedly\n");
1349 static void denali_ecc_hwctl(struct mtd_info
*mtd
, int mode
)
1351 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1352 dev_err(&denali
->dev
->dev
,
1353 "denali_ecc_hwctl called unexpectedly\n");
1356 /* end NAND core entry points */
1358 /* Initialization code to bring the device up to a known good state */
1359 static void denali_hw_init(struct denali_nand_info
*denali
)
1361 /* tell driver how many bit controller will skip before
1362 * writing ECC code in OOB, this register may be already
1363 * set by firmware. So we read this value out.
1364 * if this value is 0, just let it be.
1366 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1367 SPARE_AREA_SKIP_BYTES
);
1368 denali_nand_reset(denali
);
1369 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1370 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1371 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1373 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1375 /* Should set value for these registers when init */
1376 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1377 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1378 denali_nand_timing_set(denali
);
1379 denali_irq_init(denali
);
1382 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1383 * but denali controller in MRST only support 15bit and 8bit ECC
1386 #define ECC_8BITS 14
1387 static struct nand_ecclayout nand_8bit_oob
= {
1391 #define ECC_15BITS 26
1392 static struct nand_ecclayout nand_15bit_oob
= {
1396 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1397 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1399 static struct nand_bbt_descr bbt_main_descr
= {
1400 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1401 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1406 .pattern
= bbt_pattern
,
1409 static struct nand_bbt_descr bbt_mirror_descr
= {
1410 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1411 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1416 .pattern
= mirror_pattern
,
1419 /* initialize driver data structures */
1420 void denali_drv_init(struct denali_nand_info
*denali
)
1424 /* setup interrupt handler */
1425 /* the completion object will be used to notify
1426 * the callee that the interrupt is done */
1427 init_completion(&denali
->complete
);
1429 /* the spinlock will be used to synchronize the ISR
1430 * with any element that might be access shared
1431 * data (interrupt status) */
1432 spin_lock_init(&denali
->irq_lock
);
1434 /* indicate that MTD has not selected a valid bank yet */
1435 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1437 /* initialize our irq_status variable to indicate no interrupts */
1438 denali
->irq_status
= 0;
1441 /* driver entry point */
1442 static int denali_pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
1445 resource_size_t csr_base
, mem_base
;
1446 unsigned long csr_len
, mem_len
;
1447 struct denali_nand_info
*denali
;
1449 denali
= kzalloc(sizeof(*denali
), GFP_KERNEL
);
1453 ret
= pci_enable_device(dev
);
1455 printk(KERN_ERR
"Spectra: pci_enable_device failed.\n");
1456 goto failed_alloc_memery
;
1459 if (id
->driver_data
== INTEL_CE4100
) {
1460 /* Due to a silicon limitation, we can only support
1461 * ONFI timing mode 1 and below.
1463 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1464 printk(KERN_ERR
"Intel CE4100 only supports"
1465 " ONFI timing mode 1 or below\n");
1467 goto failed_enable_dev
;
1469 denali
->platform
= INTEL_CE4100
;
1470 mem_base
= pci_resource_start(dev
, 0);
1471 mem_len
= pci_resource_len(dev
, 1);
1472 csr_base
= pci_resource_start(dev
, 1);
1473 csr_len
= pci_resource_len(dev
, 1);
1475 denali
->platform
= INTEL_MRST
;
1476 csr_base
= pci_resource_start(dev
, 0);
1477 csr_len
= pci_resource_len(dev
, 0);
1478 mem_base
= pci_resource_start(dev
, 1);
1479 mem_len
= pci_resource_len(dev
, 1);
1481 mem_base
= csr_base
+ csr_len
;
1486 /* Is 32-bit DMA supported? */
1487 ret
= pci_set_dma_mask(dev
, DMA_BIT_MASK(32));
1490 printk(KERN_ERR
"Spectra: no usable DMA configuration\n");
1491 goto failed_enable_dev
;
1493 denali
->buf
.dma_buf
=
1494 pci_map_single(dev
, denali
->buf
.buf
,
1496 PCI_DMA_BIDIRECTIONAL
);
1498 if (pci_dma_mapping_error(dev
, denali
->buf
.dma_buf
)) {
1499 dev_err(&dev
->dev
, "Spectra: failed to map DMA buffer\n");
1500 goto failed_enable_dev
;
1503 pci_set_master(dev
);
1505 denali
->mtd
.dev
.parent
= &dev
->dev
;
1507 ret
= pci_request_regions(dev
, DENALI_NAND_NAME
);
1509 printk(KERN_ERR
"Spectra: Unable to request memory regions\n");
1510 goto failed_dma_map
;
1513 denali
->flash_reg
= ioremap_nocache(csr_base
, csr_len
);
1514 if (!denali
->flash_reg
) {
1515 printk(KERN_ERR
"Spectra: Unable to remap memory region\n");
1517 goto failed_req_regions
;
1520 denali
->flash_mem
= ioremap_nocache(mem_base
, mem_len
);
1521 if (!denali
->flash_mem
) {
1522 printk(KERN_ERR
"Spectra: ioremap_nocache failed!");
1524 goto failed_remap_reg
;
1527 denali_hw_init(denali
);
1528 denali_drv_init(denali
);
1530 /* denali_isr register is done after all the hardware
1531 * initilization is finished*/
1532 if (request_irq(dev
->irq
, denali_isr
, IRQF_SHARED
,
1533 DENALI_NAND_NAME
, denali
)) {
1534 printk(KERN_ERR
"Spectra: Unable to allocate IRQ\n");
1536 goto failed_remap_mem
;
1539 /* now that our ISR is registered, we can enable interrupts */
1540 denali_set_intr_modes(denali
, true);
1542 pci_set_drvdata(dev
, denali
);
1544 denali
->mtd
.name
= "denali-nand";
1545 denali
->mtd
.owner
= THIS_MODULE
;
1546 denali
->mtd
.priv
= &denali
->nand
;
1548 /* register the driver with the NAND core subsystem */
1549 denali
->nand
.select_chip
= denali_select_chip
;
1550 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1551 denali
->nand
.read_byte
= denali_read_byte
;
1552 denali
->nand
.waitfunc
= denali_waitfunc
;
1554 /* scan for NAND devices attached to the controller
1555 * this is the first stage in a two step process to register
1556 * with the nand subsystem */
1557 if (nand_scan_ident(&denali
->mtd
, LLD_MAX_FLASH_BANKS
, NULL
)) {
1559 goto failed_req_irq
;
1562 /* MTD supported page sizes vary by kernel. We validate our
1563 * kernel supports the device here.
1565 if (denali
->mtd
.writesize
> NAND_MAX_PAGESIZE
+ NAND_MAX_OOBSIZE
) {
1567 printk(KERN_ERR
"Spectra: device size not supported by this "
1569 goto failed_req_irq
;
1572 /* support for multi nand
1573 * MTD known nothing about multi nand,
1574 * so we should tell it the real pagesize
1575 * and anything necessery
1577 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1578 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1579 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1580 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1581 denali
->nand
.page_shift
) - 1;
1582 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1583 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1584 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1585 denali
->mtd
.writesize
<<= (denali
->devnum
- 1);
1586 denali
->mtd
.oobsize
<<= (denali
->devnum
- 1);
1587 denali
->mtd
.erasesize
<<= (denali
->devnum
- 1);
1588 denali
->mtd
.size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1589 denali
->bbtskipbytes
*= denali
->devnum
;
1591 /* second stage of the NAND scan
1592 * this stage requires information regarding ECC and
1593 * bad block management. */
1595 /* Bad block management */
1596 denali
->nand
.bbt_td
= &bbt_main_descr
;
1597 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1599 /* skip the scan for now until we have OOB read and write support */
1600 denali
->nand
.options
|= NAND_USE_FLASH_BBT
| NAND_SKIP_BBTSCAN
;
1601 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1603 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1604 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1607 if (denali
->nand
.cellinfo
& 0xc &&
1608 (denali
->mtd
.oobsize
> (denali
->bbtskipbytes
+
1609 ECC_15BITS
* (denali
->mtd
.writesize
/
1610 ECC_SECTOR_SIZE
)))) {
1611 /* if MLC OOB size is large enough, use 15bit ECC*/
1612 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1613 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1614 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1615 } else if (denali
->mtd
.oobsize
< (denali
->bbtskipbytes
+
1616 ECC_8BITS
* (denali
->mtd
.writesize
/
1617 ECC_SECTOR_SIZE
))) {
1618 printk(KERN_ERR
"Your NAND chip OOB is not large enough to"
1619 " contain 8bit ECC correction codes");
1620 goto failed_req_irq
;
1622 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1623 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1624 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1627 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1628 denali
->nand
.ecc
.layout
->eccbytes
*=
1629 denali
->mtd
.writesize
/ ECC_SECTOR_SIZE
;
1630 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1631 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1632 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1633 denali
->mtd
.oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1634 denali
->bbtskipbytes
;
1636 /* Let driver know the total blocks number and
1637 * how many blocks contained by each nand chip.
1638 * blksperchip will help driver to know how many
1639 * blocks is taken by FW.
1641 denali
->totalblks
= denali
->mtd
.size
>>
1642 denali
->nand
.phys_erase_shift
;
1643 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1645 /* These functions are required by the NAND core framework, otherwise,
1646 * the NAND core will assert. However, we don't need them, so we'll stub
1648 denali
->nand
.ecc
.calculate
= denali_ecc_calculate
;
1649 denali
->nand
.ecc
.correct
= denali_ecc_correct
;
1650 denali
->nand
.ecc
.hwctl
= denali_ecc_hwctl
;
1652 /* override the default read operations */
1653 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1654 denali
->nand
.ecc
.read_page
= denali_read_page
;
1655 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1656 denali
->nand
.ecc
.write_page
= denali_write_page
;
1657 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1658 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1659 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1660 denali
->nand
.erase_cmd
= denali_erase
;
1662 if (nand_scan_tail(&denali
->mtd
)) {
1664 goto failed_req_irq
;
1667 ret
= add_mtd_device(&denali
->mtd
);
1669 dev_err(&dev
->dev
, "Spectra: Failed to register MTD: %d\n",
1671 goto failed_req_irq
;
1676 denali_irq_cleanup(dev
->irq
, denali
);
1678 iounmap(denali
->flash_mem
);
1680 iounmap(denali
->flash_reg
);
1682 pci_release_regions(dev
);
1684 pci_unmap_single(dev
, denali
->buf
.dma_buf
, DENALI_BUF_SIZE
,
1685 PCI_DMA_BIDIRECTIONAL
);
1687 pci_disable_device(dev
);
1688 failed_alloc_memery
:
1693 /* driver exit point */
1694 static void denali_pci_remove(struct pci_dev
*dev
)
1696 struct denali_nand_info
*denali
= pci_get_drvdata(dev
);
1698 nand_release(&denali
->mtd
);
1699 del_mtd_device(&denali
->mtd
);
1701 denali_irq_cleanup(dev
->irq
, denali
);
1703 iounmap(denali
->flash_reg
);
1704 iounmap(denali
->flash_mem
);
1705 pci_release_regions(dev
);
1706 pci_disable_device(dev
);
1707 pci_unmap_single(dev
, denali
->buf
.dma_buf
, DENALI_BUF_SIZE
,
1708 PCI_DMA_BIDIRECTIONAL
);
1709 pci_set_drvdata(dev
, NULL
);
1713 MODULE_DEVICE_TABLE(pci
, denali_pci_ids
);
1715 static struct pci_driver denali_pci_driver
= {
1716 .name
= DENALI_NAND_NAME
,
1717 .id_table
= denali_pci_ids
,
1718 .probe
= denali_pci_probe
,
1719 .remove
= denali_pci_remove
,
1722 static int __devinit
denali_init(void)
1724 printk(KERN_INFO
"Spectra MTD driver built on %s @ %s\n",
1725 __DATE__
, __TIME__
);
1726 return pci_register_driver(&denali_pci_driver
);
1730 static void __devexit
denali_exit(void)
1732 pci_unregister_driver(&denali_pci_driver
);
1735 module_init(denali_init
);
1736 module_exit(denali_exit
);