4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-pages
31 unsigned int pipe_max_pages
= PIPE_DEF_BUFFERS
* 16;
34 * We use a start+len construction, which provides full use of the
36 * -- Florian Coosmann (FGC)
38 * Reads with count = 0 should always return 0.
39 * -- Julian Bradfield 1999-06-07.
41 * FIFOs and Pipes now generate SIGIO for both readers and writers.
42 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
44 * pipe_read & write cleanup
45 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
48 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
51 mutex_lock_nested(&pipe
->inode
->i_mutex
, subclass
);
54 void pipe_lock(struct pipe_inode_info
*pipe
)
57 * pipe_lock() nests non-pipe inode locks (for writing to a file)
59 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
61 EXPORT_SYMBOL(pipe_lock
);
63 void pipe_unlock(struct pipe_inode_info
*pipe
)
66 mutex_unlock(&pipe
->inode
->i_mutex
);
68 EXPORT_SYMBOL(pipe_unlock
);
70 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
71 struct pipe_inode_info
*pipe2
)
73 BUG_ON(pipe1
== pipe2
);
76 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
77 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
79 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
80 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
84 /* Drop the inode semaphore and wait for a pipe event, atomically */
85 void pipe_wait(struct pipe_inode_info
*pipe
)
90 * Pipes are system-local resources, so sleeping on them
91 * is considered a noninteractive wait:
93 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
96 finish_wait(&pipe
->wait
, &wait
);
101 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
107 while (!iov
->iov_len
)
109 copy
= min_t(unsigned long, len
, iov
->iov_len
);
112 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
115 if (copy_from_user(to
, iov
->iov_base
, copy
))
120 iov
->iov_base
+= copy
;
121 iov
->iov_len
-= copy
;
127 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
133 while (!iov
->iov_len
)
135 copy
= min_t(unsigned long, len
, iov
->iov_len
);
138 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
141 if (copy_to_user(iov
->iov_base
, from
, copy
))
146 iov
->iov_base
+= copy
;
147 iov
->iov_len
-= copy
;
153 * Attempt to pre-fault in the user memory, so we can use atomic copies.
154 * Returns the number of bytes not faulted in.
156 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
158 while (!iov
->iov_len
)
162 unsigned long this_len
;
164 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
165 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
176 * Pre-fault in the user memory, so we can use atomic copies.
178 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
180 while (!iov
->iov_len
)
184 unsigned long this_len
;
186 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
187 fault_in_pages_readable(iov
->iov_base
, this_len
);
193 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
194 struct pipe_buffer
*buf
)
196 struct page
*page
= buf
->page
;
199 * If nobody else uses this page, and we don't already have a
200 * temporary page, let's keep track of it as a one-deep
201 * allocation cache. (Otherwise just release our reference to it)
203 if (page_count(page
) == 1 && !pipe
->tmp_page
)
204 pipe
->tmp_page
= page
;
206 page_cache_release(page
);
210 * generic_pipe_buf_map - virtually map a pipe buffer
211 * @pipe: the pipe that the buffer belongs to
212 * @buf: the buffer that should be mapped
213 * @atomic: whether to use an atomic map
216 * This function returns a kernel virtual address mapping for the
217 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
218 * and the caller has to be careful not to fault before calling
219 * the unmap function.
221 * Note that this function occupies KM_USER0 if @atomic != 0.
223 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
224 struct pipe_buffer
*buf
, int atomic
)
227 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
228 return kmap_atomic(buf
->page
, KM_USER0
);
231 return kmap(buf
->page
);
233 EXPORT_SYMBOL(generic_pipe_buf_map
);
236 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
237 * @pipe: the pipe that the buffer belongs to
238 * @buf: the buffer that should be unmapped
239 * @map_data: the data that the mapping function returned
242 * This function undoes the mapping that ->map() provided.
244 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
245 struct pipe_buffer
*buf
, void *map_data
)
247 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
248 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
249 kunmap_atomic(map_data
, KM_USER0
);
253 EXPORT_SYMBOL(generic_pipe_buf_unmap
);
256 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
257 * @pipe: the pipe that the buffer belongs to
258 * @buf: the buffer to attempt to steal
261 * This function attempts to steal the &struct page attached to
262 * @buf. If successful, this function returns 0 and returns with
263 * the page locked. The caller may then reuse the page for whatever
264 * he wishes; the typical use is insertion into a different file
267 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
268 struct pipe_buffer
*buf
)
270 struct page
*page
= buf
->page
;
273 * A reference of one is golden, that means that the owner of this
274 * page is the only one holding a reference to it. lock the page
277 if (page_count(page
) == 1) {
284 EXPORT_SYMBOL(generic_pipe_buf_steal
);
287 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
288 * @pipe: the pipe that the buffer belongs to
289 * @buf: the buffer to get a reference to
292 * This function grabs an extra reference to @buf. It's used in
293 * in the tee() system call, when we duplicate the buffers in one
296 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
298 page_cache_get(buf
->page
);
300 EXPORT_SYMBOL(generic_pipe_buf_get
);
303 * generic_pipe_buf_confirm - verify contents of the pipe buffer
304 * @info: the pipe that the buffer belongs to
305 * @buf: the buffer to confirm
308 * This function does nothing, because the generic pipe code uses
309 * pages that are always good when inserted into the pipe.
311 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
312 struct pipe_buffer
*buf
)
316 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
319 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
320 * @pipe: the pipe that the buffer belongs to
321 * @buf: the buffer to put a reference to
324 * This function releases a reference to @buf.
326 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
327 struct pipe_buffer
*buf
)
329 page_cache_release(buf
->page
);
331 EXPORT_SYMBOL(generic_pipe_buf_release
);
333 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
335 .map
= generic_pipe_buf_map
,
336 .unmap
= generic_pipe_buf_unmap
,
337 .confirm
= generic_pipe_buf_confirm
,
338 .release
= anon_pipe_buf_release
,
339 .steal
= generic_pipe_buf_steal
,
340 .get
= generic_pipe_buf_get
,
344 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
345 unsigned long nr_segs
, loff_t pos
)
347 struct file
*filp
= iocb
->ki_filp
;
348 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
349 struct pipe_inode_info
*pipe
;
352 struct iovec
*iov
= (struct iovec
*)_iov
;
355 total_len
= iov_length(iov
, nr_segs
);
356 /* Null read succeeds. */
357 if (unlikely(total_len
== 0))
362 mutex_lock(&inode
->i_mutex
);
363 pipe
= inode
->i_pipe
;
365 int bufs
= pipe
->nrbufs
;
367 int curbuf
= pipe
->curbuf
;
368 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
369 const struct pipe_buf_operations
*ops
= buf
->ops
;
371 size_t chars
= buf
->len
;
374 if (chars
> total_len
)
377 error
= ops
->confirm(pipe
, buf
);
384 atomic
= !iov_fault_in_pages_write(iov
, chars
);
386 addr
= ops
->map(pipe
, buf
, atomic
);
387 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
388 ops
->unmap(pipe
, buf
, addr
);
389 if (unlikely(error
)) {
391 * Just retry with the slow path if we failed.
402 buf
->offset
+= chars
;
406 ops
->release(pipe
, buf
);
407 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
408 pipe
->curbuf
= curbuf
;
409 pipe
->nrbufs
= --bufs
;
414 break; /* common path: read succeeded */
416 if (bufs
) /* More to do? */
420 if (!pipe
->waiting_writers
) {
421 /* syscall merging: Usually we must not sleep
422 * if O_NONBLOCK is set, or if we got some data.
423 * But if a writer sleeps in kernel space, then
424 * we can wait for that data without violating POSIX.
428 if (filp
->f_flags
& O_NONBLOCK
) {
433 if (signal_pending(current
)) {
439 wake_up_interruptible_sync(&pipe
->wait
);
440 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
444 mutex_unlock(&inode
->i_mutex
);
446 /* Signal writers asynchronously that there is more room. */
448 wake_up_interruptible_sync(&pipe
->wait
);
449 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
457 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
458 unsigned long nr_segs
, loff_t ppos
)
460 struct file
*filp
= iocb
->ki_filp
;
461 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
462 struct pipe_inode_info
*pipe
;
465 struct iovec
*iov
= (struct iovec
*)_iov
;
469 total_len
= iov_length(iov
, nr_segs
);
470 /* Null write succeeds. */
471 if (unlikely(total_len
== 0))
476 mutex_lock(&inode
->i_mutex
);
477 pipe
= inode
->i_pipe
;
479 if (!pipe
->readers
) {
480 send_sig(SIGPIPE
, current
, 0);
485 /* We try to merge small writes */
486 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
487 if (pipe
->nrbufs
&& chars
!= 0) {
488 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
490 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
491 const struct pipe_buf_operations
*ops
= buf
->ops
;
492 int offset
= buf
->offset
+ buf
->len
;
494 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
495 int error
, atomic
= 1;
498 error
= ops
->confirm(pipe
, buf
);
502 iov_fault_in_pages_read(iov
, chars
);
504 addr
= ops
->map(pipe
, buf
, atomic
);
505 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
507 ops
->unmap(pipe
, buf
, addr
);
528 if (!pipe
->readers
) {
529 send_sig(SIGPIPE
, current
, 0);
535 if (bufs
< pipe
->buffers
) {
536 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
537 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
538 struct page
*page
= pipe
->tmp_page
;
540 int error
, atomic
= 1;
543 page
= alloc_page(GFP_HIGHUSER
);
544 if (unlikely(!page
)) {
545 ret
= ret
? : -ENOMEM
;
548 pipe
->tmp_page
= page
;
550 /* Always wake up, even if the copy fails. Otherwise
551 * we lock up (O_NONBLOCK-)readers that sleep due to
553 * FIXME! Is this really true?
557 if (chars
> total_len
)
560 iov_fault_in_pages_read(iov
, chars
);
563 src
= kmap_atomic(page
, KM_USER0
);
567 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
570 kunmap_atomic(src
, KM_USER0
);
574 if (unlikely(error
)) {
585 /* Insert it into the buffer array */
587 buf
->ops
= &anon_pipe_buf_ops
;
590 pipe
->nrbufs
= ++bufs
;
591 pipe
->tmp_page
= NULL
;
597 if (bufs
< pipe
->buffers
)
599 if (filp
->f_flags
& O_NONBLOCK
) {
604 if (signal_pending(current
)) {
610 wake_up_interruptible_sync(&pipe
->wait
);
611 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
614 pipe
->waiting_writers
++;
616 pipe
->waiting_writers
--;
619 mutex_unlock(&inode
->i_mutex
);
621 wake_up_interruptible_sync(&pipe
->wait
);
622 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
625 file_update_time(filp
);
630 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
636 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
642 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
644 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
645 struct pipe_inode_info
*pipe
;
646 int count
, buf
, nrbufs
;
650 mutex_lock(&inode
->i_mutex
);
651 pipe
= inode
->i_pipe
;
654 nrbufs
= pipe
->nrbufs
;
655 while (--nrbufs
>= 0) {
656 count
+= pipe
->bufs
[buf
].len
;
657 buf
= (buf
+1) & (pipe
->buffers
- 1);
659 mutex_unlock(&inode
->i_mutex
);
661 return put_user(count
, (int __user
*)arg
);
667 /* No kernel lock held - fine */
669 pipe_poll(struct file
*filp
, poll_table
*wait
)
672 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
673 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
676 poll_wait(filp
, &pipe
->wait
, wait
);
678 /* Reading only -- no need for acquiring the semaphore. */
679 nrbufs
= pipe
->nrbufs
;
681 if (filp
->f_mode
& FMODE_READ
) {
682 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
683 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
687 if (filp
->f_mode
& FMODE_WRITE
) {
688 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
690 * Most Unices do not set POLLERR for FIFOs but on Linux they
691 * behave exactly like pipes for poll().
701 pipe_release(struct inode
*inode
, int decr
, int decw
)
703 struct pipe_inode_info
*pipe
;
705 mutex_lock(&inode
->i_mutex
);
706 pipe
= inode
->i_pipe
;
707 pipe
->readers
-= decr
;
708 pipe
->writers
-= decw
;
710 if (!pipe
->readers
&& !pipe
->writers
) {
711 free_pipe_info(inode
);
713 wake_up_interruptible_sync(&pipe
->wait
);
714 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
715 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
717 mutex_unlock(&inode
->i_mutex
);
723 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
725 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
728 mutex_lock(&inode
->i_mutex
);
729 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
730 mutex_unlock(&inode
->i_mutex
);
737 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
739 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
742 mutex_lock(&inode
->i_mutex
);
743 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
744 mutex_unlock(&inode
->i_mutex
);
751 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
753 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
754 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
757 mutex_lock(&inode
->i_mutex
);
758 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
760 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
761 if (retval
< 0) /* this can happen only if on == T */
762 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
764 mutex_unlock(&inode
->i_mutex
);
770 pipe_read_release(struct inode
*inode
, struct file
*filp
)
772 return pipe_release(inode
, 1, 0);
776 pipe_write_release(struct inode
*inode
, struct file
*filp
)
778 return pipe_release(inode
, 0, 1);
782 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
786 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
787 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
788 return pipe_release(inode
, decr
, decw
);
792 pipe_read_open(struct inode
*inode
, struct file
*filp
)
796 mutex_lock(&inode
->i_mutex
);
800 inode
->i_pipe
->readers
++;
803 mutex_unlock(&inode
->i_mutex
);
809 pipe_write_open(struct inode
*inode
, struct file
*filp
)
813 mutex_lock(&inode
->i_mutex
);
817 inode
->i_pipe
->writers
++;
820 mutex_unlock(&inode
->i_mutex
);
826 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
830 mutex_lock(&inode
->i_mutex
);
834 if (filp
->f_mode
& FMODE_READ
)
835 inode
->i_pipe
->readers
++;
836 if (filp
->f_mode
& FMODE_WRITE
)
837 inode
->i_pipe
->writers
++;
840 mutex_unlock(&inode
->i_mutex
);
846 * The file_operations structs are not static because they
847 * are also used in linux/fs/fifo.c to do operations on FIFOs.
849 * Pipes reuse fifos' file_operations structs.
851 const struct file_operations read_pipefifo_fops
= {
853 .read
= do_sync_read
,
854 .aio_read
= pipe_read
,
857 .unlocked_ioctl
= pipe_ioctl
,
858 .open
= pipe_read_open
,
859 .release
= pipe_read_release
,
860 .fasync
= pipe_read_fasync
,
863 const struct file_operations write_pipefifo_fops
= {
866 .write
= do_sync_write
,
867 .aio_write
= pipe_write
,
869 .unlocked_ioctl
= pipe_ioctl
,
870 .open
= pipe_write_open
,
871 .release
= pipe_write_release
,
872 .fasync
= pipe_write_fasync
,
875 const struct file_operations rdwr_pipefifo_fops
= {
877 .read
= do_sync_read
,
878 .aio_read
= pipe_read
,
879 .write
= do_sync_write
,
880 .aio_write
= pipe_write
,
882 .unlocked_ioctl
= pipe_ioctl
,
883 .open
= pipe_rdwr_open
,
884 .release
= pipe_rdwr_release
,
885 .fasync
= pipe_rdwr_fasync
,
888 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
890 struct pipe_inode_info
*pipe
;
892 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
894 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * PIPE_DEF_BUFFERS
, GFP_KERNEL
);
896 init_waitqueue_head(&pipe
->wait
);
897 pipe
->r_counter
= pipe
->w_counter
= 1;
899 pipe
->buffers
= PIPE_DEF_BUFFERS
;
908 void __free_pipe_info(struct pipe_inode_info
*pipe
)
912 for (i
= 0; i
< pipe
->buffers
; i
++) {
913 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
915 buf
->ops
->release(pipe
, buf
);
918 __free_page(pipe
->tmp_page
);
923 void free_pipe_info(struct inode
*inode
)
925 __free_pipe_info(inode
->i_pipe
);
926 inode
->i_pipe
= NULL
;
929 static struct vfsmount
*pipe_mnt __read_mostly
;
932 * pipefs_dname() is called from d_path().
934 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
936 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
937 dentry
->d_inode
->i_ino
);
940 static const struct dentry_operations pipefs_dentry_operations
= {
941 .d_dname
= pipefs_dname
,
944 static struct inode
* get_pipe_inode(void)
946 struct inode
*inode
= new_inode(pipe_mnt
->mnt_sb
);
947 struct pipe_inode_info
*pipe
;
952 pipe
= alloc_pipe_info(inode
);
955 inode
->i_pipe
= pipe
;
957 pipe
->readers
= pipe
->writers
= 1;
958 inode
->i_fop
= &rdwr_pipefifo_fops
;
961 * Mark the inode dirty from the very beginning,
962 * that way it will never be moved to the dirty
963 * list because "mark_inode_dirty()" will think
964 * that it already _is_ on the dirty list.
966 inode
->i_state
= I_DIRTY
;
967 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
968 inode
->i_uid
= current_fsuid();
969 inode
->i_gid
= current_fsgid();
970 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
981 struct file
*create_write_pipe(int flags
)
987 struct qstr name
= { .name
= "" };
990 inode
= get_pipe_inode();
995 path
.dentry
= d_alloc(pipe_mnt
->mnt_sb
->s_root
, &name
);
998 path
.mnt
= mntget(pipe_mnt
);
1000 path
.dentry
->d_op
= &pipefs_dentry_operations
;
1001 d_instantiate(path
.dentry
, inode
);
1004 f
= alloc_file(&path
, FMODE_WRITE
, &write_pipefifo_fops
);
1007 f
->f_mapping
= inode
->i_mapping
;
1009 f
->f_flags
= O_WRONLY
| (flags
& O_NONBLOCK
);
1015 free_pipe_info(inode
);
1017 return ERR_PTR(err
);
1020 free_pipe_info(inode
);
1023 return ERR_PTR(err
);
1026 void free_write_pipe(struct file
*f
)
1028 free_pipe_info(f
->f_dentry
->d_inode
);
1029 path_put(&f
->f_path
);
1033 struct file
*create_read_pipe(struct file
*wrf
, int flags
)
1035 /* Grab pipe from the writer */
1036 struct file
*f
= alloc_file(&wrf
->f_path
, FMODE_READ
,
1037 &read_pipefifo_fops
);
1039 return ERR_PTR(-ENFILE
);
1041 path_get(&wrf
->f_path
);
1042 f
->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
1047 int do_pipe_flags(int *fd
, int flags
)
1049 struct file
*fw
, *fr
;
1053 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
))
1056 fw
= create_write_pipe(flags
);
1059 fr
= create_read_pipe(fw
, flags
);
1060 error
= PTR_ERR(fr
);
1062 goto err_write_pipe
;
1064 error
= get_unused_fd_flags(flags
);
1069 error
= get_unused_fd_flags(flags
);
1074 audit_fd_pair(fdr
, fdw
);
1075 fd_install(fdr
, fr
);
1076 fd_install(fdw
, fw
);
1085 path_put(&fr
->f_path
);
1088 free_write_pipe(fw
);
1093 * sys_pipe() is the normal C calling standard for creating
1094 * a pipe. It's not the way Unix traditionally does this, though.
1096 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1101 error
= do_pipe_flags(fd
, flags
);
1103 if (copy_to_user(fildes
, fd
, sizeof(fd
))) {
1112 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1114 return sys_pipe2(fildes
, 0);
1118 * Allocate a new array of pipe buffers and copy the info over. Returns the
1119 * pipe size if successful, or return -ERROR on error.
1121 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1123 struct pipe_buffer
*bufs
;
1126 * Must be a power-of-2 currently
1128 if (!is_power_of_2(arg
))
1132 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1133 * expect a lot of shrink+grow operations, just free and allocate
1134 * again like we would do for growing. If the pipe currently
1135 * contains more buffers than arg, then return busy.
1137 if (arg
< pipe
->nrbufs
)
1140 bufs
= kcalloc(arg
, sizeof(struct pipe_buffer
), GFP_KERNEL
);
1141 if (unlikely(!bufs
))
1145 * The pipe array wraps around, so just start the new one at zero
1146 * and adjust the indexes.
1149 const unsigned int tail
= pipe
->nrbufs
& (pipe
->buffers
- 1);
1150 const unsigned int head
= pipe
->nrbufs
- tail
;
1153 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1155 memcpy(bufs
+ head
, pipe
->bufs
+ pipe
->curbuf
, tail
* sizeof(struct pipe_buffer
));
1161 pipe
->buffers
= arg
;
1165 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1167 struct pipe_inode_info
*pipe
;
1170 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1174 mutex_lock(&pipe
->inode
->i_mutex
);
1178 if (!capable(CAP_SYS_ADMIN
) && arg
> pipe_max_pages
) {
1183 * The pipe needs to be at least 2 pages large to
1184 * guarantee POSIX behaviour.
1190 ret
= pipe_set_size(pipe
, arg
);
1193 ret
= pipe
->buffers
;
1201 mutex_unlock(&pipe
->inode
->i_mutex
);
1206 * pipefs should _never_ be mounted by userland - too much of security hassle,
1207 * no real gain from having the whole whorehouse mounted. So we don't need
1208 * any operations on the root directory. However, we need a non-trivial
1209 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1211 static int pipefs_get_sb(struct file_system_type
*fs_type
,
1212 int flags
, const char *dev_name
, void *data
,
1213 struct vfsmount
*mnt
)
1215 return get_sb_pseudo(fs_type
, "pipe:", NULL
, PIPEFS_MAGIC
, mnt
);
1218 static struct file_system_type pipe_fs_type
= {
1220 .get_sb
= pipefs_get_sb
,
1221 .kill_sb
= kill_anon_super
,
1224 static int __init
init_pipe_fs(void)
1226 int err
= register_filesystem(&pipe_fs_type
);
1229 pipe_mnt
= kern_mount(&pipe_fs_type
);
1230 if (IS_ERR(pipe_mnt
)) {
1231 err
= PTR_ERR(pipe_mnt
);
1232 unregister_filesystem(&pipe_fs_type
);
1238 static void __exit
exit_pipe_fs(void)
1240 unregister_filesystem(&pipe_fs_type
);
1244 fs_initcall(init_pipe_fs
);
1245 module_exit(exit_pipe_fs
);