2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
39 #include <asm/virtext.h>
43 #include <asm/perf_event.h>
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
54 static bool __read_mostly enable_vpid
= 1;
55 module_param_named(vpid
, enable_vpid
, bool, 0444);
57 static bool __read_mostly flexpriority_enabled
= 1;
58 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
60 static bool __read_mostly enable_ept
= 1;
61 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
63 static bool __read_mostly enable_unrestricted_guest
= 1;
64 module_param_named(unrestricted_guest
,
65 enable_unrestricted_guest
, bool, S_IRUGO
);
67 static bool __read_mostly emulate_invalid_guest_state
= 0;
68 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
70 static bool __read_mostly vmm_exclusive
= 1;
71 module_param(vmm_exclusive
, bool, S_IRUGO
);
73 static bool __read_mostly yield_on_hlt
= 1;
74 module_param(yield_on_hlt
, bool, S_IRUGO
);
76 static bool __read_mostly fasteoi
= 1;
77 module_param(fasteoi
, bool, S_IRUGO
);
80 * If nested=1, nested virtualization is supported, i.e., guests may use
81 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
82 * use VMX instructions.
84 static bool __read_mostly nested
= 0;
85 module_param(nested
, bool, S_IRUGO
);
87 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
88 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
89 #define KVM_GUEST_CR0_MASK \
90 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
91 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
92 (X86_CR0_WP | X86_CR0_NE)
93 #define KVM_VM_CR0_ALWAYS_ON \
94 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95 #define KVM_CR4_GUEST_OWNED_BITS \
96 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
99 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
100 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
102 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
105 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
106 * ple_gap: upper bound on the amount of time between two successive
107 * executions of PAUSE in a loop. Also indicate if ple enabled.
108 * According to test, this time is usually smaller than 128 cycles.
109 * ple_window: upper bound on the amount of time a guest is allowed to execute
110 * in a PAUSE loop. Tests indicate that most spinlocks are held for
111 * less than 2^12 cycles
112 * Time is measured based on a counter that runs at the same rate as the TSC,
113 * refer SDM volume 3b section 21.6.13 & 22.1.3.
115 #define KVM_VMX_DEFAULT_PLE_GAP 128
116 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
117 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
118 module_param(ple_gap
, int, S_IRUGO
);
120 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
121 module_param(ple_window
, int, S_IRUGO
);
123 #define NR_AUTOLOAD_MSRS 8
124 #define VMCS02_POOL_SIZE 1
133 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
134 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
135 * loaded on this CPU (so we can clear them if the CPU goes down).
141 struct list_head loaded_vmcss_on_cpu_link
;
144 struct shared_msr_entry
{
151 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
152 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
153 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
154 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
155 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
156 * More than one of these structures may exist, if L1 runs multiple L2 guests.
157 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
158 * underlying hardware which will be used to run L2.
159 * This structure is packed to ensure that its layout is identical across
160 * machines (necessary for live migration).
161 * If there are changes in this struct, VMCS12_REVISION must be changed.
163 typedef u64 natural_width
;
164 struct __packed vmcs12
{
165 /* According to the Intel spec, a VMCS region must start with the
166 * following two fields. Then follow implementation-specific data.
171 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
172 u32 padding
[7]; /* room for future expansion */
177 u64 vm_exit_msr_store_addr
;
178 u64 vm_exit_msr_load_addr
;
179 u64 vm_entry_msr_load_addr
;
181 u64 virtual_apic_page_addr
;
182 u64 apic_access_addr
;
184 u64 guest_physical_address
;
185 u64 vmcs_link_pointer
;
186 u64 guest_ia32_debugctl
;
189 u64 guest_ia32_perf_global_ctrl
;
196 u64 host_ia32_perf_global_ctrl
;
197 u64 padding64
[8]; /* room for future expansion */
199 * To allow migration of L1 (complete with its L2 guests) between
200 * machines of different natural widths (32 or 64 bit), we cannot have
201 * unsigned long fields with no explict size. We use u64 (aliased
202 * natural_width) instead. Luckily, x86 is little-endian.
204 natural_width cr0_guest_host_mask
;
205 natural_width cr4_guest_host_mask
;
206 natural_width cr0_read_shadow
;
207 natural_width cr4_read_shadow
;
208 natural_width cr3_target_value0
;
209 natural_width cr3_target_value1
;
210 natural_width cr3_target_value2
;
211 natural_width cr3_target_value3
;
212 natural_width exit_qualification
;
213 natural_width guest_linear_address
;
214 natural_width guest_cr0
;
215 natural_width guest_cr3
;
216 natural_width guest_cr4
;
217 natural_width guest_es_base
;
218 natural_width guest_cs_base
;
219 natural_width guest_ss_base
;
220 natural_width guest_ds_base
;
221 natural_width guest_fs_base
;
222 natural_width guest_gs_base
;
223 natural_width guest_ldtr_base
;
224 natural_width guest_tr_base
;
225 natural_width guest_gdtr_base
;
226 natural_width guest_idtr_base
;
227 natural_width guest_dr7
;
228 natural_width guest_rsp
;
229 natural_width guest_rip
;
230 natural_width guest_rflags
;
231 natural_width guest_pending_dbg_exceptions
;
232 natural_width guest_sysenter_esp
;
233 natural_width guest_sysenter_eip
;
234 natural_width host_cr0
;
235 natural_width host_cr3
;
236 natural_width host_cr4
;
237 natural_width host_fs_base
;
238 natural_width host_gs_base
;
239 natural_width host_tr_base
;
240 natural_width host_gdtr_base
;
241 natural_width host_idtr_base
;
242 natural_width host_ia32_sysenter_esp
;
243 natural_width host_ia32_sysenter_eip
;
244 natural_width host_rsp
;
245 natural_width host_rip
;
246 natural_width paddingl
[8]; /* room for future expansion */
247 u32 pin_based_vm_exec_control
;
248 u32 cpu_based_vm_exec_control
;
249 u32 exception_bitmap
;
250 u32 page_fault_error_code_mask
;
251 u32 page_fault_error_code_match
;
252 u32 cr3_target_count
;
253 u32 vm_exit_controls
;
254 u32 vm_exit_msr_store_count
;
255 u32 vm_exit_msr_load_count
;
256 u32 vm_entry_controls
;
257 u32 vm_entry_msr_load_count
;
258 u32 vm_entry_intr_info_field
;
259 u32 vm_entry_exception_error_code
;
260 u32 vm_entry_instruction_len
;
262 u32 secondary_vm_exec_control
;
263 u32 vm_instruction_error
;
265 u32 vm_exit_intr_info
;
266 u32 vm_exit_intr_error_code
;
267 u32 idt_vectoring_info_field
;
268 u32 idt_vectoring_error_code
;
269 u32 vm_exit_instruction_len
;
270 u32 vmx_instruction_info
;
277 u32 guest_ldtr_limit
;
279 u32 guest_gdtr_limit
;
280 u32 guest_idtr_limit
;
281 u32 guest_es_ar_bytes
;
282 u32 guest_cs_ar_bytes
;
283 u32 guest_ss_ar_bytes
;
284 u32 guest_ds_ar_bytes
;
285 u32 guest_fs_ar_bytes
;
286 u32 guest_gs_ar_bytes
;
287 u32 guest_ldtr_ar_bytes
;
288 u32 guest_tr_ar_bytes
;
289 u32 guest_interruptibility_info
;
290 u32 guest_activity_state
;
291 u32 guest_sysenter_cs
;
292 u32 host_ia32_sysenter_cs
;
293 u32 padding32
[8]; /* room for future expansion */
294 u16 virtual_processor_id
;
295 u16 guest_es_selector
;
296 u16 guest_cs_selector
;
297 u16 guest_ss_selector
;
298 u16 guest_ds_selector
;
299 u16 guest_fs_selector
;
300 u16 guest_gs_selector
;
301 u16 guest_ldtr_selector
;
302 u16 guest_tr_selector
;
303 u16 host_es_selector
;
304 u16 host_cs_selector
;
305 u16 host_ss_selector
;
306 u16 host_ds_selector
;
307 u16 host_fs_selector
;
308 u16 host_gs_selector
;
309 u16 host_tr_selector
;
313 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
314 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
315 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
317 #define VMCS12_REVISION 0x11e57ed0
320 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
321 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
322 * current implementation, 4K are reserved to avoid future complications.
324 #define VMCS12_SIZE 0x1000
326 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
328 struct list_head list
;
330 struct loaded_vmcs vmcs02
;
334 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
335 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
338 /* Has the level1 guest done vmxon? */
341 /* The guest-physical address of the current VMCS L1 keeps for L2 */
343 /* The host-usable pointer to the above */
344 struct page
*current_vmcs12_page
;
345 struct vmcs12
*current_vmcs12
;
347 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
348 struct list_head vmcs02_pool
;
350 u64 vmcs01_tsc_offset
;
351 /* L2 must run next, and mustn't decide to exit to L1. */
352 bool nested_run_pending
;
354 * Guest pages referred to in vmcs02 with host-physical pointers, so
355 * we must keep them pinned while L2 runs.
357 struct page
*apic_access_page
;
361 struct kvm_vcpu vcpu
;
362 unsigned long host_rsp
;
365 bool nmi_known_unmasked
;
367 u32 idt_vectoring_info
;
369 struct shared_msr_entry
*guest_msrs
;
373 u64 msr_host_kernel_gs_base
;
374 u64 msr_guest_kernel_gs_base
;
377 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
378 * non-nested (L1) guest, it always points to vmcs01. For a nested
379 * guest (L2), it points to a different VMCS.
381 struct loaded_vmcs vmcs01
;
382 struct loaded_vmcs
*loaded_vmcs
;
383 bool __launched
; /* temporary, used in vmx_vcpu_run */
384 struct msr_autoload
{
386 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
387 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
391 u16 fs_sel
, gs_sel
, ldt_sel
;
392 int gs_ldt_reload_needed
;
393 int fs_reload_needed
;
398 struct kvm_save_segment
{
403 } tr
, es
, ds
, fs
, gs
;
406 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
407 struct kvm_save_segment seg
[8];
410 bool emulation_required
;
412 /* Support for vnmi-less CPUs */
413 int soft_vnmi_blocked
;
415 s64 vnmi_blocked_time
;
420 /* Support for a guest hypervisor (nested VMX) */
421 struct nested_vmx nested
;
424 enum segment_cache_field
{
433 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
435 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
438 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
439 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
440 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
441 [number##_HIGH] = VMCS12_OFFSET(name)+4
443 static unsigned short vmcs_field_to_offset_table
[] = {
444 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
445 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
446 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
447 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
448 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
449 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
450 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
451 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
452 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
453 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
454 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
455 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
456 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
457 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
458 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
459 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
460 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
461 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
462 FIELD64(MSR_BITMAP
, msr_bitmap
),
463 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
464 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
465 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
466 FIELD64(TSC_OFFSET
, tsc_offset
),
467 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
468 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
469 FIELD64(EPT_POINTER
, ept_pointer
),
470 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
471 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
472 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
473 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
474 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
475 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
476 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
477 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
478 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
479 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
480 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
481 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
482 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
483 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
484 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
485 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
486 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
487 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
488 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
489 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
490 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
491 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
492 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
493 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
494 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
495 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
496 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
497 FIELD(TPR_THRESHOLD
, tpr_threshold
),
498 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
499 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
500 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
501 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
502 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
503 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
504 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
505 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
506 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
507 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
508 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
509 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
510 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
511 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
512 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
513 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
514 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
515 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
516 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
517 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
518 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
519 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
520 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
521 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
522 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
523 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
524 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
525 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
526 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
527 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
528 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
529 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
530 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
531 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
532 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
533 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
534 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
535 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
536 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
537 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
538 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
539 FIELD(GUEST_CR0
, guest_cr0
),
540 FIELD(GUEST_CR3
, guest_cr3
),
541 FIELD(GUEST_CR4
, guest_cr4
),
542 FIELD(GUEST_ES_BASE
, guest_es_base
),
543 FIELD(GUEST_CS_BASE
, guest_cs_base
),
544 FIELD(GUEST_SS_BASE
, guest_ss_base
),
545 FIELD(GUEST_DS_BASE
, guest_ds_base
),
546 FIELD(GUEST_FS_BASE
, guest_fs_base
),
547 FIELD(GUEST_GS_BASE
, guest_gs_base
),
548 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
549 FIELD(GUEST_TR_BASE
, guest_tr_base
),
550 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
551 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
552 FIELD(GUEST_DR7
, guest_dr7
),
553 FIELD(GUEST_RSP
, guest_rsp
),
554 FIELD(GUEST_RIP
, guest_rip
),
555 FIELD(GUEST_RFLAGS
, guest_rflags
),
556 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
557 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
558 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
559 FIELD(HOST_CR0
, host_cr0
),
560 FIELD(HOST_CR3
, host_cr3
),
561 FIELD(HOST_CR4
, host_cr4
),
562 FIELD(HOST_FS_BASE
, host_fs_base
),
563 FIELD(HOST_GS_BASE
, host_gs_base
),
564 FIELD(HOST_TR_BASE
, host_tr_base
),
565 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
566 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
567 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
568 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
569 FIELD(HOST_RSP
, host_rsp
),
570 FIELD(HOST_RIP
, host_rip
),
572 static const int max_vmcs_field
= ARRAY_SIZE(vmcs_field_to_offset_table
);
574 static inline short vmcs_field_to_offset(unsigned long field
)
576 if (field
>= max_vmcs_field
|| vmcs_field_to_offset_table
[field
] == 0)
578 return vmcs_field_to_offset_table
[field
];
581 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
583 return to_vmx(vcpu
)->nested
.current_vmcs12
;
586 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
588 struct page
*page
= gfn_to_page(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
589 if (is_error_page(page
)) {
590 kvm_release_page_clean(page
);
596 static void nested_release_page(struct page
*page
)
598 kvm_release_page_dirty(page
);
601 static void nested_release_page_clean(struct page
*page
)
603 kvm_release_page_clean(page
);
606 static u64
construct_eptp(unsigned long root_hpa
);
607 static void kvm_cpu_vmxon(u64 addr
);
608 static void kvm_cpu_vmxoff(void);
609 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
);
610 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
612 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
613 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
615 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
616 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
618 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
619 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
621 static unsigned long *vmx_io_bitmap_a
;
622 static unsigned long *vmx_io_bitmap_b
;
623 static unsigned long *vmx_msr_bitmap_legacy
;
624 static unsigned long *vmx_msr_bitmap_longmode
;
626 static bool cpu_has_load_ia32_efer
;
627 static bool cpu_has_load_perf_global_ctrl
;
629 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
630 static DEFINE_SPINLOCK(vmx_vpid_lock
);
632 static struct vmcs_config
{
636 u32 pin_based_exec_ctrl
;
637 u32 cpu_based_exec_ctrl
;
638 u32 cpu_based_2nd_exec_ctrl
;
643 static struct vmx_capability
{
648 #define VMX_SEGMENT_FIELD(seg) \
649 [VCPU_SREG_##seg] = { \
650 .selector = GUEST_##seg##_SELECTOR, \
651 .base = GUEST_##seg##_BASE, \
652 .limit = GUEST_##seg##_LIMIT, \
653 .ar_bytes = GUEST_##seg##_AR_BYTES, \
656 static struct kvm_vmx_segment_field
{
661 } kvm_vmx_segment_fields
[] = {
662 VMX_SEGMENT_FIELD(CS
),
663 VMX_SEGMENT_FIELD(DS
),
664 VMX_SEGMENT_FIELD(ES
),
665 VMX_SEGMENT_FIELD(FS
),
666 VMX_SEGMENT_FIELD(GS
),
667 VMX_SEGMENT_FIELD(SS
),
668 VMX_SEGMENT_FIELD(TR
),
669 VMX_SEGMENT_FIELD(LDTR
),
672 static u64 host_efer
;
674 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
677 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
678 * away by decrementing the array size.
680 static const u32 vmx_msr_index
[] = {
682 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
684 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
686 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
688 static inline bool is_page_fault(u32 intr_info
)
690 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
691 INTR_INFO_VALID_MASK
)) ==
692 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
695 static inline bool is_no_device(u32 intr_info
)
697 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
698 INTR_INFO_VALID_MASK
)) ==
699 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
702 static inline bool is_invalid_opcode(u32 intr_info
)
704 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
705 INTR_INFO_VALID_MASK
)) ==
706 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
709 static inline bool is_external_interrupt(u32 intr_info
)
711 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
712 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
715 static inline bool is_machine_check(u32 intr_info
)
717 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
718 INTR_INFO_VALID_MASK
)) ==
719 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
722 static inline bool cpu_has_vmx_msr_bitmap(void)
724 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
727 static inline bool cpu_has_vmx_tpr_shadow(void)
729 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
732 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
734 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
737 static inline bool cpu_has_secondary_exec_ctrls(void)
739 return vmcs_config
.cpu_based_exec_ctrl
&
740 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
743 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
745 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
746 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
749 static inline bool cpu_has_vmx_flexpriority(void)
751 return cpu_has_vmx_tpr_shadow() &&
752 cpu_has_vmx_virtualize_apic_accesses();
755 static inline bool cpu_has_vmx_ept_execute_only(void)
757 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
760 static inline bool cpu_has_vmx_eptp_uncacheable(void)
762 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
765 static inline bool cpu_has_vmx_eptp_writeback(void)
767 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
770 static inline bool cpu_has_vmx_ept_2m_page(void)
772 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
775 static inline bool cpu_has_vmx_ept_1g_page(void)
777 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
780 static inline bool cpu_has_vmx_ept_4levels(void)
782 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
785 static inline bool cpu_has_vmx_invept_individual_addr(void)
787 return vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
;
790 static inline bool cpu_has_vmx_invept_context(void)
792 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
795 static inline bool cpu_has_vmx_invept_global(void)
797 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
800 static inline bool cpu_has_vmx_invvpid_single(void)
802 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
805 static inline bool cpu_has_vmx_invvpid_global(void)
807 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
810 static inline bool cpu_has_vmx_ept(void)
812 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
813 SECONDARY_EXEC_ENABLE_EPT
;
816 static inline bool cpu_has_vmx_unrestricted_guest(void)
818 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
819 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
822 static inline bool cpu_has_vmx_ple(void)
824 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
825 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
828 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
830 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
833 static inline bool cpu_has_vmx_vpid(void)
835 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
836 SECONDARY_EXEC_ENABLE_VPID
;
839 static inline bool cpu_has_vmx_rdtscp(void)
841 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
842 SECONDARY_EXEC_RDTSCP
;
845 static inline bool cpu_has_virtual_nmis(void)
847 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
850 static inline bool cpu_has_vmx_wbinvd_exit(void)
852 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
853 SECONDARY_EXEC_WBINVD_EXITING
;
856 static inline bool report_flexpriority(void)
858 return flexpriority_enabled
;
861 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
863 return vmcs12
->cpu_based_vm_exec_control
& bit
;
866 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
868 return (vmcs12
->cpu_based_vm_exec_control
&
869 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
870 (vmcs12
->secondary_vm_exec_control
& bit
);
873 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
,
874 struct kvm_vcpu
*vcpu
)
876 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
879 static inline bool is_exception(u32 intr_info
)
881 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
882 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
885 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
);
886 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
887 struct vmcs12
*vmcs12
,
888 u32 reason
, unsigned long qualification
);
890 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
894 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
895 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
900 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
906 } operand
= { vpid
, 0, gva
};
908 asm volatile (__ex(ASM_VMX_INVVPID
)
909 /* CF==1 or ZF==1 --> rc = -1 */
911 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
914 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
918 } operand
= {eptp
, gpa
};
920 asm volatile (__ex(ASM_VMX_INVEPT
)
921 /* CF==1 or ZF==1 --> rc = -1 */
922 "; ja 1f ; ud2 ; 1:\n"
923 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
926 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
930 i
= __find_msr_index(vmx
, msr
);
932 return &vmx
->guest_msrs
[i
];
936 static void vmcs_clear(struct vmcs
*vmcs
)
938 u64 phys_addr
= __pa(vmcs
);
941 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
942 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
945 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
949 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
951 vmcs_clear(loaded_vmcs
->vmcs
);
952 loaded_vmcs
->cpu
= -1;
953 loaded_vmcs
->launched
= 0;
956 static void vmcs_load(struct vmcs
*vmcs
)
958 u64 phys_addr
= __pa(vmcs
);
961 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
962 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
965 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
969 static void __loaded_vmcs_clear(void *arg
)
971 struct loaded_vmcs
*loaded_vmcs
= arg
;
972 int cpu
= raw_smp_processor_id();
974 if (loaded_vmcs
->cpu
!= cpu
)
975 return; /* vcpu migration can race with cpu offline */
976 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
977 per_cpu(current_vmcs
, cpu
) = NULL
;
978 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
979 loaded_vmcs_init(loaded_vmcs
);
982 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
984 if (loaded_vmcs
->cpu
!= -1)
985 smp_call_function_single(
986 loaded_vmcs
->cpu
, __loaded_vmcs_clear
, loaded_vmcs
, 1);
989 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
994 if (cpu_has_vmx_invvpid_single())
995 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
998 static inline void vpid_sync_vcpu_global(void)
1000 if (cpu_has_vmx_invvpid_global())
1001 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1004 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
1006 if (cpu_has_vmx_invvpid_single())
1007 vpid_sync_vcpu_single(vmx
);
1009 vpid_sync_vcpu_global();
1012 static inline void ept_sync_global(void)
1014 if (cpu_has_vmx_invept_global())
1015 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1018 static inline void ept_sync_context(u64 eptp
)
1021 if (cpu_has_vmx_invept_context())
1022 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1028 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
1031 if (cpu_has_vmx_invept_individual_addr())
1032 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
1035 ept_sync_context(eptp
);
1039 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1041 unsigned long value
;
1043 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1044 : "=a"(value
) : "d"(field
) : "cc");
1048 static __always_inline u16
vmcs_read16(unsigned long field
)
1050 return vmcs_readl(field
);
1053 static __always_inline u32
vmcs_read32(unsigned long field
)
1055 return vmcs_readl(field
);
1058 static __always_inline u64
vmcs_read64(unsigned long field
)
1060 #ifdef CONFIG_X86_64
1061 return vmcs_readl(field
);
1063 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1067 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1069 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1070 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1074 static void vmcs_writel(unsigned long field
, unsigned long value
)
1078 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1079 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1080 if (unlikely(error
))
1081 vmwrite_error(field
, value
);
1084 static void vmcs_write16(unsigned long field
, u16 value
)
1086 vmcs_writel(field
, value
);
1089 static void vmcs_write32(unsigned long field
, u32 value
)
1091 vmcs_writel(field
, value
);
1094 static void vmcs_write64(unsigned long field
, u64 value
)
1096 vmcs_writel(field
, value
);
1097 #ifndef CONFIG_X86_64
1099 vmcs_writel(field
+1, value
>> 32);
1103 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1105 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1108 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1110 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1113 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1115 vmx
->segment_cache
.bitmask
= 0;
1118 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1122 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1124 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1125 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1126 vmx
->segment_cache
.bitmask
= 0;
1128 ret
= vmx
->segment_cache
.bitmask
& mask
;
1129 vmx
->segment_cache
.bitmask
|= mask
;
1133 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1135 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1137 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1138 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1142 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1144 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1146 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1147 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1151 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1153 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1155 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1156 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1160 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1162 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1164 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1165 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1169 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1173 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1174 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
1175 if ((vcpu
->guest_debug
&
1176 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1177 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1178 eb
|= 1u << BP_VECTOR
;
1179 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1182 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1183 if (vcpu
->fpu_active
)
1184 eb
&= ~(1u << NM_VECTOR
);
1186 /* When we are running a nested L2 guest and L1 specified for it a
1187 * certain exception bitmap, we must trap the same exceptions and pass
1188 * them to L1. When running L2, we will only handle the exceptions
1189 * specified above if L1 did not want them.
1191 if (is_guest_mode(vcpu
))
1192 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1194 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1197 static void clear_atomic_switch_msr_special(unsigned long entry
,
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS
, entry
);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS
, exit
);
1204 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1207 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1211 if (cpu_has_load_ia32_efer
) {
1212 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1213 VM_EXIT_LOAD_IA32_EFER
);
1217 case MSR_CORE_PERF_GLOBAL_CTRL
:
1218 if (cpu_has_load_perf_global_ctrl
) {
1219 clear_atomic_switch_msr_special(
1220 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1221 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1227 for (i
= 0; i
< m
->nr
; ++i
)
1228 if (m
->guest
[i
].index
== msr
)
1234 m
->guest
[i
] = m
->guest
[m
->nr
];
1235 m
->host
[i
] = m
->host
[m
->nr
];
1236 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1237 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1240 static void add_atomic_switch_msr_special(unsigned long entry
,
1241 unsigned long exit
, unsigned long guest_val_vmcs
,
1242 unsigned long host_val_vmcs
, u64 guest_val
, u64 host_val
)
1244 vmcs_write64(guest_val_vmcs
, guest_val
);
1245 vmcs_write64(host_val_vmcs
, host_val
);
1246 vmcs_set_bits(VM_ENTRY_CONTROLS
, entry
);
1247 vmcs_set_bits(VM_EXIT_CONTROLS
, exit
);
1250 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1251 u64 guest_val
, u64 host_val
)
1254 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1258 if (cpu_has_load_ia32_efer
) {
1259 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1260 VM_EXIT_LOAD_IA32_EFER
,
1263 guest_val
, host_val
);
1267 case MSR_CORE_PERF_GLOBAL_CTRL
:
1268 if (cpu_has_load_perf_global_ctrl
) {
1269 add_atomic_switch_msr_special(
1270 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1271 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1272 GUEST_IA32_PERF_GLOBAL_CTRL
,
1273 HOST_IA32_PERF_GLOBAL_CTRL
,
1274 guest_val
, host_val
);
1280 for (i
= 0; i
< m
->nr
; ++i
)
1281 if (m
->guest
[i
].index
== msr
)
1284 if (i
== NR_AUTOLOAD_MSRS
) {
1285 printk_once(KERN_WARNING
"Not enough mst switch entries. "
1286 "Can't add msr %x\n", msr
);
1288 } else if (i
== m
->nr
) {
1290 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1291 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1294 m
->guest
[i
].index
= msr
;
1295 m
->guest
[i
].value
= guest_val
;
1296 m
->host
[i
].index
= msr
;
1297 m
->host
[i
].value
= host_val
;
1300 static void reload_tss(void)
1303 * VT restores TR but not its size. Useless.
1305 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1306 struct desc_struct
*descs
;
1308 descs
= (void *)gdt
->address
;
1309 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1313 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1318 guest_efer
= vmx
->vcpu
.arch
.efer
;
1321 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1324 ignore_bits
= EFER_NX
| EFER_SCE
;
1325 #ifdef CONFIG_X86_64
1326 ignore_bits
|= EFER_LMA
| EFER_LME
;
1327 /* SCE is meaningful only in long mode on Intel */
1328 if (guest_efer
& EFER_LMA
)
1329 ignore_bits
&= ~(u64
)EFER_SCE
;
1331 guest_efer
&= ~ignore_bits
;
1332 guest_efer
|= host_efer
& ignore_bits
;
1333 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1334 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1336 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1337 /* On ept, can't emulate nx, and must switch nx atomically */
1338 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
1339 guest_efer
= vmx
->vcpu
.arch
.efer
;
1340 if (!(guest_efer
& EFER_LMA
))
1341 guest_efer
&= ~EFER_LME
;
1342 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
1349 static unsigned long segment_base(u16 selector
)
1351 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1352 struct desc_struct
*d
;
1353 unsigned long table_base
;
1356 if (!(selector
& ~3))
1359 table_base
= gdt
->address
;
1361 if (selector
& 4) { /* from ldt */
1362 u16 ldt_selector
= kvm_read_ldt();
1364 if (!(ldt_selector
& ~3))
1367 table_base
= segment_base(ldt_selector
);
1369 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1370 v
= get_desc_base(d
);
1371 #ifdef CONFIG_X86_64
1372 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1373 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1378 static inline unsigned long kvm_read_tr_base(void)
1381 asm("str %0" : "=g"(tr
));
1382 return segment_base(tr
);
1385 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1387 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1390 if (vmx
->host_state
.loaded
)
1393 vmx
->host_state
.loaded
= 1;
1395 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1396 * allow segment selectors with cpl > 0 or ti == 1.
1398 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1399 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1400 savesegment(fs
, vmx
->host_state
.fs_sel
);
1401 if (!(vmx
->host_state
.fs_sel
& 7)) {
1402 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1403 vmx
->host_state
.fs_reload_needed
= 0;
1405 vmcs_write16(HOST_FS_SELECTOR
, 0);
1406 vmx
->host_state
.fs_reload_needed
= 1;
1408 savesegment(gs
, vmx
->host_state
.gs_sel
);
1409 if (!(vmx
->host_state
.gs_sel
& 7))
1410 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1412 vmcs_write16(HOST_GS_SELECTOR
, 0);
1413 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1416 #ifdef CONFIG_X86_64
1417 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1418 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1420 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1421 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1424 #ifdef CONFIG_X86_64
1425 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1426 if (is_long_mode(&vmx
->vcpu
))
1427 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1429 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1430 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1431 vmx
->guest_msrs
[i
].data
,
1432 vmx
->guest_msrs
[i
].mask
);
1435 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1437 if (!vmx
->host_state
.loaded
)
1440 ++vmx
->vcpu
.stat
.host_state_reload
;
1441 vmx
->host_state
.loaded
= 0;
1442 #ifdef CONFIG_X86_64
1443 if (is_long_mode(&vmx
->vcpu
))
1444 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1446 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1447 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1448 #ifdef CONFIG_X86_64
1449 load_gs_index(vmx
->host_state
.gs_sel
);
1451 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1454 if (vmx
->host_state
.fs_reload_needed
)
1455 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1457 #ifdef CONFIG_X86_64
1458 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1460 if (current_thread_info()->status
& TS_USEDFPU
)
1462 load_gdt(&__get_cpu_var(host_gdt
));
1465 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1468 __vmx_load_host_state(vmx
);
1473 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474 * vcpu mutex is already taken.
1476 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1478 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1479 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1482 kvm_cpu_vmxon(phys_addr
);
1483 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
1484 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1486 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
1487 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1488 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1491 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
1492 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1493 unsigned long sysenter_esp
;
1495 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1496 local_irq_disable();
1497 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1498 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1502 * Linux uses per-cpu TSS and GDT, so set these when switching
1505 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
1506 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
1508 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
1509 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
1510 vmx
->loaded_vmcs
->cpu
= cpu
;
1514 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1516 __vmx_load_host_state(to_vmx(vcpu
));
1517 if (!vmm_exclusive
) {
1518 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
1524 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
1528 if (vcpu
->fpu_active
)
1530 vcpu
->fpu_active
= 1;
1531 cr0
= vmcs_readl(GUEST_CR0
);
1532 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
1533 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
1534 vmcs_writel(GUEST_CR0
, cr0
);
1535 update_exception_bitmap(vcpu
);
1536 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
1537 if (is_guest_mode(vcpu
))
1538 vcpu
->arch
.cr0_guest_owned_bits
&=
1539 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
1540 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1543 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
1546 * Return the cr0 value that a nested guest would read. This is a combination
1547 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1548 * its hypervisor (cr0_read_shadow).
1550 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
1552 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
1553 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
1555 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
1557 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
1558 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
1561 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
1563 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1564 * set this *before* calling this function.
1566 vmx_decache_cr0_guest_bits(vcpu
);
1567 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
1568 update_exception_bitmap(vcpu
);
1569 vcpu
->arch
.cr0_guest_owned_bits
= 0;
1570 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1571 if (is_guest_mode(vcpu
)) {
1573 * L1's specified read shadow might not contain the TS bit,
1574 * so now that we turned on shadowing of this bit, we need to
1575 * set this bit of the shadow. Like in nested_vmx_run we need
1576 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1577 * up-to-date here because we just decached cr0.TS (and we'll
1578 * only update vmcs12->guest_cr0 on nested exit).
1580 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1581 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
1582 (vcpu
->arch
.cr0
& X86_CR0_TS
);
1583 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
1585 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1588 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1590 unsigned long rflags
, save_rflags
;
1592 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
1593 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1594 rflags
= vmcs_readl(GUEST_RFLAGS
);
1595 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1596 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1597 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
1598 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1600 to_vmx(vcpu
)->rflags
= rflags
;
1602 return to_vmx(vcpu
)->rflags
;
1605 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1607 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1608 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
1609 to_vmx(vcpu
)->rflags
= rflags
;
1610 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1611 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
1612 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1614 vmcs_writel(GUEST_RFLAGS
, rflags
);
1617 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1619 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1622 if (interruptibility
& GUEST_INTR_STATE_STI
)
1623 ret
|= KVM_X86_SHADOW_INT_STI
;
1624 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
1625 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1630 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1632 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1633 u32 interruptibility
= interruptibility_old
;
1635 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1637 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1638 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1639 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1640 interruptibility
|= GUEST_INTR_STATE_STI
;
1642 if ((interruptibility
!= interruptibility_old
))
1643 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1646 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1650 rip
= kvm_rip_read(vcpu
);
1651 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1652 kvm_rip_write(vcpu
, rip
);
1654 /* skipping an emulated instruction also counts */
1655 vmx_set_interrupt_shadow(vcpu
, 0);
1658 static void vmx_clear_hlt(struct kvm_vcpu
*vcpu
)
1660 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1661 * explicitly skip the instruction because if the HLT state is set, then
1662 * the instruction is already executing and RIP has already been
1664 if (!yield_on_hlt
&&
1665 vmcs_read32(GUEST_ACTIVITY_STATE
) == GUEST_ACTIVITY_HLT
)
1666 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
1670 * KVM wants to inject page-faults which it got to the guest. This function
1671 * checks whether in a nested guest, we need to inject them to L1 or L2.
1672 * This function assumes it is called with the exit reason in vmcs02 being
1673 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1676 static int nested_pf_handled(struct kvm_vcpu
*vcpu
)
1678 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1680 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1681 if (!(vmcs12
->exception_bitmap
& PF_VECTOR
))
1684 nested_vmx_vmexit(vcpu
);
1688 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
1689 bool has_error_code
, u32 error_code
,
1692 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1693 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
1695 if (nr
== PF_VECTOR
&& is_guest_mode(vcpu
) &&
1696 nested_pf_handled(vcpu
))
1699 if (has_error_code
) {
1700 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
1701 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1704 if (vmx
->rmode
.vm86_active
) {
1706 if (kvm_exception_is_soft(nr
))
1707 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
1708 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
1709 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
1713 if (kvm_exception_is_soft(nr
)) {
1714 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1715 vmx
->vcpu
.arch
.event_exit_inst_len
);
1716 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1718 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1721 vmx_clear_hlt(vcpu
);
1724 static bool vmx_rdtscp_supported(void)
1726 return cpu_has_vmx_rdtscp();
1730 * Swap MSR entry in host/guest MSR entry array.
1732 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
1734 struct shared_msr_entry tmp
;
1736 tmp
= vmx
->guest_msrs
[to
];
1737 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
1738 vmx
->guest_msrs
[from
] = tmp
;
1742 * Set up the vmcs to automatically save and restore system
1743 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1744 * mode, as fiddling with msrs is very expensive.
1746 static void setup_msrs(struct vcpu_vmx
*vmx
)
1748 int save_nmsrs
, index
;
1749 unsigned long *msr_bitmap
;
1752 #ifdef CONFIG_X86_64
1753 if (is_long_mode(&vmx
->vcpu
)) {
1754 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
1756 move_msr_up(vmx
, index
, save_nmsrs
++);
1757 index
= __find_msr_index(vmx
, MSR_LSTAR
);
1759 move_msr_up(vmx
, index
, save_nmsrs
++);
1760 index
= __find_msr_index(vmx
, MSR_CSTAR
);
1762 move_msr_up(vmx
, index
, save_nmsrs
++);
1763 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
1764 if (index
>= 0 && vmx
->rdtscp_enabled
)
1765 move_msr_up(vmx
, index
, save_nmsrs
++);
1767 * MSR_STAR is only needed on long mode guests, and only
1768 * if efer.sce is enabled.
1770 index
= __find_msr_index(vmx
, MSR_STAR
);
1771 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
1772 move_msr_up(vmx
, index
, save_nmsrs
++);
1775 index
= __find_msr_index(vmx
, MSR_EFER
);
1776 if (index
>= 0 && update_transition_efer(vmx
, index
))
1777 move_msr_up(vmx
, index
, save_nmsrs
++);
1779 vmx
->save_nmsrs
= save_nmsrs
;
1781 if (cpu_has_vmx_msr_bitmap()) {
1782 if (is_long_mode(&vmx
->vcpu
))
1783 msr_bitmap
= vmx_msr_bitmap_longmode
;
1785 msr_bitmap
= vmx_msr_bitmap_legacy
;
1787 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
1792 * reads and returns guest's timestamp counter "register"
1793 * guest_tsc = host_tsc + tsc_offset -- 21.3
1795 static u64
guest_read_tsc(void)
1797 u64 host_tsc
, tsc_offset
;
1800 tsc_offset
= vmcs_read64(TSC_OFFSET
);
1801 return host_tsc
+ tsc_offset
;
1805 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1806 * counter, even if a nested guest (L2) is currently running.
1808 u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
)
1810 u64 host_tsc
, tsc_offset
;
1813 tsc_offset
= is_guest_mode(vcpu
) ?
1814 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
1815 vmcs_read64(TSC_OFFSET
);
1816 return host_tsc
+ tsc_offset
;
1820 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1821 * ioctl. In this case the call-back should update internal vmx state to make
1822 * the changes effective.
1824 static void vmx_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1826 /* Nothing to do here */
1830 * writes 'offset' into guest's timestamp counter offset register
1832 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1834 if (is_guest_mode(vcpu
)) {
1836 * We're here if L1 chose not to trap WRMSR to TSC. According
1837 * to the spec, this should set L1's TSC; The offset that L1
1838 * set for L2 remains unchanged, and still needs to be added
1839 * to the newly set TSC to get L2's TSC.
1841 struct vmcs12
*vmcs12
;
1842 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
1843 /* recalculate vmcs02.TSC_OFFSET: */
1844 vmcs12
= get_vmcs12(vcpu
);
1845 vmcs_write64(TSC_OFFSET
, offset
+
1846 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
1847 vmcs12
->tsc_offset
: 0));
1849 vmcs_write64(TSC_OFFSET
, offset
);
1853 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1855 u64 offset
= vmcs_read64(TSC_OFFSET
);
1856 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
1857 if (is_guest_mode(vcpu
)) {
1858 /* Even when running L2, the adjustment needs to apply to L1 */
1859 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
1863 static u64
vmx_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1865 return target_tsc
- native_read_tsc();
1868 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
1870 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
1871 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
1875 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1876 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1877 * all guests if the "nested" module option is off, and can also be disabled
1878 * for a single guest by disabling its VMX cpuid bit.
1880 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
1882 return nested
&& guest_cpuid_has_vmx(vcpu
);
1886 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1887 * returned for the various VMX controls MSRs when nested VMX is enabled.
1888 * The same values should also be used to verify that vmcs12 control fields are
1889 * valid during nested entry from L1 to L2.
1890 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1891 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1892 * bit in the high half is on if the corresponding bit in the control field
1893 * may be on. See also vmx_control_verify().
1894 * TODO: allow these variables to be modified (downgraded) by module options
1897 static u32 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
;
1898 static u32 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
;
1899 static u32 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
;
1900 static u32 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
;
1901 static u32 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
;
1902 static __init
void nested_vmx_setup_ctls_msrs(void)
1905 * Note that as a general rule, the high half of the MSRs (bits in
1906 * the control fields which may be 1) should be initialized by the
1907 * intersection of the underlying hardware's MSR (i.e., features which
1908 * can be supported) and the list of features we want to expose -
1909 * because they are known to be properly supported in our code.
1910 * Also, usually, the low half of the MSRs (bits which must be 1) can
1911 * be set to 0, meaning that L1 may turn off any of these bits. The
1912 * reason is that if one of these bits is necessary, it will appear
1913 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1914 * fields of vmcs01 and vmcs02, will turn these bits off - and
1915 * nested_vmx_exit_handled() will not pass related exits to L1.
1916 * These rules have exceptions below.
1919 /* pin-based controls */
1921 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1922 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1924 nested_vmx_pinbased_ctls_low
= 0x16 ;
1925 nested_vmx_pinbased_ctls_high
= 0x16 |
1926 PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
|
1927 PIN_BASED_VIRTUAL_NMIS
;
1930 nested_vmx_exit_ctls_low
= 0;
1931 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1932 #ifdef CONFIG_X86_64
1933 nested_vmx_exit_ctls_high
= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1935 nested_vmx_exit_ctls_high
= 0;
1938 /* entry controls */
1939 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
1940 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
);
1941 nested_vmx_entry_ctls_low
= 0;
1942 nested_vmx_entry_ctls_high
&=
1943 VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_IA32E_MODE
;
1945 /* cpu-based controls */
1946 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
1947 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
);
1948 nested_vmx_procbased_ctls_low
= 0;
1949 nested_vmx_procbased_ctls_high
&=
1950 CPU_BASED_VIRTUAL_INTR_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
1951 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
1952 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
1953 CPU_BASED_CR3_STORE_EXITING
|
1954 #ifdef CONFIG_X86_64
1955 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
1957 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
1958 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_EXITING
|
1959 CPU_BASED_RDPMC_EXITING
|
1960 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1962 * We can allow some features even when not supported by the
1963 * hardware. For example, L1 can specify an MSR bitmap - and we
1964 * can use it to avoid exits to L1 - even when L0 runs L2
1965 * without MSR bitmaps.
1967 nested_vmx_procbased_ctls_high
|= CPU_BASED_USE_MSR_BITMAPS
;
1969 /* secondary cpu-based controls */
1970 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
1971 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
);
1972 nested_vmx_secondary_ctls_low
= 0;
1973 nested_vmx_secondary_ctls_high
&=
1974 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1977 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
1980 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1982 return ((control
& high
) | low
) == control
;
1985 static inline u64
vmx_control_msr(u32 low
, u32 high
)
1987 return low
| ((u64
)high
<< 32);
1991 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1992 * also let it use VMX-specific MSRs.
1993 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1994 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1995 * like all other MSRs).
1997 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1999 if (!nested_vmx_allowed(vcpu
) && msr_index
>= MSR_IA32_VMX_BASIC
&&
2000 msr_index
<= MSR_IA32_VMX_TRUE_ENTRY_CTLS
) {
2002 * According to the spec, processors which do not support VMX
2003 * should throw a #GP(0) when VMX capability MSRs are read.
2005 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
2009 switch (msr_index
) {
2010 case MSR_IA32_FEATURE_CONTROL
:
2013 case MSR_IA32_VMX_BASIC
:
2015 * This MSR reports some information about VMX support. We
2016 * should return information about the VMX we emulate for the
2017 * guest, and the VMCS structure we give it - not about the
2018 * VMX support of the underlying hardware.
2020 *pdata
= VMCS12_REVISION
|
2021 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2022 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2024 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2025 case MSR_IA32_VMX_PINBASED_CTLS
:
2026 *pdata
= vmx_control_msr(nested_vmx_pinbased_ctls_low
,
2027 nested_vmx_pinbased_ctls_high
);
2029 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2030 case MSR_IA32_VMX_PROCBASED_CTLS
:
2031 *pdata
= vmx_control_msr(nested_vmx_procbased_ctls_low
,
2032 nested_vmx_procbased_ctls_high
);
2034 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2035 case MSR_IA32_VMX_EXIT_CTLS
:
2036 *pdata
= vmx_control_msr(nested_vmx_exit_ctls_low
,
2037 nested_vmx_exit_ctls_high
);
2039 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2040 case MSR_IA32_VMX_ENTRY_CTLS
:
2041 *pdata
= vmx_control_msr(nested_vmx_entry_ctls_low
,
2042 nested_vmx_entry_ctls_high
);
2044 case MSR_IA32_VMX_MISC
:
2048 * These MSRs specify bits which the guest must keep fixed (on or off)
2049 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2050 * We picked the standard core2 setting.
2052 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2053 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2054 case MSR_IA32_VMX_CR0_FIXED0
:
2055 *pdata
= VMXON_CR0_ALWAYSON
;
2057 case MSR_IA32_VMX_CR0_FIXED1
:
2060 case MSR_IA32_VMX_CR4_FIXED0
:
2061 *pdata
= VMXON_CR4_ALWAYSON
;
2063 case MSR_IA32_VMX_CR4_FIXED1
:
2066 case MSR_IA32_VMX_VMCS_ENUM
:
2069 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2070 *pdata
= vmx_control_msr(nested_vmx_secondary_ctls_low
,
2071 nested_vmx_secondary_ctls_high
);
2073 case MSR_IA32_VMX_EPT_VPID_CAP
:
2074 /* Currently, no nested ept or nested vpid */
2084 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
2086 if (!nested_vmx_allowed(vcpu
))
2089 if (msr_index
== MSR_IA32_FEATURE_CONTROL
)
2090 /* TODO: the right thing. */
2093 * No need to treat VMX capability MSRs specially: If we don't handle
2094 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2100 * Reads an msr value (of 'msr_index') into 'pdata'.
2101 * Returns 0 on success, non-0 otherwise.
2102 * Assumes vcpu_load() was already called.
2104 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2107 struct shared_msr_entry
*msr
;
2110 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
2114 switch (msr_index
) {
2115 #ifdef CONFIG_X86_64
2117 data
= vmcs_readl(GUEST_FS_BASE
);
2120 data
= vmcs_readl(GUEST_GS_BASE
);
2122 case MSR_KERNEL_GS_BASE
:
2123 vmx_load_host_state(to_vmx(vcpu
));
2124 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2128 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2130 data
= guest_read_tsc();
2132 case MSR_IA32_SYSENTER_CS
:
2133 data
= vmcs_read32(GUEST_SYSENTER_CS
);
2135 case MSR_IA32_SYSENTER_EIP
:
2136 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2138 case MSR_IA32_SYSENTER_ESP
:
2139 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2142 if (!to_vmx(vcpu
)->rdtscp_enabled
)
2144 /* Otherwise falls through */
2146 if (vmx_get_vmx_msr(vcpu
, msr_index
, pdata
))
2148 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
2153 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2161 * Writes msr value into into the appropriate "register".
2162 * Returns 0 on success, non-0 otherwise.
2163 * Assumes vcpu_load() was already called.
2165 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
2167 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2168 struct shared_msr_entry
*msr
;
2171 switch (msr_index
) {
2173 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
2175 #ifdef CONFIG_X86_64
2177 vmx_segment_cache_clear(vmx
);
2178 vmcs_writel(GUEST_FS_BASE
, data
);
2181 vmx_segment_cache_clear(vmx
);
2182 vmcs_writel(GUEST_GS_BASE
, data
);
2184 case MSR_KERNEL_GS_BASE
:
2185 vmx_load_host_state(vmx
);
2186 vmx
->msr_guest_kernel_gs_base
= data
;
2189 case MSR_IA32_SYSENTER_CS
:
2190 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2192 case MSR_IA32_SYSENTER_EIP
:
2193 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2195 case MSR_IA32_SYSENTER_ESP
:
2196 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2199 kvm_write_tsc(vcpu
, data
);
2201 case MSR_IA32_CR_PAT
:
2202 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2203 vmcs_write64(GUEST_IA32_PAT
, data
);
2204 vcpu
->arch
.pat
= data
;
2207 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
2210 if (!vmx
->rdtscp_enabled
)
2212 /* Check reserved bit, higher 32 bits should be zero */
2213 if ((data
>> 32) != 0)
2215 /* Otherwise falls through */
2217 if (vmx_set_vmx_msr(vcpu
, msr_index
, data
))
2219 msr
= find_msr_entry(vmx
, msr_index
);
2224 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
2230 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2232 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2235 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2238 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2240 case VCPU_EXREG_PDPTR
:
2242 ept_save_pdptrs(vcpu
);
2249 static void set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
2251 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
2252 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
2254 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2256 update_exception_bitmap(vcpu
);
2259 static __init
int cpu_has_kvm_support(void)
2261 return cpu_has_vmx();
2264 static __init
int vmx_disabled_by_bios(void)
2268 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2269 if (msr
& FEATURE_CONTROL_LOCKED
) {
2270 /* launched w/ TXT and VMX disabled */
2271 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2274 /* launched w/o TXT and VMX only enabled w/ TXT */
2275 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2276 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2277 && !tboot_enabled()) {
2278 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2279 "activate TXT before enabling KVM\n");
2282 /* launched w/o TXT and VMX disabled */
2283 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2284 && !tboot_enabled())
2291 static void kvm_cpu_vmxon(u64 addr
)
2293 asm volatile (ASM_VMX_VMXON_RAX
2294 : : "a"(&addr
), "m"(addr
)
2298 static int hardware_enable(void *garbage
)
2300 int cpu
= raw_smp_processor_id();
2301 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2304 if (read_cr4() & X86_CR4_VMXE
)
2307 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
2308 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
2310 test_bits
= FEATURE_CONTROL_LOCKED
;
2311 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
2312 if (tboot_enabled())
2313 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
2315 if ((old
& test_bits
) != test_bits
) {
2316 /* enable and lock */
2317 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
2319 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
2321 if (vmm_exclusive
) {
2322 kvm_cpu_vmxon(phys_addr
);
2326 store_gdt(&__get_cpu_var(host_gdt
));
2331 static void vmclear_local_loaded_vmcss(void)
2333 int cpu
= raw_smp_processor_id();
2334 struct loaded_vmcs
*v
, *n
;
2336 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2337 loaded_vmcss_on_cpu_link
)
2338 __loaded_vmcs_clear(v
);
2342 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2345 static void kvm_cpu_vmxoff(void)
2347 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
2350 static void hardware_disable(void *garbage
)
2352 if (vmm_exclusive
) {
2353 vmclear_local_loaded_vmcss();
2356 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
2359 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
2360 u32 msr
, u32
*result
)
2362 u32 vmx_msr_low
, vmx_msr_high
;
2363 u32 ctl
= ctl_min
| ctl_opt
;
2365 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2367 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2368 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2370 /* Ensure minimum (required) set of control bits are supported. */
2378 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
2380 u32 vmx_msr_low
, vmx_msr_high
;
2382 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2383 return vmx_msr_high
& ctl
;
2386 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
2388 u32 vmx_msr_low
, vmx_msr_high
;
2389 u32 min
, opt
, min2
, opt2
;
2390 u32 _pin_based_exec_control
= 0;
2391 u32 _cpu_based_exec_control
= 0;
2392 u32 _cpu_based_2nd_exec_control
= 0;
2393 u32 _vmexit_control
= 0;
2394 u32 _vmentry_control
= 0;
2396 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
2397 opt
= PIN_BASED_VIRTUAL_NMIS
;
2398 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
2399 &_pin_based_exec_control
) < 0)
2403 #ifdef CONFIG_X86_64
2404 CPU_BASED_CR8_LOAD_EXITING
|
2405 CPU_BASED_CR8_STORE_EXITING
|
2407 CPU_BASED_CR3_LOAD_EXITING
|
2408 CPU_BASED_CR3_STORE_EXITING
|
2409 CPU_BASED_USE_IO_BITMAPS
|
2410 CPU_BASED_MOV_DR_EXITING
|
2411 CPU_BASED_USE_TSC_OFFSETING
|
2412 CPU_BASED_MWAIT_EXITING
|
2413 CPU_BASED_MONITOR_EXITING
|
2414 CPU_BASED_INVLPG_EXITING
|
2415 CPU_BASED_RDPMC_EXITING
;
2418 min
|= CPU_BASED_HLT_EXITING
;
2420 opt
= CPU_BASED_TPR_SHADOW
|
2421 CPU_BASED_USE_MSR_BITMAPS
|
2422 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2423 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
2424 &_cpu_based_exec_control
) < 0)
2426 #ifdef CONFIG_X86_64
2427 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2428 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
2429 ~CPU_BASED_CR8_STORE_EXITING
;
2431 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2433 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2434 SECONDARY_EXEC_WBINVD_EXITING
|
2435 SECONDARY_EXEC_ENABLE_VPID
|
2436 SECONDARY_EXEC_ENABLE_EPT
|
2437 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2438 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
2439 SECONDARY_EXEC_RDTSCP
;
2440 if (adjust_vmx_controls(min2
, opt2
,
2441 MSR_IA32_VMX_PROCBASED_CTLS2
,
2442 &_cpu_based_2nd_exec_control
) < 0)
2445 #ifndef CONFIG_X86_64
2446 if (!(_cpu_based_2nd_exec_control
&
2447 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2448 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2450 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
2451 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2453 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
2454 CPU_BASED_CR3_STORE_EXITING
|
2455 CPU_BASED_INVLPG_EXITING
);
2456 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
2457 vmx_capability
.ept
, vmx_capability
.vpid
);
2461 #ifdef CONFIG_X86_64
2462 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2464 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
2465 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
2466 &_vmexit_control
) < 0)
2470 opt
= VM_ENTRY_LOAD_IA32_PAT
;
2471 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
2472 &_vmentry_control
) < 0)
2475 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
2477 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2478 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
2481 #ifdef CONFIG_X86_64
2482 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2483 if (vmx_msr_high
& (1u<<16))
2487 /* Require Write-Back (WB) memory type for VMCS accesses. */
2488 if (((vmx_msr_high
>> 18) & 15) != 6)
2491 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
2492 vmcs_conf
->order
= get_order(vmcs_config
.size
);
2493 vmcs_conf
->revision_id
= vmx_msr_low
;
2495 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
2496 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
2497 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
2498 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
2499 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
2501 cpu_has_load_ia32_efer
=
2502 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2503 VM_ENTRY_LOAD_IA32_EFER
)
2504 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2505 VM_EXIT_LOAD_IA32_EFER
);
2507 cpu_has_load_perf_global_ctrl
=
2508 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2509 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
2510 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2511 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
2514 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2515 * but due to arrata below it can't be used. Workaround is to use
2516 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2518 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2523 * BC86,AAY89,BD102 (model 44)
2527 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
2528 switch (boot_cpu_data
.x86_model
) {
2534 cpu_has_load_perf_global_ctrl
= false;
2535 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2536 "does not work properly. Using workaround\n");
2546 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
2548 int node
= cpu_to_node(cpu
);
2552 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
2555 vmcs
= page_address(pages
);
2556 memset(vmcs
, 0, vmcs_config
.size
);
2557 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
2561 static struct vmcs
*alloc_vmcs(void)
2563 return alloc_vmcs_cpu(raw_smp_processor_id());
2566 static void free_vmcs(struct vmcs
*vmcs
)
2568 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
2572 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2574 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
2576 if (!loaded_vmcs
->vmcs
)
2578 loaded_vmcs_clear(loaded_vmcs
);
2579 free_vmcs(loaded_vmcs
->vmcs
);
2580 loaded_vmcs
->vmcs
= NULL
;
2583 static void free_kvm_area(void)
2587 for_each_possible_cpu(cpu
) {
2588 free_vmcs(per_cpu(vmxarea
, cpu
));
2589 per_cpu(vmxarea
, cpu
) = NULL
;
2593 static __init
int alloc_kvm_area(void)
2597 for_each_possible_cpu(cpu
) {
2600 vmcs
= alloc_vmcs_cpu(cpu
);
2606 per_cpu(vmxarea
, cpu
) = vmcs
;
2611 static __init
int hardware_setup(void)
2613 if (setup_vmcs_config(&vmcs_config
) < 0)
2616 if (boot_cpu_has(X86_FEATURE_NX
))
2617 kvm_enable_efer_bits(EFER_NX
);
2619 if (!cpu_has_vmx_vpid())
2622 if (!cpu_has_vmx_ept() ||
2623 !cpu_has_vmx_ept_4levels()) {
2625 enable_unrestricted_guest
= 0;
2628 if (!cpu_has_vmx_unrestricted_guest())
2629 enable_unrestricted_guest
= 0;
2631 if (!cpu_has_vmx_flexpriority())
2632 flexpriority_enabled
= 0;
2634 if (!cpu_has_vmx_tpr_shadow())
2635 kvm_x86_ops
->update_cr8_intercept
= NULL
;
2637 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
2638 kvm_disable_largepages();
2640 if (!cpu_has_vmx_ple())
2644 nested_vmx_setup_ctls_msrs();
2646 return alloc_kvm_area();
2649 static __exit
void hardware_unsetup(void)
2654 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
2656 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2658 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
2659 vmcs_write16(sf
->selector
, save
->selector
);
2660 vmcs_writel(sf
->base
, save
->base
);
2661 vmcs_write32(sf
->limit
, save
->limit
);
2662 vmcs_write32(sf
->ar_bytes
, save
->ar
);
2664 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
2666 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
2670 static void enter_pmode(struct kvm_vcpu
*vcpu
)
2672 unsigned long flags
;
2673 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2675 vmx
->emulation_required
= 1;
2676 vmx
->rmode
.vm86_active
= 0;
2678 vmx_segment_cache_clear(vmx
);
2680 vmcs_write16(GUEST_TR_SELECTOR
, vmx
->rmode
.tr
.selector
);
2681 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
2682 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
2683 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
2685 flags
= vmcs_readl(GUEST_RFLAGS
);
2686 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2687 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2688 vmcs_writel(GUEST_RFLAGS
, flags
);
2690 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
2691 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
2693 update_exception_bitmap(vcpu
);
2695 if (emulate_invalid_guest_state
)
2698 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
2699 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
2700 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
2701 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
2703 vmx_segment_cache_clear(vmx
);
2705 vmcs_write16(GUEST_SS_SELECTOR
, 0);
2706 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
2708 vmcs_write16(GUEST_CS_SELECTOR
,
2709 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
2710 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
2713 static gva_t
rmode_tss_base(struct kvm
*kvm
)
2715 if (!kvm
->arch
.tss_addr
) {
2716 struct kvm_memslots
*slots
;
2717 struct kvm_memory_slot
*slot
;
2720 slots
= kvm_memslots(kvm
);
2721 slot
= id_to_memslot(slots
, 0);
2722 base_gfn
= slot
->base_gfn
+ slot
->npages
- 3;
2724 return base_gfn
<< PAGE_SHIFT
;
2726 return kvm
->arch
.tss_addr
;
2729 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
2731 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2733 save
->selector
= vmcs_read16(sf
->selector
);
2734 save
->base
= vmcs_readl(sf
->base
);
2735 save
->limit
= vmcs_read32(sf
->limit
);
2736 save
->ar
= vmcs_read32(sf
->ar_bytes
);
2737 vmcs_write16(sf
->selector
, save
->base
>> 4);
2738 vmcs_write32(sf
->base
, save
->base
& 0xffff0);
2739 vmcs_write32(sf
->limit
, 0xffff);
2740 vmcs_write32(sf
->ar_bytes
, 0xf3);
2741 if (save
->base
& 0xf)
2742 printk_once(KERN_WARNING
"kvm: segment base is not paragraph"
2743 " aligned when entering protected mode (seg=%d)",
2747 static void enter_rmode(struct kvm_vcpu
*vcpu
)
2749 unsigned long flags
;
2750 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2752 if (enable_unrestricted_guest
)
2755 vmx
->emulation_required
= 1;
2756 vmx
->rmode
.vm86_active
= 1;
2759 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2760 * vcpu. Call it here with phys address pointing 16M below 4G.
2762 if (!vcpu
->kvm
->arch
.tss_addr
) {
2763 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
2764 "called before entering vcpu\n");
2765 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
2766 vmx_set_tss_addr(vcpu
->kvm
, 0xfeffd000);
2767 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2770 vmx_segment_cache_clear(vmx
);
2772 vmx
->rmode
.tr
.selector
= vmcs_read16(GUEST_TR_SELECTOR
);
2773 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
2774 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
2776 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
2777 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
2779 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
2780 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2782 flags
= vmcs_readl(GUEST_RFLAGS
);
2783 vmx
->rmode
.save_rflags
= flags
;
2785 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2787 vmcs_writel(GUEST_RFLAGS
, flags
);
2788 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
2789 update_exception_bitmap(vcpu
);
2791 if (emulate_invalid_guest_state
)
2792 goto continue_rmode
;
2794 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
2795 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
2796 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
2798 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
2799 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
2800 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
2801 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
2802 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
2804 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
2805 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
2806 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
2807 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
2810 kvm_mmu_reset_context(vcpu
);
2813 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
2815 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2816 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
2822 * Force kernel_gs_base reloading before EFER changes, as control
2823 * of this msr depends on is_long_mode().
2825 vmx_load_host_state(to_vmx(vcpu
));
2826 vcpu
->arch
.efer
= efer
;
2827 if (efer
& EFER_LMA
) {
2828 vmcs_write32(VM_ENTRY_CONTROLS
,
2829 vmcs_read32(VM_ENTRY_CONTROLS
) |
2830 VM_ENTRY_IA32E_MODE
);
2833 vmcs_write32(VM_ENTRY_CONTROLS
,
2834 vmcs_read32(VM_ENTRY_CONTROLS
) &
2835 ~VM_ENTRY_IA32E_MODE
);
2837 msr
->data
= efer
& ~EFER_LME
;
2842 #ifdef CONFIG_X86_64
2844 static void enter_lmode(struct kvm_vcpu
*vcpu
)
2848 vmx_segment_cache_clear(to_vmx(vcpu
));
2850 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
2851 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
2852 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2854 vmcs_write32(GUEST_TR_AR_BYTES
,
2855 (guest_tr_ar
& ~AR_TYPE_MASK
)
2856 | AR_TYPE_BUSY_64_TSS
);
2858 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
2861 static void exit_lmode(struct kvm_vcpu
*vcpu
)
2863 vmcs_write32(VM_ENTRY_CONTROLS
,
2864 vmcs_read32(VM_ENTRY_CONTROLS
)
2865 & ~VM_ENTRY_IA32E_MODE
);
2866 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
2871 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2873 vpid_sync_context(to_vmx(vcpu
));
2875 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2877 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
2881 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
2883 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
2885 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
2886 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
2889 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
2891 if (enable_ept
&& is_paging(vcpu
))
2892 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
2893 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
2896 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
2898 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
2900 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
2901 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
2904 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
2906 if (!test_bit(VCPU_EXREG_PDPTR
,
2907 (unsigned long *)&vcpu
->arch
.regs_dirty
))
2910 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
2911 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.mmu
.pdptrs
[0]);
2912 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.mmu
.pdptrs
[1]);
2913 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.mmu
.pdptrs
[2]);
2914 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.mmu
.pdptrs
[3]);
2918 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
2920 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
2921 vcpu
->arch
.mmu
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
2922 vcpu
->arch
.mmu
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
2923 vcpu
->arch
.mmu
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
2924 vcpu
->arch
.mmu
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
2927 __set_bit(VCPU_EXREG_PDPTR
,
2928 (unsigned long *)&vcpu
->arch
.regs_avail
);
2929 __set_bit(VCPU_EXREG_PDPTR
,
2930 (unsigned long *)&vcpu
->arch
.regs_dirty
);
2933 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
2935 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
2937 struct kvm_vcpu
*vcpu
)
2939 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
2940 vmx_decache_cr3(vcpu
);
2941 if (!(cr0
& X86_CR0_PG
)) {
2942 /* From paging/starting to nonpaging */
2943 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
2944 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
2945 (CPU_BASED_CR3_LOAD_EXITING
|
2946 CPU_BASED_CR3_STORE_EXITING
));
2947 vcpu
->arch
.cr0
= cr0
;
2948 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
2949 } else if (!is_paging(vcpu
)) {
2950 /* From nonpaging to paging */
2951 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
2952 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
2953 ~(CPU_BASED_CR3_LOAD_EXITING
|
2954 CPU_BASED_CR3_STORE_EXITING
));
2955 vcpu
->arch
.cr0
= cr0
;
2956 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
2959 if (!(cr0
& X86_CR0_WP
))
2960 *hw_cr0
&= ~X86_CR0_WP
;
2963 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
2965 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2966 unsigned long hw_cr0
;
2968 if (enable_unrestricted_guest
)
2969 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
2970 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
2972 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
2974 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
2977 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
2980 #ifdef CONFIG_X86_64
2981 if (vcpu
->arch
.efer
& EFER_LME
) {
2982 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
2984 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
2990 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
2992 if (!vcpu
->fpu_active
)
2993 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
2995 vmcs_writel(CR0_READ_SHADOW
, cr0
);
2996 vmcs_writel(GUEST_CR0
, hw_cr0
);
2997 vcpu
->arch
.cr0
= cr0
;
2998 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3001 static u64
construct_eptp(unsigned long root_hpa
)
3005 /* TODO write the value reading from MSR */
3006 eptp
= VMX_EPT_DEFAULT_MT
|
3007 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3008 eptp
|= (root_hpa
& PAGE_MASK
);
3013 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3015 unsigned long guest_cr3
;
3020 eptp
= construct_eptp(cr3
);
3021 vmcs_write64(EPT_POINTER
, eptp
);
3022 guest_cr3
= is_paging(vcpu
) ? kvm_read_cr3(vcpu
) :
3023 vcpu
->kvm
->arch
.ept_identity_map_addr
;
3024 ept_load_pdptrs(vcpu
);
3027 vmx_flush_tlb(vcpu
);
3028 vmcs_writel(GUEST_CR3
, guest_cr3
);
3031 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3033 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
3034 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3036 if (cr4
& X86_CR4_VMXE
) {
3038 * To use VMXON (and later other VMX instructions), a guest
3039 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3040 * So basically the check on whether to allow nested VMX
3043 if (!nested_vmx_allowed(vcpu
))
3045 } else if (to_vmx(vcpu
)->nested
.vmxon
)
3048 vcpu
->arch
.cr4
= cr4
;
3050 if (!is_paging(vcpu
)) {
3051 hw_cr4
&= ~X86_CR4_PAE
;
3052 hw_cr4
|= X86_CR4_PSE
;
3053 } else if (!(cr4
& X86_CR4_PAE
)) {
3054 hw_cr4
&= ~X86_CR4_PAE
;
3058 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3059 vmcs_writel(GUEST_CR4
, hw_cr4
);
3063 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3064 struct kvm_segment
*var
, int seg
)
3066 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3067 struct kvm_save_segment
*save
;
3070 if (vmx
->rmode
.vm86_active
3071 && (seg
== VCPU_SREG_TR
|| seg
== VCPU_SREG_ES
3072 || seg
== VCPU_SREG_DS
|| seg
== VCPU_SREG_FS
3073 || seg
== VCPU_SREG_GS
)
3074 && !emulate_invalid_guest_state
) {
3076 case VCPU_SREG_TR
: save
= &vmx
->rmode
.tr
; break;
3077 case VCPU_SREG_ES
: save
= &vmx
->rmode
.es
; break;
3078 case VCPU_SREG_DS
: save
= &vmx
->rmode
.ds
; break;
3079 case VCPU_SREG_FS
: save
= &vmx
->rmode
.fs
; break;
3080 case VCPU_SREG_GS
: save
= &vmx
->rmode
.gs
; break;
3083 var
->selector
= save
->selector
;
3084 var
->base
= save
->base
;
3085 var
->limit
= save
->limit
;
3087 if (seg
== VCPU_SREG_TR
3088 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3089 goto use_saved_rmode_seg
;
3091 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3092 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3093 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3094 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3095 use_saved_rmode_seg
:
3096 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
3098 var
->type
= ar
& 15;
3099 var
->s
= (ar
>> 4) & 1;
3100 var
->dpl
= (ar
>> 5) & 3;
3101 var
->present
= (ar
>> 7) & 1;
3102 var
->avl
= (ar
>> 12) & 1;
3103 var
->l
= (ar
>> 13) & 1;
3104 var
->db
= (ar
>> 14) & 1;
3105 var
->g
= (ar
>> 15) & 1;
3106 var
->unusable
= (ar
>> 16) & 1;
3109 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3111 struct kvm_segment s
;
3113 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3114 vmx_get_segment(vcpu
, &s
, seg
);
3117 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3120 static int __vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3122 if (!is_protmode(vcpu
))
3125 if (!is_long_mode(vcpu
)
3126 && (kvm_get_rflags(vcpu
) & X86_EFLAGS_VM
)) /* if virtual 8086 */
3129 return vmx_read_guest_seg_selector(to_vmx(vcpu
), VCPU_SREG_CS
) & 3;
3132 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3134 if (!test_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
3135 __set_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3136 to_vmx(vcpu
)->cpl
= __vmx_get_cpl(vcpu
);
3138 return to_vmx(vcpu
)->cpl
;
3142 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3149 ar
= var
->type
& 15;
3150 ar
|= (var
->s
& 1) << 4;
3151 ar
|= (var
->dpl
& 3) << 5;
3152 ar
|= (var
->present
& 1) << 7;
3153 ar
|= (var
->avl
& 1) << 12;
3154 ar
|= (var
->l
& 1) << 13;
3155 ar
|= (var
->db
& 1) << 14;
3156 ar
|= (var
->g
& 1) << 15;
3158 if (ar
== 0) /* a 0 value means unusable */
3159 ar
= AR_UNUSABLE_MASK
;
3164 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3165 struct kvm_segment
*var
, int seg
)
3167 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3168 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3171 vmx_segment_cache_clear(vmx
);
3173 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
3174 vmcs_write16(sf
->selector
, var
->selector
);
3175 vmx
->rmode
.tr
.selector
= var
->selector
;
3176 vmx
->rmode
.tr
.base
= var
->base
;
3177 vmx
->rmode
.tr
.limit
= var
->limit
;
3178 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
3181 vmcs_writel(sf
->base
, var
->base
);
3182 vmcs_write32(sf
->limit
, var
->limit
);
3183 vmcs_write16(sf
->selector
, var
->selector
);
3184 if (vmx
->rmode
.vm86_active
&& var
->s
) {
3186 * Hack real-mode segments into vm86 compatibility.
3188 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
3189 vmcs_writel(sf
->base
, 0xf0000);
3192 ar
= vmx_segment_access_rights(var
);
3195 * Fix the "Accessed" bit in AR field of segment registers for older
3197 * IA32 arch specifies that at the time of processor reset the
3198 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3199 * is setting it to 0 in the usedland code. This causes invalid guest
3200 * state vmexit when "unrestricted guest" mode is turned on.
3201 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3202 * tree. Newer qemu binaries with that qemu fix would not need this
3205 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3206 ar
|= 0x1; /* Accessed */
3208 vmcs_write32(sf
->ar_bytes
, ar
);
3209 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3212 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3214 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3216 *db
= (ar
>> 14) & 1;
3217 *l
= (ar
>> 13) & 1;
3220 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3222 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3223 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3226 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3228 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3229 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3232 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3234 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3235 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3238 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3240 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3241 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3244 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3246 struct kvm_segment var
;
3249 vmx_get_segment(vcpu
, &var
, seg
);
3250 ar
= vmx_segment_access_rights(&var
);
3252 if (var
.base
!= (var
.selector
<< 4))
3254 if (var
.limit
!= 0xffff)
3262 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3264 struct kvm_segment cs
;
3265 unsigned int cs_rpl
;
3267 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3268 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
3272 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
3276 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
3277 if (cs
.dpl
> cs_rpl
)
3280 if (cs
.dpl
!= cs_rpl
)
3286 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3290 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3292 struct kvm_segment ss
;
3293 unsigned int ss_rpl
;
3295 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3296 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
3300 if (ss
.type
!= 3 && ss
.type
!= 7)
3304 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3312 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3314 struct kvm_segment var
;
3317 vmx_get_segment(vcpu
, &var
, seg
);
3318 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
3326 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
3327 if (var
.dpl
< rpl
) /* DPL < RPL */
3331 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3337 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3339 struct kvm_segment tr
;
3341 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3345 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3347 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3355 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3357 struct kvm_segment ldtr
;
3359 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3363 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3373 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3375 struct kvm_segment cs
, ss
;
3377 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3378 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3380 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
3381 (ss
.selector
& SELECTOR_RPL_MASK
));
3385 * Check if guest state is valid. Returns true if valid, false if
3387 * We assume that registers are always usable
3389 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
3391 /* real mode guest state checks */
3392 if (!is_protmode(vcpu
)) {
3393 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3395 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3397 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3399 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3401 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3403 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3406 /* protected mode guest state checks */
3407 if (!cs_ss_rpl_check(vcpu
))
3409 if (!code_segment_valid(vcpu
))
3411 if (!stack_segment_valid(vcpu
))
3413 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3415 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3417 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3419 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3421 if (!tr_valid(vcpu
))
3423 if (!ldtr_valid(vcpu
))
3427 * - Add checks on RIP
3428 * - Add checks on RFLAGS
3434 static int init_rmode_tss(struct kvm
*kvm
)
3438 int r
, idx
, ret
= 0;
3440 idx
= srcu_read_lock(&kvm
->srcu
);
3441 fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
3442 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3445 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3446 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
3447 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
3450 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
3453 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3457 r
= kvm_write_guest_page(kvm
, fn
, &data
,
3458 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
3465 srcu_read_unlock(&kvm
->srcu
, idx
);
3469 static int init_rmode_identity_map(struct kvm
*kvm
)
3472 pfn_t identity_map_pfn
;
3477 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
3478 printk(KERN_ERR
"EPT: identity-mapping pagetable "
3479 "haven't been allocated!\n");
3482 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
3485 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
3486 idx
= srcu_read_lock(&kvm
->srcu
);
3487 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
3490 /* Set up identity-mapping pagetable for EPT in real mode */
3491 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
3492 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3493 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3494 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
3495 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
3499 kvm
->arch
.ept_identity_pagetable_done
= true;
3502 srcu_read_unlock(&kvm
->srcu
, idx
);
3506 static void seg_setup(int seg
)
3508 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3511 vmcs_write16(sf
->selector
, 0);
3512 vmcs_writel(sf
->base
, 0);
3513 vmcs_write32(sf
->limit
, 0xffff);
3514 if (enable_unrestricted_guest
) {
3516 if (seg
== VCPU_SREG_CS
)
3517 ar
|= 0x08; /* code segment */
3521 vmcs_write32(sf
->ar_bytes
, ar
);
3524 static int alloc_apic_access_page(struct kvm
*kvm
)
3526 struct kvm_userspace_memory_region kvm_userspace_mem
;
3529 mutex_lock(&kvm
->slots_lock
);
3530 if (kvm
->arch
.apic_access_page
)
3532 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
3533 kvm_userspace_mem
.flags
= 0;
3534 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
3535 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3536 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
3540 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
3542 mutex_unlock(&kvm
->slots_lock
);
3546 static int alloc_identity_pagetable(struct kvm
*kvm
)
3548 struct kvm_userspace_memory_region kvm_userspace_mem
;
3551 mutex_lock(&kvm
->slots_lock
);
3552 if (kvm
->arch
.ept_identity_pagetable
)
3554 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
3555 kvm_userspace_mem
.flags
= 0;
3556 kvm_userspace_mem
.guest_phys_addr
=
3557 kvm
->arch
.ept_identity_map_addr
;
3558 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3559 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
3563 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
3564 kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
3566 mutex_unlock(&kvm
->slots_lock
);
3570 static void allocate_vpid(struct vcpu_vmx
*vmx
)
3577 spin_lock(&vmx_vpid_lock
);
3578 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
3579 if (vpid
< VMX_NR_VPIDS
) {
3581 __set_bit(vpid
, vmx_vpid_bitmap
);
3583 spin_unlock(&vmx_vpid_lock
);
3586 static void free_vpid(struct vcpu_vmx
*vmx
)
3590 spin_lock(&vmx_vpid_lock
);
3592 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3593 spin_unlock(&vmx_vpid_lock
);
3596 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
3598 int f
= sizeof(unsigned long);
3600 if (!cpu_has_vmx_msr_bitmap())
3604 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3605 * have the write-low and read-high bitmap offsets the wrong way round.
3606 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3608 if (msr
<= 0x1fff) {
3609 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
3610 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
3611 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
3613 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
3614 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
3618 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
3621 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
3622 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
3626 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3627 * will not change in the lifetime of the guest.
3628 * Note that host-state that does change is set elsewhere. E.g., host-state
3629 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3631 static void vmx_set_constant_host_state(void)
3637 vmcs_writel(HOST_CR0
, read_cr0() | X86_CR0_TS
); /* 22.2.3 */
3638 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
3639 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3641 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
3642 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3643 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3644 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3645 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
3647 native_store_idt(&dt
);
3648 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
3650 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl
));
3651 vmcs_writel(HOST_RIP
, tmpl
); /* 22.2.5 */
3653 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
3654 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
3655 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
3656 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
3658 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
3659 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
3660 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
3664 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
3666 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
3668 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
3669 if (is_guest_mode(&vmx
->vcpu
))
3670 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
3671 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
3672 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
3675 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
3677 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
3678 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
3679 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3680 #ifdef CONFIG_X86_64
3681 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
3682 CPU_BASED_CR8_LOAD_EXITING
;
3686 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
3687 CPU_BASED_CR3_LOAD_EXITING
|
3688 CPU_BASED_INVLPG_EXITING
;
3689 return exec_control
;
3692 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
3694 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
3695 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
3696 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
3698 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
3700 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
3701 enable_unrestricted_guest
= 0;
3703 if (!enable_unrestricted_guest
)
3704 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
3706 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
3707 return exec_control
;
3710 static void ept_set_mmio_spte_mask(void)
3713 * EPT Misconfigurations can be generated if the value of bits 2:0
3714 * of an EPT paging-structure entry is 110b (write/execute).
3715 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3718 kvm_mmu_set_mmio_spte_mask(0xffull
<< 49 | 0x6ull
);
3722 * Sets up the vmcs for emulated real mode.
3724 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
3726 #ifdef CONFIG_X86_64
3732 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
3733 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
3735 if (cpu_has_vmx_msr_bitmap())
3736 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
3738 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
3741 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
3742 vmcs_config
.pin_based_exec_ctrl
);
3744 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
3746 if (cpu_has_secondary_exec_ctrls()) {
3747 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
3748 vmx_secondary_exec_control(vmx
));
3752 vmcs_write32(PLE_GAP
, ple_gap
);
3753 vmcs_write32(PLE_WINDOW
, ple_window
);
3756 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
3757 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
3758 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
3760 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
3761 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
3762 vmx_set_constant_host_state();
3763 #ifdef CONFIG_X86_64
3764 rdmsrl(MSR_FS_BASE
, a
);
3765 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
3766 rdmsrl(MSR_GS_BASE
, a
);
3767 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
3769 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
3770 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
3773 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
3774 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
3775 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
3776 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
3777 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
3779 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
3780 u32 msr_low
, msr_high
;
3782 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
3783 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
3784 /* Write the default value follow host pat */
3785 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
3786 /* Keep arch.pat sync with GUEST_IA32_PAT */
3787 vmx
->vcpu
.arch
.pat
= host_pat
;
3790 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
3791 u32 index
= vmx_msr_index
[i
];
3792 u32 data_low
, data_high
;
3795 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
3797 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
3799 vmx
->guest_msrs
[j
].index
= i
;
3800 vmx
->guest_msrs
[j
].data
= 0;
3801 vmx
->guest_msrs
[j
].mask
= -1ull;
3805 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
3807 /* 22.2.1, 20.8.1 */
3808 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
3810 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
3811 set_cr4_guest_host_mask(vmx
);
3813 kvm_write_tsc(&vmx
->vcpu
, 0);
3818 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
3820 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3824 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
3826 vmx
->rmode
.vm86_active
= 0;
3828 vmx
->soft_vnmi_blocked
= 0;
3830 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
3831 kvm_set_cr8(&vmx
->vcpu
, 0);
3832 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
3833 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
3834 msr
|= MSR_IA32_APICBASE_BSP
;
3835 kvm_set_apic_base(&vmx
->vcpu
, msr
);
3837 ret
= fx_init(&vmx
->vcpu
);
3841 vmx_segment_cache_clear(vmx
);
3843 seg_setup(VCPU_SREG_CS
);
3845 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3846 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3848 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
3849 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
3850 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
3852 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
3853 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
3856 seg_setup(VCPU_SREG_DS
);
3857 seg_setup(VCPU_SREG_ES
);
3858 seg_setup(VCPU_SREG_FS
);
3859 seg_setup(VCPU_SREG_GS
);
3860 seg_setup(VCPU_SREG_SS
);
3862 vmcs_write16(GUEST_TR_SELECTOR
, 0);
3863 vmcs_writel(GUEST_TR_BASE
, 0);
3864 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
3865 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3867 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
3868 vmcs_writel(GUEST_LDTR_BASE
, 0);
3869 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
3870 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
3872 vmcs_write32(GUEST_SYSENTER_CS
, 0);
3873 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
3874 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
3876 vmcs_writel(GUEST_RFLAGS
, 0x02);
3877 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
3878 kvm_rip_write(vcpu
, 0xfff0);
3880 kvm_rip_write(vcpu
, 0);
3881 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
3883 vmcs_writel(GUEST_DR7
, 0x400);
3885 vmcs_writel(GUEST_GDTR_BASE
, 0);
3886 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
3888 vmcs_writel(GUEST_IDTR_BASE
, 0);
3889 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
3891 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
3892 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
3893 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
3895 /* Special registers */
3896 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
3900 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
3902 if (cpu_has_vmx_tpr_shadow()) {
3903 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
3904 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
3905 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
3906 __pa(vmx
->vcpu
.arch
.apic
->regs
));
3907 vmcs_write32(TPR_THRESHOLD
, 0);
3910 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
3911 vmcs_write64(APIC_ACCESS_ADDR
,
3912 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
3915 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
3917 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
3918 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
3919 vmx_set_cr4(&vmx
->vcpu
, 0);
3920 vmx_set_efer(&vmx
->vcpu
, 0);
3921 vmx_fpu_activate(&vmx
->vcpu
);
3922 update_exception_bitmap(&vmx
->vcpu
);
3924 vpid_sync_context(vmx
);
3928 /* HACK: Don't enable emulation on guest boot/reset */
3929 vmx
->emulation_required
= 0;
3936 * In nested virtualization, check if L1 asked to exit on external interrupts.
3937 * For most existing hypervisors, this will always return true.
3939 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
3941 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
3942 PIN_BASED_EXT_INTR_MASK
;
3945 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3947 u32 cpu_based_vm_exec_control
;
3948 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
)) {
3950 * We get here if vmx_interrupt_allowed() said we can't
3951 * inject to L1 now because L2 must run. Ask L2 to exit
3952 * right after entry, so we can inject to L1 more promptly.
3954 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
3958 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3959 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
3960 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3963 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3965 u32 cpu_based_vm_exec_control
;
3967 if (!cpu_has_virtual_nmis()) {
3968 enable_irq_window(vcpu
);
3972 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
3973 enable_irq_window(vcpu
);
3976 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3977 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
3978 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3981 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
3983 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3985 int irq
= vcpu
->arch
.interrupt
.nr
;
3987 trace_kvm_inj_virq(irq
);
3989 ++vcpu
->stat
.irq_injections
;
3990 if (vmx
->rmode
.vm86_active
) {
3992 if (vcpu
->arch
.interrupt
.soft
)
3993 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
3994 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
3995 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3998 intr
= irq
| INTR_INFO_VALID_MASK
;
3999 if (vcpu
->arch
.interrupt
.soft
) {
4000 intr
|= INTR_TYPE_SOFT_INTR
;
4001 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4002 vmx
->vcpu
.arch
.event_exit_inst_len
);
4004 intr
|= INTR_TYPE_EXT_INTR
;
4005 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4006 vmx_clear_hlt(vcpu
);
4009 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4011 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4013 if (is_guest_mode(vcpu
))
4016 if (!cpu_has_virtual_nmis()) {
4018 * Tracking the NMI-blocked state in software is built upon
4019 * finding the next open IRQ window. This, in turn, depends on
4020 * well-behaving guests: They have to keep IRQs disabled at
4021 * least as long as the NMI handler runs. Otherwise we may
4022 * cause NMI nesting, maybe breaking the guest. But as this is
4023 * highly unlikely, we can live with the residual risk.
4025 vmx
->soft_vnmi_blocked
= 1;
4026 vmx
->vnmi_blocked_time
= 0;
4029 ++vcpu
->stat
.nmi_injections
;
4030 vmx
->nmi_known_unmasked
= false;
4031 if (vmx
->rmode
.vm86_active
) {
4032 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
4033 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4036 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
4037 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
4038 vmx_clear_hlt(vcpu
);
4041 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
4043 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
4046 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4047 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
4048 | GUEST_INTR_STATE_NMI
));
4051 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4053 if (!cpu_has_virtual_nmis())
4054 return to_vmx(vcpu
)->soft_vnmi_blocked
;
4055 if (to_vmx(vcpu
)->nmi_known_unmasked
)
4057 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
4060 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4062 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4064 if (!cpu_has_virtual_nmis()) {
4065 if (vmx
->soft_vnmi_blocked
!= masked
) {
4066 vmx
->soft_vnmi_blocked
= masked
;
4067 vmx
->vnmi_blocked_time
= 0;
4070 vmx
->nmi_known_unmasked
= !masked
;
4072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
4073 GUEST_INTR_STATE_NMI
);
4075 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
4076 GUEST_INTR_STATE_NMI
);
4080 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4082 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
)) {
4083 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4084 if (to_vmx(vcpu
)->nested
.nested_run_pending
||
4085 (vmcs12
->idt_vectoring_info_field
&
4086 VECTORING_INFO_VALID_MASK
))
4088 nested_vmx_vmexit(vcpu
);
4089 vmcs12
->vm_exit_reason
= EXIT_REASON_EXTERNAL_INTERRUPT
;
4090 vmcs12
->vm_exit_intr_info
= 0;
4091 /* fall through to normal code, but now in L1, not L2 */
4094 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
4095 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4096 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
4099 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4102 struct kvm_userspace_memory_region tss_mem
= {
4103 .slot
= TSS_PRIVATE_MEMSLOT
,
4104 .guest_phys_addr
= addr
,
4105 .memory_size
= PAGE_SIZE
* 3,
4109 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
4112 kvm
->arch
.tss_addr
= addr
;
4113 if (!init_rmode_tss(kvm
))
4119 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
4120 int vec
, u32 err_code
)
4123 * Instruction with address size override prefix opcode 0x67
4124 * Cause the #SS fault with 0 error code in VM86 mode.
4126 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
4127 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
)
4130 * Forward all other exceptions that are valid in real mode.
4131 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4132 * the required debugging infrastructure rework.
4136 if (vcpu
->guest_debug
&
4137 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
4139 kvm_queue_exception(vcpu
, vec
);
4143 * Update instruction length as we may reinject the exception
4144 * from user space while in guest debugging mode.
4146 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
4147 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4148 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
4159 kvm_queue_exception(vcpu
, vec
);
4166 * Trigger machine check on the host. We assume all the MSRs are already set up
4167 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4168 * We pass a fake environment to the machine check handler because we want
4169 * the guest to be always treated like user space, no matter what context
4170 * it used internally.
4172 static void kvm_machine_check(void)
4174 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4175 struct pt_regs regs
= {
4176 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
4177 .flags
= X86_EFLAGS_IF
,
4180 do_machine_check(®s
, 0);
4184 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
4186 /* already handled by vcpu_run */
4190 static int handle_exception(struct kvm_vcpu
*vcpu
)
4192 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4193 struct kvm_run
*kvm_run
= vcpu
->run
;
4194 u32 intr_info
, ex_no
, error_code
;
4195 unsigned long cr2
, rip
, dr6
;
4197 enum emulation_result er
;
4199 vect_info
= vmx
->idt_vectoring_info
;
4200 intr_info
= vmx
->exit_intr_info
;
4202 if (is_machine_check(intr_info
))
4203 return handle_machine_check(vcpu
);
4205 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
4206 !is_page_fault(intr_info
)) {
4207 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4208 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
4209 vcpu
->run
->internal
.ndata
= 2;
4210 vcpu
->run
->internal
.data
[0] = vect_info
;
4211 vcpu
->run
->internal
.data
[1] = intr_info
;
4215 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
4216 return 1; /* already handled by vmx_vcpu_run() */
4218 if (is_no_device(intr_info
)) {
4219 vmx_fpu_activate(vcpu
);
4223 if (is_invalid_opcode(intr_info
)) {
4224 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
4225 if (er
!= EMULATE_DONE
)
4226 kvm_queue_exception(vcpu
, UD_VECTOR
);
4231 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
4232 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
4233 if (is_page_fault(intr_info
)) {
4234 /* EPT won't cause page fault directly */
4236 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
4237 trace_kvm_page_fault(cr2
, error_code
);
4239 if (kvm_event_needs_reinjection(vcpu
))
4240 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
4241 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
4244 if (vmx
->rmode
.vm86_active
&&
4245 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
4247 if (vcpu
->arch
.halt_request
) {
4248 vcpu
->arch
.halt_request
= 0;
4249 return kvm_emulate_halt(vcpu
);
4254 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
4257 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
4258 if (!(vcpu
->guest_debug
&
4259 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
4260 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
4261 kvm_queue_exception(vcpu
, DB_VECTOR
);
4264 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
4265 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
4269 * Update instruction length as we may reinject #BP from
4270 * user space while in guest debugging mode. Reading it for
4271 * #DB as well causes no harm, it is not used in that case.
4273 vmx
->vcpu
.arch
.event_exit_inst_len
=
4274 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4275 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
4276 rip
= kvm_rip_read(vcpu
);
4277 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
4278 kvm_run
->debug
.arch
.exception
= ex_no
;
4281 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
4282 kvm_run
->ex
.exception
= ex_no
;
4283 kvm_run
->ex
.error_code
= error_code
;
4289 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
4291 ++vcpu
->stat
.irq_exits
;
4295 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
4297 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4301 static int handle_io(struct kvm_vcpu
*vcpu
)
4303 unsigned long exit_qualification
;
4304 int size
, in
, string
;
4307 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4308 string
= (exit_qualification
& 16) != 0;
4309 in
= (exit_qualification
& 8) != 0;
4311 ++vcpu
->stat
.io_exits
;
4314 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4316 port
= exit_qualification
>> 16;
4317 size
= (exit_qualification
& 7) + 1;
4318 skip_emulated_instruction(vcpu
);
4320 return kvm_fast_pio_out(vcpu
, size
, port
);
4324 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4327 * Patch in the VMCALL instruction:
4329 hypercall
[0] = 0x0f;
4330 hypercall
[1] = 0x01;
4331 hypercall
[2] = 0xc1;
4334 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4335 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
4337 if (to_vmx(vcpu
)->nested
.vmxon
&&
4338 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
4341 if (is_guest_mode(vcpu
)) {
4343 * We get here when L2 changed cr0 in a way that did not change
4344 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4345 * but did change L0 shadowed bits. This can currently happen
4346 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4347 * loading) while pretending to allow the guest to change it.
4349 if (kvm_set_cr0(vcpu
, (val
& vcpu
->arch
.cr0_guest_owned_bits
) |
4350 (vcpu
->arch
.cr0
& ~vcpu
->arch
.cr0_guest_owned_bits
)))
4352 vmcs_writel(CR0_READ_SHADOW
, val
);
4355 return kvm_set_cr0(vcpu
, val
);
4358 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
4360 if (is_guest_mode(vcpu
)) {
4361 if (kvm_set_cr4(vcpu
, (val
& vcpu
->arch
.cr4_guest_owned_bits
) |
4362 (vcpu
->arch
.cr4
& ~vcpu
->arch
.cr4_guest_owned_bits
)))
4364 vmcs_writel(CR4_READ_SHADOW
, val
);
4367 return kvm_set_cr4(vcpu
, val
);
4370 /* called to set cr0 as approriate for clts instruction exit. */
4371 static void handle_clts(struct kvm_vcpu
*vcpu
)
4373 if (is_guest_mode(vcpu
)) {
4375 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4376 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4377 * just pretend it's off (also in arch.cr0 for fpu_activate).
4379 vmcs_writel(CR0_READ_SHADOW
,
4380 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
4381 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
4383 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
4386 static int handle_cr(struct kvm_vcpu
*vcpu
)
4388 unsigned long exit_qualification
, val
;
4393 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4394 cr
= exit_qualification
& 15;
4395 reg
= (exit_qualification
>> 8) & 15;
4396 switch ((exit_qualification
>> 4) & 3) {
4397 case 0: /* mov to cr */
4398 val
= kvm_register_read(vcpu
, reg
);
4399 trace_kvm_cr_write(cr
, val
);
4402 err
= handle_set_cr0(vcpu
, val
);
4403 kvm_complete_insn_gp(vcpu
, err
);
4406 err
= kvm_set_cr3(vcpu
, val
);
4407 kvm_complete_insn_gp(vcpu
, err
);
4410 err
= handle_set_cr4(vcpu
, val
);
4411 kvm_complete_insn_gp(vcpu
, err
);
4414 u8 cr8_prev
= kvm_get_cr8(vcpu
);
4415 u8 cr8
= kvm_register_read(vcpu
, reg
);
4416 err
= kvm_set_cr8(vcpu
, cr8
);
4417 kvm_complete_insn_gp(vcpu
, err
);
4418 if (irqchip_in_kernel(vcpu
->kvm
))
4420 if (cr8_prev
<= cr8
)
4422 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
4429 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
4430 skip_emulated_instruction(vcpu
);
4431 vmx_fpu_activate(vcpu
);
4433 case 1: /*mov from cr*/
4436 val
= kvm_read_cr3(vcpu
);
4437 kvm_register_write(vcpu
, reg
, val
);
4438 trace_kvm_cr_read(cr
, val
);
4439 skip_emulated_instruction(vcpu
);
4442 val
= kvm_get_cr8(vcpu
);
4443 kvm_register_write(vcpu
, reg
, val
);
4444 trace_kvm_cr_read(cr
, val
);
4445 skip_emulated_instruction(vcpu
);
4450 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
4451 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
4452 kvm_lmsw(vcpu
, val
);
4454 skip_emulated_instruction(vcpu
);
4459 vcpu
->run
->exit_reason
= 0;
4460 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
4461 (int)(exit_qualification
>> 4) & 3, cr
);
4465 static int handle_dr(struct kvm_vcpu
*vcpu
)
4467 unsigned long exit_qualification
;
4470 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4471 if (!kvm_require_cpl(vcpu
, 0))
4473 dr
= vmcs_readl(GUEST_DR7
);
4476 * As the vm-exit takes precedence over the debug trap, we
4477 * need to emulate the latter, either for the host or the
4478 * guest debugging itself.
4480 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
4481 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
4482 vcpu
->run
->debug
.arch
.dr7
= dr
;
4483 vcpu
->run
->debug
.arch
.pc
=
4484 vmcs_readl(GUEST_CS_BASE
) +
4485 vmcs_readl(GUEST_RIP
);
4486 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
4487 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
4490 vcpu
->arch
.dr7
&= ~DR7_GD
;
4491 vcpu
->arch
.dr6
|= DR6_BD
;
4492 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
4493 kvm_queue_exception(vcpu
, DB_VECTOR
);
4498 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4499 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
4500 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
4501 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
4503 if (!kvm_get_dr(vcpu
, dr
, &val
))
4504 kvm_register_write(vcpu
, reg
, val
);
4506 kvm_set_dr(vcpu
, dr
, vcpu
->arch
.regs
[reg
]);
4507 skip_emulated_instruction(vcpu
);
4511 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
4513 vmcs_writel(GUEST_DR7
, val
);
4516 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
4518 kvm_emulate_cpuid(vcpu
);
4522 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
4524 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
4527 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
4528 trace_kvm_msr_read_ex(ecx
);
4529 kvm_inject_gp(vcpu
, 0);
4533 trace_kvm_msr_read(ecx
, data
);
4535 /* FIXME: handling of bits 32:63 of rax, rdx */
4536 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
4537 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
4538 skip_emulated_instruction(vcpu
);
4542 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
4544 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
4545 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
4546 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
4548 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
4549 trace_kvm_msr_write_ex(ecx
, data
);
4550 kvm_inject_gp(vcpu
, 0);
4554 trace_kvm_msr_write(ecx
, data
);
4555 skip_emulated_instruction(vcpu
);
4559 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
4561 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4565 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
4567 u32 cpu_based_vm_exec_control
;
4569 /* clear pending irq */
4570 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4571 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
4572 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4574 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4576 ++vcpu
->stat
.irq_window_exits
;
4579 * If the user space waits to inject interrupts, exit as soon as
4582 if (!irqchip_in_kernel(vcpu
->kvm
) &&
4583 vcpu
->run
->request_interrupt_window
&&
4584 !kvm_cpu_has_interrupt(vcpu
)) {
4585 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
4591 static int handle_halt(struct kvm_vcpu
*vcpu
)
4593 skip_emulated_instruction(vcpu
);
4594 return kvm_emulate_halt(vcpu
);
4597 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
4599 skip_emulated_instruction(vcpu
);
4600 kvm_emulate_hypercall(vcpu
);
4604 static int handle_invd(struct kvm_vcpu
*vcpu
)
4606 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4609 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
4611 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4613 kvm_mmu_invlpg(vcpu
, exit_qualification
);
4614 skip_emulated_instruction(vcpu
);
4618 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
4622 err
= kvm_rdpmc(vcpu
);
4623 kvm_complete_insn_gp(vcpu
, err
);
4628 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
4630 skip_emulated_instruction(vcpu
);
4631 kvm_emulate_wbinvd(vcpu
);
4635 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
4637 u64 new_bv
= kvm_read_edx_eax(vcpu
);
4638 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4640 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
4641 skip_emulated_instruction(vcpu
);
4645 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
4647 if (likely(fasteoi
)) {
4648 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4649 int access_type
, offset
;
4651 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
4652 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
4654 * Sane guest uses MOV to write EOI, with written value
4655 * not cared. So make a short-circuit here by avoiding
4656 * heavy instruction emulation.
4658 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
4659 (offset
== APIC_EOI
)) {
4660 kvm_lapic_set_eoi(vcpu
);
4661 skip_emulated_instruction(vcpu
);
4665 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4668 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
4670 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4671 unsigned long exit_qualification
;
4672 bool has_error_code
= false;
4675 int reason
, type
, idt_v
;
4677 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
4678 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
4680 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4682 reason
= (u32
)exit_qualification
>> 30;
4683 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
4685 case INTR_TYPE_NMI_INTR
:
4686 vcpu
->arch
.nmi_injected
= false;
4687 vmx_set_nmi_mask(vcpu
, true);
4689 case INTR_TYPE_EXT_INTR
:
4690 case INTR_TYPE_SOFT_INTR
:
4691 kvm_clear_interrupt_queue(vcpu
);
4693 case INTR_TYPE_HARD_EXCEPTION
:
4694 if (vmx
->idt_vectoring_info
&
4695 VECTORING_INFO_DELIVER_CODE_MASK
) {
4696 has_error_code
= true;
4698 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
4701 case INTR_TYPE_SOFT_EXCEPTION
:
4702 kvm_clear_exception_queue(vcpu
);
4708 tss_selector
= exit_qualification
;
4710 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
4711 type
!= INTR_TYPE_EXT_INTR
&&
4712 type
!= INTR_TYPE_NMI_INTR
))
4713 skip_emulated_instruction(vcpu
);
4715 if (kvm_task_switch(vcpu
, tss_selector
, reason
,
4716 has_error_code
, error_code
) == EMULATE_FAIL
) {
4717 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4718 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4719 vcpu
->run
->internal
.ndata
= 0;
4723 /* clear all local breakpoint enable flags */
4724 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
4727 * TODO: What about debug traps on tss switch?
4728 * Are we supposed to inject them and update dr6?
4734 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
4736 unsigned long exit_qualification
;
4740 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4742 if (exit_qualification
& (1 << 6)) {
4743 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
4747 gla_validity
= (exit_qualification
>> 7) & 0x3;
4748 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
4749 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
4750 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4751 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
4752 vmcs_readl(GUEST_LINEAR_ADDRESS
));
4753 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
4754 (long unsigned int)exit_qualification
);
4755 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
4756 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
4760 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
4761 trace_kvm_page_fault(gpa
, exit_qualification
);
4762 return kvm_mmu_page_fault(vcpu
, gpa
, exit_qualification
& 0x3, NULL
, 0);
4765 static u64
ept_rsvd_mask(u64 spte
, int level
)
4770 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
4771 mask
|= (1ULL << i
);
4774 /* bits 7:3 reserved */
4776 else if (level
== 2) {
4777 if (spte
& (1ULL << 7))
4778 /* 2MB ref, bits 20:12 reserved */
4781 /* bits 6:3 reserved */
4788 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
4791 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
4793 /* 010b (write-only) */
4794 WARN_ON((spte
& 0x7) == 0x2);
4796 /* 110b (write/execute) */
4797 WARN_ON((spte
& 0x7) == 0x6);
4799 /* 100b (execute-only) and value not supported by logical processor */
4800 if (!cpu_has_vmx_ept_execute_only())
4801 WARN_ON((spte
& 0x7) == 0x4);
4805 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
4807 if (rsvd_bits
!= 0) {
4808 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
4809 __func__
, rsvd_bits
);
4813 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
4814 u64 ept_mem_type
= (spte
& 0x38) >> 3;
4816 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
4817 ept_mem_type
== 7) {
4818 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
4819 __func__
, ept_mem_type
);
4826 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
4829 int nr_sptes
, i
, ret
;
4832 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
4834 ret
= handle_mmio_page_fault_common(vcpu
, gpa
, true);
4835 if (likely(ret
== 1))
4836 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
4841 /* It is the real ept misconfig */
4842 printk(KERN_ERR
"EPT: Misconfiguration.\n");
4843 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
4845 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
4847 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
4848 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
4850 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
4851 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
4856 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
4858 u32 cpu_based_vm_exec_control
;
4860 /* clear pending NMI */
4861 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4862 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
4863 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4864 ++vcpu
->stat
.nmi_window_exits
;
4865 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4870 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
4872 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4873 enum emulation_result err
= EMULATE_DONE
;
4876 bool intr_window_requested
;
4878 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4879 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
4881 while (!guest_state_valid(vcpu
)) {
4882 if (intr_window_requested
4883 && (kvm_get_rflags(&vmx
->vcpu
) & X86_EFLAGS_IF
))
4884 return handle_interrupt_window(&vmx
->vcpu
);
4886 err
= emulate_instruction(vcpu
, 0);
4888 if (err
== EMULATE_DO_MMIO
) {
4893 if (err
!= EMULATE_DONE
)
4896 if (signal_pending(current
))
4902 vmx
->emulation_required
= 0;
4908 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4909 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4911 static int handle_pause(struct kvm_vcpu
*vcpu
)
4913 skip_emulated_instruction(vcpu
);
4914 kvm_vcpu_on_spin(vcpu
);
4919 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
4921 kvm_queue_exception(vcpu
, UD_VECTOR
);
4926 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4927 * We could reuse a single VMCS for all the L2 guests, but we also want the
4928 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4929 * allows keeping them loaded on the processor, and in the future will allow
4930 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4931 * every entry if they never change.
4932 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4933 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4935 * The following functions allocate and free a vmcs02 in this pool.
4938 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4939 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
4941 struct vmcs02_list
*item
;
4942 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
4943 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
4944 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
4945 return &item
->vmcs02
;
4948 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
4949 /* Recycle the least recently used VMCS. */
4950 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
4951 struct vmcs02_list
, list
);
4952 item
->vmptr
= vmx
->nested
.current_vmptr
;
4953 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
4954 return &item
->vmcs02
;
4957 /* Create a new VMCS */
4958 item
= (struct vmcs02_list
*)
4959 kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
4962 item
->vmcs02
.vmcs
= alloc_vmcs();
4963 if (!item
->vmcs02
.vmcs
) {
4967 loaded_vmcs_init(&item
->vmcs02
);
4968 item
->vmptr
= vmx
->nested
.current_vmptr
;
4969 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
4970 vmx
->nested
.vmcs02_num
++;
4971 return &item
->vmcs02
;
4974 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4975 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
4977 struct vmcs02_list
*item
;
4978 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
4979 if (item
->vmptr
== vmptr
) {
4980 free_loaded_vmcs(&item
->vmcs02
);
4981 list_del(&item
->list
);
4983 vmx
->nested
.vmcs02_num
--;
4989 * Free all VMCSs saved for this vcpu, except the one pointed by
4990 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4991 * currently used, if running L2), and vmcs01 when running L2.
4993 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
4995 struct vmcs02_list
*item
, *n
;
4996 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
4997 if (vmx
->loaded_vmcs
!= &item
->vmcs02
)
4998 free_loaded_vmcs(&item
->vmcs02
);
4999 list_del(&item
->list
);
5002 vmx
->nested
.vmcs02_num
= 0;
5004 if (vmx
->loaded_vmcs
!= &vmx
->vmcs01
)
5005 free_loaded_vmcs(&vmx
->vmcs01
);
5009 * Emulate the VMXON instruction.
5010 * Currently, we just remember that VMX is active, and do not save or even
5011 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5012 * do not currently need to store anything in that guest-allocated memory
5013 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5014 * argument is different from the VMXON pointer (which the spec says they do).
5016 static int handle_vmon(struct kvm_vcpu
*vcpu
)
5018 struct kvm_segment cs
;
5019 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5021 /* The Intel VMX Instruction Reference lists a bunch of bits that
5022 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5023 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5024 * Otherwise, we should fail with #UD. We test these now:
5026 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
5027 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
5028 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
5029 kvm_queue_exception(vcpu
, UD_VECTOR
);
5033 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5034 if (is_long_mode(vcpu
) && !cs
.l
) {
5035 kvm_queue_exception(vcpu
, UD_VECTOR
);
5039 if (vmx_get_cpl(vcpu
)) {
5040 kvm_inject_gp(vcpu
, 0);
5044 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
5045 vmx
->nested
.vmcs02_num
= 0;
5047 vmx
->nested
.vmxon
= true;
5049 skip_emulated_instruction(vcpu
);
5054 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5055 * for running VMX instructions (except VMXON, whose prerequisites are
5056 * slightly different). It also specifies what exception to inject otherwise.
5058 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
5060 struct kvm_segment cs
;
5061 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5063 if (!vmx
->nested
.vmxon
) {
5064 kvm_queue_exception(vcpu
, UD_VECTOR
);
5068 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5069 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
5070 (is_long_mode(vcpu
) && !cs
.l
)) {
5071 kvm_queue_exception(vcpu
, UD_VECTOR
);
5075 if (vmx_get_cpl(vcpu
)) {
5076 kvm_inject_gp(vcpu
, 0);
5084 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5085 * just stops using VMX.
5087 static void free_nested(struct vcpu_vmx
*vmx
)
5089 if (!vmx
->nested
.vmxon
)
5091 vmx
->nested
.vmxon
= false;
5092 if (vmx
->nested
.current_vmptr
!= -1ull) {
5093 kunmap(vmx
->nested
.current_vmcs12_page
);
5094 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5095 vmx
->nested
.current_vmptr
= -1ull;
5096 vmx
->nested
.current_vmcs12
= NULL
;
5098 /* Unpin physical memory we referred to in current vmcs02 */
5099 if (vmx
->nested
.apic_access_page
) {
5100 nested_release_page(vmx
->nested
.apic_access_page
);
5101 vmx
->nested
.apic_access_page
= 0;
5104 nested_free_all_saved_vmcss(vmx
);
5107 /* Emulate the VMXOFF instruction */
5108 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
5110 if (!nested_vmx_check_permission(vcpu
))
5112 free_nested(to_vmx(vcpu
));
5113 skip_emulated_instruction(vcpu
);
5118 * Decode the memory-address operand of a vmx instruction, as recorded on an
5119 * exit caused by such an instruction (run by a guest hypervisor).
5120 * On success, returns 0. When the operand is invalid, returns 1 and throws
5123 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
5124 unsigned long exit_qualification
,
5125 u32 vmx_instruction_info
, gva_t
*ret
)
5128 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5129 * Execution", on an exit, vmx_instruction_info holds most of the
5130 * addressing components of the operand. Only the displacement part
5131 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5132 * For how an actual address is calculated from all these components,
5133 * refer to Vol. 1, "Operand Addressing".
5135 int scaling
= vmx_instruction_info
& 3;
5136 int addr_size
= (vmx_instruction_info
>> 7) & 7;
5137 bool is_reg
= vmx_instruction_info
& (1u << 10);
5138 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
5139 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
5140 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
5141 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
5142 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
5145 kvm_queue_exception(vcpu
, UD_VECTOR
);
5149 /* Addr = segment_base + offset */
5150 /* offset = base + [index * scale] + displacement */
5151 *ret
= vmx_get_segment_base(vcpu
, seg_reg
);
5153 *ret
+= kvm_register_read(vcpu
, base_reg
);
5155 *ret
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
5156 *ret
+= exit_qualification
; /* holds the displacement */
5158 if (addr_size
== 1) /* 32 bit */
5162 * TODO: throw #GP (and return 1) in various cases that the VM*
5163 * instructions require it - e.g., offset beyond segment limit,
5164 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5165 * address, and so on. Currently these are not checked.
5171 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5172 * set the success or error code of an emulated VMX instruction, as specified
5173 * by Vol 2B, VMX Instruction Reference, "Conventions".
5175 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
5177 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
5178 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5179 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
5182 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
5184 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5185 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
5186 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5190 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
5191 u32 vm_instruction_error
)
5193 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
5195 * failValid writes the error number to the current VMCS, which
5196 * can't be done there isn't a current VMCS.
5198 nested_vmx_failInvalid(vcpu
);
5201 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5202 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5203 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5205 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
5208 /* Emulate the VMCLEAR instruction */
5209 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
5211 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5214 struct vmcs12
*vmcs12
;
5216 struct x86_exception e
;
5218 if (!nested_vmx_check_permission(vcpu
))
5221 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5222 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5225 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5226 sizeof(vmptr
), &e
)) {
5227 kvm_inject_page_fault(vcpu
, &e
);
5231 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
5232 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
5233 skip_emulated_instruction(vcpu
);
5237 if (vmptr
== vmx
->nested
.current_vmptr
) {
5238 kunmap(vmx
->nested
.current_vmcs12_page
);
5239 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5240 vmx
->nested
.current_vmptr
= -1ull;
5241 vmx
->nested
.current_vmcs12
= NULL
;
5244 page
= nested_get_page(vcpu
, vmptr
);
5247 * For accurate processor emulation, VMCLEAR beyond available
5248 * physical memory should do nothing at all. However, it is
5249 * possible that a nested vmx bug, not a guest hypervisor bug,
5250 * resulted in this case, so let's shut down before doing any
5253 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5256 vmcs12
= kmap(page
);
5257 vmcs12
->launch_state
= 0;
5259 nested_release_page(page
);
5261 nested_free_vmcs02(vmx
, vmptr
);
5263 skip_emulated_instruction(vcpu
);
5264 nested_vmx_succeed(vcpu
);
5268 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
5270 /* Emulate the VMLAUNCH instruction */
5271 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
5273 return nested_vmx_run(vcpu
, true);
5276 /* Emulate the VMRESUME instruction */
5277 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
5280 return nested_vmx_run(vcpu
, false);
5283 enum vmcs_field_type
{
5284 VMCS_FIELD_TYPE_U16
= 0,
5285 VMCS_FIELD_TYPE_U64
= 1,
5286 VMCS_FIELD_TYPE_U32
= 2,
5287 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
5290 static inline int vmcs_field_type(unsigned long field
)
5292 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
5293 return VMCS_FIELD_TYPE_U32
;
5294 return (field
>> 13) & 0x3 ;
5297 static inline int vmcs_field_readonly(unsigned long field
)
5299 return (((field
>> 10) & 0x3) == 1);
5303 * Read a vmcs12 field. Since these can have varying lengths and we return
5304 * one type, we chose the biggest type (u64) and zero-extend the return value
5305 * to that size. Note that the caller, handle_vmread, might need to use only
5306 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5307 * 64-bit fields are to be returned).
5309 static inline bool vmcs12_read_any(struct kvm_vcpu
*vcpu
,
5310 unsigned long field
, u64
*ret
)
5312 short offset
= vmcs_field_to_offset(field
);
5318 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
5320 switch (vmcs_field_type(field
)) {
5321 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
5322 *ret
= *((natural_width
*)p
);
5324 case VMCS_FIELD_TYPE_U16
:
5327 case VMCS_FIELD_TYPE_U32
:
5330 case VMCS_FIELD_TYPE_U64
:
5334 return 0; /* can never happen. */
5339 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5340 * used before) all generate the same failure when it is missing.
5342 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
5344 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5345 if (vmx
->nested
.current_vmptr
== -1ull) {
5346 nested_vmx_failInvalid(vcpu
);
5347 skip_emulated_instruction(vcpu
);
5353 static int handle_vmread(struct kvm_vcpu
*vcpu
)
5355 unsigned long field
;
5357 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5358 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5361 if (!nested_vmx_check_permission(vcpu
) ||
5362 !nested_vmx_check_vmcs12(vcpu
))
5365 /* Decode instruction info and find the field to read */
5366 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
5367 /* Read the field, zero-extended to a u64 field_value */
5368 if (!vmcs12_read_any(vcpu
, field
, &field_value
)) {
5369 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5370 skip_emulated_instruction(vcpu
);
5374 * Now copy part of this value to register or memory, as requested.
5375 * Note that the number of bits actually copied is 32 or 64 depending
5376 * on the guest's mode (32 or 64 bit), not on the given field's length.
5378 if (vmx_instruction_info
& (1u << 10)) {
5379 kvm_register_write(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
5382 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5383 vmx_instruction_info
, &gva
))
5385 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5386 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
5387 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
5390 nested_vmx_succeed(vcpu
);
5391 skip_emulated_instruction(vcpu
);
5396 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
5398 unsigned long field
;
5400 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5401 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5404 /* The value to write might be 32 or 64 bits, depending on L1's long
5405 * mode, and eventually we need to write that into a field of several
5406 * possible lengths. The code below first zero-extends the value to 64
5407 * bit (field_value), and then copies only the approriate number of
5408 * bits into the vmcs12 field.
5410 u64 field_value
= 0;
5411 struct x86_exception e
;
5413 if (!nested_vmx_check_permission(vcpu
) ||
5414 !nested_vmx_check_vmcs12(vcpu
))
5417 if (vmx_instruction_info
& (1u << 10))
5418 field_value
= kvm_register_read(vcpu
,
5419 (((vmx_instruction_info
) >> 3) & 0xf));
5421 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5422 vmx_instruction_info
, &gva
))
5424 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
5425 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), &e
)) {
5426 kvm_inject_page_fault(vcpu
, &e
);
5432 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
5433 if (vmcs_field_readonly(field
)) {
5434 nested_vmx_failValid(vcpu
,
5435 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
5436 skip_emulated_instruction(vcpu
);
5440 offset
= vmcs_field_to_offset(field
);
5442 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5443 skip_emulated_instruction(vcpu
);
5446 p
= ((char *) get_vmcs12(vcpu
)) + offset
;
5448 switch (vmcs_field_type(field
)) {
5449 case VMCS_FIELD_TYPE_U16
:
5450 *(u16
*)p
= field_value
;
5452 case VMCS_FIELD_TYPE_U32
:
5453 *(u32
*)p
= field_value
;
5455 case VMCS_FIELD_TYPE_U64
:
5456 *(u64
*)p
= field_value
;
5458 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
5459 *(natural_width
*)p
= field_value
;
5462 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5463 skip_emulated_instruction(vcpu
);
5467 nested_vmx_succeed(vcpu
);
5468 skip_emulated_instruction(vcpu
);
5472 /* Emulate the VMPTRLD instruction */
5473 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
5475 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5478 struct x86_exception e
;
5480 if (!nested_vmx_check_permission(vcpu
))
5483 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5484 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5487 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5488 sizeof(vmptr
), &e
)) {
5489 kvm_inject_page_fault(vcpu
, &e
);
5493 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
5494 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
5495 skip_emulated_instruction(vcpu
);
5499 if (vmx
->nested
.current_vmptr
!= vmptr
) {
5500 struct vmcs12
*new_vmcs12
;
5502 page
= nested_get_page(vcpu
, vmptr
);
5504 nested_vmx_failInvalid(vcpu
);
5505 skip_emulated_instruction(vcpu
);
5508 new_vmcs12
= kmap(page
);
5509 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
5511 nested_release_page_clean(page
);
5512 nested_vmx_failValid(vcpu
,
5513 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5514 skip_emulated_instruction(vcpu
);
5517 if (vmx
->nested
.current_vmptr
!= -1ull) {
5518 kunmap(vmx
->nested
.current_vmcs12_page
);
5519 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5522 vmx
->nested
.current_vmptr
= vmptr
;
5523 vmx
->nested
.current_vmcs12
= new_vmcs12
;
5524 vmx
->nested
.current_vmcs12_page
= page
;
5527 nested_vmx_succeed(vcpu
);
5528 skip_emulated_instruction(vcpu
);
5532 /* Emulate the VMPTRST instruction */
5533 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
5535 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5536 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5538 struct x86_exception e
;
5540 if (!nested_vmx_check_permission(vcpu
))
5543 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5544 vmx_instruction_info
, &vmcs_gva
))
5546 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5547 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
5548 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
5550 kvm_inject_page_fault(vcpu
, &e
);
5553 nested_vmx_succeed(vcpu
);
5554 skip_emulated_instruction(vcpu
);
5559 * The exit handlers return 1 if the exit was handled fully and guest execution
5560 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5561 * to be done to userspace and return 0.
5563 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
5564 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
5565 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
5566 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
5567 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
5568 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
5569 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
5570 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
5571 [EXIT_REASON_CPUID
] = handle_cpuid
,
5572 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
5573 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
5574 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
5575 [EXIT_REASON_HLT
] = handle_halt
,
5576 [EXIT_REASON_INVD
] = handle_invd
,
5577 [EXIT_REASON_INVLPG
] = handle_invlpg
,
5578 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
5579 [EXIT_REASON_VMCALL
] = handle_vmcall
,
5580 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
5581 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
5582 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
5583 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
5584 [EXIT_REASON_VMREAD
] = handle_vmread
,
5585 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
5586 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
5587 [EXIT_REASON_VMOFF
] = handle_vmoff
,
5588 [EXIT_REASON_VMON
] = handle_vmon
,
5589 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
5590 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
5591 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
5592 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
5593 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
5594 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
5595 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
5596 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
5597 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
5598 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_invalid_op
,
5599 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_invalid_op
,
5602 static const int kvm_vmx_max_exit_handlers
=
5603 ARRAY_SIZE(kvm_vmx_exit_handlers
);
5606 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5607 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5608 * disinterest in the current event (read or write a specific MSR) by using an
5609 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5611 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
5612 struct vmcs12
*vmcs12
, u32 exit_reason
)
5614 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5617 if (!nested_cpu_has(get_vmcs12(vcpu
), CPU_BASED_USE_MSR_BITMAPS
))
5621 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5622 * for the four combinations of read/write and low/high MSR numbers.
5623 * First we need to figure out which of the four to use:
5625 bitmap
= vmcs12
->msr_bitmap
;
5626 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
5628 if (msr_index
>= 0xc0000000) {
5629 msr_index
-= 0xc0000000;
5633 /* Then read the msr_index'th bit from this bitmap: */
5634 if (msr_index
< 1024*8) {
5636 kvm_read_guest(vcpu
->kvm
, bitmap
+ msr_index
/8, &b
, 1);
5637 return 1 & (b
>> (msr_index
& 7));
5639 return 1; /* let L1 handle the wrong parameter */
5643 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5644 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5645 * intercept (via guest_host_mask etc.) the current event.
5647 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
5648 struct vmcs12
*vmcs12
)
5650 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5651 int cr
= exit_qualification
& 15;
5652 int reg
= (exit_qualification
>> 8) & 15;
5653 unsigned long val
= kvm_register_read(vcpu
, reg
);
5655 switch ((exit_qualification
>> 4) & 3) {
5656 case 0: /* mov to cr */
5659 if (vmcs12
->cr0_guest_host_mask
&
5660 (val
^ vmcs12
->cr0_read_shadow
))
5664 if ((vmcs12
->cr3_target_count
>= 1 &&
5665 vmcs12
->cr3_target_value0
== val
) ||
5666 (vmcs12
->cr3_target_count
>= 2 &&
5667 vmcs12
->cr3_target_value1
== val
) ||
5668 (vmcs12
->cr3_target_count
>= 3 &&
5669 vmcs12
->cr3_target_value2
== val
) ||
5670 (vmcs12
->cr3_target_count
>= 4 &&
5671 vmcs12
->cr3_target_value3
== val
))
5673 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
5677 if (vmcs12
->cr4_guest_host_mask
&
5678 (vmcs12
->cr4_read_shadow
^ val
))
5682 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
5688 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
5689 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
5692 case 1: /* mov from cr */
5695 if (vmcs12
->cpu_based_vm_exec_control
&
5696 CPU_BASED_CR3_STORE_EXITING
)
5700 if (vmcs12
->cpu_based_vm_exec_control
&
5701 CPU_BASED_CR8_STORE_EXITING
)
5708 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5709 * cr0. Other attempted changes are ignored, with no exit.
5711 if (vmcs12
->cr0_guest_host_mask
& 0xe &
5712 (val
^ vmcs12
->cr0_read_shadow
))
5714 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
5715 !(vmcs12
->cr0_read_shadow
& 0x1) &&
5724 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5725 * should handle it ourselves in L0 (and then continue L2). Only call this
5726 * when in is_guest_mode (L2).
5728 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
5730 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
5731 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
5732 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5733 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5735 if (vmx
->nested
.nested_run_pending
)
5738 if (unlikely(vmx
->fail
)) {
5739 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
5740 vmcs_read32(VM_INSTRUCTION_ERROR
));
5744 switch (exit_reason
) {
5745 case EXIT_REASON_EXCEPTION_NMI
:
5746 if (!is_exception(intr_info
))
5748 else if (is_page_fault(intr_info
))
5750 return vmcs12
->exception_bitmap
&
5751 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
5752 case EXIT_REASON_EXTERNAL_INTERRUPT
:
5754 case EXIT_REASON_TRIPLE_FAULT
:
5756 case EXIT_REASON_PENDING_INTERRUPT
:
5757 case EXIT_REASON_NMI_WINDOW
:
5759 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5760 * (aka Interrupt Window Exiting) only when L1 turned it on,
5761 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5762 * Same for NMI Window Exiting.
5765 case EXIT_REASON_TASK_SWITCH
:
5767 case EXIT_REASON_CPUID
:
5769 case EXIT_REASON_HLT
:
5770 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
5771 case EXIT_REASON_INVD
:
5773 case EXIT_REASON_INVLPG
:
5774 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
5775 case EXIT_REASON_RDPMC
:
5776 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
5777 case EXIT_REASON_RDTSC
:
5778 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
5779 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
5780 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
5781 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
5782 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
5783 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
5785 * VMX instructions trap unconditionally. This allows L1 to
5786 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5789 case EXIT_REASON_CR_ACCESS
:
5790 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
5791 case EXIT_REASON_DR_ACCESS
:
5792 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
5793 case EXIT_REASON_IO_INSTRUCTION
:
5794 /* TODO: support IO bitmaps */
5796 case EXIT_REASON_MSR_READ
:
5797 case EXIT_REASON_MSR_WRITE
:
5798 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
5799 case EXIT_REASON_INVALID_STATE
:
5801 case EXIT_REASON_MWAIT_INSTRUCTION
:
5802 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
5803 case EXIT_REASON_MONITOR_INSTRUCTION
:
5804 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
5805 case EXIT_REASON_PAUSE_INSTRUCTION
:
5806 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
5807 nested_cpu_has2(vmcs12
,
5808 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
5809 case EXIT_REASON_MCE_DURING_VMENTRY
:
5811 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
5813 case EXIT_REASON_APIC_ACCESS
:
5814 return nested_cpu_has2(vmcs12
,
5815 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
5816 case EXIT_REASON_EPT_VIOLATION
:
5817 case EXIT_REASON_EPT_MISCONFIG
:
5819 case EXIT_REASON_WBINVD
:
5820 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
5821 case EXIT_REASON_XSETBV
:
5828 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
5830 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
5831 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
5835 * The guest has exited. See if we can fix it or if we need userspace
5838 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
5840 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5841 u32 exit_reason
= vmx
->exit_reason
;
5842 u32 vectoring_info
= vmx
->idt_vectoring_info
;
5844 /* If guest state is invalid, start emulating */
5845 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
5846 return handle_invalid_guest_state(vcpu
);
5849 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5850 * we did not inject a still-pending event to L1 now because of
5851 * nested_run_pending, we need to re-enable this bit.
5853 if (vmx
->nested
.nested_run_pending
)
5854 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5856 if (!is_guest_mode(vcpu
) && (exit_reason
== EXIT_REASON_VMLAUNCH
||
5857 exit_reason
== EXIT_REASON_VMRESUME
))
5858 vmx
->nested
.nested_run_pending
= 1;
5860 vmx
->nested
.nested_run_pending
= 0;
5862 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
5863 nested_vmx_vmexit(vcpu
);
5867 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
5868 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
5869 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
5874 if (unlikely(vmx
->fail
)) {
5875 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
5876 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
5877 = vmcs_read32(VM_INSTRUCTION_ERROR
);
5881 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5882 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
5883 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
5884 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
5885 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
5886 "(0x%x) and exit reason is 0x%x\n",
5887 __func__
, vectoring_info
, exit_reason
);
5889 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
5890 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
5891 get_vmcs12(vcpu
), vcpu
)))) {
5892 if (vmx_interrupt_allowed(vcpu
)) {
5893 vmx
->soft_vnmi_blocked
= 0;
5894 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
5895 vcpu
->arch
.nmi_pending
) {
5897 * This CPU don't support us in finding the end of an
5898 * NMI-blocked window if the guest runs with IRQs
5899 * disabled. So we pull the trigger after 1 s of
5900 * futile waiting, but inform the user about this.
5902 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
5903 "state on VCPU %d after 1 s timeout\n",
5904 __func__
, vcpu
->vcpu_id
);
5905 vmx
->soft_vnmi_blocked
= 0;
5909 if (exit_reason
< kvm_vmx_max_exit_handlers
5910 && kvm_vmx_exit_handlers
[exit_reason
])
5911 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
5913 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5914 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
5919 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
5921 if (irr
== -1 || tpr
< irr
) {
5922 vmcs_write32(TPR_THRESHOLD
, 0);
5926 vmcs_write32(TPR_THRESHOLD
, irr
);
5929 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
5933 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
5934 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
5937 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
5938 exit_intr_info
= vmx
->exit_intr_info
;
5940 /* Handle machine checks before interrupts are enabled */
5941 if (is_machine_check(exit_intr_info
))
5942 kvm_machine_check();
5944 /* We need to handle NMIs before interrupts are enabled */
5945 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
5946 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
5947 kvm_before_handle_nmi(&vmx
->vcpu
);
5949 kvm_after_handle_nmi(&vmx
->vcpu
);
5953 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
5958 bool idtv_info_valid
;
5960 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
5962 if (cpu_has_virtual_nmis()) {
5963 if (vmx
->nmi_known_unmasked
)
5966 * Can't use vmx->exit_intr_info since we're not sure what
5967 * the exit reason is.
5969 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
5970 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
5971 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
5973 * SDM 3: 27.7.1.2 (September 2008)
5974 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5975 * a guest IRET fault.
5976 * SDM 3: 23.2.2 (September 2008)
5977 * Bit 12 is undefined in any of the following cases:
5978 * If the VM exit sets the valid bit in the IDT-vectoring
5979 * information field.
5980 * If the VM exit is due to a double fault.
5982 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
5983 vector
!= DF_VECTOR
&& !idtv_info_valid
)
5984 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5985 GUEST_INTR_STATE_NMI
);
5987 vmx
->nmi_known_unmasked
=
5988 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
5989 & GUEST_INTR_STATE_NMI
);
5990 } else if (unlikely(vmx
->soft_vnmi_blocked
))
5991 vmx
->vnmi_blocked_time
+=
5992 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
5995 static void __vmx_complete_interrupts(struct vcpu_vmx
*vmx
,
5996 u32 idt_vectoring_info
,
5997 int instr_len_field
,
5998 int error_code_field
)
6002 bool idtv_info_valid
;
6004 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
6006 vmx
->vcpu
.arch
.nmi_injected
= false;
6007 kvm_clear_exception_queue(&vmx
->vcpu
);
6008 kvm_clear_interrupt_queue(&vmx
->vcpu
);
6010 if (!idtv_info_valid
)
6013 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6015 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
6016 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
6019 case INTR_TYPE_NMI_INTR
:
6020 vmx
->vcpu
.arch
.nmi_injected
= true;
6022 * SDM 3: 27.7.1.2 (September 2008)
6023 * Clear bit "block by NMI" before VM entry if a NMI
6026 vmx_set_nmi_mask(&vmx
->vcpu
, false);
6028 case INTR_TYPE_SOFT_EXCEPTION
:
6029 vmx
->vcpu
.arch
.event_exit_inst_len
=
6030 vmcs_read32(instr_len_field
);
6032 case INTR_TYPE_HARD_EXCEPTION
:
6033 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
6034 u32 err
= vmcs_read32(error_code_field
);
6035 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
6037 kvm_queue_exception(&vmx
->vcpu
, vector
);
6039 case INTR_TYPE_SOFT_INTR
:
6040 vmx
->vcpu
.arch
.event_exit_inst_len
=
6041 vmcs_read32(instr_len_field
);
6043 case INTR_TYPE_EXT_INTR
:
6044 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
6045 type
== INTR_TYPE_SOFT_INTR
);
6052 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
6054 if (is_guest_mode(&vmx
->vcpu
))
6056 __vmx_complete_interrupts(vmx
, vmx
->idt_vectoring_info
,
6057 VM_EXIT_INSTRUCTION_LEN
,
6058 IDT_VECTORING_ERROR_CODE
);
6061 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
6063 if (is_guest_mode(vcpu
))
6065 __vmx_complete_interrupts(to_vmx(vcpu
),
6066 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
6067 VM_ENTRY_INSTRUCTION_LEN
,
6068 VM_ENTRY_EXCEPTION_ERROR_CODE
);
6070 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
6073 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
6076 struct perf_guest_switch_msr
*msrs
;
6078 msrs
= perf_guest_get_msrs(&nr_msrs
);
6083 for (i
= 0; i
< nr_msrs
; i
++)
6084 if (msrs
[i
].host
== msrs
[i
].guest
)
6085 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
6087 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
6091 #ifdef CONFIG_X86_64
6099 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
6101 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6103 if (is_guest_mode(vcpu
) && !vmx
->nested
.nested_run_pending
) {
6104 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6105 if (vmcs12
->idt_vectoring_info_field
&
6106 VECTORING_INFO_VALID_MASK
) {
6107 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
6108 vmcs12
->idt_vectoring_info_field
);
6109 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
6110 vmcs12
->vm_exit_instruction_len
);
6111 if (vmcs12
->idt_vectoring_info_field
&
6112 VECTORING_INFO_DELIVER_CODE_MASK
)
6113 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
6114 vmcs12
->idt_vectoring_error_code
);
6118 /* Record the guest's net vcpu time for enforced NMI injections. */
6119 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
6120 vmx
->entry_time
= ktime_get();
6122 /* Don't enter VMX if guest state is invalid, let the exit handler
6123 start emulation until we arrive back to a valid state */
6124 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
6127 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
6128 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
6129 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
6130 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
6132 /* When single-stepping over STI and MOV SS, we must clear the
6133 * corresponding interruptibility bits in the guest state. Otherwise
6134 * vmentry fails as it then expects bit 14 (BS) in pending debug
6135 * exceptions being set, but that's not correct for the guest debugging
6137 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6138 vmx_set_interrupt_shadow(vcpu
, 0);
6140 atomic_switch_perf_msrs(vmx
);
6142 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
6144 /* Store host registers */
6145 "push %%"R
"dx; push %%"R
"bp;"
6146 "push %%"R
"cx \n\t" /* placeholder for guest rcx */
6148 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
6150 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
6151 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
6153 /* Reload cr2 if changed */
6154 "mov %c[cr2](%0), %%"R
"ax \n\t"
6155 "mov %%cr2, %%"R
"dx \n\t"
6156 "cmp %%"R
"ax, %%"R
"dx \n\t"
6158 "mov %%"R
"ax, %%cr2 \n\t"
6160 /* Check if vmlaunch of vmresume is needed */
6161 "cmpl $0, %c[launched](%0) \n\t"
6162 /* Load guest registers. Don't clobber flags. */
6163 "mov %c[rax](%0), %%"R
"ax \n\t"
6164 "mov %c[rbx](%0), %%"R
"bx \n\t"
6165 "mov %c[rdx](%0), %%"R
"dx \n\t"
6166 "mov %c[rsi](%0), %%"R
"si \n\t"
6167 "mov %c[rdi](%0), %%"R
"di \n\t"
6168 "mov %c[rbp](%0), %%"R
"bp \n\t"
6169 #ifdef CONFIG_X86_64
6170 "mov %c[r8](%0), %%r8 \n\t"
6171 "mov %c[r9](%0), %%r9 \n\t"
6172 "mov %c[r10](%0), %%r10 \n\t"
6173 "mov %c[r11](%0), %%r11 \n\t"
6174 "mov %c[r12](%0), %%r12 \n\t"
6175 "mov %c[r13](%0), %%r13 \n\t"
6176 "mov %c[r14](%0), %%r14 \n\t"
6177 "mov %c[r15](%0), %%r15 \n\t"
6179 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
6181 /* Enter guest mode */
6182 "jne .Llaunched \n\t"
6183 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
6184 "jmp .Lkvm_vmx_return \n\t"
6185 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
6186 ".Lkvm_vmx_return: "
6187 /* Save guest registers, load host registers, keep flags */
6188 "mov %0, %c[wordsize](%%"R
"sp) \n\t"
6190 "mov %%"R
"ax, %c[rax](%0) \n\t"
6191 "mov %%"R
"bx, %c[rbx](%0) \n\t"
6192 "pop"Q
" %c[rcx](%0) \n\t"
6193 "mov %%"R
"dx, %c[rdx](%0) \n\t"
6194 "mov %%"R
"si, %c[rsi](%0) \n\t"
6195 "mov %%"R
"di, %c[rdi](%0) \n\t"
6196 "mov %%"R
"bp, %c[rbp](%0) \n\t"
6197 #ifdef CONFIG_X86_64
6198 "mov %%r8, %c[r8](%0) \n\t"
6199 "mov %%r9, %c[r9](%0) \n\t"
6200 "mov %%r10, %c[r10](%0) \n\t"
6201 "mov %%r11, %c[r11](%0) \n\t"
6202 "mov %%r12, %c[r12](%0) \n\t"
6203 "mov %%r13, %c[r13](%0) \n\t"
6204 "mov %%r14, %c[r14](%0) \n\t"
6205 "mov %%r15, %c[r15](%0) \n\t"
6207 "mov %%cr2, %%"R
"ax \n\t"
6208 "mov %%"R
"ax, %c[cr2](%0) \n\t"
6210 "pop %%"R
"bp; pop %%"R
"dx \n\t"
6211 "setbe %c[fail](%0) \n\t"
6212 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
6213 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
6214 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
6215 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
6216 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
6217 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
6218 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
6219 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
6220 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
6221 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
6222 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
6223 #ifdef CONFIG_X86_64
6224 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
6225 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
6226 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
6227 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
6228 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
6229 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
6230 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
6231 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
6233 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
6234 [wordsize
]"i"(sizeof(ulong
))
6236 , R
"ax", R
"bx", R
"di", R
"si"
6237 #ifdef CONFIG_X86_64
6238 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6242 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
6243 | (1 << VCPU_EXREG_RFLAGS
)
6244 | (1 << VCPU_EXREG_CPL
)
6245 | (1 << VCPU_EXREG_PDPTR
)
6246 | (1 << VCPU_EXREG_SEGMENTS
)
6247 | (1 << VCPU_EXREG_CR3
));
6248 vcpu
->arch
.regs_dirty
= 0;
6250 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
6252 if (is_guest_mode(vcpu
)) {
6253 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6254 vmcs12
->idt_vectoring_info_field
= vmx
->idt_vectoring_info
;
6255 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
6256 vmcs12
->idt_vectoring_error_code
=
6257 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6258 vmcs12
->vm_exit_instruction_len
=
6259 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6263 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
6264 vmx
->loaded_vmcs
->launched
= 1;
6266 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
6267 trace_kvm_exit(vmx
->exit_reason
, vcpu
, KVM_ISA_VMX
);
6269 vmx_complete_atomic_exit(vmx
);
6270 vmx_recover_nmi_blocking(vmx
);
6271 vmx_complete_interrupts(vmx
);
6277 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
6279 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6283 free_loaded_vmcs(vmx
->loaded_vmcs
);
6284 kfree(vmx
->guest_msrs
);
6285 kvm_vcpu_uninit(vcpu
);
6286 kmem_cache_free(kvm_vcpu_cache
, vmx
);
6289 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
6292 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
6296 return ERR_PTR(-ENOMEM
);
6300 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
6304 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
6306 if (!vmx
->guest_msrs
) {
6310 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
6311 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
6312 if (!vmx
->loaded_vmcs
->vmcs
)
6315 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
6316 loaded_vmcs_init(vmx
->loaded_vmcs
);
6321 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
6322 vmx
->vcpu
.cpu
= cpu
;
6323 err
= vmx_vcpu_setup(vmx
);
6324 vmx_vcpu_put(&vmx
->vcpu
);
6328 if (vm_need_virtualize_apic_accesses(kvm
))
6329 err
= alloc_apic_access_page(kvm
);
6334 if (!kvm
->arch
.ept_identity_map_addr
)
6335 kvm
->arch
.ept_identity_map_addr
=
6336 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
6338 if (alloc_identity_pagetable(kvm
) != 0)
6340 if (!init_rmode_identity_map(kvm
))
6344 vmx
->nested
.current_vmptr
= -1ull;
6345 vmx
->nested
.current_vmcs12
= NULL
;
6350 free_vmcs(vmx
->loaded_vmcs
->vmcs
);
6352 kfree(vmx
->guest_msrs
);
6354 kvm_vcpu_uninit(&vmx
->vcpu
);
6357 kmem_cache_free(kvm_vcpu_cache
, vmx
);
6358 return ERR_PTR(err
);
6361 static void __init
vmx_check_processor_compat(void *rtn
)
6363 struct vmcs_config vmcs_conf
;
6366 if (setup_vmcs_config(&vmcs_conf
) < 0)
6368 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
6369 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
6370 smp_processor_id());
6375 static int get_ept_level(void)
6377 return VMX_EPT_DEFAULT_GAW
+ 1;
6380 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
6384 /* For VT-d and EPT combination
6385 * 1. MMIO: always map as UC
6387 * a. VT-d without snooping control feature: can't guarantee the
6388 * result, try to trust guest.
6389 * b. VT-d with snooping control feature: snooping control feature of
6390 * VT-d engine can guarantee the cache correctness. Just set it
6391 * to WB to keep consistent with host. So the same as item 3.
6392 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6393 * consistent with host MTRR
6396 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
6397 else if (vcpu
->kvm
->arch
.iommu_domain
&&
6398 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
6399 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
6400 VMX_EPT_MT_EPTE_SHIFT
;
6402 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
6408 static int vmx_get_lpage_level(void)
6410 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
6411 return PT_DIRECTORY_LEVEL
;
6413 /* For shadow and EPT supported 1GB page */
6414 return PT_PDPE_LEVEL
;
6417 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
6419 struct kvm_cpuid_entry2
*best
;
6420 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6423 vmx
->rdtscp_enabled
= false;
6424 if (vmx_rdtscp_supported()) {
6425 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6426 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
6427 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
6428 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
6429 vmx
->rdtscp_enabled
= true;
6431 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
6432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
6439 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
6441 if (func
== 1 && nested
)
6442 entry
->ecx
|= bit(X86_FEATURE_VMX
);
6446 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6447 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6448 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6449 * guest in a way that will both be appropriate to L1's requests, and our
6450 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6451 * function also has additional necessary side-effects, like setting various
6452 * vcpu->arch fields.
6454 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6456 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6459 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
6460 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
6461 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
6462 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
6463 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
6464 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
6465 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
6466 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
6467 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
6468 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
6469 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
6470 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
6471 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
6472 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
6473 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
6474 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
6475 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
6476 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
6477 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
6478 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
6479 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
6480 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
6481 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
6482 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
6483 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
6484 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
6485 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
6486 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
6487 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
6488 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
6489 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
6490 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
6491 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
6492 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
6493 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
6494 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
6496 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
6497 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
6498 vmcs12
->vm_entry_intr_info_field
);
6499 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
6500 vmcs12
->vm_entry_exception_error_code
);
6501 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
6502 vmcs12
->vm_entry_instruction_len
);
6503 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
6504 vmcs12
->guest_interruptibility_info
);
6505 vmcs_write32(GUEST_ACTIVITY_STATE
, vmcs12
->guest_activity_state
);
6506 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
6507 vmcs_writel(GUEST_DR7
, vmcs12
->guest_dr7
);
6508 vmcs_writel(GUEST_RFLAGS
, vmcs12
->guest_rflags
);
6509 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
6510 vmcs12
->guest_pending_dbg_exceptions
);
6511 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
6512 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
6514 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6516 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
6517 (vmcs_config
.pin_based_exec_ctrl
|
6518 vmcs12
->pin_based_vm_exec_control
));
6521 * Whether page-faults are trapped is determined by a combination of
6522 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6523 * If enable_ept, L0 doesn't care about page faults and we should
6524 * set all of these to L1's desires. However, if !enable_ept, L0 does
6525 * care about (at least some) page faults, and because it is not easy
6526 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6527 * to exit on each and every L2 page fault. This is done by setting
6528 * MASK=MATCH=0 and (see below) EB.PF=1.
6529 * Note that below we don't need special code to set EB.PF beyond the
6530 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6531 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6532 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6534 * A problem with this approach (when !enable_ept) is that L1 may be
6535 * injected with more page faults than it asked for. This could have
6536 * caused problems, but in practice existing hypervisors don't care.
6537 * To fix this, we will need to emulate the PFEC checking (on the L1
6538 * page tables), using walk_addr(), when injecting PFs to L1.
6540 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
6541 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
6542 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
6543 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
6545 if (cpu_has_secondary_exec_ctrls()) {
6546 u32 exec_control
= vmx_secondary_exec_control(vmx
);
6547 if (!vmx
->rdtscp_enabled
)
6548 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
6549 /* Take the following fields only from vmcs12 */
6550 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6551 if (nested_cpu_has(vmcs12
,
6552 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
6553 exec_control
|= vmcs12
->secondary_vm_exec_control
;
6555 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
6557 * Translate L1 physical address to host physical
6558 * address for vmcs02. Keep the page pinned, so this
6559 * physical address remains valid. We keep a reference
6560 * to it so we can release it later.
6562 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
6563 nested_release_page(vmx
->nested
.apic_access_page
);
6564 vmx
->nested
.apic_access_page
=
6565 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
6567 * If translation failed, no matter: This feature asks
6568 * to exit when accessing the given address, and if it
6569 * can never be accessed, this feature won't do
6572 if (!vmx
->nested
.apic_access_page
)
6574 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6576 vmcs_write64(APIC_ACCESS_ADDR
,
6577 page_to_phys(vmx
->nested
.apic_access_page
));
6580 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6585 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6586 * Some constant fields are set here by vmx_set_constant_host_state().
6587 * Other fields are different per CPU, and will be set later when
6588 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6590 vmx_set_constant_host_state();
6593 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6594 * entry, but only if the current (host) sp changed from the value
6595 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6596 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6597 * here we just force the write to happen on entry.
6601 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
6602 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
6603 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
6604 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
6605 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
6607 * Merging of IO and MSR bitmaps not currently supported.
6608 * Rather, exit every time.
6610 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
6611 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
6612 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
6614 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
6616 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6617 * bitwise-or of what L1 wants to trap for L2, and what we want to
6618 * trap. Note that CR0.TS also needs updating - we do this later.
6620 update_exception_bitmap(vcpu
);
6621 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
6622 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
6624 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6625 vmcs_write32(VM_EXIT_CONTROLS
,
6626 vmcs12
->vm_exit_controls
| vmcs_config
.vmexit_ctrl
);
6627 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs12
->vm_entry_controls
|
6628 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
6630 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)
6631 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
6632 else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
6633 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
6636 set_cr4_guest_host_mask(vmx
);
6638 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
6639 vmcs_write64(TSC_OFFSET
,
6640 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
6642 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
6646 * Trivially support vpid by letting L2s share their parent
6647 * L1's vpid. TODO: move to a more elaborate solution, giving
6648 * each L2 its own vpid and exposing the vpid feature to L1.
6650 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
6651 vmx_flush_tlb(vcpu
);
6654 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
6655 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
6656 if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
6657 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
6659 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
6660 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6661 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
6664 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6665 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6666 * The CR0_READ_SHADOW is what L2 should have expected to read given
6667 * the specifications by L1; It's not enough to take
6668 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6669 * have more bits than L1 expected.
6671 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
6672 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
6674 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
6675 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
6677 /* shadow page tables on either EPT or shadow page tables */
6678 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
6679 kvm_mmu_reset_context(vcpu
);
6681 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
6682 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
6686 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6687 * for running an L2 nested guest.
6689 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
6691 struct vmcs12
*vmcs12
;
6692 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6694 struct loaded_vmcs
*vmcs02
;
6696 if (!nested_vmx_check_permission(vcpu
) ||
6697 !nested_vmx_check_vmcs12(vcpu
))
6700 skip_emulated_instruction(vcpu
);
6701 vmcs12
= get_vmcs12(vcpu
);
6704 * The nested entry process starts with enforcing various prerequisites
6705 * on vmcs12 as required by the Intel SDM, and act appropriately when
6706 * they fail: As the SDM explains, some conditions should cause the
6707 * instruction to fail, while others will cause the instruction to seem
6708 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6709 * To speed up the normal (success) code path, we should avoid checking
6710 * for misconfigurations which will anyway be caught by the processor
6711 * when using the merged vmcs02.
6713 if (vmcs12
->launch_state
== launch
) {
6714 nested_vmx_failValid(vcpu
,
6715 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6716 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
6720 if ((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_MSR_BITMAPS
) &&
6721 !IS_ALIGNED(vmcs12
->msr_bitmap
, PAGE_SIZE
)) {
6722 /*TODO: Also verify bits beyond physical address width are 0*/
6723 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6727 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
6728 !IS_ALIGNED(vmcs12
->apic_access_addr
, PAGE_SIZE
)) {
6729 /*TODO: Also verify bits beyond physical address width are 0*/
6730 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6734 if (vmcs12
->vm_entry_msr_load_count
> 0 ||
6735 vmcs12
->vm_exit_msr_load_count
> 0 ||
6736 vmcs12
->vm_exit_msr_store_count
> 0) {
6737 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6739 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6743 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
6744 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
) ||
6745 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
6746 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
) ||
6747 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
6748 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
) ||
6749 !vmx_control_verify(vmcs12
->vm_exit_controls
,
6750 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
) ||
6751 !vmx_control_verify(vmcs12
->vm_entry_controls
,
6752 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
))
6754 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6758 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
6759 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
6760 nested_vmx_failValid(vcpu
,
6761 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
6765 if (((vmcs12
->guest_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
6766 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
6767 nested_vmx_entry_failure(vcpu
, vmcs12
,
6768 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
6771 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
6772 nested_vmx_entry_failure(vcpu
, vmcs12
,
6773 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
6778 * We're finally done with prerequisite checking, and can start with
6782 vmcs02
= nested_get_current_vmcs02(vmx
);
6786 enter_guest_mode(vcpu
);
6788 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
6791 vmx
->loaded_vmcs
= vmcs02
;
6793 vmx_vcpu_load(vcpu
, cpu
);
6797 vmcs12
->launch_state
= 1;
6799 prepare_vmcs02(vcpu
, vmcs12
);
6802 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6803 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6804 * returned as far as L1 is concerned. It will only return (and set
6805 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6811 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6812 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6813 * This function returns the new value we should put in vmcs12.guest_cr0.
6814 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6815 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6816 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6817 * didn't trap the bit, because if L1 did, so would L0).
6818 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6819 * been modified by L2, and L1 knows it. So just leave the old value of
6820 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6821 * isn't relevant, because if L0 traps this bit it can set it to anything.
6822 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6823 * changed these bits, and therefore they need to be updated, but L0
6824 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6825 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6827 static inline unsigned long
6828 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6831 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
6832 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
6833 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
6834 vcpu
->arch
.cr0_guest_owned_bits
));
6837 static inline unsigned long
6838 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6841 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
6842 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
6843 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
6844 vcpu
->arch
.cr4_guest_owned_bits
));
6848 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6849 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6850 * and this function updates it to reflect the changes to the guest state while
6851 * L2 was running (and perhaps made some exits which were handled directly by L0
6852 * without going back to L1), and to reflect the exit reason.
6853 * Note that we do not have to copy here all VMCS fields, just those that
6854 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6855 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6856 * which already writes to vmcs12 directly.
6858 void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6860 /* update guest state fields: */
6861 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
6862 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
6864 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
6865 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6866 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
6867 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
6869 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
6870 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
6871 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
6872 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
6873 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
6874 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
6875 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
6876 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
6877 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
6878 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
6879 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
6880 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
6881 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
6882 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
6883 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
6884 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
6885 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
6886 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
6887 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
6888 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
6889 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
6890 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
6891 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
6892 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
6893 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
6894 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
6895 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
6896 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
6897 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
6898 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
6899 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
6900 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
6901 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
6902 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
6903 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
6904 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
6906 vmcs12
->guest_activity_state
= vmcs_read32(GUEST_ACTIVITY_STATE
);
6907 vmcs12
->guest_interruptibility_info
=
6908 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
6909 vmcs12
->guest_pending_dbg_exceptions
=
6910 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
6912 /* TODO: These cannot have changed unless we have MSR bitmaps and
6913 * the relevant bit asks not to trap the change */
6914 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
6915 if (vmcs12
->vm_entry_controls
& VM_EXIT_SAVE_IA32_PAT
)
6916 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
6917 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
6918 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
6919 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
6921 /* update exit information fields: */
6923 vmcs12
->vm_exit_reason
= vmcs_read32(VM_EXIT_REASON
);
6924 vmcs12
->exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6926 vmcs12
->vm_exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6927 vmcs12
->vm_exit_intr_error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
6928 vmcs12
->idt_vectoring_info_field
=
6929 vmcs_read32(IDT_VECTORING_INFO_FIELD
);
6930 vmcs12
->idt_vectoring_error_code
=
6931 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6932 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6933 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6935 /* clear vm-entry fields which are to be cleared on exit */
6936 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
6937 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
6941 * A part of what we need to when the nested L2 guest exits and we want to
6942 * run its L1 parent, is to reset L1's guest state to the host state specified
6944 * This function is to be called not only on normal nested exit, but also on
6945 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6946 * Failures During or After Loading Guest State").
6947 * This function should be called when the active VMCS is L1's (vmcs01).
6949 void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6951 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
6952 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
6953 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
6954 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
6956 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
6957 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
6959 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
6960 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
6962 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6963 * actually changed, because it depends on the current state of
6964 * fpu_active (which may have changed).
6965 * Note that vmx_set_cr0 refers to efer set above.
6967 kvm_set_cr0(vcpu
, vmcs12
->host_cr0
);
6969 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6970 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6971 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6973 update_exception_bitmap(vcpu
);
6974 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
6975 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
6978 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6979 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6981 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
6982 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
6984 /* shadow page tables on either EPT or shadow page tables */
6985 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
6986 kvm_mmu_reset_context(vcpu
);
6990 * Trivially support vpid by letting L2s share their parent
6991 * L1's vpid. TODO: move to a more elaborate solution, giving
6992 * each L2 its own vpid and exposing the vpid feature to L1.
6994 vmx_flush_tlb(vcpu
);
6998 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
6999 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
7000 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
7001 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
7002 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
7003 vmcs_writel(GUEST_TR_BASE
, vmcs12
->host_tr_base
);
7004 vmcs_writel(GUEST_GS_BASE
, vmcs12
->host_gs_base
);
7005 vmcs_writel(GUEST_FS_BASE
, vmcs12
->host_fs_base
);
7006 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->host_es_selector
);
7007 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->host_cs_selector
);
7008 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->host_ss_selector
);
7009 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->host_ds_selector
);
7010 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->host_fs_selector
);
7011 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->host_gs_selector
);
7012 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->host_tr_selector
);
7014 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
)
7015 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
7016 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
7017 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
7018 vmcs12
->host_ia32_perf_global_ctrl
);
7022 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7023 * and modify vmcs12 to make it see what it would expect to see there if
7024 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7026 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
)
7028 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7030 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7032 leave_guest_mode(vcpu
);
7033 prepare_vmcs12(vcpu
, vmcs12
);
7036 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7038 vmx_vcpu_load(vcpu
, cpu
);
7042 /* if no vmcs02 cache requested, remove the one we used */
7043 if (VMCS02_POOL_SIZE
== 0)
7044 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
7046 load_vmcs12_host_state(vcpu
, vmcs12
);
7048 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7049 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
7051 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7054 /* Unpin physical memory we referred to in vmcs02 */
7055 if (vmx
->nested
.apic_access_page
) {
7056 nested_release_page(vmx
->nested
.apic_access_page
);
7057 vmx
->nested
.apic_access_page
= 0;
7061 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7062 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7063 * success or failure flag accordingly.
7065 if (unlikely(vmx
->fail
)) {
7067 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
7069 nested_vmx_succeed(vcpu
);
7073 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7074 * 23.7 "VM-entry failures during or after loading guest state" (this also
7075 * lists the acceptable exit-reason and exit-qualification parameters).
7076 * It should only be called before L2 actually succeeded to run, and when
7077 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7079 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
7080 struct vmcs12
*vmcs12
,
7081 u32 reason
, unsigned long qualification
)
7083 load_vmcs12_host_state(vcpu
, vmcs12
);
7084 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
7085 vmcs12
->exit_qualification
= qualification
;
7086 nested_vmx_succeed(vcpu
);
7089 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
7090 struct x86_instruction_info
*info
,
7091 enum x86_intercept_stage stage
)
7093 return X86EMUL_CONTINUE
;
7096 static struct kvm_x86_ops vmx_x86_ops
= {
7097 .cpu_has_kvm_support
= cpu_has_kvm_support
,
7098 .disabled_by_bios
= vmx_disabled_by_bios
,
7099 .hardware_setup
= hardware_setup
,
7100 .hardware_unsetup
= hardware_unsetup
,
7101 .check_processor_compatibility
= vmx_check_processor_compat
,
7102 .hardware_enable
= hardware_enable
,
7103 .hardware_disable
= hardware_disable
,
7104 .cpu_has_accelerated_tpr
= report_flexpriority
,
7106 .vcpu_create
= vmx_create_vcpu
,
7107 .vcpu_free
= vmx_free_vcpu
,
7108 .vcpu_reset
= vmx_vcpu_reset
,
7110 .prepare_guest_switch
= vmx_save_host_state
,
7111 .vcpu_load
= vmx_vcpu_load
,
7112 .vcpu_put
= vmx_vcpu_put
,
7114 .set_guest_debug
= set_guest_debug
,
7115 .get_msr
= vmx_get_msr
,
7116 .set_msr
= vmx_set_msr
,
7117 .get_segment_base
= vmx_get_segment_base
,
7118 .get_segment
= vmx_get_segment
,
7119 .set_segment
= vmx_set_segment
,
7120 .get_cpl
= vmx_get_cpl
,
7121 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
7122 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
7123 .decache_cr3
= vmx_decache_cr3
,
7124 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
7125 .set_cr0
= vmx_set_cr0
,
7126 .set_cr3
= vmx_set_cr3
,
7127 .set_cr4
= vmx_set_cr4
,
7128 .set_efer
= vmx_set_efer
,
7129 .get_idt
= vmx_get_idt
,
7130 .set_idt
= vmx_set_idt
,
7131 .get_gdt
= vmx_get_gdt
,
7132 .set_gdt
= vmx_set_gdt
,
7133 .set_dr7
= vmx_set_dr7
,
7134 .cache_reg
= vmx_cache_reg
,
7135 .get_rflags
= vmx_get_rflags
,
7136 .set_rflags
= vmx_set_rflags
,
7137 .fpu_activate
= vmx_fpu_activate
,
7138 .fpu_deactivate
= vmx_fpu_deactivate
,
7140 .tlb_flush
= vmx_flush_tlb
,
7142 .run
= vmx_vcpu_run
,
7143 .handle_exit
= vmx_handle_exit
,
7144 .skip_emulated_instruction
= skip_emulated_instruction
,
7145 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
7146 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
7147 .patch_hypercall
= vmx_patch_hypercall
,
7148 .set_irq
= vmx_inject_irq
,
7149 .set_nmi
= vmx_inject_nmi
,
7150 .queue_exception
= vmx_queue_exception
,
7151 .cancel_injection
= vmx_cancel_injection
,
7152 .interrupt_allowed
= vmx_interrupt_allowed
,
7153 .nmi_allowed
= vmx_nmi_allowed
,
7154 .get_nmi_mask
= vmx_get_nmi_mask
,
7155 .set_nmi_mask
= vmx_set_nmi_mask
,
7156 .enable_nmi_window
= enable_nmi_window
,
7157 .enable_irq_window
= enable_irq_window
,
7158 .update_cr8_intercept
= update_cr8_intercept
,
7160 .set_tss_addr
= vmx_set_tss_addr
,
7161 .get_tdp_level
= get_ept_level
,
7162 .get_mt_mask
= vmx_get_mt_mask
,
7164 .get_exit_info
= vmx_get_exit_info
,
7166 .get_lpage_level
= vmx_get_lpage_level
,
7168 .cpuid_update
= vmx_cpuid_update
,
7170 .rdtscp_supported
= vmx_rdtscp_supported
,
7172 .set_supported_cpuid
= vmx_set_supported_cpuid
,
7174 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
7176 .set_tsc_khz
= vmx_set_tsc_khz
,
7177 .write_tsc_offset
= vmx_write_tsc_offset
,
7178 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
7179 .compute_tsc_offset
= vmx_compute_tsc_offset
,
7180 .read_l1_tsc
= vmx_read_l1_tsc
,
7182 .set_tdp_cr3
= vmx_set_cr3
,
7184 .check_intercept
= vmx_check_intercept
,
7187 static int __init
vmx_init(void)
7191 rdmsrl_safe(MSR_EFER
, &host_efer
);
7193 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
7194 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
7196 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7197 if (!vmx_io_bitmap_a
)
7200 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7201 if (!vmx_io_bitmap_b
) {
7206 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7207 if (!vmx_msr_bitmap_legacy
) {
7212 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7213 if (!vmx_msr_bitmap_longmode
) {
7219 * Allow direct access to the PC debug port (it is often used for I/O
7220 * delays, but the vmexits simply slow things down).
7222 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
7223 clear_bit(0x80, vmx_io_bitmap_a
);
7225 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
7227 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
7228 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
7230 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
7232 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
7233 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
7237 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
7238 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
7239 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
7240 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
7241 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
7242 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
7245 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7246 VMX_EPT_EXECUTABLE_MASK
);
7247 ept_set_mmio_spte_mask();
7255 free_page((unsigned long)vmx_msr_bitmap_longmode
);
7257 free_page((unsigned long)vmx_msr_bitmap_legacy
);
7259 free_page((unsigned long)vmx_io_bitmap_b
);
7261 free_page((unsigned long)vmx_io_bitmap_a
);
7265 static void __exit
vmx_exit(void)
7267 free_page((unsigned long)vmx_msr_bitmap_legacy
);
7268 free_page((unsigned long)vmx_msr_bitmap_longmode
);
7269 free_page((unsigned long)vmx_io_bitmap_b
);
7270 free_page((unsigned long)vmx_io_bitmap_a
);
7275 module_init(vmx_init
)
7276 module_exit(vmx_exit
)