Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / scsi / qla2xxx / qla_sup.c
blobeff13563c82dba6061b51b5d6b7786b718ac181d
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2011 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
140 return data;
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
155 uint16_t data;
156 uint32_t nv_cmd;
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
162 return (data);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
194 qla2x00_nv_write(ha, NVR_DATA_OUT);
195 qla2x00_nv_write(ha, 0);
196 qla2x00_nv_write(ha, 0);
198 for (word = 0; word < 8; word++)
199 qla2x00_nv_write(ha, NVR_DATA_OUT);
201 qla2x00_nv_deselect(ha);
203 /* Write data */
204 nv_cmd = (addr << 16) | NV_WRITE_OP;
205 nv_cmd |= data;
206 nv_cmd <<= 5;
207 for (count = 0; count < 27; count++) {
208 if (nv_cmd & BIT_31)
209 qla2x00_nv_write(ha, NVR_DATA_OUT);
210 else
211 qla2x00_nv_write(ha, 0);
213 nv_cmd <<= 1;
216 qla2x00_nv_deselect(ha);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
221 wait_cnt = NVR_WAIT_CNT;
222 do {
223 if (!--wait_cnt) {
224 ql_dbg(ql_dbg_user, vha, 0x708d,
225 "NVRAM didn't go ready...\n");
226 break;
228 NVRAM_DELAY();
229 word = RD_REG_WORD(&reg->nvram);
230 } while ((word & NVR_DATA_IN) == 0);
232 qla2x00_nv_deselect(ha);
234 /* Disable writes */
235 qla2x00_nv_write(ha, NVR_DATA_OUT);
236 for (count = 0; count < 10; count++)
237 qla2x00_nv_write(ha, 0);
239 qla2x00_nv_deselect(ha);
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 uint16_t data, uint32_t tmo)
246 int ret, count;
247 uint16_t word;
248 uint32_t nv_cmd;
249 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
251 ret = QLA_SUCCESS;
253 qla2x00_nv_write(ha, NVR_DATA_OUT);
254 qla2x00_nv_write(ha, 0);
255 qla2x00_nv_write(ha, 0);
257 for (word = 0; word < 8; word++)
258 qla2x00_nv_write(ha, NVR_DATA_OUT);
260 qla2x00_nv_deselect(ha);
262 /* Write data */
263 nv_cmd = (addr << 16) | NV_WRITE_OP;
264 nv_cmd |= data;
265 nv_cmd <<= 5;
266 for (count = 0; count < 27; count++) {
267 if (nv_cmd & BIT_31)
268 qla2x00_nv_write(ha, NVR_DATA_OUT);
269 else
270 qla2x00_nv_write(ha, 0);
272 nv_cmd <<= 1;
275 qla2x00_nv_deselect(ha);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
280 do {
281 NVRAM_DELAY();
282 word = RD_REG_WORD(&reg->nvram);
283 if (!--tmo) {
284 ret = QLA_FUNCTION_FAILED;
285 break;
287 } while ((word & NVR_DATA_IN) == 0);
289 qla2x00_nv_deselect(ha);
291 /* Disable writes */
292 qla2x00_nv_write(ha, NVR_DATA_OUT);
293 for (count = 0; count < 10; count++)
294 qla2x00_nv_write(ha, 0);
296 qla2x00_nv_deselect(ha);
298 return ret;
302 * qla2x00_clear_nvram_protection() -
303 * @ha: HA context
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
308 int ret, stat;
309 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 uint32_t word, wait_cnt;
311 uint16_t wprot, wprot_old;
312 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
329 qla2x00_nv_deselect(ha);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
338 qla2x00_nv_deselect(ha);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
347 qla2x00_nv_deselect(ha);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 ql_dbg(ql_dbg_user, vha, 0x708e,
356 "NVRAM didn't go ready...\n");
357 break;
359 NVRAM_DELAY();
360 word = RD_REG_WORD(&reg->nvram);
361 } while ((word & NVR_DATA_IN) == 0);
363 if (wait_cnt)
364 ret = QLA_SUCCESS;
365 } else
366 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 return ret;
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
374 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 uint32_t word, wait_cnt;
376 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
378 if (stat != QLA_SUCCESS)
379 return;
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
389 qla2x00_nv_deselect(ha);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
398 qla2x00_nv_deselect(ha);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
407 qla2x00_nv_deselect(ha);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 ql_dbg(ql_dbg_user, vha, 0x708f,
416 "NVRAM didn't go ready...\n");
417 break;
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
432 return ha->flash_conf_off | faddr;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
438 return ha->flash_data_off | faddr;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
444 return ha->nvram_conf_off | naddr;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
450 return ha->nvram_data_off | naddr;
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
456 int rval;
457 uint32_t cnt, data;
458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
460 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 /* Wait for READ cycle to complete. */
462 rval = QLA_SUCCESS;
463 for (cnt = 3000;
464 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 rval == QLA_SUCCESS; cnt--) {
466 if (cnt)
467 udelay(10);
468 else
469 rval = QLA_FUNCTION_TIMEOUT;
470 cond_resched();
473 /* TODO: What happens if we time out? */
474 data = 0xDEADDEAD;
475 if (rval == QLA_SUCCESS)
476 data = RD_REG_DWORD(&reg->flash_data);
478 return data;
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 uint32_t dwords)
485 uint32_t i;
486 struct qla_hw_data *ha = vha->hw;
488 /* Dword reads to flash. */
489 for (i = 0; i < dwords; i++, faddr++)
490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 flash_data_addr(ha, faddr)));
493 return dwptr;
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
499 int rval;
500 uint32_t cnt;
501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
503 WRT_REG_DWORD(&reg->flash_data, data);
504 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 /* Wait for Write cycle to complete. */
507 rval = QLA_SUCCESS;
508 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 rval == QLA_SUCCESS; cnt--) {
510 if (cnt)
511 udelay(10);
512 else
513 rval = QLA_FUNCTION_TIMEOUT;
514 cond_resched();
516 return rval;
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 uint8_t *flash_id)
523 uint32_t ids;
525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 *man_id = LSB(ids);
527 *flash_id = MSB(ids);
529 /* Check if man_id and flash_id are valid. */
530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 *man_id = LSB(ids);
539 *flash_id = MSB(ids);
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
546 const char *loc, *locations[] = { "DEF", "PCI" };
547 uint32_t pcihdr, pcids;
548 uint32_t *dcode;
549 uint8_t *buf, *bcode, last_image;
550 uint16_t cnt, chksum, *wptr;
551 struct qla_flt_location *fltl;
552 struct qla_hw_data *ha = vha->hw;
553 struct req_que *req = ha->req_q_map[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
560 loc = locations[0];
561 *start = 0;
562 if (IS_QLA24XX_TYPE(ha))
563 *start = FA_FLASH_LAYOUT_ADDR_24;
564 else if (IS_QLA25XX(ha))
565 *start = FA_FLASH_LAYOUT_ADDR;
566 else if (IS_QLA81XX(ha))
567 *start = FA_FLASH_LAYOUT_ADDR_81;
568 else if (IS_QLA82XX(ha)) {
569 *start = FA_FLASH_LAYOUT_ADDR_82;
570 goto end;
572 /* Begin with first PCI expansion ROM header. */
573 buf = (uint8_t *)req->ring;
574 dcode = (uint32_t *)req->ring;
575 pcihdr = 0;
576 last_image = 1;
577 do {
578 /* Verify PCI expansion ROM header. */
579 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
580 bcode = buf + (pcihdr % 4);
581 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
582 goto end;
584 /* Locate PCI data structure. */
585 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
586 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
587 bcode = buf + (pcihdr % 4);
589 /* Validate signature of PCI data structure. */
590 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
591 bcode[0x2] != 'I' || bcode[0x3] != 'R')
592 goto end;
594 last_image = bcode[0x15] & BIT_7;
596 /* Locate next PCI expansion ROM. */
597 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
598 } while (!last_image);
600 /* Now verify FLT-location structure. */
601 fltl = (struct qla_flt_location *)req->ring;
602 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
603 sizeof(struct qla_flt_location) >> 2);
604 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
605 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
606 goto end;
608 wptr = (uint16_t *)req->ring;
609 cnt = sizeof(struct qla_flt_location) >> 1;
610 for (chksum = 0; cnt; cnt--)
611 chksum += le16_to_cpu(*wptr++);
612 if (chksum) {
613 ql_log(ql_log_fatal, vha, 0x0045,
614 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
615 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
616 buf, sizeof(struct qla_flt_location));
617 return QLA_FUNCTION_FAILED;
620 /* Good data. Use specified location. */
621 loc = locations[1];
622 *start = (le16_to_cpu(fltl->start_hi) << 16 |
623 le16_to_cpu(fltl->start_lo)) >> 2;
624 end:
625 ql_dbg(ql_dbg_init, vha, 0x0046,
626 "FLTL[%s] = 0x%x.\n",
627 loc, *start);
628 return QLA_SUCCESS;
631 static void
632 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
634 const char *loc, *locations[] = { "DEF", "FLT" };
635 const uint32_t def_fw[] =
636 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
637 const uint32_t def_boot[] =
638 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
639 const uint32_t def_vpd_nvram[] =
640 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
641 const uint32_t def_vpd0[] =
642 { 0, 0, FA_VPD0_ADDR_81 };
643 const uint32_t def_vpd1[] =
644 { 0, 0, FA_VPD1_ADDR_81 };
645 const uint32_t def_nvram0[] =
646 { 0, 0, FA_NVRAM0_ADDR_81 };
647 const uint32_t def_nvram1[] =
648 { 0, 0, FA_NVRAM1_ADDR_81 };
649 const uint32_t def_fdt[] =
650 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
651 FA_FLASH_DESCR_ADDR_81 };
652 const uint32_t def_npiv_conf0[] =
653 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
654 FA_NPIV_CONF0_ADDR_81 };
655 const uint32_t def_npiv_conf1[] =
656 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
657 FA_NPIV_CONF1_ADDR_81 };
658 const uint32_t fcp_prio_cfg0[] =
659 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
660 0 };
661 const uint32_t fcp_prio_cfg1[] =
662 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
663 0 };
664 uint32_t def;
665 uint16_t *wptr;
666 uint16_t cnt, chksum;
667 uint32_t start;
668 struct qla_flt_header *flt;
669 struct qla_flt_region *region;
670 struct qla_hw_data *ha = vha->hw;
671 struct req_que *req = ha->req_q_map[0];
673 def = 0;
674 if (IS_QLA25XX(ha))
675 def = 1;
676 else if (IS_QLA81XX(ha))
677 def = 2;
679 /* Assign FCP prio region since older adapters may not have FLT, or
680 FCP prio region in it's FLT.
682 ha->flt_region_fcp_prio = ha->flags.port0 ?
683 fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
685 ha->flt_region_flt = flt_addr;
686 wptr = (uint16_t *)req->ring;
687 flt = (struct qla_flt_header *)req->ring;
688 region = (struct qla_flt_region *)&flt[1];
689 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
690 flt_addr << 2, OPTROM_BURST_SIZE);
691 if (*wptr == __constant_cpu_to_le16(0xffff))
692 goto no_flash_data;
693 if (flt->version != __constant_cpu_to_le16(1)) {
694 ql_log(ql_log_warn, vha, 0x0047,
695 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
697 le16_to_cpu(flt->checksum));
698 goto no_flash_data;
701 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
702 for (chksum = 0; cnt; cnt--)
703 chksum += le16_to_cpu(*wptr++);
704 if (chksum) {
705 ql_log(ql_log_fatal, vha, 0x0048,
706 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
708 le16_to_cpu(flt->checksum));
709 goto no_flash_data;
712 loc = locations[1];
713 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
714 for ( ; cnt; cnt--, region++) {
715 /* Store addresses as DWORD offsets. */
716 start = le32_to_cpu(region->start) >> 2;
717 ql_dbg(ql_dbg_init, vha, 0x0049,
718 "FLT[%02x]: start=0x%x "
719 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
720 start, le32_to_cpu(region->end) >> 2,
721 le32_to_cpu(region->size));
723 switch (le32_to_cpu(region->code) & 0xff) {
724 case FLT_REG_FW:
725 ha->flt_region_fw = start;
726 break;
727 case FLT_REG_BOOT_CODE:
728 ha->flt_region_boot = start;
729 break;
730 case FLT_REG_VPD_0:
731 ha->flt_region_vpd_nvram = start;
732 if (IS_QLA82XX(ha))
733 break;
734 if (ha->flags.port0)
735 ha->flt_region_vpd = start;
736 break;
737 case FLT_REG_VPD_1:
738 if (IS_QLA82XX(ha))
739 break;
740 if (!ha->flags.port0)
741 ha->flt_region_vpd = start;
742 break;
743 case FLT_REG_NVRAM_0:
744 if (ha->flags.port0)
745 ha->flt_region_nvram = start;
746 break;
747 case FLT_REG_NVRAM_1:
748 if (!ha->flags.port0)
749 ha->flt_region_nvram = start;
750 break;
751 case FLT_REG_FDT:
752 ha->flt_region_fdt = start;
753 break;
754 case FLT_REG_NPIV_CONF_0:
755 if (ha->flags.port0)
756 ha->flt_region_npiv_conf = start;
757 break;
758 case FLT_REG_NPIV_CONF_1:
759 if (!ha->flags.port0)
760 ha->flt_region_npiv_conf = start;
761 break;
762 case FLT_REG_GOLD_FW:
763 ha->flt_region_gold_fw = start;
764 break;
765 case FLT_REG_FCP_PRIO_0:
766 if (ha->flags.port0)
767 ha->flt_region_fcp_prio = start;
768 break;
769 case FLT_REG_FCP_PRIO_1:
770 if (!ha->flags.port0)
771 ha->flt_region_fcp_prio = start;
772 break;
773 case FLT_REG_BOOT_CODE_82XX:
774 ha->flt_region_boot = start;
775 break;
776 case FLT_REG_FW_82XX:
777 ha->flt_region_fw = start;
778 break;
779 case FLT_REG_GOLD_FW_82XX:
780 ha->flt_region_gold_fw = start;
781 break;
782 case FLT_REG_BOOTLOAD_82XX:
783 ha->flt_region_bootload = start;
784 break;
785 case FLT_REG_VPD_82XX:
786 ha->flt_region_vpd = start;
787 break;
790 goto done;
792 no_flash_data:
793 /* Use hardcoded defaults. */
794 loc = locations[0];
795 ha->flt_region_fw = def_fw[def];
796 ha->flt_region_boot = def_boot[def];
797 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
798 ha->flt_region_vpd = ha->flags.port0 ?
799 def_vpd0[def] : def_vpd1[def];
800 ha->flt_region_nvram = ha->flags.port0 ?
801 def_nvram0[def] : def_nvram1[def];
802 ha->flt_region_fdt = def_fdt[def];
803 ha->flt_region_npiv_conf = ha->flags.port0 ?
804 def_npiv_conf0[def] : def_npiv_conf1[def];
805 done:
806 ql_dbg(ql_dbg_init, vha, 0x004a,
807 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
808 loc, ha->flt_region_boot,
809 ha->flt_region_fw, ha->flt_region_vpd_nvram,
810 ha->flt_region_vpd);
811 ql_dbg(ql_dbg_init, vha, 0x004b,
812 "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
813 ha->flt_region_nvram,
814 ha->flt_region_fdt, ha->flt_region_flt,
815 ha->flt_region_npiv_conf, ha->flt_region_fcp_prio);
818 static void
819 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
821 #define FLASH_BLK_SIZE_4K 0x1000
822 #define FLASH_BLK_SIZE_32K 0x8000
823 #define FLASH_BLK_SIZE_64K 0x10000
824 const char *loc, *locations[] = { "MID", "FDT" };
825 uint16_t cnt, chksum;
826 uint16_t *wptr;
827 struct qla_fdt_layout *fdt;
828 uint8_t man_id, flash_id;
829 uint16_t mid = 0, fid = 0;
830 struct qla_hw_data *ha = vha->hw;
831 struct req_que *req = ha->req_q_map[0];
833 wptr = (uint16_t *)req->ring;
834 fdt = (struct qla_fdt_layout *)req->ring;
835 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
836 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
837 if (*wptr == __constant_cpu_to_le16(0xffff))
838 goto no_flash_data;
839 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
840 fdt->sig[3] != 'D')
841 goto no_flash_data;
843 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
844 cnt++)
845 chksum += le16_to_cpu(*wptr++);
846 if (chksum) {
847 ql_dbg(ql_dbg_init, vha, 0x004c,
848 "Inconsistent FDT detected:"
849 " checksum=0x%x id=%c version0x%x.\n", chksum,
850 fdt->sig[0], le16_to_cpu(fdt->version));
851 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
852 (uint8_t *)fdt, sizeof(*fdt));
853 goto no_flash_data;
856 loc = locations[1];
857 mid = le16_to_cpu(fdt->man_id);
858 fid = le16_to_cpu(fdt->id);
859 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
860 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
861 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
862 if (fdt->unprotect_sec_cmd) {
863 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
864 fdt->unprotect_sec_cmd);
865 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
866 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
867 flash_conf_addr(ha, 0x0336);
869 goto done;
870 no_flash_data:
871 loc = locations[0];
872 if (IS_QLA82XX(ha)) {
873 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
874 goto done;
876 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
877 mid = man_id;
878 fid = flash_id;
879 ha->fdt_wrt_disable = 0x9c;
880 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
881 switch (man_id) {
882 case 0xbf: /* STT flash. */
883 if (flash_id == 0x8e)
884 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
885 else
886 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
888 if (flash_id == 0x80)
889 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
890 break;
891 case 0x13: /* ST M25P80. */
892 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
893 break;
894 case 0x1f: /* Atmel 26DF081A. */
895 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
896 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
897 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
898 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
899 break;
900 default:
901 /* Default to 64 kb sector size. */
902 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
903 break;
905 done:
906 ql_dbg(ql_dbg_init, vha, 0x004d,
907 "FDT[%x]: (0x%x/0x%x) erase=0x%x "
908 "pr=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
909 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
910 ha->fdt_wrt_disable, ha->fdt_block_size);
914 static void
915 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
917 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
918 uint32_t *wptr;
919 struct qla_hw_data *ha = vha->hw;
920 struct req_que *req = ha->req_q_map[0];
922 if (!IS_QLA82XX(ha))
923 return;
925 wptr = (uint32_t *)req->ring;
926 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
927 QLA82XX_IDC_PARAM_ADDR , 8);
929 if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
930 ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
931 ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
932 } else {
933 ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
934 ha->nx_reset_timeout = le32_to_cpu(*wptr);
936 ql_dbg(ql_dbg_init, vha, 0x004e,
937 "nx_dev_init_timeout=%d "
938 "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
939 ha->nx_reset_timeout);
940 return;
944 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
946 int ret;
947 uint32_t flt_addr;
948 struct qla_hw_data *ha = vha->hw;
950 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
951 return QLA_SUCCESS;
953 ret = qla2xxx_find_flt_start(vha, &flt_addr);
954 if (ret != QLA_SUCCESS)
955 return ret;
957 qla2xxx_get_flt_info(vha, flt_addr);
958 qla2xxx_get_fdt_info(vha);
959 qla2xxx_get_idc_param(vha);
961 return QLA_SUCCESS;
964 void
965 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
967 #define NPIV_CONFIG_SIZE (16*1024)
968 void *data;
969 uint16_t *wptr;
970 uint16_t cnt, chksum;
971 int i;
972 struct qla_npiv_header hdr;
973 struct qla_npiv_entry *entry;
974 struct qla_hw_data *ha = vha->hw;
976 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
977 return;
979 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
980 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
981 if (hdr.version == __constant_cpu_to_le16(0xffff))
982 return;
983 if (hdr.version != __constant_cpu_to_le16(1)) {
984 ql_dbg(ql_dbg_user, vha, 0x7090,
985 "Unsupported NPIV-Config "
986 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
987 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
988 le16_to_cpu(hdr.checksum));
989 return;
992 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
993 if (!data) {
994 ql_log(ql_log_warn, vha, 0x7091,
995 "Unable to allocate memory for data.\n");
996 return;
999 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1000 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1002 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1003 sizeof(struct qla_npiv_entry)) >> 1;
1004 for (wptr = data, chksum = 0; cnt; cnt--)
1005 chksum += le16_to_cpu(*wptr++);
1006 if (chksum) {
1007 ql_dbg(ql_dbg_user, vha, 0x7092,
1008 "Inconsistent NPIV-Config "
1009 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1010 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1011 le16_to_cpu(hdr.checksum));
1012 goto done;
1015 entry = data + sizeof(struct qla_npiv_header);
1016 cnt = le16_to_cpu(hdr.entries);
1017 for (i = 0; cnt; cnt--, entry++, i++) {
1018 uint16_t flags;
1019 struct fc_vport_identifiers vid;
1020 struct fc_vport *vport;
1022 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1024 flags = le16_to_cpu(entry->flags);
1025 if (flags == 0xffff)
1026 continue;
1027 if ((flags & BIT_0) == 0)
1028 continue;
1030 memset(&vid, 0, sizeof(vid));
1031 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1032 vid.vport_type = FC_PORTTYPE_NPIV;
1033 vid.disable = false;
1034 vid.port_name = wwn_to_u64(entry->port_name);
1035 vid.node_name = wwn_to_u64(entry->node_name);
1037 ql_dbg(ql_dbg_user, vha, 0x7093,
1038 "NPIV[%02x]: wwpn=%llx "
1039 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1040 (unsigned long long)vid.port_name,
1041 (unsigned long long)vid.node_name,
1042 le16_to_cpu(entry->vf_id),
1043 entry->q_qos, entry->f_qos);
1045 if (i < QLA_PRECONFIG_VPORTS) {
1046 vport = fc_vport_create(vha->host, 0, &vid);
1047 if (!vport)
1048 ql_log(ql_log_warn, vha, 0x7094,
1049 "NPIV-Config Failed to create vport [%02x]: "
1050 "wwpn=%llx wwnn=%llx.\n", cnt,
1051 (unsigned long long)vid.port_name,
1052 (unsigned long long)vid.node_name);
1055 done:
1056 kfree(data);
1059 static int
1060 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1062 struct qla_hw_data *ha = vha->hw;
1063 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1065 if (ha->flags.fac_supported)
1066 return qla81xx_fac_do_write_enable(vha, 1);
1068 /* Enable flash write. */
1069 WRT_REG_DWORD(&reg->ctrl_status,
1070 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1071 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1073 if (!ha->fdt_wrt_disable)
1074 goto done;
1076 /* Disable flash write-protection, first clear SR protection bit */
1077 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1078 /* Then write zero again to clear remaining SR bits.*/
1079 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1080 done:
1081 return QLA_SUCCESS;
1084 static int
1085 qla24xx_protect_flash(scsi_qla_host_t *vha)
1087 uint32_t cnt;
1088 struct qla_hw_data *ha = vha->hw;
1089 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1091 if (ha->flags.fac_supported)
1092 return qla81xx_fac_do_write_enable(vha, 0);
1094 if (!ha->fdt_wrt_disable)
1095 goto skip_wrt_protect;
1097 /* Enable flash write-protection and wait for completion. */
1098 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1099 ha->fdt_wrt_disable);
1100 for (cnt = 300; cnt &&
1101 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1102 cnt--) {
1103 udelay(10);
1106 skip_wrt_protect:
1107 /* Disable flash write. */
1108 WRT_REG_DWORD(&reg->ctrl_status,
1109 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1110 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1112 return QLA_SUCCESS;
1115 static int
1116 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1118 struct qla_hw_data *ha = vha->hw;
1119 uint32_t start, finish;
1121 if (ha->flags.fac_supported) {
1122 start = fdata >> 2;
1123 finish = start + (ha->fdt_block_size >> 2) - 1;
1124 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1125 start), flash_data_addr(ha, finish));
1128 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1129 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1130 ((fdata >> 16) & 0xff));
1133 static int
1134 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1135 uint32_t dwords)
1137 int ret;
1138 uint32_t liter;
1139 uint32_t sec_mask, rest_addr;
1140 uint32_t fdata;
1141 dma_addr_t optrom_dma;
1142 void *optrom = NULL;
1143 struct qla_hw_data *ha = vha->hw;
1145 /* Prepare burst-capable write on supported ISPs. */
1146 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1147 dwords > OPTROM_BURST_DWORDS) {
1148 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1149 &optrom_dma, GFP_KERNEL);
1150 if (!optrom) {
1151 ql_log(ql_log_warn, vha, 0x7095,
1152 "Unable to allocate "
1153 "memory for optrom burst write (%x KB).\n",
1154 OPTROM_BURST_SIZE / 1024);
1158 rest_addr = (ha->fdt_block_size >> 2) - 1;
1159 sec_mask = ~rest_addr;
1161 ret = qla24xx_unprotect_flash(vha);
1162 if (ret != QLA_SUCCESS) {
1163 ql_log(ql_log_warn, vha, 0x7096,
1164 "Unable to unprotect flash for update.\n");
1165 goto done;
1168 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1169 fdata = (faddr & sec_mask) << 2;
1171 /* Are we at the beginning of a sector? */
1172 if ((faddr & rest_addr) == 0) {
1173 /* Do sector unprotect. */
1174 if (ha->fdt_unprotect_sec_cmd)
1175 qla24xx_write_flash_dword(ha,
1176 ha->fdt_unprotect_sec_cmd,
1177 (fdata & 0xff00) | ((fdata << 16) &
1178 0xff0000) | ((fdata >> 16) & 0xff));
1179 ret = qla24xx_erase_sector(vha, fdata);
1180 if (ret != QLA_SUCCESS) {
1181 ql_dbg(ql_dbg_user, vha, 0x7007,
1182 "Unable to erase erase sector: address=%x.\n",
1183 faddr);
1184 break;
1188 /* Go with burst-write. */
1189 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1190 /* Copy data to DMA'ble buffer. */
1191 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1193 ret = qla2x00_load_ram(vha, optrom_dma,
1194 flash_data_addr(ha, faddr),
1195 OPTROM_BURST_DWORDS);
1196 if (ret != QLA_SUCCESS) {
1197 ql_log(ql_log_warn, vha, 0x7097,
1198 "Unable to burst-write optrom segment "
1199 "(%x/%x/%llx).\n", ret,
1200 flash_data_addr(ha, faddr),
1201 (unsigned long long)optrom_dma);
1202 ql_log(ql_log_warn, vha, 0x7098,
1203 "Reverting to slow-write.\n");
1205 dma_free_coherent(&ha->pdev->dev,
1206 OPTROM_BURST_SIZE, optrom, optrom_dma);
1207 optrom = NULL;
1208 } else {
1209 liter += OPTROM_BURST_DWORDS - 1;
1210 faddr += OPTROM_BURST_DWORDS - 1;
1211 dwptr += OPTROM_BURST_DWORDS - 1;
1212 continue;
1216 ret = qla24xx_write_flash_dword(ha,
1217 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1218 if (ret != QLA_SUCCESS) {
1219 ql_dbg(ql_dbg_user, vha, 0x7006,
1220 "Unable to program flash address=%x data=%x.\n",
1221 faddr, *dwptr);
1222 break;
1225 /* Do sector protect. */
1226 if (ha->fdt_unprotect_sec_cmd &&
1227 ((faddr & rest_addr) == rest_addr))
1228 qla24xx_write_flash_dword(ha,
1229 ha->fdt_protect_sec_cmd,
1230 (fdata & 0xff00) | ((fdata << 16) &
1231 0xff0000) | ((fdata >> 16) & 0xff));
1234 ret = qla24xx_protect_flash(vha);
1235 if (ret != QLA_SUCCESS)
1236 ql_log(ql_log_warn, vha, 0x7099,
1237 "Unable to protect flash after update.\n");
1238 done:
1239 if (optrom)
1240 dma_free_coherent(&ha->pdev->dev,
1241 OPTROM_BURST_SIZE, optrom, optrom_dma);
1243 return ret;
1246 uint8_t *
1247 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1248 uint32_t bytes)
1250 uint32_t i;
1251 uint16_t *wptr;
1252 struct qla_hw_data *ha = vha->hw;
1254 /* Word reads to NVRAM via registers. */
1255 wptr = (uint16_t *)buf;
1256 qla2x00_lock_nvram_access(ha);
1257 for (i = 0; i < bytes >> 1; i++, naddr++)
1258 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1259 naddr));
1260 qla2x00_unlock_nvram_access(ha);
1262 return buf;
1265 uint8_t *
1266 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1267 uint32_t bytes)
1269 uint32_t i;
1270 uint32_t *dwptr;
1271 struct qla_hw_data *ha = vha->hw;
1273 if (IS_QLA82XX(ha))
1274 return buf;
1276 /* Dword reads to flash. */
1277 dwptr = (uint32_t *)buf;
1278 for (i = 0; i < bytes >> 2; i++, naddr++)
1279 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1280 nvram_data_addr(ha, naddr)));
1282 return buf;
1286 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1287 uint32_t bytes)
1289 int ret, stat;
1290 uint32_t i;
1291 uint16_t *wptr;
1292 unsigned long flags;
1293 struct qla_hw_data *ha = vha->hw;
1295 ret = QLA_SUCCESS;
1297 spin_lock_irqsave(&ha->hardware_lock, flags);
1298 qla2x00_lock_nvram_access(ha);
1300 /* Disable NVRAM write-protection. */
1301 stat = qla2x00_clear_nvram_protection(ha);
1303 wptr = (uint16_t *)buf;
1304 for (i = 0; i < bytes >> 1; i++, naddr++) {
1305 qla2x00_write_nvram_word(ha, naddr,
1306 cpu_to_le16(*wptr));
1307 wptr++;
1310 /* Enable NVRAM write-protection. */
1311 qla2x00_set_nvram_protection(ha, stat);
1313 qla2x00_unlock_nvram_access(ha);
1314 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1316 return ret;
1320 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1321 uint32_t bytes)
1323 int ret;
1324 uint32_t i;
1325 uint32_t *dwptr;
1326 struct qla_hw_data *ha = vha->hw;
1327 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1329 ret = QLA_SUCCESS;
1331 if (IS_QLA82XX(ha))
1332 return ret;
1334 /* Enable flash write. */
1335 WRT_REG_DWORD(&reg->ctrl_status,
1336 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1337 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1339 /* Disable NVRAM write-protection. */
1340 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1341 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1343 /* Dword writes to flash. */
1344 dwptr = (uint32_t *)buf;
1345 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1346 ret = qla24xx_write_flash_dword(ha,
1347 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1348 if (ret != QLA_SUCCESS) {
1349 ql_dbg(ql_dbg_user, vha, 0x709a,
1350 "Unable to program nvram address=%x data=%x.\n",
1351 naddr, *dwptr);
1352 break;
1356 /* Enable NVRAM write-protection. */
1357 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1359 /* Disable flash write. */
1360 WRT_REG_DWORD(&reg->ctrl_status,
1361 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1362 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1364 return ret;
1367 uint8_t *
1368 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1369 uint32_t bytes)
1371 uint32_t i;
1372 uint32_t *dwptr;
1373 struct qla_hw_data *ha = vha->hw;
1375 /* Dword reads to flash. */
1376 dwptr = (uint32_t *)buf;
1377 for (i = 0; i < bytes >> 2; i++, naddr++)
1378 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1379 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1381 return buf;
1385 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1386 uint32_t bytes)
1388 struct qla_hw_data *ha = vha->hw;
1389 #define RMW_BUFFER_SIZE (64 * 1024)
1390 uint8_t *dbuf;
1392 dbuf = vmalloc(RMW_BUFFER_SIZE);
1393 if (!dbuf)
1394 return QLA_MEMORY_ALLOC_FAILED;
1395 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1396 RMW_BUFFER_SIZE);
1397 memcpy(dbuf + (naddr << 2), buf, bytes);
1398 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1399 RMW_BUFFER_SIZE);
1400 vfree(dbuf);
1402 return QLA_SUCCESS;
1405 static inline void
1406 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1408 if (IS_QLA2322(ha)) {
1409 /* Flip all colors. */
1410 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1411 /* Turn off. */
1412 ha->beacon_color_state = 0;
1413 *pflags = GPIO_LED_ALL_OFF;
1414 } else {
1415 /* Turn on. */
1416 ha->beacon_color_state = QLA_LED_ALL_ON;
1417 *pflags = GPIO_LED_RGA_ON;
1419 } else {
1420 /* Flip green led only. */
1421 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1422 /* Turn off. */
1423 ha->beacon_color_state = 0;
1424 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1425 } else {
1426 /* Turn on. */
1427 ha->beacon_color_state = QLA_LED_GRN_ON;
1428 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1433 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1435 void
1436 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1438 uint16_t gpio_enable;
1439 uint16_t gpio_data;
1440 uint16_t led_color = 0;
1441 unsigned long flags;
1442 struct qla_hw_data *ha = vha->hw;
1443 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1445 if (IS_QLA82XX(ha))
1446 return;
1448 spin_lock_irqsave(&ha->hardware_lock, flags);
1450 /* Save the Original GPIOE. */
1451 if (ha->pio_address) {
1452 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1453 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1454 } else {
1455 gpio_enable = RD_REG_WORD(&reg->gpioe);
1456 gpio_data = RD_REG_WORD(&reg->gpiod);
1459 /* Set the modified gpio_enable values */
1460 gpio_enable |= GPIO_LED_MASK;
1462 if (ha->pio_address) {
1463 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1464 } else {
1465 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1466 RD_REG_WORD(&reg->gpioe);
1469 qla2x00_flip_colors(ha, &led_color);
1471 /* Clear out any previously set LED color. */
1472 gpio_data &= ~GPIO_LED_MASK;
1474 /* Set the new input LED color to GPIOD. */
1475 gpio_data |= led_color;
1477 /* Set the modified gpio_data values */
1478 if (ha->pio_address) {
1479 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1480 } else {
1481 WRT_REG_WORD(&reg->gpiod, gpio_data);
1482 RD_REG_WORD(&reg->gpiod);
1485 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1489 qla2x00_beacon_on(struct scsi_qla_host *vha)
1491 uint16_t gpio_enable;
1492 uint16_t gpio_data;
1493 unsigned long flags;
1494 struct qla_hw_data *ha = vha->hw;
1495 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1497 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1498 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1500 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1501 ql_log(ql_log_warn, vha, 0x709b,
1502 "Unable to update fw options (beacon on).\n");
1503 return QLA_FUNCTION_FAILED;
1506 /* Turn off LEDs. */
1507 spin_lock_irqsave(&ha->hardware_lock, flags);
1508 if (ha->pio_address) {
1509 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1510 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1511 } else {
1512 gpio_enable = RD_REG_WORD(&reg->gpioe);
1513 gpio_data = RD_REG_WORD(&reg->gpiod);
1515 gpio_enable |= GPIO_LED_MASK;
1517 /* Set the modified gpio_enable values. */
1518 if (ha->pio_address) {
1519 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1520 } else {
1521 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1522 RD_REG_WORD(&reg->gpioe);
1525 /* Clear out previously set LED colour. */
1526 gpio_data &= ~GPIO_LED_MASK;
1527 if (ha->pio_address) {
1528 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1529 } else {
1530 WRT_REG_WORD(&reg->gpiod, gpio_data);
1531 RD_REG_WORD(&reg->gpiod);
1533 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1536 * Let the per HBA timer kick off the blinking process based on
1537 * the following flags. No need to do anything else now.
1539 ha->beacon_blink_led = 1;
1540 ha->beacon_color_state = 0;
1542 return QLA_SUCCESS;
1546 qla2x00_beacon_off(struct scsi_qla_host *vha)
1548 int rval = QLA_SUCCESS;
1549 struct qla_hw_data *ha = vha->hw;
1551 ha->beacon_blink_led = 0;
1553 /* Set the on flag so when it gets flipped it will be off. */
1554 if (IS_QLA2322(ha))
1555 ha->beacon_color_state = QLA_LED_ALL_ON;
1556 else
1557 ha->beacon_color_state = QLA_LED_GRN_ON;
1559 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1561 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1562 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1564 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1565 if (rval != QLA_SUCCESS)
1566 ql_log(ql_log_warn, vha, 0x709c,
1567 "Unable to update fw options (beacon off).\n");
1568 return rval;
1572 static inline void
1573 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1575 /* Flip all colors. */
1576 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1577 /* Turn off. */
1578 ha->beacon_color_state = 0;
1579 *pflags = 0;
1580 } else {
1581 /* Turn on. */
1582 ha->beacon_color_state = QLA_LED_ALL_ON;
1583 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1587 void
1588 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1590 uint16_t led_color = 0;
1591 uint32_t gpio_data;
1592 unsigned long flags;
1593 struct qla_hw_data *ha = vha->hw;
1594 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1596 /* Save the Original GPIOD. */
1597 spin_lock_irqsave(&ha->hardware_lock, flags);
1598 gpio_data = RD_REG_DWORD(&reg->gpiod);
1600 /* Enable the gpio_data reg for update. */
1601 gpio_data |= GPDX_LED_UPDATE_MASK;
1603 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1604 gpio_data = RD_REG_DWORD(&reg->gpiod);
1606 /* Set the color bits. */
1607 qla24xx_flip_colors(ha, &led_color);
1609 /* Clear out any previously set LED color. */
1610 gpio_data &= ~GPDX_LED_COLOR_MASK;
1612 /* Set the new input LED color to GPIOD. */
1613 gpio_data |= led_color;
1615 /* Set the modified gpio_data values. */
1616 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1617 gpio_data = RD_REG_DWORD(&reg->gpiod);
1618 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1622 qla24xx_beacon_on(struct scsi_qla_host *vha)
1624 uint32_t gpio_data;
1625 unsigned long flags;
1626 struct qla_hw_data *ha = vha->hw;
1627 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1629 if (IS_QLA82XX(ha))
1630 return QLA_SUCCESS;
1632 if (ha->beacon_blink_led == 0) {
1633 /* Enable firmware for update */
1634 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1636 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1637 return QLA_FUNCTION_FAILED;
1639 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1640 QLA_SUCCESS) {
1641 ql_log(ql_log_warn, vha, 0x7009,
1642 "Unable to update fw options (beacon on).\n");
1643 return QLA_FUNCTION_FAILED;
1646 spin_lock_irqsave(&ha->hardware_lock, flags);
1647 gpio_data = RD_REG_DWORD(&reg->gpiod);
1649 /* Enable the gpio_data reg for update. */
1650 gpio_data |= GPDX_LED_UPDATE_MASK;
1651 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1652 RD_REG_DWORD(&reg->gpiod);
1654 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1657 /* So all colors blink together. */
1658 ha->beacon_color_state = 0;
1660 /* Let the per HBA timer kick off the blinking process. */
1661 ha->beacon_blink_led = 1;
1663 return QLA_SUCCESS;
1667 qla24xx_beacon_off(struct scsi_qla_host *vha)
1669 uint32_t gpio_data;
1670 unsigned long flags;
1671 struct qla_hw_data *ha = vha->hw;
1672 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1674 if (IS_QLA82XX(ha))
1675 return QLA_SUCCESS;
1677 ha->beacon_blink_led = 0;
1678 ha->beacon_color_state = QLA_LED_ALL_ON;
1680 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1682 /* Give control back to firmware. */
1683 spin_lock_irqsave(&ha->hardware_lock, flags);
1684 gpio_data = RD_REG_DWORD(&reg->gpiod);
1686 /* Disable the gpio_data reg for update. */
1687 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1688 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1689 RD_REG_DWORD(&reg->gpiod);
1690 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1692 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1694 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1695 ql_log(ql_log_warn, vha, 0x704d,
1696 "Unable to update fw options (beacon on).\n");
1697 return QLA_FUNCTION_FAILED;
1700 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1701 ql_log(ql_log_warn, vha, 0x704e,
1702 "Unable to update fw options (beacon on).\n");
1703 return QLA_FUNCTION_FAILED;
1706 return QLA_SUCCESS;
1711 * Flash support routines
1715 * qla2x00_flash_enable() - Setup flash for reading and writing.
1716 * @ha: HA context
1718 static void
1719 qla2x00_flash_enable(struct qla_hw_data *ha)
1721 uint16_t data;
1722 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1724 data = RD_REG_WORD(&reg->ctrl_status);
1725 data |= CSR_FLASH_ENABLE;
1726 WRT_REG_WORD(&reg->ctrl_status, data);
1727 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1731 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1732 * @ha: HA context
1734 static void
1735 qla2x00_flash_disable(struct qla_hw_data *ha)
1737 uint16_t data;
1738 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1740 data = RD_REG_WORD(&reg->ctrl_status);
1741 data &= ~(CSR_FLASH_ENABLE);
1742 WRT_REG_WORD(&reg->ctrl_status, data);
1743 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1747 * qla2x00_read_flash_byte() - Reads a byte from flash
1748 * @ha: HA context
1749 * @addr: Address in flash to read
1751 * A word is read from the chip, but, only the lower byte is valid.
1753 * Returns the byte read from flash @addr.
1755 static uint8_t
1756 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1758 uint16_t data;
1759 uint16_t bank_select;
1760 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1762 bank_select = RD_REG_WORD(&reg->ctrl_status);
1764 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1765 /* Specify 64K address range: */
1766 /* clear out Module Select and Flash Address bits [19:16]. */
1767 bank_select &= ~0xf8;
1768 bank_select |= addr >> 12 & 0xf0;
1769 bank_select |= CSR_FLASH_64K_BANK;
1770 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1771 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1773 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1774 data = RD_REG_WORD(&reg->flash_data);
1776 return (uint8_t)data;
1779 /* Setup bit 16 of flash address. */
1780 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1781 bank_select |= CSR_FLASH_64K_BANK;
1782 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1783 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1784 } else if (((addr & BIT_16) == 0) &&
1785 (bank_select & CSR_FLASH_64K_BANK)) {
1786 bank_select &= ~(CSR_FLASH_64K_BANK);
1787 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1788 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1791 /* Always perform IO mapped accesses to the FLASH registers. */
1792 if (ha->pio_address) {
1793 uint16_t data2;
1795 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1796 do {
1797 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1798 barrier();
1799 cpu_relax();
1800 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1801 } while (data != data2);
1802 } else {
1803 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1804 data = qla2x00_debounce_register(&reg->flash_data);
1807 return (uint8_t)data;
1811 * qla2x00_write_flash_byte() - Write a byte to flash
1812 * @ha: HA context
1813 * @addr: Address in flash to write
1814 * @data: Data to write
1816 static void
1817 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1819 uint16_t bank_select;
1820 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1822 bank_select = RD_REG_WORD(&reg->ctrl_status);
1823 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1824 /* Specify 64K address range: */
1825 /* clear out Module Select and Flash Address bits [19:16]. */
1826 bank_select &= ~0xf8;
1827 bank_select |= addr >> 12 & 0xf0;
1828 bank_select |= CSR_FLASH_64K_BANK;
1829 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1830 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1832 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1833 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1834 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1835 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1837 return;
1840 /* Setup bit 16 of flash address. */
1841 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1842 bank_select |= CSR_FLASH_64K_BANK;
1843 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1844 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1845 } else if (((addr & BIT_16) == 0) &&
1846 (bank_select & CSR_FLASH_64K_BANK)) {
1847 bank_select &= ~(CSR_FLASH_64K_BANK);
1848 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1849 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1852 /* Always perform IO mapped accesses to the FLASH registers. */
1853 if (ha->pio_address) {
1854 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1855 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1856 } else {
1857 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1858 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1859 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1860 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1865 * qla2x00_poll_flash() - Polls flash for completion.
1866 * @ha: HA context
1867 * @addr: Address in flash to poll
1868 * @poll_data: Data to be polled
1869 * @man_id: Flash manufacturer ID
1870 * @flash_id: Flash ID
1872 * This function polls the device until bit 7 of what is read matches data
1873 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1874 * out (a fatal error). The flash book recommeds reading bit 7 again after
1875 * reading bit 5 as a 1.
1877 * Returns 0 on success, else non-zero.
1879 static int
1880 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1881 uint8_t man_id, uint8_t flash_id)
1883 int status;
1884 uint8_t flash_data;
1885 uint32_t cnt;
1887 status = 1;
1889 /* Wait for 30 seconds for command to finish. */
1890 poll_data &= BIT_7;
1891 for (cnt = 3000000; cnt; cnt--) {
1892 flash_data = qla2x00_read_flash_byte(ha, addr);
1893 if ((flash_data & BIT_7) == poll_data) {
1894 status = 0;
1895 break;
1898 if (man_id != 0x40 && man_id != 0xda) {
1899 if ((flash_data & BIT_5) && cnt > 2)
1900 cnt = 2;
1902 udelay(10);
1903 barrier();
1904 cond_resched();
1906 return status;
1910 * qla2x00_program_flash_address() - Programs a flash address
1911 * @ha: HA context
1912 * @addr: Address in flash to program
1913 * @data: Data to be written in flash
1914 * @man_id: Flash manufacturer ID
1915 * @flash_id: Flash ID
1917 * Returns 0 on success, else non-zero.
1919 static int
1920 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1921 uint8_t data, uint8_t man_id, uint8_t flash_id)
1923 /* Write Program Command Sequence. */
1924 if (IS_OEM_001(ha)) {
1925 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1926 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1927 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1928 qla2x00_write_flash_byte(ha, addr, data);
1929 } else {
1930 if (man_id == 0xda && flash_id == 0xc1) {
1931 qla2x00_write_flash_byte(ha, addr, data);
1932 if (addr & 0x7e)
1933 return 0;
1934 } else {
1935 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1936 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1937 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1938 qla2x00_write_flash_byte(ha, addr, data);
1942 udelay(150);
1944 /* Wait for write to complete. */
1945 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1949 * qla2x00_erase_flash() - Erase the flash.
1950 * @ha: HA context
1951 * @man_id: Flash manufacturer ID
1952 * @flash_id: Flash ID
1954 * Returns 0 on success, else non-zero.
1956 static int
1957 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1959 /* Individual Sector Erase Command Sequence */
1960 if (IS_OEM_001(ha)) {
1961 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1962 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1963 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1964 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1965 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1966 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1967 } else {
1968 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1969 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1970 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1971 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1972 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1973 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1976 udelay(150);
1978 /* Wait for erase to complete. */
1979 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1983 * qla2x00_erase_flash_sector() - Erase a flash sector.
1984 * @ha: HA context
1985 * @addr: Flash sector to erase
1986 * @sec_mask: Sector address mask
1987 * @man_id: Flash manufacturer ID
1988 * @flash_id: Flash ID
1990 * Returns 0 on success, else non-zero.
1992 static int
1993 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1994 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1996 /* Individual Sector Erase Command Sequence */
1997 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1998 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1999 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2000 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2001 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2002 if (man_id == 0x1f && flash_id == 0x13)
2003 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2004 else
2005 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2007 udelay(150);
2009 /* Wait for erase to complete. */
2010 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2014 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2015 * @man_id: Flash manufacturer ID
2016 * @flash_id: Flash ID
2018 static void
2019 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2020 uint8_t *flash_id)
2022 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2023 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2024 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2025 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2026 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2027 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2028 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2029 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2032 static void
2033 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2034 uint32_t saddr, uint32_t length)
2036 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2037 uint32_t midpoint, ilength;
2038 uint8_t data;
2040 midpoint = length / 2;
2042 WRT_REG_WORD(&reg->nvram, 0);
2043 RD_REG_WORD(&reg->nvram);
2044 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2045 if (ilength == midpoint) {
2046 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2047 RD_REG_WORD(&reg->nvram);
2049 data = qla2x00_read_flash_byte(ha, saddr);
2050 if (saddr % 100)
2051 udelay(10);
2052 *tmp_buf = data;
2053 cond_resched();
2057 static inline void
2058 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2060 int cnt;
2061 unsigned long flags;
2062 struct qla_hw_data *ha = vha->hw;
2063 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2065 /* Suspend HBA. */
2066 scsi_block_requests(vha->host);
2067 ha->isp_ops->disable_intrs(ha);
2068 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2070 /* Pause RISC. */
2071 spin_lock_irqsave(&ha->hardware_lock, flags);
2072 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2073 RD_REG_WORD(&reg->hccr);
2074 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2075 for (cnt = 0; cnt < 30000; cnt++) {
2076 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2077 break;
2078 udelay(100);
2080 } else {
2081 udelay(10);
2083 spin_unlock_irqrestore(&ha->hardware_lock, flags);
2086 static inline void
2087 qla2x00_resume_hba(struct scsi_qla_host *vha)
2089 struct qla_hw_data *ha = vha->hw;
2091 /* Resume HBA. */
2092 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2093 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2094 qla2xxx_wake_dpc(vha);
2095 qla2x00_wait_for_chip_reset(vha);
2096 scsi_unblock_requests(vha->host);
2099 uint8_t *
2100 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2101 uint32_t offset, uint32_t length)
2103 uint32_t addr, midpoint;
2104 uint8_t *data;
2105 struct qla_hw_data *ha = vha->hw;
2106 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2108 /* Suspend HBA. */
2109 qla2x00_suspend_hba(vha);
2111 /* Go with read. */
2112 midpoint = ha->optrom_size / 2;
2114 qla2x00_flash_enable(ha);
2115 WRT_REG_WORD(&reg->nvram, 0);
2116 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2117 for (addr = offset, data = buf; addr < length; addr++, data++) {
2118 if (addr == midpoint) {
2119 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2120 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2123 *data = qla2x00_read_flash_byte(ha, addr);
2125 qla2x00_flash_disable(ha);
2127 /* Resume HBA. */
2128 qla2x00_resume_hba(vha);
2130 return buf;
2134 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2135 uint32_t offset, uint32_t length)
2138 int rval;
2139 uint8_t man_id, flash_id, sec_number, data;
2140 uint16_t wd;
2141 uint32_t addr, liter, sec_mask, rest_addr;
2142 struct qla_hw_data *ha = vha->hw;
2143 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2145 /* Suspend HBA. */
2146 qla2x00_suspend_hba(vha);
2148 rval = QLA_SUCCESS;
2149 sec_number = 0;
2151 /* Reset ISP chip. */
2152 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2153 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2155 /* Go with write. */
2156 qla2x00_flash_enable(ha);
2157 do { /* Loop once to provide quick error exit */
2158 /* Structure of flash memory based on manufacturer */
2159 if (IS_OEM_001(ha)) {
2160 /* OEM variant with special flash part. */
2161 man_id = flash_id = 0;
2162 rest_addr = 0xffff;
2163 sec_mask = 0x10000;
2164 goto update_flash;
2166 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2167 switch (man_id) {
2168 case 0x20: /* ST flash. */
2169 if (flash_id == 0xd2 || flash_id == 0xe3) {
2171 * ST m29w008at part - 64kb sector size with
2172 * 32kb,8kb,8kb,16kb sectors at memory address
2173 * 0xf0000.
2175 rest_addr = 0xffff;
2176 sec_mask = 0x10000;
2177 break;
2180 * ST m29w010b part - 16kb sector size
2181 * Default to 16kb sectors
2183 rest_addr = 0x3fff;
2184 sec_mask = 0x1c000;
2185 break;
2186 case 0x40: /* Mostel flash. */
2187 /* Mostel v29c51001 part - 512 byte sector size. */
2188 rest_addr = 0x1ff;
2189 sec_mask = 0x1fe00;
2190 break;
2191 case 0xbf: /* SST flash. */
2192 /* SST39sf10 part - 4kb sector size. */
2193 rest_addr = 0xfff;
2194 sec_mask = 0x1f000;
2195 break;
2196 case 0xda: /* Winbond flash. */
2197 /* Winbond W29EE011 part - 256 byte sector size. */
2198 rest_addr = 0x7f;
2199 sec_mask = 0x1ff80;
2200 break;
2201 case 0xc2: /* Macronix flash. */
2202 /* 64k sector size. */
2203 if (flash_id == 0x38 || flash_id == 0x4f) {
2204 rest_addr = 0xffff;
2205 sec_mask = 0x10000;
2206 break;
2208 /* Fall through... */
2210 case 0x1f: /* Atmel flash. */
2211 /* 512k sector size. */
2212 if (flash_id == 0x13) {
2213 rest_addr = 0x7fffffff;
2214 sec_mask = 0x80000000;
2215 break;
2217 /* Fall through... */
2219 case 0x01: /* AMD flash. */
2220 if (flash_id == 0x38 || flash_id == 0x40 ||
2221 flash_id == 0x4f) {
2222 /* Am29LV081 part - 64kb sector size. */
2223 /* Am29LV002BT part - 64kb sector size. */
2224 rest_addr = 0xffff;
2225 sec_mask = 0x10000;
2226 break;
2227 } else if (flash_id == 0x3e) {
2229 * Am29LV008b part - 64kb sector size with
2230 * 32kb,8kb,8kb,16kb sector at memory address
2231 * h0xf0000.
2233 rest_addr = 0xffff;
2234 sec_mask = 0x10000;
2235 break;
2236 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2238 * Am29LV010 part or AM29f010 - 16kb sector
2239 * size.
2241 rest_addr = 0x3fff;
2242 sec_mask = 0x1c000;
2243 break;
2244 } else if (flash_id == 0x6d) {
2245 /* Am29LV001 part - 8kb sector size. */
2246 rest_addr = 0x1fff;
2247 sec_mask = 0x1e000;
2248 break;
2250 default:
2251 /* Default to 16 kb sector size. */
2252 rest_addr = 0x3fff;
2253 sec_mask = 0x1c000;
2254 break;
2257 update_flash:
2258 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2259 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2260 rval = QLA_FUNCTION_FAILED;
2261 break;
2265 for (addr = offset, liter = 0; liter < length; liter++,
2266 addr++) {
2267 data = buf[liter];
2268 /* Are we at the beginning of a sector? */
2269 if ((addr & rest_addr) == 0) {
2270 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2271 if (addr >= 0x10000UL) {
2272 if (((addr >> 12) & 0xf0) &&
2273 ((man_id == 0x01 &&
2274 flash_id == 0x3e) ||
2275 (man_id == 0x20 &&
2276 flash_id == 0xd2))) {
2277 sec_number++;
2278 if (sec_number == 1) {
2279 rest_addr =
2280 0x7fff;
2281 sec_mask =
2282 0x18000;
2283 } else if (
2284 sec_number == 2 ||
2285 sec_number == 3) {
2286 rest_addr =
2287 0x1fff;
2288 sec_mask =
2289 0x1e000;
2290 } else if (
2291 sec_number == 4) {
2292 rest_addr =
2293 0x3fff;
2294 sec_mask =
2295 0x1c000;
2299 } else if (addr == ha->optrom_size / 2) {
2300 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2301 RD_REG_WORD(&reg->nvram);
2304 if (flash_id == 0xda && man_id == 0xc1) {
2305 qla2x00_write_flash_byte(ha, 0x5555,
2306 0xaa);
2307 qla2x00_write_flash_byte(ha, 0x2aaa,
2308 0x55);
2309 qla2x00_write_flash_byte(ha, 0x5555,
2310 0xa0);
2311 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2312 /* Then erase it */
2313 if (qla2x00_erase_flash_sector(ha,
2314 addr, sec_mask, man_id,
2315 flash_id)) {
2316 rval = QLA_FUNCTION_FAILED;
2317 break;
2319 if (man_id == 0x01 && flash_id == 0x6d)
2320 sec_number++;
2324 if (man_id == 0x01 && flash_id == 0x6d) {
2325 if (sec_number == 1 &&
2326 addr == (rest_addr - 1)) {
2327 rest_addr = 0x0fff;
2328 sec_mask = 0x1f000;
2329 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2330 rest_addr = 0x3fff;
2331 sec_mask = 0x1c000;
2335 if (qla2x00_program_flash_address(ha, addr, data,
2336 man_id, flash_id)) {
2337 rval = QLA_FUNCTION_FAILED;
2338 break;
2340 cond_resched();
2342 } while (0);
2343 qla2x00_flash_disable(ha);
2345 /* Resume HBA. */
2346 qla2x00_resume_hba(vha);
2348 return rval;
2351 uint8_t *
2352 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2353 uint32_t offset, uint32_t length)
2355 struct qla_hw_data *ha = vha->hw;
2357 /* Suspend HBA. */
2358 scsi_block_requests(vha->host);
2359 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2361 /* Go with read. */
2362 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2364 /* Resume HBA. */
2365 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2366 scsi_unblock_requests(vha->host);
2368 return buf;
2372 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2373 uint32_t offset, uint32_t length)
2375 int rval;
2376 struct qla_hw_data *ha = vha->hw;
2378 /* Suspend HBA. */
2379 scsi_block_requests(vha->host);
2380 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2382 /* Go with write. */
2383 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2384 length >> 2);
2386 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2387 scsi_unblock_requests(vha->host);
2389 return rval;
2392 uint8_t *
2393 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2394 uint32_t offset, uint32_t length)
2396 int rval;
2397 dma_addr_t optrom_dma;
2398 void *optrom;
2399 uint8_t *pbuf;
2400 uint32_t faddr, left, burst;
2401 struct qla_hw_data *ha = vha->hw;
2403 if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2404 goto try_fast;
2405 if (offset & 0xfff)
2406 goto slow_read;
2407 if (length < OPTROM_BURST_SIZE)
2408 goto slow_read;
2410 try_fast:
2411 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2412 &optrom_dma, GFP_KERNEL);
2413 if (!optrom) {
2414 ql_log(ql_log_warn, vha, 0x00cc,
2415 "Unable to allocate memory for optrom burst read (%x KB).\n",
2416 OPTROM_BURST_SIZE / 1024);
2417 goto slow_read;
2420 pbuf = buf;
2421 faddr = offset >> 2;
2422 left = length >> 2;
2423 burst = OPTROM_BURST_DWORDS;
2424 while (left != 0) {
2425 if (burst > left)
2426 burst = left;
2428 rval = qla2x00_dump_ram(vha, optrom_dma,
2429 flash_data_addr(ha, faddr), burst);
2430 if (rval) {
2431 ql_log(ql_log_warn, vha, 0x00f5,
2432 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2433 rval, flash_data_addr(ha, faddr),
2434 (unsigned long long)optrom_dma);
2435 ql_log(ql_log_warn, vha, 0x00f6,
2436 "Reverting to slow-read.\n");
2438 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2439 optrom, optrom_dma);
2440 goto slow_read;
2443 memcpy(pbuf, optrom, burst * 4);
2445 left -= burst;
2446 faddr += burst;
2447 pbuf += burst * 4;
2450 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2451 optrom_dma);
2453 return buf;
2455 slow_read:
2456 return qla24xx_read_optrom_data(vha, buf, offset, length);
2460 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2461 * @ha: HA context
2462 * @pcids: Pointer to the FCODE PCI data structure
2464 * The process of retrieving the FCODE version information is at best
2465 * described as interesting.
2467 * Within the first 100h bytes of the image an ASCII string is present
2468 * which contains several pieces of information including the FCODE
2469 * version. Unfortunately it seems the only reliable way to retrieve
2470 * the version is by scanning for another sentinel within the string,
2471 * the FCODE build date:
2473 * ... 2.00.02 10/17/02 ...
2475 * Returns QLA_SUCCESS on successful retrieval of version.
2477 static void
2478 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2480 int ret = QLA_FUNCTION_FAILED;
2481 uint32_t istart, iend, iter, vend;
2482 uint8_t do_next, rbyte, *vbyte;
2484 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2486 /* Skip the PCI data structure. */
2487 istart = pcids +
2488 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2489 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2490 iend = istart + 0x100;
2491 do {
2492 /* Scan for the sentinel date string...eeewww. */
2493 do_next = 0;
2494 iter = istart;
2495 while ((iter < iend) && !do_next) {
2496 iter++;
2497 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2498 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2499 '/')
2500 do_next++;
2501 else if (qla2x00_read_flash_byte(ha,
2502 iter + 3) == '/')
2503 do_next++;
2506 if (!do_next)
2507 break;
2509 /* Backtrack to previous ' ' (space). */
2510 do_next = 0;
2511 while ((iter > istart) && !do_next) {
2512 iter--;
2513 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2514 do_next++;
2516 if (!do_next)
2517 break;
2520 * Mark end of version tag, and find previous ' ' (space) or
2521 * string length (recent FCODE images -- major hack ahead!!!).
2523 vend = iter - 1;
2524 do_next = 0;
2525 while ((iter > istart) && !do_next) {
2526 iter--;
2527 rbyte = qla2x00_read_flash_byte(ha, iter);
2528 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2529 do_next++;
2531 if (!do_next)
2532 break;
2534 /* Mark beginning of version tag, and copy data. */
2535 iter++;
2536 if ((vend - iter) &&
2537 ((vend - iter) < sizeof(ha->fcode_revision))) {
2538 vbyte = ha->fcode_revision;
2539 while (iter <= vend) {
2540 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2541 iter++;
2543 ret = QLA_SUCCESS;
2545 } while (0);
2547 if (ret != QLA_SUCCESS)
2548 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2552 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2554 int ret = QLA_SUCCESS;
2555 uint8_t code_type, last_image;
2556 uint32_t pcihdr, pcids;
2557 uint8_t *dbyte;
2558 uint16_t *dcode;
2559 struct qla_hw_data *ha = vha->hw;
2561 if (!ha->pio_address || !mbuf)
2562 return QLA_FUNCTION_FAILED;
2564 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2565 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2566 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2567 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2569 qla2x00_flash_enable(ha);
2571 /* Begin with first PCI expansion ROM header. */
2572 pcihdr = 0;
2573 last_image = 1;
2574 do {
2575 /* Verify PCI expansion ROM header. */
2576 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2577 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2578 /* No signature */
2579 ql_log(ql_log_fatal, vha, 0x0050,
2580 "No matching ROM signature.\n");
2581 ret = QLA_FUNCTION_FAILED;
2582 break;
2585 /* Locate PCI data structure. */
2586 pcids = pcihdr +
2587 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2588 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2590 /* Validate signature of PCI data structure. */
2591 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2592 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2593 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2594 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2595 /* Incorrect header. */
2596 ql_log(ql_log_fatal, vha, 0x0051,
2597 "PCI data struct not found pcir_adr=%x.\n", pcids);
2598 ret = QLA_FUNCTION_FAILED;
2599 break;
2602 /* Read version */
2603 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2604 switch (code_type) {
2605 case ROM_CODE_TYPE_BIOS:
2606 /* Intel x86, PC-AT compatible. */
2607 ha->bios_revision[0] =
2608 qla2x00_read_flash_byte(ha, pcids + 0x12);
2609 ha->bios_revision[1] =
2610 qla2x00_read_flash_byte(ha, pcids + 0x13);
2611 ql_dbg(ql_dbg_init, vha, 0x0052,
2612 "Read BIOS %d.%d.\n",
2613 ha->bios_revision[1], ha->bios_revision[0]);
2614 break;
2615 case ROM_CODE_TYPE_FCODE:
2616 /* Open Firmware standard for PCI (FCode). */
2617 /* Eeeewww... */
2618 qla2x00_get_fcode_version(ha, pcids);
2619 break;
2620 case ROM_CODE_TYPE_EFI:
2621 /* Extensible Firmware Interface (EFI). */
2622 ha->efi_revision[0] =
2623 qla2x00_read_flash_byte(ha, pcids + 0x12);
2624 ha->efi_revision[1] =
2625 qla2x00_read_flash_byte(ha, pcids + 0x13);
2626 ql_dbg(ql_dbg_init, vha, 0x0053,
2627 "Read EFI %d.%d.\n",
2628 ha->efi_revision[1], ha->efi_revision[0]);
2629 break;
2630 default:
2631 ql_log(ql_log_warn, vha, 0x0054,
2632 "Unrecognized code type %x at pcids %x.\n",
2633 code_type, pcids);
2634 break;
2637 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2639 /* Locate next PCI expansion ROM. */
2640 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2641 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2642 } while (!last_image);
2644 if (IS_QLA2322(ha)) {
2645 /* Read firmware image information. */
2646 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2647 dbyte = mbuf;
2648 memset(dbyte, 0, 8);
2649 dcode = (uint16_t *)dbyte;
2651 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2653 ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2654 "Dumping fw "
2655 "ver from flash:.\n");
2656 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2657 (uint8_t *)dbyte, 8);
2659 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2660 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2661 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2662 dcode[3] == 0)) {
2663 ql_log(ql_log_warn, vha, 0x0057,
2664 "Unrecognized fw revision at %x.\n",
2665 ha->flt_region_fw * 4);
2666 } else {
2667 /* values are in big endian */
2668 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2669 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2670 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2671 ql_dbg(ql_dbg_init, vha, 0x0058,
2672 "FW Version: "
2673 "%d.%d.%d.\n", ha->fw_revision[0],
2674 ha->fw_revision[1], ha->fw_revision[2]);
2678 qla2x00_flash_disable(ha);
2680 return ret;
2684 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2686 int ret = QLA_SUCCESS;
2687 uint32_t pcihdr, pcids;
2688 uint32_t *dcode;
2689 uint8_t *bcode;
2690 uint8_t code_type, last_image;
2691 int i;
2692 struct qla_hw_data *ha = vha->hw;
2694 if (IS_QLA82XX(ha))
2695 return ret;
2697 if (!mbuf)
2698 return QLA_FUNCTION_FAILED;
2700 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2701 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2702 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2703 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2705 dcode = mbuf;
2707 /* Begin with first PCI expansion ROM header. */
2708 pcihdr = ha->flt_region_boot << 2;
2709 last_image = 1;
2710 do {
2711 /* Verify PCI expansion ROM header. */
2712 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2713 bcode = mbuf + (pcihdr % 4);
2714 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2715 /* No signature */
2716 ql_log(ql_log_fatal, vha, 0x0059,
2717 "No matching ROM signature.\n");
2718 ret = QLA_FUNCTION_FAILED;
2719 break;
2722 /* Locate PCI data structure. */
2723 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2725 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2726 bcode = mbuf + (pcihdr % 4);
2728 /* Validate signature of PCI data structure. */
2729 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2730 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2731 /* Incorrect header. */
2732 ql_log(ql_log_fatal, vha, 0x005a,
2733 "PCI data struct not found pcir_adr=%x.\n", pcids);
2734 ret = QLA_FUNCTION_FAILED;
2735 break;
2738 /* Read version */
2739 code_type = bcode[0x14];
2740 switch (code_type) {
2741 case ROM_CODE_TYPE_BIOS:
2742 /* Intel x86, PC-AT compatible. */
2743 ha->bios_revision[0] = bcode[0x12];
2744 ha->bios_revision[1] = bcode[0x13];
2745 ql_dbg(ql_dbg_init, vha, 0x005b,
2746 "Read BIOS %d.%d.\n",
2747 ha->bios_revision[1], ha->bios_revision[0]);
2748 break;
2749 case ROM_CODE_TYPE_FCODE:
2750 /* Open Firmware standard for PCI (FCode). */
2751 ha->fcode_revision[0] = bcode[0x12];
2752 ha->fcode_revision[1] = bcode[0x13];
2753 ql_dbg(ql_dbg_init, vha, 0x005c,
2754 "Read FCODE %d.%d.\n",
2755 ha->fcode_revision[1], ha->fcode_revision[0]);
2756 break;
2757 case ROM_CODE_TYPE_EFI:
2758 /* Extensible Firmware Interface (EFI). */
2759 ha->efi_revision[0] = bcode[0x12];
2760 ha->efi_revision[1] = bcode[0x13];
2761 ql_dbg(ql_dbg_init, vha, 0x005d,
2762 "Read EFI %d.%d.\n",
2763 ha->efi_revision[1], ha->efi_revision[0]);
2764 break;
2765 default:
2766 ql_log(ql_log_warn, vha, 0x005e,
2767 "Unrecognized code type %x at pcids %x.\n",
2768 code_type, pcids);
2769 break;
2772 last_image = bcode[0x15] & BIT_7;
2774 /* Locate next PCI expansion ROM. */
2775 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2776 } while (!last_image);
2778 /* Read firmware image information. */
2779 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2780 dcode = mbuf;
2782 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2783 for (i = 0; i < 4; i++)
2784 dcode[i] = be32_to_cpu(dcode[i]);
2786 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2787 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2788 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2789 dcode[3] == 0)) {
2790 ql_log(ql_log_warn, vha, 0x005f,
2791 "Unrecognized fw revision at %x.\n",
2792 ha->flt_region_fw * 4);
2793 } else {
2794 ha->fw_revision[0] = dcode[0];
2795 ha->fw_revision[1] = dcode[1];
2796 ha->fw_revision[2] = dcode[2];
2797 ha->fw_revision[3] = dcode[3];
2798 ql_dbg(ql_dbg_init, vha, 0x0060,
2799 "Firmware revision %d.%d.%d.%d.\n",
2800 ha->fw_revision[0], ha->fw_revision[1],
2801 ha->fw_revision[2], ha->fw_revision[3]);
2804 /* Check for golden firmware and get version if available */
2805 if (!IS_QLA81XX(ha)) {
2806 /* Golden firmware is not present in non 81XX adapters */
2807 return ret;
2810 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2811 dcode = mbuf;
2812 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2813 ha->flt_region_gold_fw << 2, 32);
2815 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2816 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2817 ql_log(ql_log_warn, vha, 0x0056,
2818 "Unrecognized golden fw at 0x%x.\n",
2819 ha->flt_region_gold_fw * 4);
2820 return ret;
2823 for (i = 4; i < 8; i++)
2824 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2826 return ret;
2829 static int
2830 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2832 if (pos >= end || *pos != 0x82)
2833 return 0;
2835 pos += 3 + pos[1];
2836 if (pos >= end || *pos != 0x90)
2837 return 0;
2839 pos += 3 + pos[1];
2840 if (pos >= end || *pos != 0x78)
2841 return 0;
2843 return 1;
2847 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2849 struct qla_hw_data *ha = vha->hw;
2850 uint8_t *pos = ha->vpd;
2851 uint8_t *end = pos + ha->vpd_size;
2852 int len = 0;
2854 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2855 return 0;
2857 while (pos < end && *pos != 0x78) {
2858 len = (*pos == 0x82) ? pos[1] : pos[2];
2860 if (!strncmp(pos, key, strlen(key)))
2861 break;
2863 if (*pos != 0x90 && *pos != 0x91)
2864 pos += len;
2866 pos += 3;
2869 if (pos < end - len && *pos != 0x78)
2870 return snprintf(str, size, "%.*s", len, pos + 3);
2872 return 0;
2876 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2878 int len, max_len;
2879 uint32_t fcp_prio_addr;
2880 struct qla_hw_data *ha = vha->hw;
2882 if (!ha->fcp_prio_cfg) {
2883 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2884 if (!ha->fcp_prio_cfg) {
2885 ql_log(ql_log_warn, vha, 0x00d5,
2886 "Unable to allocate memory for fcp priorty data (%x).\n",
2887 FCP_PRIO_CFG_SIZE);
2888 return QLA_FUNCTION_FAILED;
2891 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2893 fcp_prio_addr = ha->flt_region_fcp_prio;
2895 /* first read the fcp priority data header from flash */
2896 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2897 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2899 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
2900 goto fail;
2902 /* read remaining FCP CMD config data from flash */
2903 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2904 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2905 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2907 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2908 fcp_prio_addr << 2, (len < max_len ? len : max_len));
2910 /* revalidate the entire FCP priority config data, including entries */
2911 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
2912 goto fail;
2914 ha->flags.fcp_prio_enabled = 1;
2915 return QLA_SUCCESS;
2916 fail:
2917 vfree(ha->fcp_prio_cfg);
2918 ha->fcp_prio_cfg = NULL;
2919 return QLA_FUNCTION_FAILED;