sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / wireless / ath / key.c
bloba61ef3d6d89c7ee50da52b9602071dd88bb9eb5b
1 /*
2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
21 #include "ath.h"
22 #include "reg.h"
24 #define REG_READ (common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah) \
27 if (common->ops->enable_write_buffer) \
28 common->ops->enable_write_buffer((_ah));
30 #define REGWRITE_BUFFER_FLUSH(_ah) \
31 if (common->ops->write_flush) \
32 common->ops->write_flush((_ah));
35 #define IEEE80211_WEP_NKID 4 /* number of key ids */
37 /************************/
38 /* Key Cache Management */
39 /************************/
41 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 u32 keyType;
44 void *ah = common->ah;
46 if (entry >= common->keymax) {
47 ath_err(common, "keycache entry %u out of range\n", entry);
48 return false;
51 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
53 ENABLE_REGWRITE_BUFFER(ah);
55 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
56 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
57 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
58 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
59 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
60 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
61 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
62 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
64 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
65 u16 micentry = entry + 64;
67 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
68 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
69 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
70 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
71 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
72 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
73 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
74 AR_KEYTABLE_TYPE_CLR);
79 REGWRITE_BUFFER_FLUSH(ah);
81 return true;
83 EXPORT_SYMBOL(ath_hw_keyreset);
85 static bool ath_hw_keysetmac(struct ath_common *common,
86 u16 entry, const u8 *mac)
88 u32 macHi, macLo;
89 u32 unicast_flag = AR_KEYTABLE_VALID;
90 void *ah = common->ah;
92 if (entry >= common->keymax) {
93 ath_err(common, "keycache entry %u out of range\n", entry);
94 return false;
97 if (mac != NULL) {
99 * AR_KEYTABLE_VALID indicates that the address is a unicast
100 * address, which must match the transmitter address for
101 * decrypting frames.
102 * Not setting this bit allows the hardware to use the key
103 * for multicast frame decryption.
105 if (mac[0] & 0x01)
106 unicast_flag = 0;
108 macHi = (mac[5] << 8) | mac[4];
109 macLo = (mac[3] << 24) |
110 (mac[2] << 16) |
111 (mac[1] << 8) |
112 mac[0];
113 macLo >>= 1;
114 macLo |= (macHi & 1) << 31;
115 macHi >>= 1;
116 } else {
117 macLo = macHi = 0;
119 ENABLE_REGWRITE_BUFFER(ah);
121 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
122 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
124 REGWRITE_BUFFER_FLUSH(ah);
126 return true;
129 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
130 const struct ath_keyval *k,
131 const u8 *mac)
133 void *ah = common->ah;
134 u32 key0, key1, key2, key3, key4;
135 u32 keyType;
137 if (entry >= common->keymax) {
138 ath_err(common, "keycache entry %u out of range\n", entry);
139 return false;
142 switch (k->kv_type) {
143 case ATH_CIPHER_AES_OCB:
144 keyType = AR_KEYTABLE_TYPE_AES;
145 break;
146 case ATH_CIPHER_AES_CCM:
147 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
148 ath_dbg(common, ATH_DBG_ANY,
149 "AES-CCM not supported by this mac rev\n");
150 return false;
152 keyType = AR_KEYTABLE_TYPE_CCM;
153 break;
154 case ATH_CIPHER_TKIP:
155 keyType = AR_KEYTABLE_TYPE_TKIP;
156 if (entry + 64 >= common->keymax) {
157 ath_dbg(common, ATH_DBG_ANY,
158 "entry %u inappropriate for TKIP\n", entry);
159 return false;
161 break;
162 case ATH_CIPHER_WEP:
163 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
164 ath_dbg(common, ATH_DBG_ANY,
165 "WEP key length %u too small\n", k->kv_len);
166 return false;
168 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
169 keyType = AR_KEYTABLE_TYPE_40;
170 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
171 keyType = AR_KEYTABLE_TYPE_104;
172 else
173 keyType = AR_KEYTABLE_TYPE_128;
174 break;
175 case ATH_CIPHER_CLR:
176 keyType = AR_KEYTABLE_TYPE_CLR;
177 break;
178 default:
179 ath_err(common, "cipher %u not supported\n", k->kv_type);
180 return false;
183 key0 = get_unaligned_le32(k->kv_val + 0);
184 key1 = get_unaligned_le16(k->kv_val + 4);
185 key2 = get_unaligned_le32(k->kv_val + 6);
186 key3 = get_unaligned_le16(k->kv_val + 10);
187 key4 = get_unaligned_le32(k->kv_val + 12);
188 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
189 key4 &= 0xff;
192 * Note: Key cache registers access special memory area that requires
193 * two 32-bit writes to actually update the values in the internal
194 * memory. Consequently, the exact order and pairs used here must be
195 * maintained.
198 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
199 u16 micentry = entry + 64;
202 * Write inverted key[47:0] first to avoid Michael MIC errors
203 * on frames that could be sent or received at the same time.
204 * The correct key will be written in the end once everything
205 * else is ready.
207 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
208 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
210 /* Write key[95:48] */
211 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
212 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
214 /* Write key[127:96] and key type */
215 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
216 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
218 /* Write MAC address for the entry */
219 (void) ath_hw_keysetmac(common, entry, mac);
221 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
223 * TKIP uses two key cache entries:
224 * Michael MIC TX/RX keys in the same key cache entry
225 * (idx = main index + 64):
226 * key0 [31:0] = RX key [31:0]
227 * key1 [15:0] = TX key [31:16]
228 * key1 [31:16] = reserved
229 * key2 [31:0] = RX key [63:32]
230 * key3 [15:0] = TX key [15:0]
231 * key3 [31:16] = reserved
232 * key4 [31:0] = TX key [63:32]
234 u32 mic0, mic1, mic2, mic3, mic4;
236 mic0 = get_unaligned_le32(k->kv_mic + 0);
237 mic2 = get_unaligned_le32(k->kv_mic + 4);
238 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
239 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
240 mic4 = get_unaligned_le32(k->kv_txmic + 4);
242 ENABLE_REGWRITE_BUFFER(ah);
244 /* Write RX[31:0] and TX[31:16] */
245 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
246 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
248 /* Write RX[63:32] and TX[15:0] */
249 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
250 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
252 /* Write TX[63:32] and keyType(reserved) */
253 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
254 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
255 AR_KEYTABLE_TYPE_CLR);
257 REGWRITE_BUFFER_FLUSH(ah);
259 } else {
261 * TKIP uses four key cache entries (two for group
262 * keys):
263 * Michael MIC TX/RX keys are in different key cache
264 * entries (idx = main index + 64 for TX and
265 * main index + 32 + 96 for RX):
266 * key0 [31:0] = TX/RX MIC key [31:0]
267 * key1 [31:0] = reserved
268 * key2 [31:0] = TX/RX MIC key [63:32]
269 * key3 [31:0] = reserved
270 * key4 [31:0] = reserved
272 * Upper layer code will call this function separately
273 * for TX and RX keys when these registers offsets are
274 * used.
276 u32 mic0, mic2;
278 mic0 = get_unaligned_le32(k->kv_mic + 0);
279 mic2 = get_unaligned_le32(k->kv_mic + 4);
281 ENABLE_REGWRITE_BUFFER(ah);
283 /* Write MIC key[31:0] */
284 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
285 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
287 /* Write MIC key[63:32] */
288 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
289 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
291 /* Write TX[63:32] and keyType(reserved) */
292 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
293 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
294 AR_KEYTABLE_TYPE_CLR);
296 REGWRITE_BUFFER_FLUSH(ah);
299 ENABLE_REGWRITE_BUFFER(ah);
301 /* MAC address registers are reserved for the MIC entry */
302 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
303 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
306 * Write the correct (un-inverted) key[47:0] last to enable
307 * TKIP now that all other registers are set with correct
308 * values.
310 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
311 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
313 REGWRITE_BUFFER_FLUSH(ah);
314 } else {
315 ENABLE_REGWRITE_BUFFER(ah);
317 /* Write key[47:0] */
318 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
319 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
321 /* Write key[95:48] */
322 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
323 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
325 /* Write key[127:96] and key type */
326 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
327 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
329 REGWRITE_BUFFER_FLUSH(ah);
331 /* Write MAC address for the entry */
332 (void) ath_hw_keysetmac(common, entry, mac);
335 return true;
338 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
339 struct ath_keyval *hk, const u8 *addr,
340 bool authenticator)
342 const u8 *key_rxmic;
343 const u8 *key_txmic;
345 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
346 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
348 if (addr == NULL) {
350 * Group key installation - only two key cache entries are used
351 * regardless of splitmic capability since group key is only
352 * used either for TX or RX.
354 if (authenticator) {
355 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
356 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
357 } else {
358 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
359 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
361 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
363 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
364 /* TX and RX keys share the same key cache entry. */
365 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
366 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
367 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
370 /* Separate key cache entries for TX and RX */
372 /* TX key goes at first index, RX key at +32. */
373 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
374 if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
375 /* TX MIC entry failed. No need to proceed further */
376 ath_err(common, "Setting TX MIC Key Failed\n");
377 return 0;
380 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
381 /* XXX delete tx key on failure? */
382 return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
385 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
387 int i;
389 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
390 if (test_bit(i, common->keymap) ||
391 test_bit(i + 64, common->keymap))
392 continue; /* At least one part of TKIP key allocated */
393 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
394 (test_bit(i + 32, common->keymap) ||
395 test_bit(i + 64 + 32, common->keymap)))
396 continue; /* At least one part of TKIP key allocated */
398 /* Found a free slot for a TKIP key */
399 return i;
401 return -1;
404 static int ath_reserve_key_cache_slot(struct ath_common *common,
405 u32 cipher)
407 int i;
409 if (cipher == WLAN_CIPHER_SUITE_TKIP)
410 return ath_reserve_key_cache_slot_tkip(common);
412 /* First, try to find slots that would not be available for TKIP. */
413 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
414 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
415 if (!test_bit(i, common->keymap) &&
416 (test_bit(i + 32, common->keymap) ||
417 test_bit(i + 64, common->keymap) ||
418 test_bit(i + 64 + 32, common->keymap)))
419 return i;
420 if (!test_bit(i + 32, common->keymap) &&
421 (test_bit(i, common->keymap) ||
422 test_bit(i + 64, common->keymap) ||
423 test_bit(i + 64 + 32, common->keymap)))
424 return i + 32;
425 if (!test_bit(i + 64, common->keymap) &&
426 (test_bit(i , common->keymap) ||
427 test_bit(i + 32, common->keymap) ||
428 test_bit(i + 64 + 32, common->keymap)))
429 return i + 64;
430 if (!test_bit(i + 64 + 32, common->keymap) &&
431 (test_bit(i, common->keymap) ||
432 test_bit(i + 32, common->keymap) ||
433 test_bit(i + 64, common->keymap)))
434 return i + 64 + 32;
436 } else {
437 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
438 if (!test_bit(i, common->keymap) &&
439 test_bit(i + 64, common->keymap))
440 return i;
441 if (test_bit(i, common->keymap) &&
442 !test_bit(i + 64, common->keymap))
443 return i + 64;
447 /* No partially used TKIP slots, pick any available slot */
448 for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
449 /* Do not allow slots that could be needed for TKIP group keys
450 * to be used. This limitation could be removed if we know that
451 * TKIP will not be used. */
452 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
453 continue;
454 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
455 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
456 continue;
457 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
458 continue;
461 if (!test_bit(i, common->keymap))
462 return i; /* Found a free slot for a key */
465 /* No free slot found */
466 return -1;
470 * Configure encryption in the HW.
472 int ath_key_config(struct ath_common *common,
473 struct ieee80211_vif *vif,
474 struct ieee80211_sta *sta,
475 struct ieee80211_key_conf *key)
477 struct ath_keyval hk;
478 const u8 *mac = NULL;
479 u8 gmac[ETH_ALEN];
480 int ret = 0;
481 int idx;
483 memset(&hk, 0, sizeof(hk));
485 switch (key->cipher) {
486 case 0:
487 hk.kv_type = ATH_CIPHER_CLR;
488 break;
489 case WLAN_CIPHER_SUITE_WEP40:
490 case WLAN_CIPHER_SUITE_WEP104:
491 hk.kv_type = ATH_CIPHER_WEP;
492 break;
493 case WLAN_CIPHER_SUITE_TKIP:
494 hk.kv_type = ATH_CIPHER_TKIP;
495 break;
496 case WLAN_CIPHER_SUITE_CCMP:
497 hk.kv_type = ATH_CIPHER_AES_CCM;
498 break;
499 default:
500 return -EOPNOTSUPP;
503 hk.kv_len = key->keylen;
504 if (key->keylen)
505 memcpy(hk.kv_val, key->key, key->keylen);
507 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
508 switch (vif->type) {
509 case NL80211_IFTYPE_AP:
510 memcpy(gmac, vif->addr, ETH_ALEN);
511 gmac[0] |= 0x01;
512 mac = gmac;
513 idx = ath_reserve_key_cache_slot(common, key->cipher);
514 break;
515 case NL80211_IFTYPE_ADHOC:
516 if (!sta) {
517 idx = key->keyidx;
518 break;
520 memcpy(gmac, sta->addr, ETH_ALEN);
521 gmac[0] |= 0x01;
522 mac = gmac;
523 idx = ath_reserve_key_cache_slot(common, key->cipher);
524 break;
525 default:
526 idx = key->keyidx;
527 break;
529 } else if (key->keyidx) {
530 if (WARN_ON(!sta))
531 return -EOPNOTSUPP;
532 mac = sta->addr;
534 if (vif->type != NL80211_IFTYPE_AP) {
535 /* Only keyidx 0 should be used with unicast key, but
536 * allow this for client mode for now. */
537 idx = key->keyidx;
538 } else
539 return -EIO;
540 } else {
541 if (WARN_ON(!sta))
542 return -EOPNOTSUPP;
543 mac = sta->addr;
545 idx = ath_reserve_key_cache_slot(common, key->cipher);
548 if (idx < 0)
549 return -ENOSPC; /* no free key cache entries */
551 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
552 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
553 vif->type == NL80211_IFTYPE_AP);
554 else
555 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
557 if (!ret)
558 return -EIO;
560 set_bit(idx, common->keymap);
561 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
562 set_bit(idx + 64, common->keymap);
563 set_bit(idx, common->tkip_keymap);
564 set_bit(idx + 64, common->tkip_keymap);
565 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
566 set_bit(idx + 32, common->keymap);
567 set_bit(idx + 64 + 32, common->keymap);
568 set_bit(idx + 32, common->tkip_keymap);
569 set_bit(idx + 64 + 32, common->tkip_keymap);
573 return idx;
575 EXPORT_SYMBOL(ath_key_config);
578 * Delete Key.
580 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
582 ath_hw_keyreset(common, key->hw_key_idx);
583 if (key->hw_key_idx < IEEE80211_WEP_NKID)
584 return;
586 clear_bit(key->hw_key_idx, common->keymap);
587 if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
588 return;
590 clear_bit(key->hw_key_idx + 64, common->keymap);
592 clear_bit(key->hw_key_idx, common->tkip_keymap);
593 clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
595 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
596 ath_hw_keyreset(common, key->hw_key_idx + 32);
597 clear_bit(key->hw_key_idx + 32, common->keymap);
598 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
600 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
601 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
604 EXPORT_SYMBOL(ath_key_delete);