sysfs: Complain bitterly about attempts to remove files from nonexistent directories.
[zen-stable.git] / arch / x86 / kvm / vmx.c
blobd29216c462b3ce56e33c3bf0ecf7595258b9705a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
34 #include "x86.h"
36 #include <asm/io.h>
37 #include <asm/desc.h>
38 #include <asm/vmx.h>
39 #include <asm/virtext.h>
40 #include <asm/mce.h>
41 #include <asm/i387.h>
42 #include <asm/xcr.h>
43 #include <asm/perf_event.h>
45 #include "trace.h"
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
54 static bool __read_mostly enable_vpid = 1;
55 module_param_named(vpid, enable_vpid, bool, 0444);
57 static bool __read_mostly flexpriority_enabled = 1;
58 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60 static bool __read_mostly enable_ept = 1;
61 module_param_named(ept, enable_ept, bool, S_IRUGO);
63 static bool __read_mostly enable_unrestricted_guest = 1;
64 module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
67 static bool __read_mostly emulate_invalid_guest_state = 0;
68 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70 static bool __read_mostly vmm_exclusive = 1;
71 module_param(vmm_exclusive, bool, S_IRUGO);
73 static bool __read_mostly yield_on_hlt = 1;
74 module_param(yield_on_hlt, bool, S_IRUGO);
76 static bool __read_mostly fasteoi = 1;
77 module_param(fasteoi, bool, S_IRUGO);
80 * If nested=1, nested virtualization is supported, i.e., guests may use
81 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
82 * use VMX instructions.
84 static bool __read_mostly nested = 0;
85 module_param(nested, bool, S_IRUGO);
87 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
88 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
89 #define KVM_GUEST_CR0_MASK \
90 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
91 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
92 (X86_CR0_WP | X86_CR0_NE)
93 #define KVM_VM_CR0_ALWAYS_ON \
94 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95 #define KVM_CR4_GUEST_OWNED_BITS \
96 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
97 | X86_CR4_OSXMMEXCPT)
99 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
100 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
102 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
105 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
106 * ple_gap: upper bound on the amount of time between two successive
107 * executions of PAUSE in a loop. Also indicate if ple enabled.
108 * According to test, this time is usually smaller than 128 cycles.
109 * ple_window: upper bound on the amount of time a guest is allowed to execute
110 * in a PAUSE loop. Tests indicate that most spinlocks are held for
111 * less than 2^12 cycles
112 * Time is measured based on a counter that runs at the same rate as the TSC,
113 * refer SDM volume 3b section 21.6.13 & 22.1.3.
115 #define KVM_VMX_DEFAULT_PLE_GAP 128
116 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
117 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
118 module_param(ple_gap, int, S_IRUGO);
120 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
121 module_param(ple_window, int, S_IRUGO);
123 #define NR_AUTOLOAD_MSRS 8
124 #define VMCS02_POOL_SIZE 1
126 struct vmcs {
127 u32 revision_id;
128 u32 abort;
129 char data[0];
133 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
134 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
135 * loaded on this CPU (so we can clear them if the CPU goes down).
137 struct loaded_vmcs {
138 struct vmcs *vmcs;
139 int cpu;
140 int launched;
141 struct list_head loaded_vmcss_on_cpu_link;
144 struct shared_msr_entry {
145 unsigned index;
146 u64 data;
147 u64 mask;
151 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
152 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
153 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
154 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
155 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
156 * More than one of these structures may exist, if L1 runs multiple L2 guests.
157 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
158 * underlying hardware which will be used to run L2.
159 * This structure is packed to ensure that its layout is identical across
160 * machines (necessary for live migration).
161 * If there are changes in this struct, VMCS12_REVISION must be changed.
163 typedef u64 natural_width;
164 struct __packed vmcs12 {
165 /* According to the Intel spec, a VMCS region must start with the
166 * following two fields. Then follow implementation-specific data.
168 u32 revision_id;
169 u32 abort;
171 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
172 u32 padding[7]; /* room for future expansion */
174 u64 io_bitmap_a;
175 u64 io_bitmap_b;
176 u64 msr_bitmap;
177 u64 vm_exit_msr_store_addr;
178 u64 vm_exit_msr_load_addr;
179 u64 vm_entry_msr_load_addr;
180 u64 tsc_offset;
181 u64 virtual_apic_page_addr;
182 u64 apic_access_addr;
183 u64 ept_pointer;
184 u64 guest_physical_address;
185 u64 vmcs_link_pointer;
186 u64 guest_ia32_debugctl;
187 u64 guest_ia32_pat;
188 u64 guest_ia32_efer;
189 u64 guest_ia32_perf_global_ctrl;
190 u64 guest_pdptr0;
191 u64 guest_pdptr1;
192 u64 guest_pdptr2;
193 u64 guest_pdptr3;
194 u64 host_ia32_pat;
195 u64 host_ia32_efer;
196 u64 host_ia32_perf_global_ctrl;
197 u64 padding64[8]; /* room for future expansion */
199 * To allow migration of L1 (complete with its L2 guests) between
200 * machines of different natural widths (32 or 64 bit), we cannot have
201 * unsigned long fields with no explict size. We use u64 (aliased
202 * natural_width) instead. Luckily, x86 is little-endian.
204 natural_width cr0_guest_host_mask;
205 natural_width cr4_guest_host_mask;
206 natural_width cr0_read_shadow;
207 natural_width cr4_read_shadow;
208 natural_width cr3_target_value0;
209 natural_width cr3_target_value1;
210 natural_width cr3_target_value2;
211 natural_width cr3_target_value3;
212 natural_width exit_qualification;
213 natural_width guest_linear_address;
214 natural_width guest_cr0;
215 natural_width guest_cr3;
216 natural_width guest_cr4;
217 natural_width guest_es_base;
218 natural_width guest_cs_base;
219 natural_width guest_ss_base;
220 natural_width guest_ds_base;
221 natural_width guest_fs_base;
222 natural_width guest_gs_base;
223 natural_width guest_ldtr_base;
224 natural_width guest_tr_base;
225 natural_width guest_gdtr_base;
226 natural_width guest_idtr_base;
227 natural_width guest_dr7;
228 natural_width guest_rsp;
229 natural_width guest_rip;
230 natural_width guest_rflags;
231 natural_width guest_pending_dbg_exceptions;
232 natural_width guest_sysenter_esp;
233 natural_width guest_sysenter_eip;
234 natural_width host_cr0;
235 natural_width host_cr3;
236 natural_width host_cr4;
237 natural_width host_fs_base;
238 natural_width host_gs_base;
239 natural_width host_tr_base;
240 natural_width host_gdtr_base;
241 natural_width host_idtr_base;
242 natural_width host_ia32_sysenter_esp;
243 natural_width host_ia32_sysenter_eip;
244 natural_width host_rsp;
245 natural_width host_rip;
246 natural_width paddingl[8]; /* room for future expansion */
247 u32 pin_based_vm_exec_control;
248 u32 cpu_based_vm_exec_control;
249 u32 exception_bitmap;
250 u32 page_fault_error_code_mask;
251 u32 page_fault_error_code_match;
252 u32 cr3_target_count;
253 u32 vm_exit_controls;
254 u32 vm_exit_msr_store_count;
255 u32 vm_exit_msr_load_count;
256 u32 vm_entry_controls;
257 u32 vm_entry_msr_load_count;
258 u32 vm_entry_intr_info_field;
259 u32 vm_entry_exception_error_code;
260 u32 vm_entry_instruction_len;
261 u32 tpr_threshold;
262 u32 secondary_vm_exec_control;
263 u32 vm_instruction_error;
264 u32 vm_exit_reason;
265 u32 vm_exit_intr_info;
266 u32 vm_exit_intr_error_code;
267 u32 idt_vectoring_info_field;
268 u32 idt_vectoring_error_code;
269 u32 vm_exit_instruction_len;
270 u32 vmx_instruction_info;
271 u32 guest_es_limit;
272 u32 guest_cs_limit;
273 u32 guest_ss_limit;
274 u32 guest_ds_limit;
275 u32 guest_fs_limit;
276 u32 guest_gs_limit;
277 u32 guest_ldtr_limit;
278 u32 guest_tr_limit;
279 u32 guest_gdtr_limit;
280 u32 guest_idtr_limit;
281 u32 guest_es_ar_bytes;
282 u32 guest_cs_ar_bytes;
283 u32 guest_ss_ar_bytes;
284 u32 guest_ds_ar_bytes;
285 u32 guest_fs_ar_bytes;
286 u32 guest_gs_ar_bytes;
287 u32 guest_ldtr_ar_bytes;
288 u32 guest_tr_ar_bytes;
289 u32 guest_interruptibility_info;
290 u32 guest_activity_state;
291 u32 guest_sysenter_cs;
292 u32 host_ia32_sysenter_cs;
293 u32 padding32[8]; /* room for future expansion */
294 u16 virtual_processor_id;
295 u16 guest_es_selector;
296 u16 guest_cs_selector;
297 u16 guest_ss_selector;
298 u16 guest_ds_selector;
299 u16 guest_fs_selector;
300 u16 guest_gs_selector;
301 u16 guest_ldtr_selector;
302 u16 guest_tr_selector;
303 u16 host_es_selector;
304 u16 host_cs_selector;
305 u16 host_ss_selector;
306 u16 host_ds_selector;
307 u16 host_fs_selector;
308 u16 host_gs_selector;
309 u16 host_tr_selector;
313 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
314 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
315 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
317 #define VMCS12_REVISION 0x11e57ed0
320 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
321 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
322 * current implementation, 4K are reserved to avoid future complications.
324 #define VMCS12_SIZE 0x1000
326 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
327 struct vmcs02_list {
328 struct list_head list;
329 gpa_t vmptr;
330 struct loaded_vmcs vmcs02;
334 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
335 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
337 struct nested_vmx {
338 /* Has the level1 guest done vmxon? */
339 bool vmxon;
341 /* The guest-physical address of the current VMCS L1 keeps for L2 */
342 gpa_t current_vmptr;
343 /* The host-usable pointer to the above */
344 struct page *current_vmcs12_page;
345 struct vmcs12 *current_vmcs12;
347 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
348 struct list_head vmcs02_pool;
349 int vmcs02_num;
350 u64 vmcs01_tsc_offset;
351 /* L2 must run next, and mustn't decide to exit to L1. */
352 bool nested_run_pending;
354 * Guest pages referred to in vmcs02 with host-physical pointers, so
355 * we must keep them pinned while L2 runs.
357 struct page *apic_access_page;
360 struct vcpu_vmx {
361 struct kvm_vcpu vcpu;
362 unsigned long host_rsp;
363 u8 fail;
364 u8 cpl;
365 bool nmi_known_unmasked;
366 u32 exit_intr_info;
367 u32 idt_vectoring_info;
368 ulong rflags;
369 struct shared_msr_entry *guest_msrs;
370 int nmsrs;
371 int save_nmsrs;
372 #ifdef CONFIG_X86_64
373 u64 msr_host_kernel_gs_base;
374 u64 msr_guest_kernel_gs_base;
375 #endif
377 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
378 * non-nested (L1) guest, it always points to vmcs01. For a nested
379 * guest (L2), it points to a different VMCS.
381 struct loaded_vmcs vmcs01;
382 struct loaded_vmcs *loaded_vmcs;
383 bool __launched; /* temporary, used in vmx_vcpu_run */
384 struct msr_autoload {
385 unsigned nr;
386 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
387 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
388 } msr_autoload;
389 struct {
390 int loaded;
391 u16 fs_sel, gs_sel, ldt_sel;
392 int gs_ldt_reload_needed;
393 int fs_reload_needed;
394 } host_state;
395 struct {
396 int vm86_active;
397 ulong save_rflags;
398 struct kvm_save_segment {
399 u16 selector;
400 unsigned long base;
401 u32 limit;
402 u32 ar;
403 } tr, es, ds, fs, gs;
404 } rmode;
405 struct {
406 u32 bitmask; /* 4 bits per segment (1 bit per field) */
407 struct kvm_save_segment seg[8];
408 } segment_cache;
409 int vpid;
410 bool emulation_required;
412 /* Support for vnmi-less CPUs */
413 int soft_vnmi_blocked;
414 ktime_t entry_time;
415 s64 vnmi_blocked_time;
416 u32 exit_reason;
418 bool rdtscp_enabled;
420 /* Support for a guest hypervisor (nested VMX) */
421 struct nested_vmx nested;
424 enum segment_cache_field {
425 SEG_FIELD_SEL = 0,
426 SEG_FIELD_BASE = 1,
427 SEG_FIELD_LIMIT = 2,
428 SEG_FIELD_AR = 3,
430 SEG_FIELD_NR = 4
433 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
435 return container_of(vcpu, struct vcpu_vmx, vcpu);
438 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
439 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
440 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
441 [number##_HIGH] = VMCS12_OFFSET(name)+4
443 static unsigned short vmcs_field_to_offset_table[] = {
444 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
445 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
446 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
447 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
448 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
449 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
450 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
451 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
452 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
453 FIELD(HOST_ES_SELECTOR, host_es_selector),
454 FIELD(HOST_CS_SELECTOR, host_cs_selector),
455 FIELD(HOST_SS_SELECTOR, host_ss_selector),
456 FIELD(HOST_DS_SELECTOR, host_ds_selector),
457 FIELD(HOST_FS_SELECTOR, host_fs_selector),
458 FIELD(HOST_GS_SELECTOR, host_gs_selector),
459 FIELD(HOST_TR_SELECTOR, host_tr_selector),
460 FIELD64(IO_BITMAP_A, io_bitmap_a),
461 FIELD64(IO_BITMAP_B, io_bitmap_b),
462 FIELD64(MSR_BITMAP, msr_bitmap),
463 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
464 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
465 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
466 FIELD64(TSC_OFFSET, tsc_offset),
467 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
468 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
469 FIELD64(EPT_POINTER, ept_pointer),
470 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
471 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
472 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
473 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
474 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
475 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
476 FIELD64(GUEST_PDPTR0, guest_pdptr0),
477 FIELD64(GUEST_PDPTR1, guest_pdptr1),
478 FIELD64(GUEST_PDPTR2, guest_pdptr2),
479 FIELD64(GUEST_PDPTR3, guest_pdptr3),
480 FIELD64(HOST_IA32_PAT, host_ia32_pat),
481 FIELD64(HOST_IA32_EFER, host_ia32_efer),
482 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
483 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
484 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
485 FIELD(EXCEPTION_BITMAP, exception_bitmap),
486 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
487 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
488 FIELD(CR3_TARGET_COUNT, cr3_target_count),
489 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
490 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
491 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
492 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
493 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
494 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
495 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
496 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
497 FIELD(TPR_THRESHOLD, tpr_threshold),
498 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
499 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
500 FIELD(VM_EXIT_REASON, vm_exit_reason),
501 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
502 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
503 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
504 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
505 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
506 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
507 FIELD(GUEST_ES_LIMIT, guest_es_limit),
508 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
509 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
510 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
511 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
512 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
513 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
514 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
515 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
516 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
517 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
518 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
519 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
520 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
521 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
522 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
523 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
524 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
525 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
526 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
527 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
528 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
529 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
530 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
531 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
532 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
533 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
534 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
535 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
536 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
537 FIELD(EXIT_QUALIFICATION, exit_qualification),
538 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
539 FIELD(GUEST_CR0, guest_cr0),
540 FIELD(GUEST_CR3, guest_cr3),
541 FIELD(GUEST_CR4, guest_cr4),
542 FIELD(GUEST_ES_BASE, guest_es_base),
543 FIELD(GUEST_CS_BASE, guest_cs_base),
544 FIELD(GUEST_SS_BASE, guest_ss_base),
545 FIELD(GUEST_DS_BASE, guest_ds_base),
546 FIELD(GUEST_FS_BASE, guest_fs_base),
547 FIELD(GUEST_GS_BASE, guest_gs_base),
548 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
549 FIELD(GUEST_TR_BASE, guest_tr_base),
550 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
551 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
552 FIELD(GUEST_DR7, guest_dr7),
553 FIELD(GUEST_RSP, guest_rsp),
554 FIELD(GUEST_RIP, guest_rip),
555 FIELD(GUEST_RFLAGS, guest_rflags),
556 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
557 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
558 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
559 FIELD(HOST_CR0, host_cr0),
560 FIELD(HOST_CR3, host_cr3),
561 FIELD(HOST_CR4, host_cr4),
562 FIELD(HOST_FS_BASE, host_fs_base),
563 FIELD(HOST_GS_BASE, host_gs_base),
564 FIELD(HOST_TR_BASE, host_tr_base),
565 FIELD(HOST_GDTR_BASE, host_gdtr_base),
566 FIELD(HOST_IDTR_BASE, host_idtr_base),
567 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
568 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
569 FIELD(HOST_RSP, host_rsp),
570 FIELD(HOST_RIP, host_rip),
572 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
574 static inline short vmcs_field_to_offset(unsigned long field)
576 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
577 return -1;
578 return vmcs_field_to_offset_table[field];
581 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
583 return to_vmx(vcpu)->nested.current_vmcs12;
586 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
588 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
589 if (is_error_page(page)) {
590 kvm_release_page_clean(page);
591 return NULL;
593 return page;
596 static void nested_release_page(struct page *page)
598 kvm_release_page_dirty(page);
601 static void nested_release_page_clean(struct page *page)
603 kvm_release_page_clean(page);
606 static u64 construct_eptp(unsigned long root_hpa);
607 static void kvm_cpu_vmxon(u64 addr);
608 static void kvm_cpu_vmxoff(void);
609 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
610 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
612 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
613 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
615 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
616 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
618 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
619 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
621 static unsigned long *vmx_io_bitmap_a;
622 static unsigned long *vmx_io_bitmap_b;
623 static unsigned long *vmx_msr_bitmap_legacy;
624 static unsigned long *vmx_msr_bitmap_longmode;
626 static bool cpu_has_load_ia32_efer;
627 static bool cpu_has_load_perf_global_ctrl;
629 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
630 static DEFINE_SPINLOCK(vmx_vpid_lock);
632 static struct vmcs_config {
633 int size;
634 int order;
635 u32 revision_id;
636 u32 pin_based_exec_ctrl;
637 u32 cpu_based_exec_ctrl;
638 u32 cpu_based_2nd_exec_ctrl;
639 u32 vmexit_ctrl;
640 u32 vmentry_ctrl;
641 } vmcs_config;
643 static struct vmx_capability {
644 u32 ept;
645 u32 vpid;
646 } vmx_capability;
648 #define VMX_SEGMENT_FIELD(seg) \
649 [VCPU_SREG_##seg] = { \
650 .selector = GUEST_##seg##_SELECTOR, \
651 .base = GUEST_##seg##_BASE, \
652 .limit = GUEST_##seg##_LIMIT, \
653 .ar_bytes = GUEST_##seg##_AR_BYTES, \
656 static struct kvm_vmx_segment_field {
657 unsigned selector;
658 unsigned base;
659 unsigned limit;
660 unsigned ar_bytes;
661 } kvm_vmx_segment_fields[] = {
662 VMX_SEGMENT_FIELD(CS),
663 VMX_SEGMENT_FIELD(DS),
664 VMX_SEGMENT_FIELD(ES),
665 VMX_SEGMENT_FIELD(FS),
666 VMX_SEGMENT_FIELD(GS),
667 VMX_SEGMENT_FIELD(SS),
668 VMX_SEGMENT_FIELD(TR),
669 VMX_SEGMENT_FIELD(LDTR),
672 static u64 host_efer;
674 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
677 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
678 * away by decrementing the array size.
680 static const u32 vmx_msr_index[] = {
681 #ifdef CONFIG_X86_64
682 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
683 #endif
684 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
686 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
688 static inline bool is_page_fault(u32 intr_info)
690 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
691 INTR_INFO_VALID_MASK)) ==
692 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
695 static inline bool is_no_device(u32 intr_info)
697 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
698 INTR_INFO_VALID_MASK)) ==
699 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
702 static inline bool is_invalid_opcode(u32 intr_info)
704 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 INTR_INFO_VALID_MASK)) ==
706 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
709 static inline bool is_external_interrupt(u32 intr_info)
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
712 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
715 static inline bool is_machine_check(u32 intr_info)
717 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
718 INTR_INFO_VALID_MASK)) ==
719 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
722 static inline bool cpu_has_vmx_msr_bitmap(void)
724 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
727 static inline bool cpu_has_vmx_tpr_shadow(void)
729 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
732 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
734 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
737 static inline bool cpu_has_secondary_exec_ctrls(void)
739 return vmcs_config.cpu_based_exec_ctrl &
740 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
743 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
745 return vmcs_config.cpu_based_2nd_exec_ctrl &
746 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
749 static inline bool cpu_has_vmx_flexpriority(void)
751 return cpu_has_vmx_tpr_shadow() &&
752 cpu_has_vmx_virtualize_apic_accesses();
755 static inline bool cpu_has_vmx_ept_execute_only(void)
757 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
760 static inline bool cpu_has_vmx_eptp_uncacheable(void)
762 return vmx_capability.ept & VMX_EPTP_UC_BIT;
765 static inline bool cpu_has_vmx_eptp_writeback(void)
767 return vmx_capability.ept & VMX_EPTP_WB_BIT;
770 static inline bool cpu_has_vmx_ept_2m_page(void)
772 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
775 static inline bool cpu_has_vmx_ept_1g_page(void)
777 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
780 static inline bool cpu_has_vmx_ept_4levels(void)
782 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
785 static inline bool cpu_has_vmx_invept_individual_addr(void)
787 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
790 static inline bool cpu_has_vmx_invept_context(void)
792 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
795 static inline bool cpu_has_vmx_invept_global(void)
797 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
800 static inline bool cpu_has_vmx_invvpid_single(void)
802 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
805 static inline bool cpu_has_vmx_invvpid_global(void)
807 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
810 static inline bool cpu_has_vmx_ept(void)
812 return vmcs_config.cpu_based_2nd_exec_ctrl &
813 SECONDARY_EXEC_ENABLE_EPT;
816 static inline bool cpu_has_vmx_unrestricted_guest(void)
818 return vmcs_config.cpu_based_2nd_exec_ctrl &
819 SECONDARY_EXEC_UNRESTRICTED_GUEST;
822 static inline bool cpu_has_vmx_ple(void)
824 return vmcs_config.cpu_based_2nd_exec_ctrl &
825 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
828 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
830 return flexpriority_enabled && irqchip_in_kernel(kvm);
833 static inline bool cpu_has_vmx_vpid(void)
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_ENABLE_VPID;
839 static inline bool cpu_has_vmx_rdtscp(void)
841 return vmcs_config.cpu_based_2nd_exec_ctrl &
842 SECONDARY_EXEC_RDTSCP;
845 static inline bool cpu_has_virtual_nmis(void)
847 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
850 static inline bool cpu_has_vmx_wbinvd_exit(void)
852 return vmcs_config.cpu_based_2nd_exec_ctrl &
853 SECONDARY_EXEC_WBINVD_EXITING;
856 static inline bool report_flexpriority(void)
858 return flexpriority_enabled;
861 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
863 return vmcs12->cpu_based_vm_exec_control & bit;
866 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
868 return (vmcs12->cpu_based_vm_exec_control &
869 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
870 (vmcs12->secondary_vm_exec_control & bit);
873 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
874 struct kvm_vcpu *vcpu)
876 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
879 static inline bool is_exception(u32 intr_info)
881 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
882 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
885 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
886 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
887 struct vmcs12 *vmcs12,
888 u32 reason, unsigned long qualification);
890 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
892 int i;
894 for (i = 0; i < vmx->nmsrs; ++i)
895 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
896 return i;
897 return -1;
900 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
902 struct {
903 u64 vpid : 16;
904 u64 rsvd : 48;
905 u64 gva;
906 } operand = { vpid, 0, gva };
908 asm volatile (__ex(ASM_VMX_INVVPID)
909 /* CF==1 or ZF==1 --> rc = -1 */
910 "; ja 1f ; ud2 ; 1:"
911 : : "a"(&operand), "c"(ext) : "cc", "memory");
914 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
916 struct {
917 u64 eptp, gpa;
918 } operand = {eptp, gpa};
920 asm volatile (__ex(ASM_VMX_INVEPT)
921 /* CF==1 or ZF==1 --> rc = -1 */
922 "; ja 1f ; ud2 ; 1:\n"
923 : : "a" (&operand), "c" (ext) : "cc", "memory");
926 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
928 int i;
930 i = __find_msr_index(vmx, msr);
931 if (i >= 0)
932 return &vmx->guest_msrs[i];
933 return NULL;
936 static void vmcs_clear(struct vmcs *vmcs)
938 u64 phys_addr = __pa(vmcs);
939 u8 error;
941 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
942 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
943 : "cc", "memory");
944 if (error)
945 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
946 vmcs, phys_addr);
949 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
951 vmcs_clear(loaded_vmcs->vmcs);
952 loaded_vmcs->cpu = -1;
953 loaded_vmcs->launched = 0;
956 static void vmcs_load(struct vmcs *vmcs)
958 u64 phys_addr = __pa(vmcs);
959 u8 error;
961 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
962 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
963 : "cc", "memory");
964 if (error)
965 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
966 vmcs, phys_addr);
969 static void __loaded_vmcs_clear(void *arg)
971 struct loaded_vmcs *loaded_vmcs = arg;
972 int cpu = raw_smp_processor_id();
974 if (loaded_vmcs->cpu != cpu)
975 return; /* vcpu migration can race with cpu offline */
976 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
977 per_cpu(current_vmcs, cpu) = NULL;
978 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
979 loaded_vmcs_init(loaded_vmcs);
982 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
984 if (loaded_vmcs->cpu != -1)
985 smp_call_function_single(
986 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
989 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
991 if (vmx->vpid == 0)
992 return;
994 if (cpu_has_vmx_invvpid_single())
995 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
998 static inline void vpid_sync_vcpu_global(void)
1000 if (cpu_has_vmx_invvpid_global())
1001 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1004 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1006 if (cpu_has_vmx_invvpid_single())
1007 vpid_sync_vcpu_single(vmx);
1008 else
1009 vpid_sync_vcpu_global();
1012 static inline void ept_sync_global(void)
1014 if (cpu_has_vmx_invept_global())
1015 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1018 static inline void ept_sync_context(u64 eptp)
1020 if (enable_ept) {
1021 if (cpu_has_vmx_invept_context())
1022 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1023 else
1024 ept_sync_global();
1028 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1030 if (enable_ept) {
1031 if (cpu_has_vmx_invept_individual_addr())
1032 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1033 eptp, gpa);
1034 else
1035 ept_sync_context(eptp);
1039 static __always_inline unsigned long vmcs_readl(unsigned long field)
1041 unsigned long value;
1043 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1044 : "=a"(value) : "d"(field) : "cc");
1045 return value;
1048 static __always_inline u16 vmcs_read16(unsigned long field)
1050 return vmcs_readl(field);
1053 static __always_inline u32 vmcs_read32(unsigned long field)
1055 return vmcs_readl(field);
1058 static __always_inline u64 vmcs_read64(unsigned long field)
1060 #ifdef CONFIG_X86_64
1061 return vmcs_readl(field);
1062 #else
1063 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1064 #endif
1067 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1069 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1070 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1071 dump_stack();
1074 static void vmcs_writel(unsigned long field, unsigned long value)
1076 u8 error;
1078 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1079 : "=q"(error) : "a"(value), "d"(field) : "cc");
1080 if (unlikely(error))
1081 vmwrite_error(field, value);
1084 static void vmcs_write16(unsigned long field, u16 value)
1086 vmcs_writel(field, value);
1089 static void vmcs_write32(unsigned long field, u32 value)
1091 vmcs_writel(field, value);
1094 static void vmcs_write64(unsigned long field, u64 value)
1096 vmcs_writel(field, value);
1097 #ifndef CONFIG_X86_64
1098 asm volatile ("");
1099 vmcs_writel(field+1, value >> 32);
1100 #endif
1103 static void vmcs_clear_bits(unsigned long field, u32 mask)
1105 vmcs_writel(field, vmcs_readl(field) & ~mask);
1108 static void vmcs_set_bits(unsigned long field, u32 mask)
1110 vmcs_writel(field, vmcs_readl(field) | mask);
1113 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1115 vmx->segment_cache.bitmask = 0;
1118 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1119 unsigned field)
1121 bool ret;
1122 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1124 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1125 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1126 vmx->segment_cache.bitmask = 0;
1128 ret = vmx->segment_cache.bitmask & mask;
1129 vmx->segment_cache.bitmask |= mask;
1130 return ret;
1133 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1135 u16 *p = &vmx->segment_cache.seg[seg].selector;
1137 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1138 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1139 return *p;
1142 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1144 ulong *p = &vmx->segment_cache.seg[seg].base;
1146 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1147 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1148 return *p;
1151 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1153 u32 *p = &vmx->segment_cache.seg[seg].limit;
1155 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1156 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1157 return *p;
1160 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1162 u32 *p = &vmx->segment_cache.seg[seg].ar;
1164 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1165 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1166 return *p;
1169 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1171 u32 eb;
1173 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1174 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1175 if ((vcpu->guest_debug &
1176 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1177 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1178 eb |= 1u << BP_VECTOR;
1179 if (to_vmx(vcpu)->rmode.vm86_active)
1180 eb = ~0;
1181 if (enable_ept)
1182 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1183 if (vcpu->fpu_active)
1184 eb &= ~(1u << NM_VECTOR);
1186 /* When we are running a nested L2 guest and L1 specified for it a
1187 * certain exception bitmap, we must trap the same exceptions and pass
1188 * them to L1. When running L2, we will only handle the exceptions
1189 * specified above if L1 did not want them.
1191 if (is_guest_mode(vcpu))
1192 eb |= get_vmcs12(vcpu)->exception_bitmap;
1194 vmcs_write32(EXCEPTION_BITMAP, eb);
1197 static void clear_atomic_switch_msr_special(unsigned long entry,
1198 unsigned long exit)
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1204 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1206 unsigned i;
1207 struct msr_autoload *m = &vmx->msr_autoload;
1209 switch (msr) {
1210 case MSR_EFER:
1211 if (cpu_has_load_ia32_efer) {
1212 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1213 VM_EXIT_LOAD_IA32_EFER);
1214 return;
1216 break;
1217 case MSR_CORE_PERF_GLOBAL_CTRL:
1218 if (cpu_has_load_perf_global_ctrl) {
1219 clear_atomic_switch_msr_special(
1220 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1221 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1222 return;
1224 break;
1227 for (i = 0; i < m->nr; ++i)
1228 if (m->guest[i].index == msr)
1229 break;
1231 if (i == m->nr)
1232 return;
1233 --m->nr;
1234 m->guest[i] = m->guest[m->nr];
1235 m->host[i] = m->host[m->nr];
1236 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1237 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1240 static void add_atomic_switch_msr_special(unsigned long entry,
1241 unsigned long exit, unsigned long guest_val_vmcs,
1242 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1244 vmcs_write64(guest_val_vmcs, guest_val);
1245 vmcs_write64(host_val_vmcs, host_val);
1246 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1247 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1250 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1251 u64 guest_val, u64 host_val)
1253 unsigned i;
1254 struct msr_autoload *m = &vmx->msr_autoload;
1256 switch (msr) {
1257 case MSR_EFER:
1258 if (cpu_has_load_ia32_efer) {
1259 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1260 VM_EXIT_LOAD_IA32_EFER,
1261 GUEST_IA32_EFER,
1262 HOST_IA32_EFER,
1263 guest_val, host_val);
1264 return;
1266 break;
1267 case MSR_CORE_PERF_GLOBAL_CTRL:
1268 if (cpu_has_load_perf_global_ctrl) {
1269 add_atomic_switch_msr_special(
1270 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1272 GUEST_IA32_PERF_GLOBAL_CTRL,
1273 HOST_IA32_PERF_GLOBAL_CTRL,
1274 guest_val, host_val);
1275 return;
1277 break;
1280 for (i = 0; i < m->nr; ++i)
1281 if (m->guest[i].index == msr)
1282 break;
1284 if (i == NR_AUTOLOAD_MSRS) {
1285 printk_once(KERN_WARNING"Not enough mst switch entries. "
1286 "Can't add msr %x\n", msr);
1287 return;
1288 } else if (i == m->nr) {
1289 ++m->nr;
1290 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1291 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1294 m->guest[i].index = msr;
1295 m->guest[i].value = guest_val;
1296 m->host[i].index = msr;
1297 m->host[i].value = host_val;
1300 static void reload_tss(void)
1303 * VT restores TR but not its size. Useless.
1305 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1306 struct desc_struct *descs;
1308 descs = (void *)gdt->address;
1309 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1310 load_TR_desc();
1313 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1315 u64 guest_efer;
1316 u64 ignore_bits;
1318 guest_efer = vmx->vcpu.arch.efer;
1321 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1322 * outside long mode
1324 ignore_bits = EFER_NX | EFER_SCE;
1325 #ifdef CONFIG_X86_64
1326 ignore_bits |= EFER_LMA | EFER_LME;
1327 /* SCE is meaningful only in long mode on Intel */
1328 if (guest_efer & EFER_LMA)
1329 ignore_bits &= ~(u64)EFER_SCE;
1330 #endif
1331 guest_efer &= ~ignore_bits;
1332 guest_efer |= host_efer & ignore_bits;
1333 vmx->guest_msrs[efer_offset].data = guest_efer;
1334 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1336 clear_atomic_switch_msr(vmx, MSR_EFER);
1337 /* On ept, can't emulate nx, and must switch nx atomically */
1338 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1339 guest_efer = vmx->vcpu.arch.efer;
1340 if (!(guest_efer & EFER_LMA))
1341 guest_efer &= ~EFER_LME;
1342 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1343 return false;
1346 return true;
1349 static unsigned long segment_base(u16 selector)
1351 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1352 struct desc_struct *d;
1353 unsigned long table_base;
1354 unsigned long v;
1356 if (!(selector & ~3))
1357 return 0;
1359 table_base = gdt->address;
1361 if (selector & 4) { /* from ldt */
1362 u16 ldt_selector = kvm_read_ldt();
1364 if (!(ldt_selector & ~3))
1365 return 0;
1367 table_base = segment_base(ldt_selector);
1369 d = (struct desc_struct *)(table_base + (selector & ~7));
1370 v = get_desc_base(d);
1371 #ifdef CONFIG_X86_64
1372 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1373 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1374 #endif
1375 return v;
1378 static inline unsigned long kvm_read_tr_base(void)
1380 u16 tr;
1381 asm("str %0" : "=g"(tr));
1382 return segment_base(tr);
1385 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1387 struct vcpu_vmx *vmx = to_vmx(vcpu);
1388 int i;
1390 if (vmx->host_state.loaded)
1391 return;
1393 vmx->host_state.loaded = 1;
1395 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1396 * allow segment selectors with cpl > 0 or ti == 1.
1398 vmx->host_state.ldt_sel = kvm_read_ldt();
1399 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1400 savesegment(fs, vmx->host_state.fs_sel);
1401 if (!(vmx->host_state.fs_sel & 7)) {
1402 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1403 vmx->host_state.fs_reload_needed = 0;
1404 } else {
1405 vmcs_write16(HOST_FS_SELECTOR, 0);
1406 vmx->host_state.fs_reload_needed = 1;
1408 savesegment(gs, vmx->host_state.gs_sel);
1409 if (!(vmx->host_state.gs_sel & 7))
1410 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1411 else {
1412 vmcs_write16(HOST_GS_SELECTOR, 0);
1413 vmx->host_state.gs_ldt_reload_needed = 1;
1416 #ifdef CONFIG_X86_64
1417 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1418 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1419 #else
1420 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1421 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1422 #endif
1424 #ifdef CONFIG_X86_64
1425 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1426 if (is_long_mode(&vmx->vcpu))
1427 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1428 #endif
1429 for (i = 0; i < vmx->save_nmsrs; ++i)
1430 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1431 vmx->guest_msrs[i].data,
1432 vmx->guest_msrs[i].mask);
1435 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1437 if (!vmx->host_state.loaded)
1438 return;
1440 ++vmx->vcpu.stat.host_state_reload;
1441 vmx->host_state.loaded = 0;
1442 #ifdef CONFIG_X86_64
1443 if (is_long_mode(&vmx->vcpu))
1444 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1445 #endif
1446 if (vmx->host_state.gs_ldt_reload_needed) {
1447 kvm_load_ldt(vmx->host_state.ldt_sel);
1448 #ifdef CONFIG_X86_64
1449 load_gs_index(vmx->host_state.gs_sel);
1450 #else
1451 loadsegment(gs, vmx->host_state.gs_sel);
1452 #endif
1454 if (vmx->host_state.fs_reload_needed)
1455 loadsegment(fs, vmx->host_state.fs_sel);
1456 reload_tss();
1457 #ifdef CONFIG_X86_64
1458 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1459 #endif
1460 if (current_thread_info()->status & TS_USEDFPU)
1461 clts();
1462 load_gdt(&__get_cpu_var(host_gdt));
1465 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1467 preempt_disable();
1468 __vmx_load_host_state(vmx);
1469 preempt_enable();
1473 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474 * vcpu mutex is already taken.
1476 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
1479 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1481 if (!vmm_exclusive)
1482 kvm_cpu_vmxon(phys_addr);
1483 else if (vmx->loaded_vmcs->cpu != cpu)
1484 loaded_vmcs_clear(vmx->loaded_vmcs);
1486 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1487 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1488 vmcs_load(vmx->loaded_vmcs->vmcs);
1491 if (vmx->loaded_vmcs->cpu != cpu) {
1492 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1493 unsigned long sysenter_esp;
1495 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1496 local_irq_disable();
1497 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1498 &per_cpu(loaded_vmcss_on_cpu, cpu));
1499 local_irq_enable();
1502 * Linux uses per-cpu TSS and GDT, so set these when switching
1503 * processors.
1505 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1506 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1508 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1509 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1510 vmx->loaded_vmcs->cpu = cpu;
1514 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1516 __vmx_load_host_state(to_vmx(vcpu));
1517 if (!vmm_exclusive) {
1518 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1519 vcpu->cpu = -1;
1520 kvm_cpu_vmxoff();
1524 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1526 ulong cr0;
1528 if (vcpu->fpu_active)
1529 return;
1530 vcpu->fpu_active = 1;
1531 cr0 = vmcs_readl(GUEST_CR0);
1532 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1533 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1534 vmcs_writel(GUEST_CR0, cr0);
1535 update_exception_bitmap(vcpu);
1536 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1537 if (is_guest_mode(vcpu))
1538 vcpu->arch.cr0_guest_owned_bits &=
1539 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1540 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1543 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1546 * Return the cr0 value that a nested guest would read. This is a combination
1547 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1548 * its hypervisor (cr0_read_shadow).
1550 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1552 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1553 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1555 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1557 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1558 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1561 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1563 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1564 * set this *before* calling this function.
1566 vmx_decache_cr0_guest_bits(vcpu);
1567 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1568 update_exception_bitmap(vcpu);
1569 vcpu->arch.cr0_guest_owned_bits = 0;
1570 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1571 if (is_guest_mode(vcpu)) {
1573 * L1's specified read shadow might not contain the TS bit,
1574 * so now that we turned on shadowing of this bit, we need to
1575 * set this bit of the shadow. Like in nested_vmx_run we need
1576 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1577 * up-to-date here because we just decached cr0.TS (and we'll
1578 * only update vmcs12->guest_cr0 on nested exit).
1580 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1581 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1582 (vcpu->arch.cr0 & X86_CR0_TS);
1583 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1584 } else
1585 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1588 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1590 unsigned long rflags, save_rflags;
1592 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1593 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1594 rflags = vmcs_readl(GUEST_RFLAGS);
1595 if (to_vmx(vcpu)->rmode.vm86_active) {
1596 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1597 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1598 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1600 to_vmx(vcpu)->rflags = rflags;
1602 return to_vmx(vcpu)->rflags;
1605 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1607 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1608 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1609 to_vmx(vcpu)->rflags = rflags;
1610 if (to_vmx(vcpu)->rmode.vm86_active) {
1611 to_vmx(vcpu)->rmode.save_rflags = rflags;
1612 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1614 vmcs_writel(GUEST_RFLAGS, rflags);
1617 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1619 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1620 int ret = 0;
1622 if (interruptibility & GUEST_INTR_STATE_STI)
1623 ret |= KVM_X86_SHADOW_INT_STI;
1624 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1625 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1627 return ret & mask;
1630 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1632 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1633 u32 interruptibility = interruptibility_old;
1635 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1637 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1638 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1639 else if (mask & KVM_X86_SHADOW_INT_STI)
1640 interruptibility |= GUEST_INTR_STATE_STI;
1642 if ((interruptibility != interruptibility_old))
1643 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1646 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1648 unsigned long rip;
1650 rip = kvm_rip_read(vcpu);
1651 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1652 kvm_rip_write(vcpu, rip);
1654 /* skipping an emulated instruction also counts */
1655 vmx_set_interrupt_shadow(vcpu, 0);
1658 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1660 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1661 * explicitly skip the instruction because if the HLT state is set, then
1662 * the instruction is already executing and RIP has already been
1663 * advanced. */
1664 if (!yield_on_hlt &&
1665 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1666 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1670 * KVM wants to inject page-faults which it got to the guest. This function
1671 * checks whether in a nested guest, we need to inject them to L1 or L2.
1672 * This function assumes it is called with the exit reason in vmcs02 being
1673 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1674 * is running).
1676 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1678 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1680 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1681 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1682 return 0;
1684 nested_vmx_vmexit(vcpu);
1685 return 1;
1688 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1689 bool has_error_code, u32 error_code,
1690 bool reinject)
1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
1693 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1695 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1696 nested_pf_handled(vcpu))
1697 return;
1699 if (has_error_code) {
1700 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1701 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1704 if (vmx->rmode.vm86_active) {
1705 int inc_eip = 0;
1706 if (kvm_exception_is_soft(nr))
1707 inc_eip = vcpu->arch.event_exit_inst_len;
1708 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1709 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1710 return;
1713 if (kvm_exception_is_soft(nr)) {
1714 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1715 vmx->vcpu.arch.event_exit_inst_len);
1716 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1717 } else
1718 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1721 vmx_clear_hlt(vcpu);
1724 static bool vmx_rdtscp_supported(void)
1726 return cpu_has_vmx_rdtscp();
1730 * Swap MSR entry in host/guest MSR entry array.
1732 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1734 struct shared_msr_entry tmp;
1736 tmp = vmx->guest_msrs[to];
1737 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1738 vmx->guest_msrs[from] = tmp;
1742 * Set up the vmcs to automatically save and restore system
1743 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1744 * mode, as fiddling with msrs is very expensive.
1746 static void setup_msrs(struct vcpu_vmx *vmx)
1748 int save_nmsrs, index;
1749 unsigned long *msr_bitmap;
1751 save_nmsrs = 0;
1752 #ifdef CONFIG_X86_64
1753 if (is_long_mode(&vmx->vcpu)) {
1754 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1755 if (index >= 0)
1756 move_msr_up(vmx, index, save_nmsrs++);
1757 index = __find_msr_index(vmx, MSR_LSTAR);
1758 if (index >= 0)
1759 move_msr_up(vmx, index, save_nmsrs++);
1760 index = __find_msr_index(vmx, MSR_CSTAR);
1761 if (index >= 0)
1762 move_msr_up(vmx, index, save_nmsrs++);
1763 index = __find_msr_index(vmx, MSR_TSC_AUX);
1764 if (index >= 0 && vmx->rdtscp_enabled)
1765 move_msr_up(vmx, index, save_nmsrs++);
1767 * MSR_STAR is only needed on long mode guests, and only
1768 * if efer.sce is enabled.
1770 index = __find_msr_index(vmx, MSR_STAR);
1771 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1772 move_msr_up(vmx, index, save_nmsrs++);
1774 #endif
1775 index = __find_msr_index(vmx, MSR_EFER);
1776 if (index >= 0 && update_transition_efer(vmx, index))
1777 move_msr_up(vmx, index, save_nmsrs++);
1779 vmx->save_nmsrs = save_nmsrs;
1781 if (cpu_has_vmx_msr_bitmap()) {
1782 if (is_long_mode(&vmx->vcpu))
1783 msr_bitmap = vmx_msr_bitmap_longmode;
1784 else
1785 msr_bitmap = vmx_msr_bitmap_legacy;
1787 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1792 * reads and returns guest's timestamp counter "register"
1793 * guest_tsc = host_tsc + tsc_offset -- 21.3
1795 static u64 guest_read_tsc(void)
1797 u64 host_tsc, tsc_offset;
1799 rdtscll(host_tsc);
1800 tsc_offset = vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1805 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1806 * counter, even if a nested guest (L2) is currently running.
1808 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1810 u64 host_tsc, tsc_offset;
1812 rdtscll(host_tsc);
1813 tsc_offset = is_guest_mode(vcpu) ?
1814 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1815 vmcs_read64(TSC_OFFSET);
1816 return host_tsc + tsc_offset;
1820 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1821 * ioctl. In this case the call-back should update internal vmx state to make
1822 * the changes effective.
1824 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1826 /* Nothing to do here */
1830 * writes 'offset' into guest's timestamp counter offset register
1832 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1834 if (is_guest_mode(vcpu)) {
1836 * We're here if L1 chose not to trap WRMSR to TSC. According
1837 * to the spec, this should set L1's TSC; The offset that L1
1838 * set for L2 remains unchanged, and still needs to be added
1839 * to the newly set TSC to get L2's TSC.
1841 struct vmcs12 *vmcs12;
1842 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1843 /* recalculate vmcs02.TSC_OFFSET: */
1844 vmcs12 = get_vmcs12(vcpu);
1845 vmcs_write64(TSC_OFFSET, offset +
1846 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1847 vmcs12->tsc_offset : 0));
1848 } else {
1849 vmcs_write64(TSC_OFFSET, offset);
1853 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1855 u64 offset = vmcs_read64(TSC_OFFSET);
1856 vmcs_write64(TSC_OFFSET, offset + adjustment);
1857 if (is_guest_mode(vcpu)) {
1858 /* Even when running L2, the adjustment needs to apply to L1 */
1859 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1863 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1865 return target_tsc - native_read_tsc();
1868 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1870 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1871 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1875 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1876 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1877 * all guests if the "nested" module option is off, and can also be disabled
1878 * for a single guest by disabling its VMX cpuid bit.
1880 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1882 return nested && guest_cpuid_has_vmx(vcpu);
1886 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1887 * returned for the various VMX controls MSRs when nested VMX is enabled.
1888 * The same values should also be used to verify that vmcs12 control fields are
1889 * valid during nested entry from L1 to L2.
1890 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1891 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1892 * bit in the high half is on if the corresponding bit in the control field
1893 * may be on. See also vmx_control_verify().
1894 * TODO: allow these variables to be modified (downgraded) by module options
1895 * or other means.
1897 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1898 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1899 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1900 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1901 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1902 static __init void nested_vmx_setup_ctls_msrs(void)
1905 * Note that as a general rule, the high half of the MSRs (bits in
1906 * the control fields which may be 1) should be initialized by the
1907 * intersection of the underlying hardware's MSR (i.e., features which
1908 * can be supported) and the list of features we want to expose -
1909 * because they are known to be properly supported in our code.
1910 * Also, usually, the low half of the MSRs (bits which must be 1) can
1911 * be set to 0, meaning that L1 may turn off any of these bits. The
1912 * reason is that if one of these bits is necessary, it will appear
1913 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1914 * fields of vmcs01 and vmcs02, will turn these bits off - and
1915 * nested_vmx_exit_handled() will not pass related exits to L1.
1916 * These rules have exceptions below.
1919 /* pin-based controls */
1921 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1922 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1924 nested_vmx_pinbased_ctls_low = 0x16 ;
1925 nested_vmx_pinbased_ctls_high = 0x16 |
1926 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1927 PIN_BASED_VIRTUAL_NMIS;
1929 /* exit controls */
1930 nested_vmx_exit_ctls_low = 0;
1931 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1932 #ifdef CONFIG_X86_64
1933 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1934 #else
1935 nested_vmx_exit_ctls_high = 0;
1936 #endif
1938 /* entry controls */
1939 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1940 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1941 nested_vmx_entry_ctls_low = 0;
1942 nested_vmx_entry_ctls_high &=
1943 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1945 /* cpu-based controls */
1946 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1947 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1948 nested_vmx_procbased_ctls_low = 0;
1949 nested_vmx_procbased_ctls_high &=
1950 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1951 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1952 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1953 CPU_BASED_CR3_STORE_EXITING |
1954 #ifdef CONFIG_X86_64
1955 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1956 #endif
1957 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1958 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1959 CPU_BASED_RDPMC_EXITING |
1960 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1962 * We can allow some features even when not supported by the
1963 * hardware. For example, L1 can specify an MSR bitmap - and we
1964 * can use it to avoid exits to L1 - even when L0 runs L2
1965 * without MSR bitmaps.
1967 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1969 /* secondary cpu-based controls */
1970 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1971 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1972 nested_vmx_secondary_ctls_low = 0;
1973 nested_vmx_secondary_ctls_high &=
1974 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1977 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1980 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1982 return ((control & high) | low) == control;
1985 static inline u64 vmx_control_msr(u32 low, u32 high)
1987 return low | ((u64)high << 32);
1991 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1992 * also let it use VMX-specific MSRs.
1993 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1994 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1995 * like all other MSRs).
1997 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1999 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2000 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2002 * According to the spec, processors which do not support VMX
2003 * should throw a #GP(0) when VMX capability MSRs are read.
2005 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2006 return 1;
2009 switch (msr_index) {
2010 case MSR_IA32_FEATURE_CONTROL:
2011 *pdata = 0;
2012 break;
2013 case MSR_IA32_VMX_BASIC:
2015 * This MSR reports some information about VMX support. We
2016 * should return information about the VMX we emulate for the
2017 * guest, and the VMCS structure we give it - not about the
2018 * VMX support of the underlying hardware.
2020 *pdata = VMCS12_REVISION |
2021 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2022 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2023 break;
2024 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2025 case MSR_IA32_VMX_PINBASED_CTLS:
2026 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2027 nested_vmx_pinbased_ctls_high);
2028 break;
2029 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2030 case MSR_IA32_VMX_PROCBASED_CTLS:
2031 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2032 nested_vmx_procbased_ctls_high);
2033 break;
2034 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2035 case MSR_IA32_VMX_EXIT_CTLS:
2036 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2037 nested_vmx_exit_ctls_high);
2038 break;
2039 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2040 case MSR_IA32_VMX_ENTRY_CTLS:
2041 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2042 nested_vmx_entry_ctls_high);
2043 break;
2044 case MSR_IA32_VMX_MISC:
2045 *pdata = 0;
2046 break;
2048 * These MSRs specify bits which the guest must keep fixed (on or off)
2049 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2050 * We picked the standard core2 setting.
2052 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2053 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2054 case MSR_IA32_VMX_CR0_FIXED0:
2055 *pdata = VMXON_CR0_ALWAYSON;
2056 break;
2057 case MSR_IA32_VMX_CR0_FIXED1:
2058 *pdata = -1ULL;
2059 break;
2060 case MSR_IA32_VMX_CR4_FIXED0:
2061 *pdata = VMXON_CR4_ALWAYSON;
2062 break;
2063 case MSR_IA32_VMX_CR4_FIXED1:
2064 *pdata = -1ULL;
2065 break;
2066 case MSR_IA32_VMX_VMCS_ENUM:
2067 *pdata = 0x1f;
2068 break;
2069 case MSR_IA32_VMX_PROCBASED_CTLS2:
2070 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2071 nested_vmx_secondary_ctls_high);
2072 break;
2073 case MSR_IA32_VMX_EPT_VPID_CAP:
2074 /* Currently, no nested ept or nested vpid */
2075 *pdata = 0;
2076 break;
2077 default:
2078 return 0;
2081 return 1;
2084 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2086 if (!nested_vmx_allowed(vcpu))
2087 return 0;
2089 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2090 /* TODO: the right thing. */
2091 return 1;
2093 * No need to treat VMX capability MSRs specially: If we don't handle
2094 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2096 return 0;
2100 * Reads an msr value (of 'msr_index') into 'pdata'.
2101 * Returns 0 on success, non-0 otherwise.
2102 * Assumes vcpu_load() was already called.
2104 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2106 u64 data;
2107 struct shared_msr_entry *msr;
2109 if (!pdata) {
2110 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2111 return -EINVAL;
2114 switch (msr_index) {
2115 #ifdef CONFIG_X86_64
2116 case MSR_FS_BASE:
2117 data = vmcs_readl(GUEST_FS_BASE);
2118 break;
2119 case MSR_GS_BASE:
2120 data = vmcs_readl(GUEST_GS_BASE);
2121 break;
2122 case MSR_KERNEL_GS_BASE:
2123 vmx_load_host_state(to_vmx(vcpu));
2124 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2125 break;
2126 #endif
2127 case MSR_EFER:
2128 return kvm_get_msr_common(vcpu, msr_index, pdata);
2129 case MSR_IA32_TSC:
2130 data = guest_read_tsc();
2131 break;
2132 case MSR_IA32_SYSENTER_CS:
2133 data = vmcs_read32(GUEST_SYSENTER_CS);
2134 break;
2135 case MSR_IA32_SYSENTER_EIP:
2136 data = vmcs_readl(GUEST_SYSENTER_EIP);
2137 break;
2138 case MSR_IA32_SYSENTER_ESP:
2139 data = vmcs_readl(GUEST_SYSENTER_ESP);
2140 break;
2141 case MSR_TSC_AUX:
2142 if (!to_vmx(vcpu)->rdtscp_enabled)
2143 return 1;
2144 /* Otherwise falls through */
2145 default:
2146 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2147 return 0;
2148 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2149 if (msr) {
2150 data = msr->data;
2151 break;
2153 return kvm_get_msr_common(vcpu, msr_index, pdata);
2156 *pdata = data;
2157 return 0;
2161 * Writes msr value into into the appropriate "register".
2162 * Returns 0 on success, non-0 otherwise.
2163 * Assumes vcpu_load() was already called.
2165 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2167 struct vcpu_vmx *vmx = to_vmx(vcpu);
2168 struct shared_msr_entry *msr;
2169 int ret = 0;
2171 switch (msr_index) {
2172 case MSR_EFER:
2173 ret = kvm_set_msr_common(vcpu, msr_index, data);
2174 break;
2175 #ifdef CONFIG_X86_64
2176 case MSR_FS_BASE:
2177 vmx_segment_cache_clear(vmx);
2178 vmcs_writel(GUEST_FS_BASE, data);
2179 break;
2180 case MSR_GS_BASE:
2181 vmx_segment_cache_clear(vmx);
2182 vmcs_writel(GUEST_GS_BASE, data);
2183 break;
2184 case MSR_KERNEL_GS_BASE:
2185 vmx_load_host_state(vmx);
2186 vmx->msr_guest_kernel_gs_base = data;
2187 break;
2188 #endif
2189 case MSR_IA32_SYSENTER_CS:
2190 vmcs_write32(GUEST_SYSENTER_CS, data);
2191 break;
2192 case MSR_IA32_SYSENTER_EIP:
2193 vmcs_writel(GUEST_SYSENTER_EIP, data);
2194 break;
2195 case MSR_IA32_SYSENTER_ESP:
2196 vmcs_writel(GUEST_SYSENTER_ESP, data);
2197 break;
2198 case MSR_IA32_TSC:
2199 kvm_write_tsc(vcpu, data);
2200 break;
2201 case MSR_IA32_CR_PAT:
2202 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2203 vmcs_write64(GUEST_IA32_PAT, data);
2204 vcpu->arch.pat = data;
2205 break;
2207 ret = kvm_set_msr_common(vcpu, msr_index, data);
2208 break;
2209 case MSR_TSC_AUX:
2210 if (!vmx->rdtscp_enabled)
2211 return 1;
2212 /* Check reserved bit, higher 32 bits should be zero */
2213 if ((data >> 32) != 0)
2214 return 1;
2215 /* Otherwise falls through */
2216 default:
2217 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2218 break;
2219 msr = find_msr_entry(vmx, msr_index);
2220 if (msr) {
2221 msr->data = data;
2222 break;
2224 ret = kvm_set_msr_common(vcpu, msr_index, data);
2227 return ret;
2230 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2233 switch (reg) {
2234 case VCPU_REGS_RSP:
2235 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2236 break;
2237 case VCPU_REGS_RIP:
2238 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2239 break;
2240 case VCPU_EXREG_PDPTR:
2241 if (enable_ept)
2242 ept_save_pdptrs(vcpu);
2243 break;
2244 default:
2245 break;
2249 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2251 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2252 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2253 else
2254 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2256 update_exception_bitmap(vcpu);
2259 static __init int cpu_has_kvm_support(void)
2261 return cpu_has_vmx();
2264 static __init int vmx_disabled_by_bios(void)
2266 u64 msr;
2268 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2269 if (msr & FEATURE_CONTROL_LOCKED) {
2270 /* launched w/ TXT and VMX disabled */
2271 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2272 && tboot_enabled())
2273 return 1;
2274 /* launched w/o TXT and VMX only enabled w/ TXT */
2275 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2276 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2277 && !tboot_enabled()) {
2278 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2279 "activate TXT before enabling KVM\n");
2280 return 1;
2282 /* launched w/o TXT and VMX disabled */
2283 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2284 && !tboot_enabled())
2285 return 1;
2288 return 0;
2291 static void kvm_cpu_vmxon(u64 addr)
2293 asm volatile (ASM_VMX_VMXON_RAX
2294 : : "a"(&addr), "m"(addr)
2295 : "memory", "cc");
2298 static int hardware_enable(void *garbage)
2300 int cpu = raw_smp_processor_id();
2301 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2302 u64 old, test_bits;
2304 if (read_cr4() & X86_CR4_VMXE)
2305 return -EBUSY;
2307 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2308 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2310 test_bits = FEATURE_CONTROL_LOCKED;
2311 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2312 if (tboot_enabled())
2313 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2315 if ((old & test_bits) != test_bits) {
2316 /* enable and lock */
2317 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2319 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2321 if (vmm_exclusive) {
2322 kvm_cpu_vmxon(phys_addr);
2323 ept_sync_global();
2326 store_gdt(&__get_cpu_var(host_gdt));
2328 return 0;
2331 static void vmclear_local_loaded_vmcss(void)
2333 int cpu = raw_smp_processor_id();
2334 struct loaded_vmcs *v, *n;
2336 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2337 loaded_vmcss_on_cpu_link)
2338 __loaded_vmcs_clear(v);
2342 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2343 * tricks.
2345 static void kvm_cpu_vmxoff(void)
2347 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2350 static void hardware_disable(void *garbage)
2352 if (vmm_exclusive) {
2353 vmclear_local_loaded_vmcss();
2354 kvm_cpu_vmxoff();
2356 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2359 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2360 u32 msr, u32 *result)
2362 u32 vmx_msr_low, vmx_msr_high;
2363 u32 ctl = ctl_min | ctl_opt;
2365 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2367 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2368 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2370 /* Ensure minimum (required) set of control bits are supported. */
2371 if (ctl_min & ~ctl)
2372 return -EIO;
2374 *result = ctl;
2375 return 0;
2378 static __init bool allow_1_setting(u32 msr, u32 ctl)
2380 u32 vmx_msr_low, vmx_msr_high;
2382 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2383 return vmx_msr_high & ctl;
2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2388 u32 vmx_msr_low, vmx_msr_high;
2389 u32 min, opt, min2, opt2;
2390 u32 _pin_based_exec_control = 0;
2391 u32 _cpu_based_exec_control = 0;
2392 u32 _cpu_based_2nd_exec_control = 0;
2393 u32 _vmexit_control = 0;
2394 u32 _vmentry_control = 0;
2396 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2397 opt = PIN_BASED_VIRTUAL_NMIS;
2398 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2399 &_pin_based_exec_control) < 0)
2400 return -EIO;
2402 min =
2403 #ifdef CONFIG_X86_64
2404 CPU_BASED_CR8_LOAD_EXITING |
2405 CPU_BASED_CR8_STORE_EXITING |
2406 #endif
2407 CPU_BASED_CR3_LOAD_EXITING |
2408 CPU_BASED_CR3_STORE_EXITING |
2409 CPU_BASED_USE_IO_BITMAPS |
2410 CPU_BASED_MOV_DR_EXITING |
2411 CPU_BASED_USE_TSC_OFFSETING |
2412 CPU_BASED_MWAIT_EXITING |
2413 CPU_BASED_MONITOR_EXITING |
2414 CPU_BASED_INVLPG_EXITING |
2415 CPU_BASED_RDPMC_EXITING;
2417 if (yield_on_hlt)
2418 min |= CPU_BASED_HLT_EXITING;
2420 opt = CPU_BASED_TPR_SHADOW |
2421 CPU_BASED_USE_MSR_BITMAPS |
2422 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2423 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2424 &_cpu_based_exec_control) < 0)
2425 return -EIO;
2426 #ifdef CONFIG_X86_64
2427 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2428 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2429 ~CPU_BASED_CR8_STORE_EXITING;
2430 #endif
2431 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2432 min2 = 0;
2433 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2434 SECONDARY_EXEC_WBINVD_EXITING |
2435 SECONDARY_EXEC_ENABLE_VPID |
2436 SECONDARY_EXEC_ENABLE_EPT |
2437 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2438 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2439 SECONDARY_EXEC_RDTSCP;
2440 if (adjust_vmx_controls(min2, opt2,
2441 MSR_IA32_VMX_PROCBASED_CTLS2,
2442 &_cpu_based_2nd_exec_control) < 0)
2443 return -EIO;
2445 #ifndef CONFIG_X86_64
2446 if (!(_cpu_based_2nd_exec_control &
2447 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2448 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2449 #endif
2450 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2451 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2452 enabled */
2453 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2454 CPU_BASED_CR3_STORE_EXITING |
2455 CPU_BASED_INVLPG_EXITING);
2456 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2457 vmx_capability.ept, vmx_capability.vpid);
2460 min = 0;
2461 #ifdef CONFIG_X86_64
2462 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2463 #endif
2464 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2465 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2466 &_vmexit_control) < 0)
2467 return -EIO;
2469 min = 0;
2470 opt = VM_ENTRY_LOAD_IA32_PAT;
2471 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2472 &_vmentry_control) < 0)
2473 return -EIO;
2475 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2477 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2478 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2479 return -EIO;
2481 #ifdef CONFIG_X86_64
2482 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2483 if (vmx_msr_high & (1u<<16))
2484 return -EIO;
2485 #endif
2487 /* Require Write-Back (WB) memory type for VMCS accesses. */
2488 if (((vmx_msr_high >> 18) & 15) != 6)
2489 return -EIO;
2491 vmcs_conf->size = vmx_msr_high & 0x1fff;
2492 vmcs_conf->order = get_order(vmcs_config.size);
2493 vmcs_conf->revision_id = vmx_msr_low;
2495 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2496 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2497 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2498 vmcs_conf->vmexit_ctrl = _vmexit_control;
2499 vmcs_conf->vmentry_ctrl = _vmentry_control;
2501 cpu_has_load_ia32_efer =
2502 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2503 VM_ENTRY_LOAD_IA32_EFER)
2504 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2505 VM_EXIT_LOAD_IA32_EFER);
2507 cpu_has_load_perf_global_ctrl =
2508 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2509 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2510 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2511 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2514 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2515 * but due to arrata below it can't be used. Workaround is to use
2516 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2518 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2520 * AAK155 (model 26)
2521 * AAP115 (model 30)
2522 * AAT100 (model 37)
2523 * BC86,AAY89,BD102 (model 44)
2524 * BA97 (model 46)
2527 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2528 switch (boot_cpu_data.x86_model) {
2529 case 26:
2530 case 30:
2531 case 37:
2532 case 44:
2533 case 46:
2534 cpu_has_load_perf_global_ctrl = false;
2535 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2536 "does not work properly. Using workaround\n");
2537 break;
2538 default:
2539 break;
2543 return 0;
2546 static struct vmcs *alloc_vmcs_cpu(int cpu)
2548 int node = cpu_to_node(cpu);
2549 struct page *pages;
2550 struct vmcs *vmcs;
2552 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2553 if (!pages)
2554 return NULL;
2555 vmcs = page_address(pages);
2556 memset(vmcs, 0, vmcs_config.size);
2557 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2558 return vmcs;
2561 static struct vmcs *alloc_vmcs(void)
2563 return alloc_vmcs_cpu(raw_smp_processor_id());
2566 static void free_vmcs(struct vmcs *vmcs)
2568 free_pages((unsigned long)vmcs, vmcs_config.order);
2572 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2574 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2576 if (!loaded_vmcs->vmcs)
2577 return;
2578 loaded_vmcs_clear(loaded_vmcs);
2579 free_vmcs(loaded_vmcs->vmcs);
2580 loaded_vmcs->vmcs = NULL;
2583 static void free_kvm_area(void)
2585 int cpu;
2587 for_each_possible_cpu(cpu) {
2588 free_vmcs(per_cpu(vmxarea, cpu));
2589 per_cpu(vmxarea, cpu) = NULL;
2593 static __init int alloc_kvm_area(void)
2595 int cpu;
2597 for_each_possible_cpu(cpu) {
2598 struct vmcs *vmcs;
2600 vmcs = alloc_vmcs_cpu(cpu);
2601 if (!vmcs) {
2602 free_kvm_area();
2603 return -ENOMEM;
2606 per_cpu(vmxarea, cpu) = vmcs;
2608 return 0;
2611 static __init int hardware_setup(void)
2613 if (setup_vmcs_config(&vmcs_config) < 0)
2614 return -EIO;
2616 if (boot_cpu_has(X86_FEATURE_NX))
2617 kvm_enable_efer_bits(EFER_NX);
2619 if (!cpu_has_vmx_vpid())
2620 enable_vpid = 0;
2622 if (!cpu_has_vmx_ept() ||
2623 !cpu_has_vmx_ept_4levels()) {
2624 enable_ept = 0;
2625 enable_unrestricted_guest = 0;
2628 if (!cpu_has_vmx_unrestricted_guest())
2629 enable_unrestricted_guest = 0;
2631 if (!cpu_has_vmx_flexpriority())
2632 flexpriority_enabled = 0;
2634 if (!cpu_has_vmx_tpr_shadow())
2635 kvm_x86_ops->update_cr8_intercept = NULL;
2637 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2638 kvm_disable_largepages();
2640 if (!cpu_has_vmx_ple())
2641 ple_gap = 0;
2643 if (nested)
2644 nested_vmx_setup_ctls_msrs();
2646 return alloc_kvm_area();
2649 static __exit void hardware_unsetup(void)
2651 free_kvm_area();
2654 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2656 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2658 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2659 vmcs_write16(sf->selector, save->selector);
2660 vmcs_writel(sf->base, save->base);
2661 vmcs_write32(sf->limit, save->limit);
2662 vmcs_write32(sf->ar_bytes, save->ar);
2663 } else {
2664 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2665 << AR_DPL_SHIFT;
2666 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2670 static void enter_pmode(struct kvm_vcpu *vcpu)
2672 unsigned long flags;
2673 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 vmx->emulation_required = 1;
2676 vmx->rmode.vm86_active = 0;
2678 vmx_segment_cache_clear(vmx);
2680 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2681 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2682 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2683 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2685 flags = vmcs_readl(GUEST_RFLAGS);
2686 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2687 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2688 vmcs_writel(GUEST_RFLAGS, flags);
2690 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2691 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2693 update_exception_bitmap(vcpu);
2695 if (emulate_invalid_guest_state)
2696 return;
2698 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2699 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2700 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2701 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2703 vmx_segment_cache_clear(vmx);
2705 vmcs_write16(GUEST_SS_SELECTOR, 0);
2706 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2708 vmcs_write16(GUEST_CS_SELECTOR,
2709 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2710 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2713 static gva_t rmode_tss_base(struct kvm *kvm)
2715 if (!kvm->arch.tss_addr) {
2716 struct kvm_memslots *slots;
2717 struct kvm_memory_slot *slot;
2718 gfn_t base_gfn;
2720 slots = kvm_memslots(kvm);
2721 slot = id_to_memslot(slots, 0);
2722 base_gfn = slot->base_gfn + slot->npages - 3;
2724 return base_gfn << PAGE_SHIFT;
2726 return kvm->arch.tss_addr;
2729 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2731 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2733 save->selector = vmcs_read16(sf->selector);
2734 save->base = vmcs_readl(sf->base);
2735 save->limit = vmcs_read32(sf->limit);
2736 save->ar = vmcs_read32(sf->ar_bytes);
2737 vmcs_write16(sf->selector, save->base >> 4);
2738 vmcs_write32(sf->base, save->base & 0xffff0);
2739 vmcs_write32(sf->limit, 0xffff);
2740 vmcs_write32(sf->ar_bytes, 0xf3);
2741 if (save->base & 0xf)
2742 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2743 " aligned when entering protected mode (seg=%d)",
2744 seg);
2747 static void enter_rmode(struct kvm_vcpu *vcpu)
2749 unsigned long flags;
2750 struct vcpu_vmx *vmx = to_vmx(vcpu);
2752 if (enable_unrestricted_guest)
2753 return;
2755 vmx->emulation_required = 1;
2756 vmx->rmode.vm86_active = 1;
2759 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2760 * vcpu. Call it here with phys address pointing 16M below 4G.
2762 if (!vcpu->kvm->arch.tss_addr) {
2763 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2764 "called before entering vcpu\n");
2765 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2766 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2767 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2770 vmx_segment_cache_clear(vmx);
2772 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2773 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2774 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2776 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2777 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2779 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2780 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2782 flags = vmcs_readl(GUEST_RFLAGS);
2783 vmx->rmode.save_rflags = flags;
2785 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2787 vmcs_writel(GUEST_RFLAGS, flags);
2788 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2789 update_exception_bitmap(vcpu);
2791 if (emulate_invalid_guest_state)
2792 goto continue_rmode;
2794 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2795 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2796 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2798 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2799 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2800 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2801 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2802 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2804 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2805 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2806 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2807 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2809 continue_rmode:
2810 kvm_mmu_reset_context(vcpu);
2813 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2815 struct vcpu_vmx *vmx = to_vmx(vcpu);
2816 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2818 if (!msr)
2819 return;
2822 * Force kernel_gs_base reloading before EFER changes, as control
2823 * of this msr depends on is_long_mode().
2825 vmx_load_host_state(to_vmx(vcpu));
2826 vcpu->arch.efer = efer;
2827 if (efer & EFER_LMA) {
2828 vmcs_write32(VM_ENTRY_CONTROLS,
2829 vmcs_read32(VM_ENTRY_CONTROLS) |
2830 VM_ENTRY_IA32E_MODE);
2831 msr->data = efer;
2832 } else {
2833 vmcs_write32(VM_ENTRY_CONTROLS,
2834 vmcs_read32(VM_ENTRY_CONTROLS) &
2835 ~VM_ENTRY_IA32E_MODE);
2837 msr->data = efer & ~EFER_LME;
2839 setup_msrs(vmx);
2842 #ifdef CONFIG_X86_64
2844 static void enter_lmode(struct kvm_vcpu *vcpu)
2846 u32 guest_tr_ar;
2848 vmx_segment_cache_clear(to_vmx(vcpu));
2850 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2851 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2852 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2853 __func__);
2854 vmcs_write32(GUEST_TR_AR_BYTES,
2855 (guest_tr_ar & ~AR_TYPE_MASK)
2856 | AR_TYPE_BUSY_64_TSS);
2858 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2861 static void exit_lmode(struct kvm_vcpu *vcpu)
2863 vmcs_write32(VM_ENTRY_CONTROLS,
2864 vmcs_read32(VM_ENTRY_CONTROLS)
2865 & ~VM_ENTRY_IA32E_MODE);
2866 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2869 #endif
2871 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2873 vpid_sync_context(to_vmx(vcpu));
2874 if (enable_ept) {
2875 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2876 return;
2877 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2881 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2883 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2885 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2886 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2889 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2891 if (enable_ept && is_paging(vcpu))
2892 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2893 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2896 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2898 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2900 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2901 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2904 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2906 if (!test_bit(VCPU_EXREG_PDPTR,
2907 (unsigned long *)&vcpu->arch.regs_dirty))
2908 return;
2910 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2911 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2912 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2913 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2914 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2918 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2920 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2921 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2922 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2923 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2924 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2927 __set_bit(VCPU_EXREG_PDPTR,
2928 (unsigned long *)&vcpu->arch.regs_avail);
2929 __set_bit(VCPU_EXREG_PDPTR,
2930 (unsigned long *)&vcpu->arch.regs_dirty);
2933 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2935 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2936 unsigned long cr0,
2937 struct kvm_vcpu *vcpu)
2939 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2940 vmx_decache_cr3(vcpu);
2941 if (!(cr0 & X86_CR0_PG)) {
2942 /* From paging/starting to nonpaging */
2943 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2944 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2945 (CPU_BASED_CR3_LOAD_EXITING |
2946 CPU_BASED_CR3_STORE_EXITING));
2947 vcpu->arch.cr0 = cr0;
2948 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2949 } else if (!is_paging(vcpu)) {
2950 /* From nonpaging to paging */
2951 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2952 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2953 ~(CPU_BASED_CR3_LOAD_EXITING |
2954 CPU_BASED_CR3_STORE_EXITING));
2955 vcpu->arch.cr0 = cr0;
2956 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2959 if (!(cr0 & X86_CR0_WP))
2960 *hw_cr0 &= ~X86_CR0_WP;
2963 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2965 struct vcpu_vmx *vmx = to_vmx(vcpu);
2966 unsigned long hw_cr0;
2968 if (enable_unrestricted_guest)
2969 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2970 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2971 else
2972 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2974 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2975 enter_pmode(vcpu);
2977 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2978 enter_rmode(vcpu);
2980 #ifdef CONFIG_X86_64
2981 if (vcpu->arch.efer & EFER_LME) {
2982 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2983 enter_lmode(vcpu);
2984 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2985 exit_lmode(vcpu);
2987 #endif
2989 if (enable_ept)
2990 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2992 if (!vcpu->fpu_active)
2993 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2995 vmcs_writel(CR0_READ_SHADOW, cr0);
2996 vmcs_writel(GUEST_CR0, hw_cr0);
2997 vcpu->arch.cr0 = cr0;
2998 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3001 static u64 construct_eptp(unsigned long root_hpa)
3003 u64 eptp;
3005 /* TODO write the value reading from MSR */
3006 eptp = VMX_EPT_DEFAULT_MT |
3007 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3008 eptp |= (root_hpa & PAGE_MASK);
3010 return eptp;
3013 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3015 unsigned long guest_cr3;
3016 u64 eptp;
3018 guest_cr3 = cr3;
3019 if (enable_ept) {
3020 eptp = construct_eptp(cr3);
3021 vmcs_write64(EPT_POINTER, eptp);
3022 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3023 vcpu->kvm->arch.ept_identity_map_addr;
3024 ept_load_pdptrs(vcpu);
3027 vmx_flush_tlb(vcpu);
3028 vmcs_writel(GUEST_CR3, guest_cr3);
3031 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3033 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3034 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3036 if (cr4 & X86_CR4_VMXE) {
3038 * To use VMXON (and later other VMX instructions), a guest
3039 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3040 * So basically the check on whether to allow nested VMX
3041 * is here.
3043 if (!nested_vmx_allowed(vcpu))
3044 return 1;
3045 } else if (to_vmx(vcpu)->nested.vmxon)
3046 return 1;
3048 vcpu->arch.cr4 = cr4;
3049 if (enable_ept) {
3050 if (!is_paging(vcpu)) {
3051 hw_cr4 &= ~X86_CR4_PAE;
3052 hw_cr4 |= X86_CR4_PSE;
3053 } else if (!(cr4 & X86_CR4_PAE)) {
3054 hw_cr4 &= ~X86_CR4_PAE;
3058 vmcs_writel(CR4_READ_SHADOW, cr4);
3059 vmcs_writel(GUEST_CR4, hw_cr4);
3060 return 0;
3063 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3064 struct kvm_segment *var, int seg)
3066 struct vcpu_vmx *vmx = to_vmx(vcpu);
3067 struct kvm_save_segment *save;
3068 u32 ar;
3070 if (vmx->rmode.vm86_active
3071 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3072 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3073 || seg == VCPU_SREG_GS)
3074 && !emulate_invalid_guest_state) {
3075 switch (seg) {
3076 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3077 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3078 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3079 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3080 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3081 default: BUG();
3083 var->selector = save->selector;
3084 var->base = save->base;
3085 var->limit = save->limit;
3086 ar = save->ar;
3087 if (seg == VCPU_SREG_TR
3088 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3089 goto use_saved_rmode_seg;
3091 var->base = vmx_read_guest_seg_base(vmx, seg);
3092 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3093 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3094 ar = vmx_read_guest_seg_ar(vmx, seg);
3095 use_saved_rmode_seg:
3096 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3097 ar = 0;
3098 var->type = ar & 15;
3099 var->s = (ar >> 4) & 1;
3100 var->dpl = (ar >> 5) & 3;
3101 var->present = (ar >> 7) & 1;
3102 var->avl = (ar >> 12) & 1;
3103 var->l = (ar >> 13) & 1;
3104 var->db = (ar >> 14) & 1;
3105 var->g = (ar >> 15) & 1;
3106 var->unusable = (ar >> 16) & 1;
3109 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3111 struct kvm_segment s;
3113 if (to_vmx(vcpu)->rmode.vm86_active) {
3114 vmx_get_segment(vcpu, &s, seg);
3115 return s.base;
3117 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3120 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3122 if (!is_protmode(vcpu))
3123 return 0;
3125 if (!is_long_mode(vcpu)
3126 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3127 return 3;
3129 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3132 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3134 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3135 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3136 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3138 return to_vmx(vcpu)->cpl;
3142 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3144 u32 ar;
3146 if (var->unusable)
3147 ar = 1 << 16;
3148 else {
3149 ar = var->type & 15;
3150 ar |= (var->s & 1) << 4;
3151 ar |= (var->dpl & 3) << 5;
3152 ar |= (var->present & 1) << 7;
3153 ar |= (var->avl & 1) << 12;
3154 ar |= (var->l & 1) << 13;
3155 ar |= (var->db & 1) << 14;
3156 ar |= (var->g & 1) << 15;
3158 if (ar == 0) /* a 0 value means unusable */
3159 ar = AR_UNUSABLE_MASK;
3161 return ar;
3164 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3165 struct kvm_segment *var, int seg)
3167 struct vcpu_vmx *vmx = to_vmx(vcpu);
3168 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3169 u32 ar;
3171 vmx_segment_cache_clear(vmx);
3173 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3174 vmcs_write16(sf->selector, var->selector);
3175 vmx->rmode.tr.selector = var->selector;
3176 vmx->rmode.tr.base = var->base;
3177 vmx->rmode.tr.limit = var->limit;
3178 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3179 return;
3181 vmcs_writel(sf->base, var->base);
3182 vmcs_write32(sf->limit, var->limit);
3183 vmcs_write16(sf->selector, var->selector);
3184 if (vmx->rmode.vm86_active && var->s) {
3186 * Hack real-mode segments into vm86 compatibility.
3188 if (var->base == 0xffff0000 && var->selector == 0xf000)
3189 vmcs_writel(sf->base, 0xf0000);
3190 ar = 0xf3;
3191 } else
3192 ar = vmx_segment_access_rights(var);
3195 * Fix the "Accessed" bit in AR field of segment registers for older
3196 * qemu binaries.
3197 * IA32 arch specifies that at the time of processor reset the
3198 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3199 * is setting it to 0 in the usedland code. This causes invalid guest
3200 * state vmexit when "unrestricted guest" mode is turned on.
3201 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3202 * tree. Newer qemu binaries with that qemu fix would not need this
3203 * kvm hack.
3205 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3206 ar |= 0x1; /* Accessed */
3208 vmcs_write32(sf->ar_bytes, ar);
3209 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3212 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3214 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3216 *db = (ar >> 14) & 1;
3217 *l = (ar >> 13) & 1;
3220 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3222 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3223 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3226 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3228 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3229 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3232 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3234 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3235 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3238 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3240 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3241 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3244 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3246 struct kvm_segment var;
3247 u32 ar;
3249 vmx_get_segment(vcpu, &var, seg);
3250 ar = vmx_segment_access_rights(&var);
3252 if (var.base != (var.selector << 4))
3253 return false;
3254 if (var.limit != 0xffff)
3255 return false;
3256 if (ar != 0xf3)
3257 return false;
3259 return true;
3262 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3264 struct kvm_segment cs;
3265 unsigned int cs_rpl;
3267 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3268 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3270 if (cs.unusable)
3271 return false;
3272 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3273 return false;
3274 if (!cs.s)
3275 return false;
3276 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3277 if (cs.dpl > cs_rpl)
3278 return false;
3279 } else {
3280 if (cs.dpl != cs_rpl)
3281 return false;
3283 if (!cs.present)
3284 return false;
3286 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3287 return true;
3290 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3292 struct kvm_segment ss;
3293 unsigned int ss_rpl;
3295 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3296 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3298 if (ss.unusable)
3299 return true;
3300 if (ss.type != 3 && ss.type != 7)
3301 return false;
3302 if (!ss.s)
3303 return false;
3304 if (ss.dpl != ss_rpl) /* DPL != RPL */
3305 return false;
3306 if (!ss.present)
3307 return false;
3309 return true;
3312 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3314 struct kvm_segment var;
3315 unsigned int rpl;
3317 vmx_get_segment(vcpu, &var, seg);
3318 rpl = var.selector & SELECTOR_RPL_MASK;
3320 if (var.unusable)
3321 return true;
3322 if (!var.s)
3323 return false;
3324 if (!var.present)
3325 return false;
3326 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3327 if (var.dpl < rpl) /* DPL < RPL */
3328 return false;
3331 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3332 * rights flags
3334 return true;
3337 static bool tr_valid(struct kvm_vcpu *vcpu)
3339 struct kvm_segment tr;
3341 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3343 if (tr.unusable)
3344 return false;
3345 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3346 return false;
3347 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3348 return false;
3349 if (!tr.present)
3350 return false;
3352 return true;
3355 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3357 struct kvm_segment ldtr;
3359 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3361 if (ldtr.unusable)
3362 return true;
3363 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3364 return false;
3365 if (ldtr.type != 2)
3366 return false;
3367 if (!ldtr.present)
3368 return false;
3370 return true;
3373 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3375 struct kvm_segment cs, ss;
3377 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3378 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3380 return ((cs.selector & SELECTOR_RPL_MASK) ==
3381 (ss.selector & SELECTOR_RPL_MASK));
3385 * Check if guest state is valid. Returns true if valid, false if
3386 * not.
3387 * We assume that registers are always usable
3389 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3391 /* real mode guest state checks */
3392 if (!is_protmode(vcpu)) {
3393 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3394 return false;
3395 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3396 return false;
3397 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3398 return false;
3399 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3400 return false;
3401 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3402 return false;
3403 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3404 return false;
3405 } else {
3406 /* protected mode guest state checks */
3407 if (!cs_ss_rpl_check(vcpu))
3408 return false;
3409 if (!code_segment_valid(vcpu))
3410 return false;
3411 if (!stack_segment_valid(vcpu))
3412 return false;
3413 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3414 return false;
3415 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3416 return false;
3417 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3418 return false;
3419 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3420 return false;
3421 if (!tr_valid(vcpu))
3422 return false;
3423 if (!ldtr_valid(vcpu))
3424 return false;
3426 /* TODO:
3427 * - Add checks on RIP
3428 * - Add checks on RFLAGS
3431 return true;
3434 static int init_rmode_tss(struct kvm *kvm)
3436 gfn_t fn;
3437 u16 data = 0;
3438 int r, idx, ret = 0;
3440 idx = srcu_read_lock(&kvm->srcu);
3441 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3442 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3443 if (r < 0)
3444 goto out;
3445 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3446 r = kvm_write_guest_page(kvm, fn++, &data,
3447 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3448 if (r < 0)
3449 goto out;
3450 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3451 if (r < 0)
3452 goto out;
3453 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3454 if (r < 0)
3455 goto out;
3456 data = ~0;
3457 r = kvm_write_guest_page(kvm, fn, &data,
3458 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3459 sizeof(u8));
3460 if (r < 0)
3461 goto out;
3463 ret = 1;
3464 out:
3465 srcu_read_unlock(&kvm->srcu, idx);
3466 return ret;
3469 static int init_rmode_identity_map(struct kvm *kvm)
3471 int i, idx, r, ret;
3472 pfn_t identity_map_pfn;
3473 u32 tmp;
3475 if (!enable_ept)
3476 return 1;
3477 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3478 printk(KERN_ERR "EPT: identity-mapping pagetable "
3479 "haven't been allocated!\n");
3480 return 0;
3482 if (likely(kvm->arch.ept_identity_pagetable_done))
3483 return 1;
3484 ret = 0;
3485 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3486 idx = srcu_read_lock(&kvm->srcu);
3487 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3488 if (r < 0)
3489 goto out;
3490 /* Set up identity-mapping pagetable for EPT in real mode */
3491 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3492 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3493 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3494 r = kvm_write_guest_page(kvm, identity_map_pfn,
3495 &tmp, i * sizeof(tmp), sizeof(tmp));
3496 if (r < 0)
3497 goto out;
3499 kvm->arch.ept_identity_pagetable_done = true;
3500 ret = 1;
3501 out:
3502 srcu_read_unlock(&kvm->srcu, idx);
3503 return ret;
3506 static void seg_setup(int seg)
3508 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3509 unsigned int ar;
3511 vmcs_write16(sf->selector, 0);
3512 vmcs_writel(sf->base, 0);
3513 vmcs_write32(sf->limit, 0xffff);
3514 if (enable_unrestricted_guest) {
3515 ar = 0x93;
3516 if (seg == VCPU_SREG_CS)
3517 ar |= 0x08; /* code segment */
3518 } else
3519 ar = 0xf3;
3521 vmcs_write32(sf->ar_bytes, ar);
3524 static int alloc_apic_access_page(struct kvm *kvm)
3526 struct kvm_userspace_memory_region kvm_userspace_mem;
3527 int r = 0;
3529 mutex_lock(&kvm->slots_lock);
3530 if (kvm->arch.apic_access_page)
3531 goto out;
3532 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3533 kvm_userspace_mem.flags = 0;
3534 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3535 kvm_userspace_mem.memory_size = PAGE_SIZE;
3536 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3537 if (r)
3538 goto out;
3540 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3541 out:
3542 mutex_unlock(&kvm->slots_lock);
3543 return r;
3546 static int alloc_identity_pagetable(struct kvm *kvm)
3548 struct kvm_userspace_memory_region kvm_userspace_mem;
3549 int r = 0;
3551 mutex_lock(&kvm->slots_lock);
3552 if (kvm->arch.ept_identity_pagetable)
3553 goto out;
3554 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3555 kvm_userspace_mem.flags = 0;
3556 kvm_userspace_mem.guest_phys_addr =
3557 kvm->arch.ept_identity_map_addr;
3558 kvm_userspace_mem.memory_size = PAGE_SIZE;
3559 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3560 if (r)
3561 goto out;
3563 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3564 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3565 out:
3566 mutex_unlock(&kvm->slots_lock);
3567 return r;
3570 static void allocate_vpid(struct vcpu_vmx *vmx)
3572 int vpid;
3574 vmx->vpid = 0;
3575 if (!enable_vpid)
3576 return;
3577 spin_lock(&vmx_vpid_lock);
3578 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3579 if (vpid < VMX_NR_VPIDS) {
3580 vmx->vpid = vpid;
3581 __set_bit(vpid, vmx_vpid_bitmap);
3583 spin_unlock(&vmx_vpid_lock);
3586 static void free_vpid(struct vcpu_vmx *vmx)
3588 if (!enable_vpid)
3589 return;
3590 spin_lock(&vmx_vpid_lock);
3591 if (vmx->vpid != 0)
3592 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3593 spin_unlock(&vmx_vpid_lock);
3596 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3598 int f = sizeof(unsigned long);
3600 if (!cpu_has_vmx_msr_bitmap())
3601 return;
3604 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3605 * have the write-low and read-high bitmap offsets the wrong way round.
3606 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3608 if (msr <= 0x1fff) {
3609 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3610 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3611 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3612 msr &= 0x1fff;
3613 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3614 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3618 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3620 if (!longmode_only)
3621 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3622 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3626 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3627 * will not change in the lifetime of the guest.
3628 * Note that host-state that does change is set elsewhere. E.g., host-state
3629 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3631 static void vmx_set_constant_host_state(void)
3633 u32 low32, high32;
3634 unsigned long tmpl;
3635 struct desc_ptr dt;
3637 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3638 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3639 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3641 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3642 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3643 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3644 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3645 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3647 native_store_idt(&dt);
3648 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3650 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3651 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3653 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3654 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3655 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3656 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3658 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3659 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3660 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3664 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3666 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3667 if (enable_ept)
3668 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3669 if (is_guest_mode(&vmx->vcpu))
3670 vmx->vcpu.arch.cr4_guest_owned_bits &=
3671 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3672 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3675 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3677 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3678 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3679 exec_control &= ~CPU_BASED_TPR_SHADOW;
3680 #ifdef CONFIG_X86_64
3681 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3682 CPU_BASED_CR8_LOAD_EXITING;
3683 #endif
3685 if (!enable_ept)
3686 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3687 CPU_BASED_CR3_LOAD_EXITING |
3688 CPU_BASED_INVLPG_EXITING;
3689 return exec_control;
3692 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3694 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3695 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3696 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3697 if (vmx->vpid == 0)
3698 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3699 if (!enable_ept) {
3700 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3701 enable_unrestricted_guest = 0;
3703 if (!enable_unrestricted_guest)
3704 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3705 if (!ple_gap)
3706 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3707 return exec_control;
3710 static void ept_set_mmio_spte_mask(void)
3713 * EPT Misconfigurations can be generated if the value of bits 2:0
3714 * of an EPT paging-structure entry is 110b (write/execute).
3715 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3716 * spte.
3718 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3722 * Sets up the vmcs for emulated real mode.
3724 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3726 #ifdef CONFIG_X86_64
3727 unsigned long a;
3728 #endif
3729 int i;
3731 /* I/O */
3732 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3733 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3735 if (cpu_has_vmx_msr_bitmap())
3736 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3738 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3740 /* Control */
3741 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3742 vmcs_config.pin_based_exec_ctrl);
3744 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3746 if (cpu_has_secondary_exec_ctrls()) {
3747 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3748 vmx_secondary_exec_control(vmx));
3751 if (ple_gap) {
3752 vmcs_write32(PLE_GAP, ple_gap);
3753 vmcs_write32(PLE_WINDOW, ple_window);
3756 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3757 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3758 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3760 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3761 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3762 vmx_set_constant_host_state();
3763 #ifdef CONFIG_X86_64
3764 rdmsrl(MSR_FS_BASE, a);
3765 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3766 rdmsrl(MSR_GS_BASE, a);
3767 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3768 #else
3769 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3770 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3771 #endif
3773 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3774 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3775 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3776 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3777 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3779 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3780 u32 msr_low, msr_high;
3781 u64 host_pat;
3782 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3783 host_pat = msr_low | ((u64) msr_high << 32);
3784 /* Write the default value follow host pat */
3785 vmcs_write64(GUEST_IA32_PAT, host_pat);
3786 /* Keep arch.pat sync with GUEST_IA32_PAT */
3787 vmx->vcpu.arch.pat = host_pat;
3790 for (i = 0; i < NR_VMX_MSR; ++i) {
3791 u32 index = vmx_msr_index[i];
3792 u32 data_low, data_high;
3793 int j = vmx->nmsrs;
3795 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3796 continue;
3797 if (wrmsr_safe(index, data_low, data_high) < 0)
3798 continue;
3799 vmx->guest_msrs[j].index = i;
3800 vmx->guest_msrs[j].data = 0;
3801 vmx->guest_msrs[j].mask = -1ull;
3802 ++vmx->nmsrs;
3805 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3807 /* 22.2.1, 20.8.1 */
3808 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3810 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3811 set_cr4_guest_host_mask(vmx);
3813 kvm_write_tsc(&vmx->vcpu, 0);
3815 return 0;
3818 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3820 struct vcpu_vmx *vmx = to_vmx(vcpu);
3821 u64 msr;
3822 int ret;
3824 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3826 vmx->rmode.vm86_active = 0;
3828 vmx->soft_vnmi_blocked = 0;
3830 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3831 kvm_set_cr8(&vmx->vcpu, 0);
3832 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3833 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3834 msr |= MSR_IA32_APICBASE_BSP;
3835 kvm_set_apic_base(&vmx->vcpu, msr);
3837 ret = fx_init(&vmx->vcpu);
3838 if (ret != 0)
3839 goto out;
3841 vmx_segment_cache_clear(vmx);
3843 seg_setup(VCPU_SREG_CS);
3845 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3846 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3848 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3849 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3850 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3851 } else {
3852 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3853 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3856 seg_setup(VCPU_SREG_DS);
3857 seg_setup(VCPU_SREG_ES);
3858 seg_setup(VCPU_SREG_FS);
3859 seg_setup(VCPU_SREG_GS);
3860 seg_setup(VCPU_SREG_SS);
3862 vmcs_write16(GUEST_TR_SELECTOR, 0);
3863 vmcs_writel(GUEST_TR_BASE, 0);
3864 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3865 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3867 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3868 vmcs_writel(GUEST_LDTR_BASE, 0);
3869 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3870 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3872 vmcs_write32(GUEST_SYSENTER_CS, 0);
3873 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3874 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3876 vmcs_writel(GUEST_RFLAGS, 0x02);
3877 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3878 kvm_rip_write(vcpu, 0xfff0);
3879 else
3880 kvm_rip_write(vcpu, 0);
3881 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3883 vmcs_writel(GUEST_DR7, 0x400);
3885 vmcs_writel(GUEST_GDTR_BASE, 0);
3886 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3888 vmcs_writel(GUEST_IDTR_BASE, 0);
3889 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3891 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3892 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3893 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3895 /* Special registers */
3896 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3898 setup_msrs(vmx);
3900 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3902 if (cpu_has_vmx_tpr_shadow()) {
3903 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3904 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3905 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3906 __pa(vmx->vcpu.arch.apic->regs));
3907 vmcs_write32(TPR_THRESHOLD, 0);
3910 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3911 vmcs_write64(APIC_ACCESS_ADDR,
3912 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3914 if (vmx->vpid != 0)
3915 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3917 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3918 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3919 vmx_set_cr4(&vmx->vcpu, 0);
3920 vmx_set_efer(&vmx->vcpu, 0);
3921 vmx_fpu_activate(&vmx->vcpu);
3922 update_exception_bitmap(&vmx->vcpu);
3924 vpid_sync_context(vmx);
3926 ret = 0;
3928 /* HACK: Don't enable emulation on guest boot/reset */
3929 vmx->emulation_required = 0;
3931 out:
3932 return ret;
3936 * In nested virtualization, check if L1 asked to exit on external interrupts.
3937 * For most existing hypervisors, this will always return true.
3939 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3941 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3942 PIN_BASED_EXT_INTR_MASK;
3945 static void enable_irq_window(struct kvm_vcpu *vcpu)
3947 u32 cpu_based_vm_exec_control;
3948 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3950 * We get here if vmx_interrupt_allowed() said we can't
3951 * inject to L1 now because L2 must run. Ask L2 to exit
3952 * right after entry, so we can inject to L1 more promptly.
3954 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
3955 return;
3958 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3959 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3960 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3963 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3965 u32 cpu_based_vm_exec_control;
3967 if (!cpu_has_virtual_nmis()) {
3968 enable_irq_window(vcpu);
3969 return;
3972 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3973 enable_irq_window(vcpu);
3974 return;
3976 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3977 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3978 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3981 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3983 struct vcpu_vmx *vmx = to_vmx(vcpu);
3984 uint32_t intr;
3985 int irq = vcpu->arch.interrupt.nr;
3987 trace_kvm_inj_virq(irq);
3989 ++vcpu->stat.irq_injections;
3990 if (vmx->rmode.vm86_active) {
3991 int inc_eip = 0;
3992 if (vcpu->arch.interrupt.soft)
3993 inc_eip = vcpu->arch.event_exit_inst_len;
3994 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3995 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3996 return;
3998 intr = irq | INTR_INFO_VALID_MASK;
3999 if (vcpu->arch.interrupt.soft) {
4000 intr |= INTR_TYPE_SOFT_INTR;
4001 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4002 vmx->vcpu.arch.event_exit_inst_len);
4003 } else
4004 intr |= INTR_TYPE_EXT_INTR;
4005 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4006 vmx_clear_hlt(vcpu);
4009 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4011 struct vcpu_vmx *vmx = to_vmx(vcpu);
4013 if (is_guest_mode(vcpu))
4014 return;
4016 if (!cpu_has_virtual_nmis()) {
4018 * Tracking the NMI-blocked state in software is built upon
4019 * finding the next open IRQ window. This, in turn, depends on
4020 * well-behaving guests: They have to keep IRQs disabled at
4021 * least as long as the NMI handler runs. Otherwise we may
4022 * cause NMI nesting, maybe breaking the guest. But as this is
4023 * highly unlikely, we can live with the residual risk.
4025 vmx->soft_vnmi_blocked = 1;
4026 vmx->vnmi_blocked_time = 0;
4029 ++vcpu->stat.nmi_injections;
4030 vmx->nmi_known_unmasked = false;
4031 if (vmx->rmode.vm86_active) {
4032 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4033 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4034 return;
4036 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4037 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4038 vmx_clear_hlt(vcpu);
4041 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4043 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4044 return 0;
4046 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4047 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4048 | GUEST_INTR_STATE_NMI));
4051 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4053 if (!cpu_has_virtual_nmis())
4054 return to_vmx(vcpu)->soft_vnmi_blocked;
4055 if (to_vmx(vcpu)->nmi_known_unmasked)
4056 return false;
4057 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4060 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4062 struct vcpu_vmx *vmx = to_vmx(vcpu);
4064 if (!cpu_has_virtual_nmis()) {
4065 if (vmx->soft_vnmi_blocked != masked) {
4066 vmx->soft_vnmi_blocked = masked;
4067 vmx->vnmi_blocked_time = 0;
4069 } else {
4070 vmx->nmi_known_unmasked = !masked;
4071 if (masked)
4072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4073 GUEST_INTR_STATE_NMI);
4074 else
4075 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4076 GUEST_INTR_STATE_NMI);
4080 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4082 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4083 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4084 if (to_vmx(vcpu)->nested.nested_run_pending ||
4085 (vmcs12->idt_vectoring_info_field &
4086 VECTORING_INFO_VALID_MASK))
4087 return 0;
4088 nested_vmx_vmexit(vcpu);
4089 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4090 vmcs12->vm_exit_intr_info = 0;
4091 /* fall through to normal code, but now in L1, not L2 */
4094 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4095 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4096 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4099 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4101 int ret;
4102 struct kvm_userspace_memory_region tss_mem = {
4103 .slot = TSS_PRIVATE_MEMSLOT,
4104 .guest_phys_addr = addr,
4105 .memory_size = PAGE_SIZE * 3,
4106 .flags = 0,
4109 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4110 if (ret)
4111 return ret;
4112 kvm->arch.tss_addr = addr;
4113 if (!init_rmode_tss(kvm))
4114 return -ENOMEM;
4116 return 0;
4119 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4120 int vec, u32 err_code)
4123 * Instruction with address size override prefix opcode 0x67
4124 * Cause the #SS fault with 0 error code in VM86 mode.
4126 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4127 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4128 return 1;
4130 * Forward all other exceptions that are valid in real mode.
4131 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4132 * the required debugging infrastructure rework.
4134 switch (vec) {
4135 case DB_VECTOR:
4136 if (vcpu->guest_debug &
4137 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4138 return 0;
4139 kvm_queue_exception(vcpu, vec);
4140 return 1;
4141 case BP_VECTOR:
4143 * Update instruction length as we may reinject the exception
4144 * from user space while in guest debugging mode.
4146 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4147 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4148 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4149 return 0;
4150 /* fall through */
4151 case DE_VECTOR:
4152 case OF_VECTOR:
4153 case BR_VECTOR:
4154 case UD_VECTOR:
4155 case DF_VECTOR:
4156 case SS_VECTOR:
4157 case GP_VECTOR:
4158 case MF_VECTOR:
4159 kvm_queue_exception(vcpu, vec);
4160 return 1;
4162 return 0;
4166 * Trigger machine check on the host. We assume all the MSRs are already set up
4167 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4168 * We pass a fake environment to the machine check handler because we want
4169 * the guest to be always treated like user space, no matter what context
4170 * it used internally.
4172 static void kvm_machine_check(void)
4174 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4175 struct pt_regs regs = {
4176 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4177 .flags = X86_EFLAGS_IF,
4180 do_machine_check(&regs, 0);
4181 #endif
4184 static int handle_machine_check(struct kvm_vcpu *vcpu)
4186 /* already handled by vcpu_run */
4187 return 1;
4190 static int handle_exception(struct kvm_vcpu *vcpu)
4192 struct vcpu_vmx *vmx = to_vmx(vcpu);
4193 struct kvm_run *kvm_run = vcpu->run;
4194 u32 intr_info, ex_no, error_code;
4195 unsigned long cr2, rip, dr6;
4196 u32 vect_info;
4197 enum emulation_result er;
4199 vect_info = vmx->idt_vectoring_info;
4200 intr_info = vmx->exit_intr_info;
4202 if (is_machine_check(intr_info))
4203 return handle_machine_check(vcpu);
4205 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4206 !is_page_fault(intr_info)) {
4207 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4208 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4209 vcpu->run->internal.ndata = 2;
4210 vcpu->run->internal.data[0] = vect_info;
4211 vcpu->run->internal.data[1] = intr_info;
4212 return 0;
4215 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4216 return 1; /* already handled by vmx_vcpu_run() */
4218 if (is_no_device(intr_info)) {
4219 vmx_fpu_activate(vcpu);
4220 return 1;
4223 if (is_invalid_opcode(intr_info)) {
4224 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4225 if (er != EMULATE_DONE)
4226 kvm_queue_exception(vcpu, UD_VECTOR);
4227 return 1;
4230 error_code = 0;
4231 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4232 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4233 if (is_page_fault(intr_info)) {
4234 /* EPT won't cause page fault directly */
4235 BUG_ON(enable_ept);
4236 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4237 trace_kvm_page_fault(cr2, error_code);
4239 if (kvm_event_needs_reinjection(vcpu))
4240 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4241 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4244 if (vmx->rmode.vm86_active &&
4245 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4246 error_code)) {
4247 if (vcpu->arch.halt_request) {
4248 vcpu->arch.halt_request = 0;
4249 return kvm_emulate_halt(vcpu);
4251 return 1;
4254 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4255 switch (ex_no) {
4256 case DB_VECTOR:
4257 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4258 if (!(vcpu->guest_debug &
4259 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4260 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4261 kvm_queue_exception(vcpu, DB_VECTOR);
4262 return 1;
4264 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4265 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4266 /* fall through */
4267 case BP_VECTOR:
4269 * Update instruction length as we may reinject #BP from
4270 * user space while in guest debugging mode. Reading it for
4271 * #DB as well causes no harm, it is not used in that case.
4273 vmx->vcpu.arch.event_exit_inst_len =
4274 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4275 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4276 rip = kvm_rip_read(vcpu);
4277 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4278 kvm_run->debug.arch.exception = ex_no;
4279 break;
4280 default:
4281 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4282 kvm_run->ex.exception = ex_no;
4283 kvm_run->ex.error_code = error_code;
4284 break;
4286 return 0;
4289 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4291 ++vcpu->stat.irq_exits;
4292 return 1;
4295 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4297 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4298 return 0;
4301 static int handle_io(struct kvm_vcpu *vcpu)
4303 unsigned long exit_qualification;
4304 int size, in, string;
4305 unsigned port;
4307 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4308 string = (exit_qualification & 16) != 0;
4309 in = (exit_qualification & 8) != 0;
4311 ++vcpu->stat.io_exits;
4313 if (string || in)
4314 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4316 port = exit_qualification >> 16;
4317 size = (exit_qualification & 7) + 1;
4318 skip_emulated_instruction(vcpu);
4320 return kvm_fast_pio_out(vcpu, size, port);
4323 static void
4324 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4327 * Patch in the VMCALL instruction:
4329 hypercall[0] = 0x0f;
4330 hypercall[1] = 0x01;
4331 hypercall[2] = 0xc1;
4334 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4335 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4337 if (to_vmx(vcpu)->nested.vmxon &&
4338 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4339 return 1;
4341 if (is_guest_mode(vcpu)) {
4343 * We get here when L2 changed cr0 in a way that did not change
4344 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4345 * but did change L0 shadowed bits. This can currently happen
4346 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4347 * loading) while pretending to allow the guest to change it.
4349 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4350 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4351 return 1;
4352 vmcs_writel(CR0_READ_SHADOW, val);
4353 return 0;
4354 } else
4355 return kvm_set_cr0(vcpu, val);
4358 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4360 if (is_guest_mode(vcpu)) {
4361 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4362 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4363 return 1;
4364 vmcs_writel(CR4_READ_SHADOW, val);
4365 return 0;
4366 } else
4367 return kvm_set_cr4(vcpu, val);
4370 /* called to set cr0 as approriate for clts instruction exit. */
4371 static void handle_clts(struct kvm_vcpu *vcpu)
4373 if (is_guest_mode(vcpu)) {
4375 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4376 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4377 * just pretend it's off (also in arch.cr0 for fpu_activate).
4379 vmcs_writel(CR0_READ_SHADOW,
4380 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4381 vcpu->arch.cr0 &= ~X86_CR0_TS;
4382 } else
4383 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4386 static int handle_cr(struct kvm_vcpu *vcpu)
4388 unsigned long exit_qualification, val;
4389 int cr;
4390 int reg;
4391 int err;
4393 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4394 cr = exit_qualification & 15;
4395 reg = (exit_qualification >> 8) & 15;
4396 switch ((exit_qualification >> 4) & 3) {
4397 case 0: /* mov to cr */
4398 val = kvm_register_read(vcpu, reg);
4399 trace_kvm_cr_write(cr, val);
4400 switch (cr) {
4401 case 0:
4402 err = handle_set_cr0(vcpu, val);
4403 kvm_complete_insn_gp(vcpu, err);
4404 return 1;
4405 case 3:
4406 err = kvm_set_cr3(vcpu, val);
4407 kvm_complete_insn_gp(vcpu, err);
4408 return 1;
4409 case 4:
4410 err = handle_set_cr4(vcpu, val);
4411 kvm_complete_insn_gp(vcpu, err);
4412 return 1;
4413 case 8: {
4414 u8 cr8_prev = kvm_get_cr8(vcpu);
4415 u8 cr8 = kvm_register_read(vcpu, reg);
4416 err = kvm_set_cr8(vcpu, cr8);
4417 kvm_complete_insn_gp(vcpu, err);
4418 if (irqchip_in_kernel(vcpu->kvm))
4419 return 1;
4420 if (cr8_prev <= cr8)
4421 return 1;
4422 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4423 return 0;
4426 break;
4427 case 2: /* clts */
4428 handle_clts(vcpu);
4429 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4430 skip_emulated_instruction(vcpu);
4431 vmx_fpu_activate(vcpu);
4432 return 1;
4433 case 1: /*mov from cr*/
4434 switch (cr) {
4435 case 3:
4436 val = kvm_read_cr3(vcpu);
4437 kvm_register_write(vcpu, reg, val);
4438 trace_kvm_cr_read(cr, val);
4439 skip_emulated_instruction(vcpu);
4440 return 1;
4441 case 8:
4442 val = kvm_get_cr8(vcpu);
4443 kvm_register_write(vcpu, reg, val);
4444 trace_kvm_cr_read(cr, val);
4445 skip_emulated_instruction(vcpu);
4446 return 1;
4448 break;
4449 case 3: /* lmsw */
4450 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4451 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4452 kvm_lmsw(vcpu, val);
4454 skip_emulated_instruction(vcpu);
4455 return 1;
4456 default:
4457 break;
4459 vcpu->run->exit_reason = 0;
4460 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4461 (int)(exit_qualification >> 4) & 3, cr);
4462 return 0;
4465 static int handle_dr(struct kvm_vcpu *vcpu)
4467 unsigned long exit_qualification;
4468 int dr, reg;
4470 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4471 if (!kvm_require_cpl(vcpu, 0))
4472 return 1;
4473 dr = vmcs_readl(GUEST_DR7);
4474 if (dr & DR7_GD) {
4476 * As the vm-exit takes precedence over the debug trap, we
4477 * need to emulate the latter, either for the host or the
4478 * guest debugging itself.
4480 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4481 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4482 vcpu->run->debug.arch.dr7 = dr;
4483 vcpu->run->debug.arch.pc =
4484 vmcs_readl(GUEST_CS_BASE) +
4485 vmcs_readl(GUEST_RIP);
4486 vcpu->run->debug.arch.exception = DB_VECTOR;
4487 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4488 return 0;
4489 } else {
4490 vcpu->arch.dr7 &= ~DR7_GD;
4491 vcpu->arch.dr6 |= DR6_BD;
4492 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4493 kvm_queue_exception(vcpu, DB_VECTOR);
4494 return 1;
4498 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4499 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4500 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4501 if (exit_qualification & TYPE_MOV_FROM_DR) {
4502 unsigned long val;
4503 if (!kvm_get_dr(vcpu, dr, &val))
4504 kvm_register_write(vcpu, reg, val);
4505 } else
4506 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4507 skip_emulated_instruction(vcpu);
4508 return 1;
4511 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4513 vmcs_writel(GUEST_DR7, val);
4516 static int handle_cpuid(struct kvm_vcpu *vcpu)
4518 kvm_emulate_cpuid(vcpu);
4519 return 1;
4522 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4524 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4525 u64 data;
4527 if (vmx_get_msr(vcpu, ecx, &data)) {
4528 trace_kvm_msr_read_ex(ecx);
4529 kvm_inject_gp(vcpu, 0);
4530 return 1;
4533 trace_kvm_msr_read(ecx, data);
4535 /* FIXME: handling of bits 32:63 of rax, rdx */
4536 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4537 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4538 skip_emulated_instruction(vcpu);
4539 return 1;
4542 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4544 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4545 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4546 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4548 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4549 trace_kvm_msr_write_ex(ecx, data);
4550 kvm_inject_gp(vcpu, 0);
4551 return 1;
4554 trace_kvm_msr_write(ecx, data);
4555 skip_emulated_instruction(vcpu);
4556 return 1;
4559 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4561 kvm_make_request(KVM_REQ_EVENT, vcpu);
4562 return 1;
4565 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4567 u32 cpu_based_vm_exec_control;
4569 /* clear pending irq */
4570 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4571 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4572 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4574 kvm_make_request(KVM_REQ_EVENT, vcpu);
4576 ++vcpu->stat.irq_window_exits;
4579 * If the user space waits to inject interrupts, exit as soon as
4580 * possible
4582 if (!irqchip_in_kernel(vcpu->kvm) &&
4583 vcpu->run->request_interrupt_window &&
4584 !kvm_cpu_has_interrupt(vcpu)) {
4585 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4586 return 0;
4588 return 1;
4591 static int handle_halt(struct kvm_vcpu *vcpu)
4593 skip_emulated_instruction(vcpu);
4594 return kvm_emulate_halt(vcpu);
4597 static int handle_vmcall(struct kvm_vcpu *vcpu)
4599 skip_emulated_instruction(vcpu);
4600 kvm_emulate_hypercall(vcpu);
4601 return 1;
4604 static int handle_invd(struct kvm_vcpu *vcpu)
4606 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4609 static int handle_invlpg(struct kvm_vcpu *vcpu)
4611 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4613 kvm_mmu_invlpg(vcpu, exit_qualification);
4614 skip_emulated_instruction(vcpu);
4615 return 1;
4618 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4620 int err;
4622 err = kvm_rdpmc(vcpu);
4623 kvm_complete_insn_gp(vcpu, err);
4625 return 1;
4628 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4630 skip_emulated_instruction(vcpu);
4631 kvm_emulate_wbinvd(vcpu);
4632 return 1;
4635 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4637 u64 new_bv = kvm_read_edx_eax(vcpu);
4638 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4640 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4641 skip_emulated_instruction(vcpu);
4642 return 1;
4645 static int handle_apic_access(struct kvm_vcpu *vcpu)
4647 if (likely(fasteoi)) {
4648 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4649 int access_type, offset;
4651 access_type = exit_qualification & APIC_ACCESS_TYPE;
4652 offset = exit_qualification & APIC_ACCESS_OFFSET;
4654 * Sane guest uses MOV to write EOI, with written value
4655 * not cared. So make a short-circuit here by avoiding
4656 * heavy instruction emulation.
4658 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4659 (offset == APIC_EOI)) {
4660 kvm_lapic_set_eoi(vcpu);
4661 skip_emulated_instruction(vcpu);
4662 return 1;
4665 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4668 static int handle_task_switch(struct kvm_vcpu *vcpu)
4670 struct vcpu_vmx *vmx = to_vmx(vcpu);
4671 unsigned long exit_qualification;
4672 bool has_error_code = false;
4673 u32 error_code = 0;
4674 u16 tss_selector;
4675 int reason, type, idt_v;
4677 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4678 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4680 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4682 reason = (u32)exit_qualification >> 30;
4683 if (reason == TASK_SWITCH_GATE && idt_v) {
4684 switch (type) {
4685 case INTR_TYPE_NMI_INTR:
4686 vcpu->arch.nmi_injected = false;
4687 vmx_set_nmi_mask(vcpu, true);
4688 break;
4689 case INTR_TYPE_EXT_INTR:
4690 case INTR_TYPE_SOFT_INTR:
4691 kvm_clear_interrupt_queue(vcpu);
4692 break;
4693 case INTR_TYPE_HARD_EXCEPTION:
4694 if (vmx->idt_vectoring_info &
4695 VECTORING_INFO_DELIVER_CODE_MASK) {
4696 has_error_code = true;
4697 error_code =
4698 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4700 /* fall through */
4701 case INTR_TYPE_SOFT_EXCEPTION:
4702 kvm_clear_exception_queue(vcpu);
4703 break;
4704 default:
4705 break;
4708 tss_selector = exit_qualification;
4710 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4711 type != INTR_TYPE_EXT_INTR &&
4712 type != INTR_TYPE_NMI_INTR))
4713 skip_emulated_instruction(vcpu);
4715 if (kvm_task_switch(vcpu, tss_selector, reason,
4716 has_error_code, error_code) == EMULATE_FAIL) {
4717 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4718 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4719 vcpu->run->internal.ndata = 0;
4720 return 0;
4723 /* clear all local breakpoint enable flags */
4724 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4727 * TODO: What about debug traps on tss switch?
4728 * Are we supposed to inject them and update dr6?
4731 return 1;
4734 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4736 unsigned long exit_qualification;
4737 gpa_t gpa;
4738 int gla_validity;
4740 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4742 if (exit_qualification & (1 << 6)) {
4743 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4744 return -EINVAL;
4747 gla_validity = (exit_qualification >> 7) & 0x3;
4748 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4749 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4750 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4751 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4752 vmcs_readl(GUEST_LINEAR_ADDRESS));
4753 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4754 (long unsigned int)exit_qualification);
4755 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4756 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4757 return 0;
4760 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4761 trace_kvm_page_fault(gpa, exit_qualification);
4762 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4765 static u64 ept_rsvd_mask(u64 spte, int level)
4767 int i;
4768 u64 mask = 0;
4770 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4771 mask |= (1ULL << i);
4773 if (level > 2)
4774 /* bits 7:3 reserved */
4775 mask |= 0xf8;
4776 else if (level == 2) {
4777 if (spte & (1ULL << 7))
4778 /* 2MB ref, bits 20:12 reserved */
4779 mask |= 0x1ff000;
4780 else
4781 /* bits 6:3 reserved */
4782 mask |= 0x78;
4785 return mask;
4788 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4789 int level)
4791 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4793 /* 010b (write-only) */
4794 WARN_ON((spte & 0x7) == 0x2);
4796 /* 110b (write/execute) */
4797 WARN_ON((spte & 0x7) == 0x6);
4799 /* 100b (execute-only) and value not supported by logical processor */
4800 if (!cpu_has_vmx_ept_execute_only())
4801 WARN_ON((spte & 0x7) == 0x4);
4803 /* not 000b */
4804 if ((spte & 0x7)) {
4805 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4807 if (rsvd_bits != 0) {
4808 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4809 __func__, rsvd_bits);
4810 WARN_ON(1);
4813 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4814 u64 ept_mem_type = (spte & 0x38) >> 3;
4816 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4817 ept_mem_type == 7) {
4818 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4819 __func__, ept_mem_type);
4820 WARN_ON(1);
4826 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4828 u64 sptes[4];
4829 int nr_sptes, i, ret;
4830 gpa_t gpa;
4832 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4834 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4835 if (likely(ret == 1))
4836 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4837 EMULATE_DONE;
4838 if (unlikely(!ret))
4839 return 1;
4841 /* It is the real ept misconfig */
4842 printk(KERN_ERR "EPT: Misconfiguration.\n");
4843 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4845 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4847 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4848 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4850 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4851 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4853 return 0;
4856 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4858 u32 cpu_based_vm_exec_control;
4860 /* clear pending NMI */
4861 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4862 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4863 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4864 ++vcpu->stat.nmi_window_exits;
4865 kvm_make_request(KVM_REQ_EVENT, vcpu);
4867 return 1;
4870 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4872 struct vcpu_vmx *vmx = to_vmx(vcpu);
4873 enum emulation_result err = EMULATE_DONE;
4874 int ret = 1;
4875 u32 cpu_exec_ctrl;
4876 bool intr_window_requested;
4878 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4879 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4881 while (!guest_state_valid(vcpu)) {
4882 if (intr_window_requested
4883 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4884 return handle_interrupt_window(&vmx->vcpu);
4886 err = emulate_instruction(vcpu, 0);
4888 if (err == EMULATE_DO_MMIO) {
4889 ret = 0;
4890 goto out;
4893 if (err != EMULATE_DONE)
4894 return 0;
4896 if (signal_pending(current))
4897 goto out;
4898 if (need_resched())
4899 schedule();
4902 vmx->emulation_required = 0;
4903 out:
4904 return ret;
4908 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4909 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4911 static int handle_pause(struct kvm_vcpu *vcpu)
4913 skip_emulated_instruction(vcpu);
4914 kvm_vcpu_on_spin(vcpu);
4916 return 1;
4919 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4921 kvm_queue_exception(vcpu, UD_VECTOR);
4922 return 1;
4926 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4927 * We could reuse a single VMCS for all the L2 guests, but we also want the
4928 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4929 * allows keeping them loaded on the processor, and in the future will allow
4930 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4931 * every entry if they never change.
4932 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4933 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4935 * The following functions allocate and free a vmcs02 in this pool.
4938 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4939 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4941 struct vmcs02_list *item;
4942 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4943 if (item->vmptr == vmx->nested.current_vmptr) {
4944 list_move(&item->list, &vmx->nested.vmcs02_pool);
4945 return &item->vmcs02;
4948 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4949 /* Recycle the least recently used VMCS. */
4950 item = list_entry(vmx->nested.vmcs02_pool.prev,
4951 struct vmcs02_list, list);
4952 item->vmptr = vmx->nested.current_vmptr;
4953 list_move(&item->list, &vmx->nested.vmcs02_pool);
4954 return &item->vmcs02;
4957 /* Create a new VMCS */
4958 item = (struct vmcs02_list *)
4959 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4960 if (!item)
4961 return NULL;
4962 item->vmcs02.vmcs = alloc_vmcs();
4963 if (!item->vmcs02.vmcs) {
4964 kfree(item);
4965 return NULL;
4967 loaded_vmcs_init(&item->vmcs02);
4968 item->vmptr = vmx->nested.current_vmptr;
4969 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4970 vmx->nested.vmcs02_num++;
4971 return &item->vmcs02;
4974 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4975 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4977 struct vmcs02_list *item;
4978 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4979 if (item->vmptr == vmptr) {
4980 free_loaded_vmcs(&item->vmcs02);
4981 list_del(&item->list);
4982 kfree(item);
4983 vmx->nested.vmcs02_num--;
4984 return;
4989 * Free all VMCSs saved for this vcpu, except the one pointed by
4990 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4991 * currently used, if running L2), and vmcs01 when running L2.
4993 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4995 struct vmcs02_list *item, *n;
4996 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4997 if (vmx->loaded_vmcs != &item->vmcs02)
4998 free_loaded_vmcs(&item->vmcs02);
4999 list_del(&item->list);
5000 kfree(item);
5002 vmx->nested.vmcs02_num = 0;
5004 if (vmx->loaded_vmcs != &vmx->vmcs01)
5005 free_loaded_vmcs(&vmx->vmcs01);
5009 * Emulate the VMXON instruction.
5010 * Currently, we just remember that VMX is active, and do not save or even
5011 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5012 * do not currently need to store anything in that guest-allocated memory
5013 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5014 * argument is different from the VMXON pointer (which the spec says they do).
5016 static int handle_vmon(struct kvm_vcpu *vcpu)
5018 struct kvm_segment cs;
5019 struct vcpu_vmx *vmx = to_vmx(vcpu);
5021 /* The Intel VMX Instruction Reference lists a bunch of bits that
5022 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5023 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5024 * Otherwise, we should fail with #UD. We test these now:
5026 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5027 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5028 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5029 kvm_queue_exception(vcpu, UD_VECTOR);
5030 return 1;
5033 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5034 if (is_long_mode(vcpu) && !cs.l) {
5035 kvm_queue_exception(vcpu, UD_VECTOR);
5036 return 1;
5039 if (vmx_get_cpl(vcpu)) {
5040 kvm_inject_gp(vcpu, 0);
5041 return 1;
5044 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5045 vmx->nested.vmcs02_num = 0;
5047 vmx->nested.vmxon = true;
5049 skip_emulated_instruction(vcpu);
5050 return 1;
5054 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5055 * for running VMX instructions (except VMXON, whose prerequisites are
5056 * slightly different). It also specifies what exception to inject otherwise.
5058 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5060 struct kvm_segment cs;
5061 struct vcpu_vmx *vmx = to_vmx(vcpu);
5063 if (!vmx->nested.vmxon) {
5064 kvm_queue_exception(vcpu, UD_VECTOR);
5065 return 0;
5068 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5069 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5070 (is_long_mode(vcpu) && !cs.l)) {
5071 kvm_queue_exception(vcpu, UD_VECTOR);
5072 return 0;
5075 if (vmx_get_cpl(vcpu)) {
5076 kvm_inject_gp(vcpu, 0);
5077 return 0;
5080 return 1;
5084 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5085 * just stops using VMX.
5087 static void free_nested(struct vcpu_vmx *vmx)
5089 if (!vmx->nested.vmxon)
5090 return;
5091 vmx->nested.vmxon = false;
5092 if (vmx->nested.current_vmptr != -1ull) {
5093 kunmap(vmx->nested.current_vmcs12_page);
5094 nested_release_page(vmx->nested.current_vmcs12_page);
5095 vmx->nested.current_vmptr = -1ull;
5096 vmx->nested.current_vmcs12 = NULL;
5098 /* Unpin physical memory we referred to in current vmcs02 */
5099 if (vmx->nested.apic_access_page) {
5100 nested_release_page(vmx->nested.apic_access_page);
5101 vmx->nested.apic_access_page = 0;
5104 nested_free_all_saved_vmcss(vmx);
5107 /* Emulate the VMXOFF instruction */
5108 static int handle_vmoff(struct kvm_vcpu *vcpu)
5110 if (!nested_vmx_check_permission(vcpu))
5111 return 1;
5112 free_nested(to_vmx(vcpu));
5113 skip_emulated_instruction(vcpu);
5114 return 1;
5118 * Decode the memory-address operand of a vmx instruction, as recorded on an
5119 * exit caused by such an instruction (run by a guest hypervisor).
5120 * On success, returns 0. When the operand is invalid, returns 1 and throws
5121 * #UD or #GP.
5123 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5124 unsigned long exit_qualification,
5125 u32 vmx_instruction_info, gva_t *ret)
5128 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5129 * Execution", on an exit, vmx_instruction_info holds most of the
5130 * addressing components of the operand. Only the displacement part
5131 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5132 * For how an actual address is calculated from all these components,
5133 * refer to Vol. 1, "Operand Addressing".
5135 int scaling = vmx_instruction_info & 3;
5136 int addr_size = (vmx_instruction_info >> 7) & 7;
5137 bool is_reg = vmx_instruction_info & (1u << 10);
5138 int seg_reg = (vmx_instruction_info >> 15) & 7;
5139 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5140 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5141 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5142 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5144 if (is_reg) {
5145 kvm_queue_exception(vcpu, UD_VECTOR);
5146 return 1;
5149 /* Addr = segment_base + offset */
5150 /* offset = base + [index * scale] + displacement */
5151 *ret = vmx_get_segment_base(vcpu, seg_reg);
5152 if (base_is_valid)
5153 *ret += kvm_register_read(vcpu, base_reg);
5154 if (index_is_valid)
5155 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5156 *ret += exit_qualification; /* holds the displacement */
5158 if (addr_size == 1) /* 32 bit */
5159 *ret &= 0xffffffff;
5162 * TODO: throw #GP (and return 1) in various cases that the VM*
5163 * instructions require it - e.g., offset beyond segment limit,
5164 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5165 * address, and so on. Currently these are not checked.
5167 return 0;
5171 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5172 * set the success or error code of an emulated VMX instruction, as specified
5173 * by Vol 2B, VMX Instruction Reference, "Conventions".
5175 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5177 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5178 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5179 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5182 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5184 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5185 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5186 X86_EFLAGS_SF | X86_EFLAGS_OF))
5187 | X86_EFLAGS_CF);
5190 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5191 u32 vm_instruction_error)
5193 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5195 * failValid writes the error number to the current VMCS, which
5196 * can't be done there isn't a current VMCS.
5198 nested_vmx_failInvalid(vcpu);
5199 return;
5201 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5202 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5203 X86_EFLAGS_SF | X86_EFLAGS_OF))
5204 | X86_EFLAGS_ZF);
5205 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5208 /* Emulate the VMCLEAR instruction */
5209 static int handle_vmclear(struct kvm_vcpu *vcpu)
5211 struct vcpu_vmx *vmx = to_vmx(vcpu);
5212 gva_t gva;
5213 gpa_t vmptr;
5214 struct vmcs12 *vmcs12;
5215 struct page *page;
5216 struct x86_exception e;
5218 if (!nested_vmx_check_permission(vcpu))
5219 return 1;
5221 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5222 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5223 return 1;
5225 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5226 sizeof(vmptr), &e)) {
5227 kvm_inject_page_fault(vcpu, &e);
5228 return 1;
5231 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5232 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5233 skip_emulated_instruction(vcpu);
5234 return 1;
5237 if (vmptr == vmx->nested.current_vmptr) {
5238 kunmap(vmx->nested.current_vmcs12_page);
5239 nested_release_page(vmx->nested.current_vmcs12_page);
5240 vmx->nested.current_vmptr = -1ull;
5241 vmx->nested.current_vmcs12 = NULL;
5244 page = nested_get_page(vcpu, vmptr);
5245 if (page == NULL) {
5247 * For accurate processor emulation, VMCLEAR beyond available
5248 * physical memory should do nothing at all. However, it is
5249 * possible that a nested vmx bug, not a guest hypervisor bug,
5250 * resulted in this case, so let's shut down before doing any
5251 * more damage:
5253 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5254 return 1;
5256 vmcs12 = kmap(page);
5257 vmcs12->launch_state = 0;
5258 kunmap(page);
5259 nested_release_page(page);
5261 nested_free_vmcs02(vmx, vmptr);
5263 skip_emulated_instruction(vcpu);
5264 nested_vmx_succeed(vcpu);
5265 return 1;
5268 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5270 /* Emulate the VMLAUNCH instruction */
5271 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5273 return nested_vmx_run(vcpu, true);
5276 /* Emulate the VMRESUME instruction */
5277 static int handle_vmresume(struct kvm_vcpu *vcpu)
5280 return nested_vmx_run(vcpu, false);
5283 enum vmcs_field_type {
5284 VMCS_FIELD_TYPE_U16 = 0,
5285 VMCS_FIELD_TYPE_U64 = 1,
5286 VMCS_FIELD_TYPE_U32 = 2,
5287 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5290 static inline int vmcs_field_type(unsigned long field)
5292 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5293 return VMCS_FIELD_TYPE_U32;
5294 return (field >> 13) & 0x3 ;
5297 static inline int vmcs_field_readonly(unsigned long field)
5299 return (((field >> 10) & 0x3) == 1);
5303 * Read a vmcs12 field. Since these can have varying lengths and we return
5304 * one type, we chose the biggest type (u64) and zero-extend the return value
5305 * to that size. Note that the caller, handle_vmread, might need to use only
5306 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5307 * 64-bit fields are to be returned).
5309 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5310 unsigned long field, u64 *ret)
5312 short offset = vmcs_field_to_offset(field);
5313 char *p;
5315 if (offset < 0)
5316 return 0;
5318 p = ((char *)(get_vmcs12(vcpu))) + offset;
5320 switch (vmcs_field_type(field)) {
5321 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5322 *ret = *((natural_width *)p);
5323 return 1;
5324 case VMCS_FIELD_TYPE_U16:
5325 *ret = *((u16 *)p);
5326 return 1;
5327 case VMCS_FIELD_TYPE_U32:
5328 *ret = *((u32 *)p);
5329 return 1;
5330 case VMCS_FIELD_TYPE_U64:
5331 *ret = *((u64 *)p);
5332 return 1;
5333 default:
5334 return 0; /* can never happen. */
5339 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5340 * used before) all generate the same failure when it is missing.
5342 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5344 struct vcpu_vmx *vmx = to_vmx(vcpu);
5345 if (vmx->nested.current_vmptr == -1ull) {
5346 nested_vmx_failInvalid(vcpu);
5347 skip_emulated_instruction(vcpu);
5348 return 0;
5350 return 1;
5353 static int handle_vmread(struct kvm_vcpu *vcpu)
5355 unsigned long field;
5356 u64 field_value;
5357 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5358 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5359 gva_t gva = 0;
5361 if (!nested_vmx_check_permission(vcpu) ||
5362 !nested_vmx_check_vmcs12(vcpu))
5363 return 1;
5365 /* Decode instruction info and find the field to read */
5366 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5367 /* Read the field, zero-extended to a u64 field_value */
5368 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5369 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5370 skip_emulated_instruction(vcpu);
5371 return 1;
5374 * Now copy part of this value to register or memory, as requested.
5375 * Note that the number of bits actually copied is 32 or 64 depending
5376 * on the guest's mode (32 or 64 bit), not on the given field's length.
5378 if (vmx_instruction_info & (1u << 10)) {
5379 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5380 field_value);
5381 } else {
5382 if (get_vmx_mem_address(vcpu, exit_qualification,
5383 vmx_instruction_info, &gva))
5384 return 1;
5385 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5386 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5387 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5390 nested_vmx_succeed(vcpu);
5391 skip_emulated_instruction(vcpu);
5392 return 1;
5396 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5398 unsigned long field;
5399 gva_t gva;
5400 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5401 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5402 char *p;
5403 short offset;
5404 /* The value to write might be 32 or 64 bits, depending on L1's long
5405 * mode, and eventually we need to write that into a field of several
5406 * possible lengths. The code below first zero-extends the value to 64
5407 * bit (field_value), and then copies only the approriate number of
5408 * bits into the vmcs12 field.
5410 u64 field_value = 0;
5411 struct x86_exception e;
5413 if (!nested_vmx_check_permission(vcpu) ||
5414 !nested_vmx_check_vmcs12(vcpu))
5415 return 1;
5417 if (vmx_instruction_info & (1u << 10))
5418 field_value = kvm_register_read(vcpu,
5419 (((vmx_instruction_info) >> 3) & 0xf));
5420 else {
5421 if (get_vmx_mem_address(vcpu, exit_qualification,
5422 vmx_instruction_info, &gva))
5423 return 1;
5424 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5425 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5426 kvm_inject_page_fault(vcpu, &e);
5427 return 1;
5432 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5433 if (vmcs_field_readonly(field)) {
5434 nested_vmx_failValid(vcpu,
5435 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5436 skip_emulated_instruction(vcpu);
5437 return 1;
5440 offset = vmcs_field_to_offset(field);
5441 if (offset < 0) {
5442 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5443 skip_emulated_instruction(vcpu);
5444 return 1;
5446 p = ((char *) get_vmcs12(vcpu)) + offset;
5448 switch (vmcs_field_type(field)) {
5449 case VMCS_FIELD_TYPE_U16:
5450 *(u16 *)p = field_value;
5451 break;
5452 case VMCS_FIELD_TYPE_U32:
5453 *(u32 *)p = field_value;
5454 break;
5455 case VMCS_FIELD_TYPE_U64:
5456 *(u64 *)p = field_value;
5457 break;
5458 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5459 *(natural_width *)p = field_value;
5460 break;
5461 default:
5462 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5463 skip_emulated_instruction(vcpu);
5464 return 1;
5467 nested_vmx_succeed(vcpu);
5468 skip_emulated_instruction(vcpu);
5469 return 1;
5472 /* Emulate the VMPTRLD instruction */
5473 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5475 struct vcpu_vmx *vmx = to_vmx(vcpu);
5476 gva_t gva;
5477 gpa_t vmptr;
5478 struct x86_exception e;
5480 if (!nested_vmx_check_permission(vcpu))
5481 return 1;
5483 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5484 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5485 return 1;
5487 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5488 sizeof(vmptr), &e)) {
5489 kvm_inject_page_fault(vcpu, &e);
5490 return 1;
5493 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5494 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5495 skip_emulated_instruction(vcpu);
5496 return 1;
5499 if (vmx->nested.current_vmptr != vmptr) {
5500 struct vmcs12 *new_vmcs12;
5501 struct page *page;
5502 page = nested_get_page(vcpu, vmptr);
5503 if (page == NULL) {
5504 nested_vmx_failInvalid(vcpu);
5505 skip_emulated_instruction(vcpu);
5506 return 1;
5508 new_vmcs12 = kmap(page);
5509 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5510 kunmap(page);
5511 nested_release_page_clean(page);
5512 nested_vmx_failValid(vcpu,
5513 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5514 skip_emulated_instruction(vcpu);
5515 return 1;
5517 if (vmx->nested.current_vmptr != -1ull) {
5518 kunmap(vmx->nested.current_vmcs12_page);
5519 nested_release_page(vmx->nested.current_vmcs12_page);
5522 vmx->nested.current_vmptr = vmptr;
5523 vmx->nested.current_vmcs12 = new_vmcs12;
5524 vmx->nested.current_vmcs12_page = page;
5527 nested_vmx_succeed(vcpu);
5528 skip_emulated_instruction(vcpu);
5529 return 1;
5532 /* Emulate the VMPTRST instruction */
5533 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5535 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5536 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5537 gva_t vmcs_gva;
5538 struct x86_exception e;
5540 if (!nested_vmx_check_permission(vcpu))
5541 return 1;
5543 if (get_vmx_mem_address(vcpu, exit_qualification,
5544 vmx_instruction_info, &vmcs_gva))
5545 return 1;
5546 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5547 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5548 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5549 sizeof(u64), &e)) {
5550 kvm_inject_page_fault(vcpu, &e);
5551 return 1;
5553 nested_vmx_succeed(vcpu);
5554 skip_emulated_instruction(vcpu);
5555 return 1;
5559 * The exit handlers return 1 if the exit was handled fully and guest execution
5560 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5561 * to be done to userspace and return 0.
5563 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5564 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5565 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5566 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5567 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5568 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5569 [EXIT_REASON_CR_ACCESS] = handle_cr,
5570 [EXIT_REASON_DR_ACCESS] = handle_dr,
5571 [EXIT_REASON_CPUID] = handle_cpuid,
5572 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5573 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5574 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5575 [EXIT_REASON_HLT] = handle_halt,
5576 [EXIT_REASON_INVD] = handle_invd,
5577 [EXIT_REASON_INVLPG] = handle_invlpg,
5578 [EXIT_REASON_RDPMC] = handle_rdpmc,
5579 [EXIT_REASON_VMCALL] = handle_vmcall,
5580 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5581 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5582 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5583 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5584 [EXIT_REASON_VMREAD] = handle_vmread,
5585 [EXIT_REASON_VMRESUME] = handle_vmresume,
5586 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5587 [EXIT_REASON_VMOFF] = handle_vmoff,
5588 [EXIT_REASON_VMON] = handle_vmon,
5589 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5590 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5591 [EXIT_REASON_WBINVD] = handle_wbinvd,
5592 [EXIT_REASON_XSETBV] = handle_xsetbv,
5593 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5594 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5595 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5596 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5597 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5598 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5599 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5602 static const int kvm_vmx_max_exit_handlers =
5603 ARRAY_SIZE(kvm_vmx_exit_handlers);
5606 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5607 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5608 * disinterest in the current event (read or write a specific MSR) by using an
5609 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5611 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5612 struct vmcs12 *vmcs12, u32 exit_reason)
5614 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5615 gpa_t bitmap;
5617 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5618 return 1;
5621 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5622 * for the four combinations of read/write and low/high MSR numbers.
5623 * First we need to figure out which of the four to use:
5625 bitmap = vmcs12->msr_bitmap;
5626 if (exit_reason == EXIT_REASON_MSR_WRITE)
5627 bitmap += 2048;
5628 if (msr_index >= 0xc0000000) {
5629 msr_index -= 0xc0000000;
5630 bitmap += 1024;
5633 /* Then read the msr_index'th bit from this bitmap: */
5634 if (msr_index < 1024*8) {
5635 unsigned char b;
5636 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5637 return 1 & (b >> (msr_index & 7));
5638 } else
5639 return 1; /* let L1 handle the wrong parameter */
5643 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5644 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5645 * intercept (via guest_host_mask etc.) the current event.
5647 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5648 struct vmcs12 *vmcs12)
5650 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5651 int cr = exit_qualification & 15;
5652 int reg = (exit_qualification >> 8) & 15;
5653 unsigned long val = kvm_register_read(vcpu, reg);
5655 switch ((exit_qualification >> 4) & 3) {
5656 case 0: /* mov to cr */
5657 switch (cr) {
5658 case 0:
5659 if (vmcs12->cr0_guest_host_mask &
5660 (val ^ vmcs12->cr0_read_shadow))
5661 return 1;
5662 break;
5663 case 3:
5664 if ((vmcs12->cr3_target_count >= 1 &&
5665 vmcs12->cr3_target_value0 == val) ||
5666 (vmcs12->cr3_target_count >= 2 &&
5667 vmcs12->cr3_target_value1 == val) ||
5668 (vmcs12->cr3_target_count >= 3 &&
5669 vmcs12->cr3_target_value2 == val) ||
5670 (vmcs12->cr3_target_count >= 4 &&
5671 vmcs12->cr3_target_value3 == val))
5672 return 0;
5673 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5674 return 1;
5675 break;
5676 case 4:
5677 if (vmcs12->cr4_guest_host_mask &
5678 (vmcs12->cr4_read_shadow ^ val))
5679 return 1;
5680 break;
5681 case 8:
5682 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5683 return 1;
5684 break;
5686 break;
5687 case 2: /* clts */
5688 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5689 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5690 return 1;
5691 break;
5692 case 1: /* mov from cr */
5693 switch (cr) {
5694 case 3:
5695 if (vmcs12->cpu_based_vm_exec_control &
5696 CPU_BASED_CR3_STORE_EXITING)
5697 return 1;
5698 break;
5699 case 8:
5700 if (vmcs12->cpu_based_vm_exec_control &
5701 CPU_BASED_CR8_STORE_EXITING)
5702 return 1;
5703 break;
5705 break;
5706 case 3: /* lmsw */
5708 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5709 * cr0. Other attempted changes are ignored, with no exit.
5711 if (vmcs12->cr0_guest_host_mask & 0xe &
5712 (val ^ vmcs12->cr0_read_shadow))
5713 return 1;
5714 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5715 !(vmcs12->cr0_read_shadow & 0x1) &&
5716 (val & 0x1))
5717 return 1;
5718 break;
5720 return 0;
5724 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5725 * should handle it ourselves in L0 (and then continue L2). Only call this
5726 * when in is_guest_mode (L2).
5728 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5730 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5731 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5732 struct vcpu_vmx *vmx = to_vmx(vcpu);
5733 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5735 if (vmx->nested.nested_run_pending)
5736 return 0;
5738 if (unlikely(vmx->fail)) {
5739 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5740 vmcs_read32(VM_INSTRUCTION_ERROR));
5741 return 1;
5744 switch (exit_reason) {
5745 case EXIT_REASON_EXCEPTION_NMI:
5746 if (!is_exception(intr_info))
5747 return 0;
5748 else if (is_page_fault(intr_info))
5749 return enable_ept;
5750 return vmcs12->exception_bitmap &
5751 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5752 case EXIT_REASON_EXTERNAL_INTERRUPT:
5753 return 0;
5754 case EXIT_REASON_TRIPLE_FAULT:
5755 return 1;
5756 case EXIT_REASON_PENDING_INTERRUPT:
5757 case EXIT_REASON_NMI_WINDOW:
5759 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5760 * (aka Interrupt Window Exiting) only when L1 turned it on,
5761 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5762 * Same for NMI Window Exiting.
5764 return 1;
5765 case EXIT_REASON_TASK_SWITCH:
5766 return 1;
5767 case EXIT_REASON_CPUID:
5768 return 1;
5769 case EXIT_REASON_HLT:
5770 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5771 case EXIT_REASON_INVD:
5772 return 1;
5773 case EXIT_REASON_INVLPG:
5774 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5775 case EXIT_REASON_RDPMC:
5776 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5777 case EXIT_REASON_RDTSC:
5778 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5779 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5780 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5781 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5782 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5783 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5785 * VMX instructions trap unconditionally. This allows L1 to
5786 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5788 return 1;
5789 case EXIT_REASON_CR_ACCESS:
5790 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5791 case EXIT_REASON_DR_ACCESS:
5792 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5793 case EXIT_REASON_IO_INSTRUCTION:
5794 /* TODO: support IO bitmaps */
5795 return 1;
5796 case EXIT_REASON_MSR_READ:
5797 case EXIT_REASON_MSR_WRITE:
5798 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5799 case EXIT_REASON_INVALID_STATE:
5800 return 1;
5801 case EXIT_REASON_MWAIT_INSTRUCTION:
5802 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5803 case EXIT_REASON_MONITOR_INSTRUCTION:
5804 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5805 case EXIT_REASON_PAUSE_INSTRUCTION:
5806 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5807 nested_cpu_has2(vmcs12,
5808 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5809 case EXIT_REASON_MCE_DURING_VMENTRY:
5810 return 0;
5811 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5812 return 1;
5813 case EXIT_REASON_APIC_ACCESS:
5814 return nested_cpu_has2(vmcs12,
5815 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5816 case EXIT_REASON_EPT_VIOLATION:
5817 case EXIT_REASON_EPT_MISCONFIG:
5818 return 0;
5819 case EXIT_REASON_WBINVD:
5820 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5821 case EXIT_REASON_XSETBV:
5822 return 1;
5823 default:
5824 return 1;
5828 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5830 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5831 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5835 * The guest has exited. See if we can fix it or if we need userspace
5836 * assistance.
5838 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5840 struct vcpu_vmx *vmx = to_vmx(vcpu);
5841 u32 exit_reason = vmx->exit_reason;
5842 u32 vectoring_info = vmx->idt_vectoring_info;
5844 /* If guest state is invalid, start emulating */
5845 if (vmx->emulation_required && emulate_invalid_guest_state)
5846 return handle_invalid_guest_state(vcpu);
5849 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5850 * we did not inject a still-pending event to L1 now because of
5851 * nested_run_pending, we need to re-enable this bit.
5853 if (vmx->nested.nested_run_pending)
5854 kvm_make_request(KVM_REQ_EVENT, vcpu);
5856 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5857 exit_reason == EXIT_REASON_VMRESUME))
5858 vmx->nested.nested_run_pending = 1;
5859 else
5860 vmx->nested.nested_run_pending = 0;
5862 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5863 nested_vmx_vmexit(vcpu);
5864 return 1;
5867 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5868 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5869 vcpu->run->fail_entry.hardware_entry_failure_reason
5870 = exit_reason;
5871 return 0;
5874 if (unlikely(vmx->fail)) {
5875 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5876 vcpu->run->fail_entry.hardware_entry_failure_reason
5877 = vmcs_read32(VM_INSTRUCTION_ERROR);
5878 return 0;
5881 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5882 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5883 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5884 exit_reason != EXIT_REASON_TASK_SWITCH))
5885 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5886 "(0x%x) and exit reason is 0x%x\n",
5887 __func__, vectoring_info, exit_reason);
5889 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5890 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5891 get_vmcs12(vcpu), vcpu)))) {
5892 if (vmx_interrupt_allowed(vcpu)) {
5893 vmx->soft_vnmi_blocked = 0;
5894 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5895 vcpu->arch.nmi_pending) {
5897 * This CPU don't support us in finding the end of an
5898 * NMI-blocked window if the guest runs with IRQs
5899 * disabled. So we pull the trigger after 1 s of
5900 * futile waiting, but inform the user about this.
5902 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5903 "state on VCPU %d after 1 s timeout\n",
5904 __func__, vcpu->vcpu_id);
5905 vmx->soft_vnmi_blocked = 0;
5909 if (exit_reason < kvm_vmx_max_exit_handlers
5910 && kvm_vmx_exit_handlers[exit_reason])
5911 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5912 else {
5913 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5914 vcpu->run->hw.hardware_exit_reason = exit_reason;
5916 return 0;
5919 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5921 if (irr == -1 || tpr < irr) {
5922 vmcs_write32(TPR_THRESHOLD, 0);
5923 return;
5926 vmcs_write32(TPR_THRESHOLD, irr);
5929 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5931 u32 exit_intr_info;
5933 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5934 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5935 return;
5937 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5938 exit_intr_info = vmx->exit_intr_info;
5940 /* Handle machine checks before interrupts are enabled */
5941 if (is_machine_check(exit_intr_info))
5942 kvm_machine_check();
5944 /* We need to handle NMIs before interrupts are enabled */
5945 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5946 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5947 kvm_before_handle_nmi(&vmx->vcpu);
5948 asm("int $2");
5949 kvm_after_handle_nmi(&vmx->vcpu);
5953 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5955 u32 exit_intr_info;
5956 bool unblock_nmi;
5957 u8 vector;
5958 bool idtv_info_valid;
5960 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5962 if (cpu_has_virtual_nmis()) {
5963 if (vmx->nmi_known_unmasked)
5964 return;
5966 * Can't use vmx->exit_intr_info since we're not sure what
5967 * the exit reason is.
5969 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5970 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5971 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5973 * SDM 3: 27.7.1.2 (September 2008)
5974 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5975 * a guest IRET fault.
5976 * SDM 3: 23.2.2 (September 2008)
5977 * Bit 12 is undefined in any of the following cases:
5978 * If the VM exit sets the valid bit in the IDT-vectoring
5979 * information field.
5980 * If the VM exit is due to a double fault.
5982 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5983 vector != DF_VECTOR && !idtv_info_valid)
5984 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5985 GUEST_INTR_STATE_NMI);
5986 else
5987 vmx->nmi_known_unmasked =
5988 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5989 & GUEST_INTR_STATE_NMI);
5990 } else if (unlikely(vmx->soft_vnmi_blocked))
5991 vmx->vnmi_blocked_time +=
5992 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5995 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5996 u32 idt_vectoring_info,
5997 int instr_len_field,
5998 int error_code_field)
6000 u8 vector;
6001 int type;
6002 bool idtv_info_valid;
6004 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6006 vmx->vcpu.arch.nmi_injected = false;
6007 kvm_clear_exception_queue(&vmx->vcpu);
6008 kvm_clear_interrupt_queue(&vmx->vcpu);
6010 if (!idtv_info_valid)
6011 return;
6013 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6015 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6016 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6018 switch (type) {
6019 case INTR_TYPE_NMI_INTR:
6020 vmx->vcpu.arch.nmi_injected = true;
6022 * SDM 3: 27.7.1.2 (September 2008)
6023 * Clear bit "block by NMI" before VM entry if a NMI
6024 * delivery faulted.
6026 vmx_set_nmi_mask(&vmx->vcpu, false);
6027 break;
6028 case INTR_TYPE_SOFT_EXCEPTION:
6029 vmx->vcpu.arch.event_exit_inst_len =
6030 vmcs_read32(instr_len_field);
6031 /* fall through */
6032 case INTR_TYPE_HARD_EXCEPTION:
6033 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6034 u32 err = vmcs_read32(error_code_field);
6035 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6036 } else
6037 kvm_queue_exception(&vmx->vcpu, vector);
6038 break;
6039 case INTR_TYPE_SOFT_INTR:
6040 vmx->vcpu.arch.event_exit_inst_len =
6041 vmcs_read32(instr_len_field);
6042 /* fall through */
6043 case INTR_TYPE_EXT_INTR:
6044 kvm_queue_interrupt(&vmx->vcpu, vector,
6045 type == INTR_TYPE_SOFT_INTR);
6046 break;
6047 default:
6048 break;
6052 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6054 if (is_guest_mode(&vmx->vcpu))
6055 return;
6056 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6057 VM_EXIT_INSTRUCTION_LEN,
6058 IDT_VECTORING_ERROR_CODE);
6061 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6063 if (is_guest_mode(vcpu))
6064 return;
6065 __vmx_complete_interrupts(to_vmx(vcpu),
6066 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6067 VM_ENTRY_INSTRUCTION_LEN,
6068 VM_ENTRY_EXCEPTION_ERROR_CODE);
6070 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6073 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6075 int i, nr_msrs;
6076 struct perf_guest_switch_msr *msrs;
6078 msrs = perf_guest_get_msrs(&nr_msrs);
6080 if (!msrs)
6081 return;
6083 for (i = 0; i < nr_msrs; i++)
6084 if (msrs[i].host == msrs[i].guest)
6085 clear_atomic_switch_msr(vmx, msrs[i].msr);
6086 else
6087 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6088 msrs[i].host);
6091 #ifdef CONFIG_X86_64
6092 #define R "r"
6093 #define Q "q"
6094 #else
6095 #define R "e"
6096 #define Q "l"
6097 #endif
6099 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6101 struct vcpu_vmx *vmx = to_vmx(vcpu);
6103 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6104 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6105 if (vmcs12->idt_vectoring_info_field &
6106 VECTORING_INFO_VALID_MASK) {
6107 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6108 vmcs12->idt_vectoring_info_field);
6109 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6110 vmcs12->vm_exit_instruction_len);
6111 if (vmcs12->idt_vectoring_info_field &
6112 VECTORING_INFO_DELIVER_CODE_MASK)
6113 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6114 vmcs12->idt_vectoring_error_code);
6118 /* Record the guest's net vcpu time for enforced NMI injections. */
6119 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6120 vmx->entry_time = ktime_get();
6122 /* Don't enter VMX if guest state is invalid, let the exit handler
6123 start emulation until we arrive back to a valid state */
6124 if (vmx->emulation_required && emulate_invalid_guest_state)
6125 return;
6127 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6128 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6129 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6130 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6132 /* When single-stepping over STI and MOV SS, we must clear the
6133 * corresponding interruptibility bits in the guest state. Otherwise
6134 * vmentry fails as it then expects bit 14 (BS) in pending debug
6135 * exceptions being set, but that's not correct for the guest debugging
6136 * case. */
6137 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6138 vmx_set_interrupt_shadow(vcpu, 0);
6140 atomic_switch_perf_msrs(vmx);
6142 vmx->__launched = vmx->loaded_vmcs->launched;
6143 asm(
6144 /* Store host registers */
6145 "push %%"R"dx; push %%"R"bp;"
6146 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6147 "push %%"R"cx \n\t"
6148 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6149 "je 1f \n\t"
6150 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6151 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6152 "1: \n\t"
6153 /* Reload cr2 if changed */
6154 "mov %c[cr2](%0), %%"R"ax \n\t"
6155 "mov %%cr2, %%"R"dx \n\t"
6156 "cmp %%"R"ax, %%"R"dx \n\t"
6157 "je 2f \n\t"
6158 "mov %%"R"ax, %%cr2 \n\t"
6159 "2: \n\t"
6160 /* Check if vmlaunch of vmresume is needed */
6161 "cmpl $0, %c[launched](%0) \n\t"
6162 /* Load guest registers. Don't clobber flags. */
6163 "mov %c[rax](%0), %%"R"ax \n\t"
6164 "mov %c[rbx](%0), %%"R"bx \n\t"
6165 "mov %c[rdx](%0), %%"R"dx \n\t"
6166 "mov %c[rsi](%0), %%"R"si \n\t"
6167 "mov %c[rdi](%0), %%"R"di \n\t"
6168 "mov %c[rbp](%0), %%"R"bp \n\t"
6169 #ifdef CONFIG_X86_64
6170 "mov %c[r8](%0), %%r8 \n\t"
6171 "mov %c[r9](%0), %%r9 \n\t"
6172 "mov %c[r10](%0), %%r10 \n\t"
6173 "mov %c[r11](%0), %%r11 \n\t"
6174 "mov %c[r12](%0), %%r12 \n\t"
6175 "mov %c[r13](%0), %%r13 \n\t"
6176 "mov %c[r14](%0), %%r14 \n\t"
6177 "mov %c[r15](%0), %%r15 \n\t"
6178 #endif
6179 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6181 /* Enter guest mode */
6182 "jne .Llaunched \n\t"
6183 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6184 "jmp .Lkvm_vmx_return \n\t"
6185 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6186 ".Lkvm_vmx_return: "
6187 /* Save guest registers, load host registers, keep flags */
6188 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6189 "pop %0 \n\t"
6190 "mov %%"R"ax, %c[rax](%0) \n\t"
6191 "mov %%"R"bx, %c[rbx](%0) \n\t"
6192 "pop"Q" %c[rcx](%0) \n\t"
6193 "mov %%"R"dx, %c[rdx](%0) \n\t"
6194 "mov %%"R"si, %c[rsi](%0) \n\t"
6195 "mov %%"R"di, %c[rdi](%0) \n\t"
6196 "mov %%"R"bp, %c[rbp](%0) \n\t"
6197 #ifdef CONFIG_X86_64
6198 "mov %%r8, %c[r8](%0) \n\t"
6199 "mov %%r9, %c[r9](%0) \n\t"
6200 "mov %%r10, %c[r10](%0) \n\t"
6201 "mov %%r11, %c[r11](%0) \n\t"
6202 "mov %%r12, %c[r12](%0) \n\t"
6203 "mov %%r13, %c[r13](%0) \n\t"
6204 "mov %%r14, %c[r14](%0) \n\t"
6205 "mov %%r15, %c[r15](%0) \n\t"
6206 #endif
6207 "mov %%cr2, %%"R"ax \n\t"
6208 "mov %%"R"ax, %c[cr2](%0) \n\t"
6210 "pop %%"R"bp; pop %%"R"dx \n\t"
6211 "setbe %c[fail](%0) \n\t"
6212 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6213 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6214 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6215 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6216 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6217 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6218 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6219 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6220 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6221 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6222 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6223 #ifdef CONFIG_X86_64
6224 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6225 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6226 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6227 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6228 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6229 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6230 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6231 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6232 #endif
6233 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6234 [wordsize]"i"(sizeof(ulong))
6235 : "cc", "memory"
6236 , R"ax", R"bx", R"di", R"si"
6237 #ifdef CONFIG_X86_64
6238 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6239 #endif
6242 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6243 | (1 << VCPU_EXREG_RFLAGS)
6244 | (1 << VCPU_EXREG_CPL)
6245 | (1 << VCPU_EXREG_PDPTR)
6246 | (1 << VCPU_EXREG_SEGMENTS)
6247 | (1 << VCPU_EXREG_CR3));
6248 vcpu->arch.regs_dirty = 0;
6250 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6252 if (is_guest_mode(vcpu)) {
6253 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6254 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6255 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6256 vmcs12->idt_vectoring_error_code =
6257 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6258 vmcs12->vm_exit_instruction_len =
6259 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6263 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6264 vmx->loaded_vmcs->launched = 1;
6266 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6267 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6269 vmx_complete_atomic_exit(vmx);
6270 vmx_recover_nmi_blocking(vmx);
6271 vmx_complete_interrupts(vmx);
6274 #undef R
6275 #undef Q
6277 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6279 struct vcpu_vmx *vmx = to_vmx(vcpu);
6281 free_vpid(vmx);
6282 free_nested(vmx);
6283 free_loaded_vmcs(vmx->loaded_vmcs);
6284 kfree(vmx->guest_msrs);
6285 kvm_vcpu_uninit(vcpu);
6286 kmem_cache_free(kvm_vcpu_cache, vmx);
6289 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6291 int err;
6292 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6293 int cpu;
6295 if (!vmx)
6296 return ERR_PTR(-ENOMEM);
6298 allocate_vpid(vmx);
6300 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6301 if (err)
6302 goto free_vcpu;
6304 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6305 err = -ENOMEM;
6306 if (!vmx->guest_msrs) {
6307 goto uninit_vcpu;
6310 vmx->loaded_vmcs = &vmx->vmcs01;
6311 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6312 if (!vmx->loaded_vmcs->vmcs)
6313 goto free_msrs;
6314 if (!vmm_exclusive)
6315 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6316 loaded_vmcs_init(vmx->loaded_vmcs);
6317 if (!vmm_exclusive)
6318 kvm_cpu_vmxoff();
6320 cpu = get_cpu();
6321 vmx_vcpu_load(&vmx->vcpu, cpu);
6322 vmx->vcpu.cpu = cpu;
6323 err = vmx_vcpu_setup(vmx);
6324 vmx_vcpu_put(&vmx->vcpu);
6325 put_cpu();
6326 if (err)
6327 goto free_vmcs;
6328 if (vm_need_virtualize_apic_accesses(kvm))
6329 err = alloc_apic_access_page(kvm);
6330 if (err)
6331 goto free_vmcs;
6333 if (enable_ept) {
6334 if (!kvm->arch.ept_identity_map_addr)
6335 kvm->arch.ept_identity_map_addr =
6336 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6337 err = -ENOMEM;
6338 if (alloc_identity_pagetable(kvm) != 0)
6339 goto free_vmcs;
6340 if (!init_rmode_identity_map(kvm))
6341 goto free_vmcs;
6344 vmx->nested.current_vmptr = -1ull;
6345 vmx->nested.current_vmcs12 = NULL;
6347 return &vmx->vcpu;
6349 free_vmcs:
6350 free_vmcs(vmx->loaded_vmcs->vmcs);
6351 free_msrs:
6352 kfree(vmx->guest_msrs);
6353 uninit_vcpu:
6354 kvm_vcpu_uninit(&vmx->vcpu);
6355 free_vcpu:
6356 free_vpid(vmx);
6357 kmem_cache_free(kvm_vcpu_cache, vmx);
6358 return ERR_PTR(err);
6361 static void __init vmx_check_processor_compat(void *rtn)
6363 struct vmcs_config vmcs_conf;
6365 *(int *)rtn = 0;
6366 if (setup_vmcs_config(&vmcs_conf) < 0)
6367 *(int *)rtn = -EIO;
6368 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6369 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6370 smp_processor_id());
6371 *(int *)rtn = -EIO;
6375 static int get_ept_level(void)
6377 return VMX_EPT_DEFAULT_GAW + 1;
6380 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6382 u64 ret;
6384 /* For VT-d and EPT combination
6385 * 1. MMIO: always map as UC
6386 * 2. EPT with VT-d:
6387 * a. VT-d without snooping control feature: can't guarantee the
6388 * result, try to trust guest.
6389 * b. VT-d with snooping control feature: snooping control feature of
6390 * VT-d engine can guarantee the cache correctness. Just set it
6391 * to WB to keep consistent with host. So the same as item 3.
6392 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6393 * consistent with host MTRR
6395 if (is_mmio)
6396 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6397 else if (vcpu->kvm->arch.iommu_domain &&
6398 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6399 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6400 VMX_EPT_MT_EPTE_SHIFT;
6401 else
6402 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6403 | VMX_EPT_IPAT_BIT;
6405 return ret;
6408 static int vmx_get_lpage_level(void)
6410 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6411 return PT_DIRECTORY_LEVEL;
6412 else
6413 /* For shadow and EPT supported 1GB page */
6414 return PT_PDPE_LEVEL;
6417 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6419 struct kvm_cpuid_entry2 *best;
6420 struct vcpu_vmx *vmx = to_vmx(vcpu);
6421 u32 exec_control;
6423 vmx->rdtscp_enabled = false;
6424 if (vmx_rdtscp_supported()) {
6425 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6426 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6427 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6428 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6429 vmx->rdtscp_enabled = true;
6430 else {
6431 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6433 exec_control);
6439 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6441 if (func == 1 && nested)
6442 entry->ecx |= bit(X86_FEATURE_VMX);
6446 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6447 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6448 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6449 * guest in a way that will both be appropriate to L1's requests, and our
6450 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6451 * function also has additional necessary side-effects, like setting various
6452 * vcpu->arch fields.
6454 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6456 struct vcpu_vmx *vmx = to_vmx(vcpu);
6457 u32 exec_control;
6459 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6460 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6461 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6462 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6463 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6464 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6465 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6466 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6467 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6468 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6469 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6470 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6471 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6472 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6473 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6474 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6475 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6476 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6477 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6478 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6479 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6480 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6481 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6482 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6483 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6484 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6485 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6486 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6487 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6488 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6489 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6490 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6491 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6492 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6493 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6494 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6496 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6497 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6498 vmcs12->vm_entry_intr_info_field);
6499 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6500 vmcs12->vm_entry_exception_error_code);
6501 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6502 vmcs12->vm_entry_instruction_len);
6503 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6504 vmcs12->guest_interruptibility_info);
6505 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6506 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6507 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6508 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6509 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6510 vmcs12->guest_pending_dbg_exceptions);
6511 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6512 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6514 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6516 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6517 (vmcs_config.pin_based_exec_ctrl |
6518 vmcs12->pin_based_vm_exec_control));
6521 * Whether page-faults are trapped is determined by a combination of
6522 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6523 * If enable_ept, L0 doesn't care about page faults and we should
6524 * set all of these to L1's desires. However, if !enable_ept, L0 does
6525 * care about (at least some) page faults, and because it is not easy
6526 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6527 * to exit on each and every L2 page fault. This is done by setting
6528 * MASK=MATCH=0 and (see below) EB.PF=1.
6529 * Note that below we don't need special code to set EB.PF beyond the
6530 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6531 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6532 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6534 * A problem with this approach (when !enable_ept) is that L1 may be
6535 * injected with more page faults than it asked for. This could have
6536 * caused problems, but in practice existing hypervisors don't care.
6537 * To fix this, we will need to emulate the PFEC checking (on the L1
6538 * page tables), using walk_addr(), when injecting PFs to L1.
6540 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6541 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6542 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6543 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6545 if (cpu_has_secondary_exec_ctrls()) {
6546 u32 exec_control = vmx_secondary_exec_control(vmx);
6547 if (!vmx->rdtscp_enabled)
6548 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6549 /* Take the following fields only from vmcs12 */
6550 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6551 if (nested_cpu_has(vmcs12,
6552 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6553 exec_control |= vmcs12->secondary_vm_exec_control;
6555 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6557 * Translate L1 physical address to host physical
6558 * address for vmcs02. Keep the page pinned, so this
6559 * physical address remains valid. We keep a reference
6560 * to it so we can release it later.
6562 if (vmx->nested.apic_access_page) /* shouldn't happen */
6563 nested_release_page(vmx->nested.apic_access_page);
6564 vmx->nested.apic_access_page =
6565 nested_get_page(vcpu, vmcs12->apic_access_addr);
6567 * If translation failed, no matter: This feature asks
6568 * to exit when accessing the given address, and if it
6569 * can never be accessed, this feature won't do
6570 * anything anyway.
6572 if (!vmx->nested.apic_access_page)
6573 exec_control &=
6574 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6575 else
6576 vmcs_write64(APIC_ACCESS_ADDR,
6577 page_to_phys(vmx->nested.apic_access_page));
6580 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6585 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6586 * Some constant fields are set here by vmx_set_constant_host_state().
6587 * Other fields are different per CPU, and will be set later when
6588 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6590 vmx_set_constant_host_state();
6593 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6594 * entry, but only if the current (host) sp changed from the value
6595 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6596 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6597 * here we just force the write to happen on entry.
6599 vmx->host_rsp = 0;
6601 exec_control = vmx_exec_control(vmx); /* L0's desires */
6602 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6603 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6604 exec_control &= ~CPU_BASED_TPR_SHADOW;
6605 exec_control |= vmcs12->cpu_based_vm_exec_control;
6607 * Merging of IO and MSR bitmaps not currently supported.
6608 * Rather, exit every time.
6610 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6611 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6612 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6614 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6616 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6617 * bitwise-or of what L1 wants to trap for L2, and what we want to
6618 * trap. Note that CR0.TS also needs updating - we do this later.
6620 update_exception_bitmap(vcpu);
6621 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6622 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6624 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6625 vmcs_write32(VM_EXIT_CONTROLS,
6626 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6627 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6628 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6630 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6631 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6632 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6633 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6636 set_cr4_guest_host_mask(vmx);
6638 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6639 vmcs_write64(TSC_OFFSET,
6640 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6641 else
6642 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6644 if (enable_vpid) {
6646 * Trivially support vpid by letting L2s share their parent
6647 * L1's vpid. TODO: move to a more elaborate solution, giving
6648 * each L2 its own vpid and exposing the vpid feature to L1.
6650 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6651 vmx_flush_tlb(vcpu);
6654 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6655 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6656 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6657 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6658 else
6659 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6660 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6661 vmx_set_efer(vcpu, vcpu->arch.efer);
6664 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6665 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6666 * The CR0_READ_SHADOW is what L2 should have expected to read given
6667 * the specifications by L1; It's not enough to take
6668 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6669 * have more bits than L1 expected.
6671 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6672 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6674 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6675 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6677 /* shadow page tables on either EPT or shadow page tables */
6678 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6679 kvm_mmu_reset_context(vcpu);
6681 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6682 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6686 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6687 * for running an L2 nested guest.
6689 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6691 struct vmcs12 *vmcs12;
6692 struct vcpu_vmx *vmx = to_vmx(vcpu);
6693 int cpu;
6694 struct loaded_vmcs *vmcs02;
6696 if (!nested_vmx_check_permission(vcpu) ||
6697 !nested_vmx_check_vmcs12(vcpu))
6698 return 1;
6700 skip_emulated_instruction(vcpu);
6701 vmcs12 = get_vmcs12(vcpu);
6704 * The nested entry process starts with enforcing various prerequisites
6705 * on vmcs12 as required by the Intel SDM, and act appropriately when
6706 * they fail: As the SDM explains, some conditions should cause the
6707 * instruction to fail, while others will cause the instruction to seem
6708 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6709 * To speed up the normal (success) code path, we should avoid checking
6710 * for misconfigurations which will anyway be caught by the processor
6711 * when using the merged vmcs02.
6713 if (vmcs12->launch_state == launch) {
6714 nested_vmx_failValid(vcpu,
6715 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6716 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6717 return 1;
6720 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6721 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6722 /*TODO: Also verify bits beyond physical address width are 0*/
6723 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6724 return 1;
6727 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6728 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6729 /*TODO: Also verify bits beyond physical address width are 0*/
6730 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6731 return 1;
6734 if (vmcs12->vm_entry_msr_load_count > 0 ||
6735 vmcs12->vm_exit_msr_load_count > 0 ||
6736 vmcs12->vm_exit_msr_store_count > 0) {
6737 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6738 __func__);
6739 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6740 return 1;
6743 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6744 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6745 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6746 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6747 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6748 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6749 !vmx_control_verify(vmcs12->vm_exit_controls,
6750 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6751 !vmx_control_verify(vmcs12->vm_entry_controls,
6752 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6754 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6755 return 1;
6758 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6759 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6760 nested_vmx_failValid(vcpu,
6761 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6762 return 1;
6765 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6766 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6767 nested_vmx_entry_failure(vcpu, vmcs12,
6768 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6769 return 1;
6771 if (vmcs12->vmcs_link_pointer != -1ull) {
6772 nested_vmx_entry_failure(vcpu, vmcs12,
6773 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6774 return 1;
6778 * We're finally done with prerequisite checking, and can start with
6779 * the nested entry.
6782 vmcs02 = nested_get_current_vmcs02(vmx);
6783 if (!vmcs02)
6784 return -ENOMEM;
6786 enter_guest_mode(vcpu);
6788 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6790 cpu = get_cpu();
6791 vmx->loaded_vmcs = vmcs02;
6792 vmx_vcpu_put(vcpu);
6793 vmx_vcpu_load(vcpu, cpu);
6794 vcpu->cpu = cpu;
6795 put_cpu();
6797 vmcs12->launch_state = 1;
6799 prepare_vmcs02(vcpu, vmcs12);
6802 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6803 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6804 * returned as far as L1 is concerned. It will only return (and set
6805 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6807 return 1;
6811 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6812 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6813 * This function returns the new value we should put in vmcs12.guest_cr0.
6814 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6815 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6816 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6817 * didn't trap the bit, because if L1 did, so would L0).
6818 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6819 * been modified by L2, and L1 knows it. So just leave the old value of
6820 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6821 * isn't relevant, because if L0 traps this bit it can set it to anything.
6822 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6823 * changed these bits, and therefore they need to be updated, but L0
6824 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6825 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6827 static inline unsigned long
6828 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6830 return
6831 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6832 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6833 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6834 vcpu->arch.cr0_guest_owned_bits));
6837 static inline unsigned long
6838 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6840 return
6841 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6842 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6843 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6844 vcpu->arch.cr4_guest_owned_bits));
6848 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6849 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6850 * and this function updates it to reflect the changes to the guest state while
6851 * L2 was running (and perhaps made some exits which were handled directly by L0
6852 * without going back to L1), and to reflect the exit reason.
6853 * Note that we do not have to copy here all VMCS fields, just those that
6854 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6855 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6856 * which already writes to vmcs12 directly.
6858 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6860 /* update guest state fields: */
6861 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6862 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6864 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6865 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6866 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6867 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6869 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6870 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6871 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6872 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6873 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6874 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6875 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6876 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6877 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6878 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6879 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6880 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6881 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6882 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6883 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6884 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6885 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6886 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6887 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6888 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6889 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6890 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6891 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6892 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6893 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6894 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6895 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6896 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6897 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6898 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6899 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6900 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6901 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6902 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6903 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6904 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6906 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6907 vmcs12->guest_interruptibility_info =
6908 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6909 vmcs12->guest_pending_dbg_exceptions =
6910 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6912 /* TODO: These cannot have changed unless we have MSR bitmaps and
6913 * the relevant bit asks not to trap the change */
6914 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6915 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6916 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6917 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6918 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6919 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6921 /* update exit information fields: */
6923 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6924 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6926 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6927 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6928 vmcs12->idt_vectoring_info_field =
6929 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6930 vmcs12->idt_vectoring_error_code =
6931 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6932 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6933 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6935 /* clear vm-entry fields which are to be cleared on exit */
6936 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6937 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6941 * A part of what we need to when the nested L2 guest exits and we want to
6942 * run its L1 parent, is to reset L1's guest state to the host state specified
6943 * in vmcs12.
6944 * This function is to be called not only on normal nested exit, but also on
6945 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6946 * Failures During or After Loading Guest State").
6947 * This function should be called when the active VMCS is L1's (vmcs01).
6949 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6951 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6952 vcpu->arch.efer = vmcs12->host_ia32_efer;
6953 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6954 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6955 else
6956 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6957 vmx_set_efer(vcpu, vcpu->arch.efer);
6959 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6960 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6962 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6963 * actually changed, because it depends on the current state of
6964 * fpu_active (which may have changed).
6965 * Note that vmx_set_cr0 refers to efer set above.
6967 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6969 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6970 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6971 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6973 update_exception_bitmap(vcpu);
6974 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6975 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6978 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6979 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6981 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6982 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6984 /* shadow page tables on either EPT or shadow page tables */
6985 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6986 kvm_mmu_reset_context(vcpu);
6988 if (enable_vpid) {
6990 * Trivially support vpid by letting L2s share their parent
6991 * L1's vpid. TODO: move to a more elaborate solution, giving
6992 * each L2 its own vpid and exposing the vpid feature to L1.
6994 vmx_flush_tlb(vcpu);
6998 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6999 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7000 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7001 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7002 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7003 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7004 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7005 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7006 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7007 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7008 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7009 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7010 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7011 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7012 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7014 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7015 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7016 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7017 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7018 vmcs12->host_ia32_perf_global_ctrl);
7022 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7023 * and modify vmcs12 to make it see what it would expect to see there if
7024 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7026 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7028 struct vcpu_vmx *vmx = to_vmx(vcpu);
7029 int cpu;
7030 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7032 leave_guest_mode(vcpu);
7033 prepare_vmcs12(vcpu, vmcs12);
7035 cpu = get_cpu();
7036 vmx->loaded_vmcs = &vmx->vmcs01;
7037 vmx_vcpu_put(vcpu);
7038 vmx_vcpu_load(vcpu, cpu);
7039 vcpu->cpu = cpu;
7040 put_cpu();
7042 /* if no vmcs02 cache requested, remove the one we used */
7043 if (VMCS02_POOL_SIZE == 0)
7044 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7046 load_vmcs12_host_state(vcpu, vmcs12);
7048 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7049 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7051 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7052 vmx->host_rsp = 0;
7054 /* Unpin physical memory we referred to in vmcs02 */
7055 if (vmx->nested.apic_access_page) {
7056 nested_release_page(vmx->nested.apic_access_page);
7057 vmx->nested.apic_access_page = 0;
7061 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7062 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7063 * success or failure flag accordingly.
7065 if (unlikely(vmx->fail)) {
7066 vmx->fail = 0;
7067 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7068 } else
7069 nested_vmx_succeed(vcpu);
7073 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7074 * 23.7 "VM-entry failures during or after loading guest state" (this also
7075 * lists the acceptable exit-reason and exit-qualification parameters).
7076 * It should only be called before L2 actually succeeded to run, and when
7077 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7079 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7080 struct vmcs12 *vmcs12,
7081 u32 reason, unsigned long qualification)
7083 load_vmcs12_host_state(vcpu, vmcs12);
7084 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7085 vmcs12->exit_qualification = qualification;
7086 nested_vmx_succeed(vcpu);
7089 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7090 struct x86_instruction_info *info,
7091 enum x86_intercept_stage stage)
7093 return X86EMUL_CONTINUE;
7096 static struct kvm_x86_ops vmx_x86_ops = {
7097 .cpu_has_kvm_support = cpu_has_kvm_support,
7098 .disabled_by_bios = vmx_disabled_by_bios,
7099 .hardware_setup = hardware_setup,
7100 .hardware_unsetup = hardware_unsetup,
7101 .check_processor_compatibility = vmx_check_processor_compat,
7102 .hardware_enable = hardware_enable,
7103 .hardware_disable = hardware_disable,
7104 .cpu_has_accelerated_tpr = report_flexpriority,
7106 .vcpu_create = vmx_create_vcpu,
7107 .vcpu_free = vmx_free_vcpu,
7108 .vcpu_reset = vmx_vcpu_reset,
7110 .prepare_guest_switch = vmx_save_host_state,
7111 .vcpu_load = vmx_vcpu_load,
7112 .vcpu_put = vmx_vcpu_put,
7114 .set_guest_debug = set_guest_debug,
7115 .get_msr = vmx_get_msr,
7116 .set_msr = vmx_set_msr,
7117 .get_segment_base = vmx_get_segment_base,
7118 .get_segment = vmx_get_segment,
7119 .set_segment = vmx_set_segment,
7120 .get_cpl = vmx_get_cpl,
7121 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7122 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7123 .decache_cr3 = vmx_decache_cr3,
7124 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7125 .set_cr0 = vmx_set_cr0,
7126 .set_cr3 = vmx_set_cr3,
7127 .set_cr4 = vmx_set_cr4,
7128 .set_efer = vmx_set_efer,
7129 .get_idt = vmx_get_idt,
7130 .set_idt = vmx_set_idt,
7131 .get_gdt = vmx_get_gdt,
7132 .set_gdt = vmx_set_gdt,
7133 .set_dr7 = vmx_set_dr7,
7134 .cache_reg = vmx_cache_reg,
7135 .get_rflags = vmx_get_rflags,
7136 .set_rflags = vmx_set_rflags,
7137 .fpu_activate = vmx_fpu_activate,
7138 .fpu_deactivate = vmx_fpu_deactivate,
7140 .tlb_flush = vmx_flush_tlb,
7142 .run = vmx_vcpu_run,
7143 .handle_exit = vmx_handle_exit,
7144 .skip_emulated_instruction = skip_emulated_instruction,
7145 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7146 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7147 .patch_hypercall = vmx_patch_hypercall,
7148 .set_irq = vmx_inject_irq,
7149 .set_nmi = vmx_inject_nmi,
7150 .queue_exception = vmx_queue_exception,
7151 .cancel_injection = vmx_cancel_injection,
7152 .interrupt_allowed = vmx_interrupt_allowed,
7153 .nmi_allowed = vmx_nmi_allowed,
7154 .get_nmi_mask = vmx_get_nmi_mask,
7155 .set_nmi_mask = vmx_set_nmi_mask,
7156 .enable_nmi_window = enable_nmi_window,
7157 .enable_irq_window = enable_irq_window,
7158 .update_cr8_intercept = update_cr8_intercept,
7160 .set_tss_addr = vmx_set_tss_addr,
7161 .get_tdp_level = get_ept_level,
7162 .get_mt_mask = vmx_get_mt_mask,
7164 .get_exit_info = vmx_get_exit_info,
7166 .get_lpage_level = vmx_get_lpage_level,
7168 .cpuid_update = vmx_cpuid_update,
7170 .rdtscp_supported = vmx_rdtscp_supported,
7172 .set_supported_cpuid = vmx_set_supported_cpuid,
7174 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7176 .set_tsc_khz = vmx_set_tsc_khz,
7177 .write_tsc_offset = vmx_write_tsc_offset,
7178 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7179 .compute_tsc_offset = vmx_compute_tsc_offset,
7180 .read_l1_tsc = vmx_read_l1_tsc,
7182 .set_tdp_cr3 = vmx_set_cr3,
7184 .check_intercept = vmx_check_intercept,
7187 static int __init vmx_init(void)
7189 int r, i;
7191 rdmsrl_safe(MSR_EFER, &host_efer);
7193 for (i = 0; i < NR_VMX_MSR; ++i)
7194 kvm_define_shared_msr(i, vmx_msr_index[i]);
7196 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7197 if (!vmx_io_bitmap_a)
7198 return -ENOMEM;
7200 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7201 if (!vmx_io_bitmap_b) {
7202 r = -ENOMEM;
7203 goto out;
7206 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7207 if (!vmx_msr_bitmap_legacy) {
7208 r = -ENOMEM;
7209 goto out1;
7212 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7213 if (!vmx_msr_bitmap_longmode) {
7214 r = -ENOMEM;
7215 goto out2;
7219 * Allow direct access to the PC debug port (it is often used for I/O
7220 * delays, but the vmexits simply slow things down).
7222 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7223 clear_bit(0x80, vmx_io_bitmap_a);
7225 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7227 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7228 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7230 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7232 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7233 __alignof__(struct vcpu_vmx), THIS_MODULE);
7234 if (r)
7235 goto out3;
7237 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7238 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7239 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7240 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7241 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7242 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7244 if (enable_ept) {
7245 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7246 VMX_EPT_EXECUTABLE_MASK);
7247 ept_set_mmio_spte_mask();
7248 kvm_enable_tdp();
7249 } else
7250 kvm_disable_tdp();
7252 return 0;
7254 out3:
7255 free_page((unsigned long)vmx_msr_bitmap_longmode);
7256 out2:
7257 free_page((unsigned long)vmx_msr_bitmap_legacy);
7258 out1:
7259 free_page((unsigned long)vmx_io_bitmap_b);
7260 out:
7261 free_page((unsigned long)vmx_io_bitmap_a);
7262 return r;
7265 static void __exit vmx_exit(void)
7267 free_page((unsigned long)vmx_msr_bitmap_legacy);
7268 free_page((unsigned long)vmx_msr_bitmap_longmode);
7269 free_page((unsigned long)vmx_io_bitmap_b);
7270 free_page((unsigned long)vmx_io_bitmap_a);
7272 kvm_exit();
7275 module_init(vmx_init)
7276 module_exit(vmx_exit)